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Abstract: Free space optical links between the ground and space may be severely degraded
by atmospheric turbulence. Adaptive Optics, a technique allowing partial correction of this
degradation, is beginning to see use in the field with the potential to achieve more robust and
higher bandwidth links. Here we present a simulation tool, FAST, which utilises an analytical
Fourier domain Adaptive Optics model developed for astronomy. Using the reciprocity principle,
the simulation may be applied either to downlink post-compensated or uplink pre-compensated
beams. We show that FAST gives similar results to full end-to-end simulations with wave-optical
propagation whilst being between 10 and 200 times faster, enabling the characterisation of optical
links with complex Adaptive Optics systems in timely fashion.
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1. Introduction

The use of light at optical wavelengths as a communications channel has several advantages over
traditional radio frequency communications. Increases in bandwidth, security and power efficiency
make free space optical communication (FSOC) [1] particularly attractive for Earth-space links
between orbiting satellites and ground stations [2–4].

Working with visible and near-infrared wavelengths brings with it the limitation of significant
signal degradation from atmospheric turbulence. Small random refractive index changes in the
air through which the light is propagating cause distortions of the beam. This manifests as both a
decrease in the average received power and variability of the power over millisecond timescales.
For the communications channel this can result in bit errors, where a transmitted 0 is received as
a 1 or vice versa, and signal fades where the link is lost entirely for a short period [5].

Adaptive optics (AO) is a mature technology designed to mitigate the effects of atmospheric
turbulence. First developed for astronomy [6,7], it has found applications ranging from microscopy
to vision science [8]. The fundamental principle is to measure the turbulence induced wavefront
aberration using a wavefront sensor (WFS) and to apply a correction to this aberration in real time,
usually with a deformable mirror (DM). For FSOC, AO can be applied both at the transmitter
(pre-compensation or pre-distortion) as well at the receiver, and offers the possibility of a more
robust, higher bandwidth link [9–11].

Modelling of such AO-corrected optical links is of critical importance in order to predict the
performance of these systems and assess the potential gain of employing AO. Theory exists
for gaussian beams propagating through uncorrected turbulence based on the model of Rytov
perturbations, with modifications to account for beam wander [5]. A model of a tracked beam
(low order tip/tilt modes removed) may also be derived from the same theory [12]. However,
analytical expressions derived from Rytov theory are not sufficient in themselves to model an
optical link, since they give the mean and variance (scintillation index) of the received flux but
not the shape of the flux probability distribution. Several probability distribution models exist for
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the received flux that are applicable in different scenarios however they must be assumed a priori
and do not necessarily employ parameters with a physical interpretation [5,13,14].

Depending on the turbulence strength and beam sizes, low-order turbulence (LOT) theory may
provide a better model of beam wander [15], and similarly a tip/tilt corrected model may be
derived [16]. Since LOT is by definition limited to low order turbulent modes, higher order AO
cannot be modelled.

The most accurate simulation of an AO corrected optical links are obtained with Monte Carlo
wave optical (MC-WO) simulation tools, where the turbulent atmosphere is modelled as a series
of discrete random phase screens through which the beam propagates [11,17]. Between the
screens, wave optical propagation (usually near-field i.e. Fresnel [18]) is used. Many random
or temporally correlated turbulence iterations are used to characterise the link. High fidelity
models of the various AO components (WFS, reconstructor, DM, etc.) may be included. Both
WO propagation and the AO system model can add significant computational complexity leading
to long simulation times. Simplified simulations employing a more basic AO model and avoiding
WO propagation [19,20] are therefore useful in the cases where the high fidelity of full MC-WO
simulation is not required.

In astronomy, many simulations exist that model the performance of AO in the vertical downlink
propagation case [21–26]. A particularly interesting subset is those that operate entirely in the
Fourier domain [27–30]. By making certain assumptions about the AO-corrected residual phase,
the power spectral density (PSD) of this phase in the telescope pupil may be computed analytically.
From the PSD, the long exposure point spread function (PSF) can be calculated with only a
single Fast Fourier Transform (FFT). This is particularly attractive since it reduces computation
times by several orders of magnitude when compared with full Monte Carlo simulation [31].

Here, we apply the Fourier domain AO simulation methods of [28,32] to the FSOC case. FAST
(Fourier domain Adaptive optics Simulation Tool) takes a semi-analytical approach similar to
[19,33], the difference being the computation of residual Monte Carlo phase screens directly from
the analytically computed residual phase PSD. The Fourier AO model includes five fundamental
single conjugate AO errors (DM fitting, anisoplanatism, servo-lag, WFS aliasing, WFS noise)
and can operate in closed loop. Although here we consider a Shack-Hartmann WFS system, in
principle different WFSs such as pyramid sensors can also be simulated [34]. Turbulence outer
and inner scale effects are included in the PSD, and temporal sequences can be generated by
translating phase screens as in standard MC AO simulation.

We show that FAST gives similar intensity distributions and fade statistics to MC-WO
simulation in both downlink and uplink (via the reciprocity principle [33]) ground-space links
to GEO, whilst being 10 times faster for the downlink and 200 times faster per iteration in the
uplink cases. We believe this simulation will be a useful intermediate point between limited
analytical formulae and computationally expensive MC-WO simulation.

2. Simulation fundamentals

Simulations for astronomical AO are designed for the vertical or slant path downward propagation
regime, where the light from the distant astronomical source may be modelled as an infinite plane
wave. Atmospheric turbulence, which extends to around altitude h = 20 km above the Earth’s
surface, is therefore considered to be close to the receiver.

In satellite-to-ground (downlink) FSOC, a laser beam with gaussian profile is launched from
the satellite and received by a telescope at an optical ground station (OGS). The launched beam
is usually no more than several centimetres in width due to mass and space requirements on the
satellite. The altitude of low earth orbit (LEO) and geostationary orbit (GEO) satellites (hundreds
to tens of thousands of kilometres) and the small beam size mean that the downlink beam at the
top of the atmosphere can be considered an infinite plane wave to good approximation [5], and
hence the standard astronomical AO downlink simulations are applicable.
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For the ground-to-satellite (uplink) case, the turbulence is concentrated near the transmitter,
which can result in significant beam wander and speckle at the satellite depending on the size of
the launched beam [35]. The modelling of such a link is therefore fundamentally different to the
downlink case. An additional challenge is that the transmitter must aim ahead of the satellite in
order to illuminate it, due to the light travel time between the transmitter and receiver and the
angular velocity of the satellite as seen from the ground. For GEO, this point-ahead angle (PAA)
is of the order of a 4 arcseconds, whereas for LEO it can be up to 10 arcseconds. This poses
a problem for AO if the downlink beam is used for wavefront sensing since the two paths may
encounter different turbulence.

However, the principle of far-field reciprocity [33,36] implies that, regardless of the turbulence
distribution along the path, if the roles of transmitter and receiver are interchanged, the fractional
power transfer between the two is identical. In this case, the two reciprocal planes are the focal
plane of the ground based receiver and the far-field pupil plane of the satellite (see Fig. 1).
Therefore we can use the downlink simulation for the uplink, with a change of aperture function
from a fully illuminated aperture to a truncated gaussian beam or any arbitrary launch beam
profile. AO pre-compensation is then equivalent to AO post-compensation of the downlink beam,
i.e. the standard astronomical case. The following will therefore be focused only on the downlink
case with the knowledge that it can be applied to the uplink using the reciprocity principle.

GEO/LEO satellite

atmospheric turbulence

ground-based
transmitter/receiver pupil

ground-based 
transmitter/receiver focal plane

transmitter/receiver pupil plane

AO 
(post-distortion)

AO 
(pre-distortion)

Fig. 1. Diagram illustrating uplink (right) and downlink (left) ground-space optical links.
In the downlink case, a small gaussian beam is launched from the satellite (indicated with red
arrows) that propagates downwards towards the receiver. The beam may be approximated as
a plane wave at the top of the atmosphere due to the large divergence. The light is captured
by the receiver and focused onto the focal plane, where it can be coupled into an optical
fibre. In the uplink case, a gaussian beam is launched through the aperture and propagates
upwards through turbulence. The turbulence close to the transmitter in this case can produce
significant beam wander and speckle. The light is received by the satellite and similarly
coupled into an optical fibre or other detector (not shown in this diagram). Importantly, the
far-field reciprocity principle implies that the focal plane of the ground-based telescope and
the satellite pupil plane, indicated by dashed blue lines, are reciprocal provided that the
distance to the satellite is large enough. This means that we can model the uplink scenario
using a much simpler downlink simulation.
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In addition it is important to note that the theory in this section is predicated on the fact that
the turbulent perturbations to the wavefront are small, i.e. that we are in the weak turbulence
regime. This is usually true in the vertical propagation regime but may not hold at very small
elevation angles (<10 degrees).

2.1. Definitions

We model the turbulent atmosphere as a number of independent turbulent layers at altitudes hi,
with thickness δh and layer strengths given by

Ji =

∫ hi+δh/2

hi−δh/2
C2

n(h) dh, (1)

where Ji is the turbulent strength of the ith layer in units of m1/3 and C2
n(h) is the refractive

index structure constant as a function of altitude h, with units of m−2/3. It is assumed that δh is
effectively infinitesimally small compared to the distance between layers such that diffraction
within the layer is negligible [37].

Light propagates through the turbulent layers to a receiver at the ground (h = 0). The electric
field in the plane of the receiver aperture is denoted

Ψ(r, t) = exp(χ(r, t) + iϕ(r, t)), (2)

where χ and ϕ denote the field log-amplitude and phase respectively. As a result of atmospheric
turbulence and the AO system, both χ and ϕ are gaussian random variables with 0 mean that
vary in both position r and time t. We assume that χ and ϕ are independent variables, which as
we will see will allow for a faster simulation. This assumption holds in the vertical propagation
regime [19,38].

The spatial power spectral density (PSD) of these random variables describes the variance
power in Fourier space. They are defined as the modulus square of the Fourier transforms of ϕ
and χ, averaged over time

Φφ(f) ≡ |⟨F [ϕ(r, t]⟩|2, (3)

Φχ(f) ≡ |⟨F [χ(r, t)]⟩|2, (4)

where f = (fx, fy) denotes the two dimensional spatial frequency vector and ⟨⟩ denotes the time
average. Note that we are using linear spatial frequencies, i.e. the units of f are 1/length [37].
For clarity, the forward and inverse Fourier transforms used here have the explicit form

F [g(r)](f) =
∬ ∞

∞

g(r) exp(−2πif · r) dr (5)

F −1[g(f)](r) =
∬ ∞

∞

g(f) exp(2πif · r) df (6)

for an arbitrary function g.
For a plane wave propagating through a turbulent layer at altitude hi in the small perturbation

regime, the PSDs of ϕ and χ, denoted Φφ and Φχ, are related to the PSD of refractive index
variation Φn(f) by

Φφ(f, hi) = 2πk2
Φn(f, hi) cos2(πλhif 2), (7)

Φχ(f, hi) = 2πk2
Φn(f, hi) sin2(πλhif 2), (8)

where λ is the wavelength considered, the wave vector k = 2π/λ and f = |f | [37]. We take the
commonly used geometric approximation for the phase, i.e. that cos2(πλhif 2) ≈ 1 in Eq. (7),
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since we are simulating a regime where hi is relatively small. Assuming a Von Karman model
for the turbulent refractive index fluctuations, the PSD is given by

Φn(f, hi) = 3.9 × 10−5Ji
exp(−f 2/f 2

m)

(f 2 + f 2
0 )

11/6
, (9)

where fm and f0 are spatial frequency cutoffs defined as

fm = 0.942/l0, (10)

f0 = 1/L0, (11)
for inner and outer scale values l0 and L0 [5].

2.2. AO corrected phase PSD

The foundation of the Fourier approach is to assume that the AO system acts as a series of spatial
filters on the phase power spectrum (Eq. (7)). After correction, the PSD of the residual phase is
given by

Φ
res
φ (f) = Φfit

φ (f) + Φaniso-servo
φ (f) + Φalias

φ (f) + Φnoise
φ (f) (12)

where each term corresponds to the PSD of the fundamental error terms of classical AO.
Φfit

φ denotes the DM fitting PSD, describing residual error from the finite sampling of the
DM and therefore inability to correct high spatial frequencies. Φaniso-servo

φ (f) denotes the joint
anisoplanatism-servo lag PSD, which describes the errors resulting from both an angular
separation of WFS target and science target and the temporal separation between measurement of
the wavefront and application of the correction. These errors are coupled, therefore the joint PSD
is computed. The WFS aliasing PSD Φalias

φ (f) describes the error from the finite sampling of
the WFS: high spatial frequencies are seen as low spatial frequencies and therefore erroneously
corrected by the system. Finally, the WFS noise PSD Φnoise

φ (f) describes the effect of random
noise on the WFS signals and how these propagate through the reconstruction.

Analytical expressions for the terms in Eq. (12) are derived in [28,32]. We will not enter into
detailed discussion of these derivations here. The general idea is to define a region of smaller
spatial frequencies in which the AO system controls the phase. The shape and size of this region
depends on the subaperture geometry and correction type (i.e. modal or zonal correction). The
aniso-servo, aliasing and noise PSDs are defined only within this region, with the fitting PSD
defined in the complementary high spatial frequency region. We show an example of each of
these PSDs in Fig. 2.

2.3. Focal plane

These focal plane computations follow the work of [19,33], and are presented here for complete-
ness.

The primary value of interest for FSOC is the power ρ coupled into the detector, which most
commonly takes the form of a single mode optical fibre in the focal plane. This may be modelled
for an instant in time t in the pupil plane as

ρ(t) =
|︁|︁|︁|︁∬ P(r)w(r)Ψ(r, t) dr

|︁|︁|︁|︁2 (13)

where P(r) represents the receiver pupil function and w(r) the gaussian fibre mode projected into
the pupil plane, of the form

w(r) = A exp(−r2/w2
0) (14)

where A is chosen such that
|︁|︁∬ P(r)w(r) dr

|︁|︁2 = 1 and w0 is found by optimising the coupled power
in the diffraction limited case. The instantaneous coupling ρ(t) is therefore the instantaneous
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Φfit
φ Φaniso−servo

φ Φalias
φ Φnoise

φ

Fig. 2. Example of the four PSD terms that make up the residual phase PSD. From left to
right: fitting, aniso-servo, WFS aliasing, WFS noise. In each case the AO correction region
is marked by the red dashed line, which in this case is a square indicating correction on a
zonal basis with square geometry. Note that the fitting error PSD (left) is presented at a
larger spatial scale to the others, illustrating that is defined only in the high spatial frequency
region. Each PSD has a different logarithmic colour scale for clarity, where black represents
large values and white small values.

electric field Ψ(r, t), with phase and log-amplitude components, integrated over the aperture
and weighted by the projection of the fibre mode. For the uplink case, the "focal plane" being
computed is actually the reciprocal plane of the satellite in LEO/GEO. The satellite receiver,
with aperture diameter usually up to tens of centimetres, is much smaller than the coherence
scale of intensity fluctuations and so is effectively point-like. The flux coupled into the satellite
receiver therefore depends only on the intensity at the central point of the (reciprocal) focal plane
plus an additional constant coupling loss depending on the design of the satellite receiver that
we do not compute. This central intensity can be computed by removing the fibre mode from
Eq. (13) (i.e. setting w(r) = 1), in which case it is equivalent to the on-axis Fourier transform
|F [P(r)Ψ(r)](0)|2.

We wish to compute not only the mean value ⟨ρ⟩ but also its distribution, in order to obtain
useful quantities for FSOC. To this end, we take a Monte Carlo approach and generate random
realisations of Ψ(r) in order to obtain random realisations of ρ.

As previously stated, we make the assumption that χ(r, t) and ϕ(r, t) are independent normally
distributed random variables, which allows us to treat their contributions to the coupling separately,
i.e.

ρ(t) = ρχ(t)ρφ(t). (15)

Under weak fluctuation conditions, the variance of the aperture averaged log-amplitude, which
we denote σ2

χ̄, can be obtained via aperture filtering of the log-amplitude PSD (Eq. (8)) [39,40]

σ2
χ̄ =

∑︂
i

∬
Φχ(f, hi) |F [P(r)w(r)](f)|2 df (16)

where we have summed the contributions from each layer at altitude hi, and the aperture averaged
log-amplitude χ̄. The spatial filter |F [P(r)w(r)](f)|2 is easily obtained for an arbitrary aperture
via a numerical fast Fourier transform (FFT). The contribution to the coupling is then

ρ(t)χ = |exp( χ̄(t))|2 = exp(2 χ̄(t)), (17)

where random χ̄(t) are obtained by drawing samples from a normal distribution with mean µ = 0
and variance σ2 = σ2

χ̄.
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The contribution to the coupling from the phase is then given by

ρ(t)φ =
|︁|︁|︁|︁∬ P(r)w(r) exp(iϕ(r, t)) dr

|︁|︁|︁|︁2 , (18)

therefore we generate random instances of ϕ(r) with the correct statistics and perform the
integration numerically. These random phase screens can be efficiently generated from the
(residual) phase PSD via an inverse FFT of spatially filtered normally distributed random variables
[41]. If required, we can also ensure the variance at lower spatial frequencies is correct by adding
subharmonics [42]. This makes the simulation similar to full end to end Monte Carlo simulations
of AO, but by modelling the AO system in the Fourier domain and avoiding computationally
expensive wave-optical propagation we gain a significant advantage in speed.

2.4. Temporal correlation

For some applications it is required to obtain temporal sequences of ρ(t), for example to assess
the frequency and other statistics of signal fades. To accomplish this, for the log-amplitude we
generate a temporal PSD by assuming Taylor frozen flow [43] and integrating the appropriately
scaled spatial PSD (Eq. (8)) along the axis orthogonal to the wind direction for each turbulent
layer [44]. This PSD is used to temporally filter the randomly generated log-amplitude sequences
[19].

For the phase, we have confirmed with end-to-end AO simulation that the Taylor frozen flow
approximation applies to all residual phase errors apart from noise. For the fitting, aniso-servo
and aliasing we generate only a single random screen per layer and translate them according to the
wind speed and direction as in conventional Monte Carlo AO simulation. This is accomplished
in Fourier space by applying a spatial shift to the initial screen, i.e.

ϕ(r, t + ∆t) = F −1[F [ϕ(r, t)] exp (2πi∆tv · f)] (19)

where ∆t is the simulation timestep and v = (vx, vy) is the wind speed vector for the layer. Since
we generate one screen per layer in this mode the computation time is affected, increasing
approximately linearly with the number of layers. Residual phase from noise error is unchanged
and uses uncorrelated random samples.

When generating temporal sequences one must ensure the phase screens are large enough
(or equivalently, the total simulated time short enough) such that the translated screens do not
wrap around, resulting in the same phase aberration appearing multiple times and introducing
a periodicity to ρ(t). For the FSOC case, we are sampling fades on the order of milliseconds,
so it is sufficient to simulate many very short time periods. This has the additional bonus of
decreasing the simulation convergence time.

2.5. Advantages of technique

The speed advantage over WO simulation provides several benefits. First, parameters of both the
AO system (e.g. subaperture size, loop rate) and the atmosphere (e.g. r0, turbulence profile) may
be scanned quickly to assess how these parameters impact the quality of the optical link. This is
useful in the early phases of a specifying a system to rapidly constrain the design.

The increase in number of iterations per unit time also allows better characterisation of the
coupled flux distribution, since more random iterations can be computed in the same amount of
time. This is particularly important when assessing the likelihood of low probability deep signal
fades.

In conventional Monte Carlo AO simulation, any closed loop control system or simulation
incorporating temporal effects (loop rate, loop delay, exposure time etc.) must operate using
temporal sequences of turbulence. This increases the convergence time of the simulation as
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each iteration is correlated with previous iterations as opposed to being completely random. In
analytical AO simulation there is no such limitation, as random phase screens may be computed
from the closed loop residual PSD. This results in much faster simulation convergence in these
cases.

2.6. Limitations of technique

The most limiting assumption of the Fourier technique is that the statistics of the residual phase
are stationary across the pupil. Effectively, an infinite aperture is assumed. In reality the finite
size of the DM and WFS mean the phase at the edges of the pupil tends to be poorly controlled,
leading to an increase in residual phase variance. This also means that links where the gaussian
nature of the beam is important (larger apertures, shorter propagation distances) cannot be
simulated accurately since we assume the phase variance is constant across the pupil which is not
true in general for gaussian beams [5].

Another significant limiting factor is that the analysis is founded on the assumptions of weak
turbulence, meaning FAST will not be accurate in strong turbulence conditions. This limits the
simulation to above around 30 degrees elevation angle depending on the turbulence conditions.
Many satellite FSOC links will need to operate as low as 10 degrees elevation especially for LEO,
and such links may not currently be simulated with FAST.

The modelling of WFS noise is more difficult with an analytical simulation. In end-to-end
Monte Carlo simulation the impact of shot noise, read-out noise, etc. on the WFS measurements
are straightforwardly obtained since the WFS (and by extension, the detector) is modelled in
real space. For the analytical simulation we must use a model to convert between input flux
and measurement noise. For a Shack Hartmann WFS several models exist, depending on the
centroiding method [45], but must necessarily include some assumptions about the profile of the
subaperture spot, so are limited to certain regimes. Additionally, there is currently no method of
including the effect of scintillation on the WFS noise in stronger turbulence.

3. Comparison with end-to-end Monte Carlo wave-optical simulation

Here we present a comparison between results obtained with FAST and full MC-WO AO
simulations. These simulations are soapy [21], an end-to-end Monte Carlo AO simulation for
astronomy (downlink), and the code used in Osborn et al [11], a Monte Carlo simulation of
precompensated ground-space optical links with a simple AO model. Both simulations employ
wave-optical propagation between turbulent phase screens. We simulate two scenarios, uplink and
downlink communications links with a satellite in GEO. We assume that the transmitter/reciever
on the satellite is unresolved, which allows us to make two simplifications. First, in the downlink
case the beam at the top of the atmosphere may be approximated by a plane wave. Second, in the
uplink case the receiver is a point at the centre of the far-field, therefore the reciprocity theorem
applies (see Fig. 1). The general simulation parameters for each case are described in Table 1.

We present coupled flux distributions, defined as the loss in dB relative to the diffraction
limited coupling ρdl:

ρ[dB] = 10 log10(ρ/ρdl). (20)

We also present fade statistics in both cases. The probability of fade is related to the cumulative
distribution of ρ, normalised to the average ⟨ρ⟩ [5]. It is simply computed from the random
samples

P(ρ<IT ) = n(ρ<IT )/ntot, (21)

where n(ρ<IT ) is the number of samples with value less than the threshold IT and ntot is the total
number of random samples. The threshold IT has units of dB and is computed as

IT [dB] = 10 log10(ρ/⟨ρ⟩). (22)
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Table 1. Atmospheric and optical link parameters for the downlink and uplink comparison
simulations. Atmospheric parameters (r0, θ0, τ0, Rytov variance) are defined along the 30 degree

elevation path. Differences in these parameters between the uplink and downlink are only due to the
different wavelengths used; the atmospheric conditions are the same in both cases.

Downlink Uplink

Turbulence profile Hufnagel Valley 5/7 [11]

Wind profile Bufton [46]

Outer Scale (L0) 25 m

Inner Scale (l0) 0 m

Fried parameter (r0) 8.1 cm 12 cm

Isoplanatic angle (θ0) 1.1 arcsec. 1.8 arcsec.

Coherence time (τ0) 2.2 ms 3.5 ms

Rytov variance (plane wave) 0.46 0.30

Communication Wavelength 1064 nm 1550 nm

Satellite altitude (at zenith) 36,000 km

Satellite elevation angle 30 degrees

Satellite Tx/Rx Point-like

Ground Tx/Rx
1 m

0.48 m
(0.35 m obsc.)

Launched beam waist (W0) Point-like 0.12 m

Point-ahead angle 0 4 arcsec.

MC-WO simulation soapy [21] Osborn et al [11]

The mean fade duration is calculated by computing the duration of each fade in the random
samples (providing they are temporally correlated), and taking the mean of the result.

For the uplink and downlink scenarios we simulate three AO configurations: uncorrected
turbulence (no AO), tip/tilt correction and full AO, with full parameters defined in Table 2.

Table 2. AO parameters for simulations. The uplink simulations are based on a very simple AO
model where the phase is measured and compensated perfectly, hence the “perfect" WFS and DM.
Both simulations use a Zernike DM operating with only tip/tilt modes for the tip/tilt case. The loop

gain is optimised separately for the tip/tilt and full AO cases for the downlink.

Downlink Uplink

Tip/Tilt Full AO Tip/Tilt Full AO

WFS type Shack-Hartmann Perfect

WFS pitch 0.125 m (8x8) -

DM type Zernike Zonal Zernike Perfect

DM pitch 0.125 m (8x8) -

Reconstructor Least squares MVM Open loop

WFS aliasing Yes No

WFS noise 0 0

Loop rate 1 kHz -

Loop delay 2 frames -

Loop gain 0.7 0.75 -

WFS exposure time 0 0
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3.1. Downlink

For the downlink case the obtained coupled flux distributions are shown in Fig. 3. We see for the
most part good agreement between the MC-WO simulation and FAST for all AO configurations.
It is clear for this set of parameters that tip/tilt correction only does not provide much improvement
over the uncorrected case, primarily due to the relatively large aperture (D = 1 m). The full AO
system however provides a marked improvement.
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Fig. 3. Distributions of coupled flux for the downlink case. In each case, FAST simulation
results are shown with solid lines and MC-WO simulation results with dots. Uncorrected
turbulence is shown in blue, tip/tilt correction in orange and full AO in green. Histograms
are computed from 5000 random iterations of each simulation.

This is continued in Fig. 4 where we compare fade statistics, specifically the probability of fade
and mean fade duration. Again we observe good agreement between the MC-WO simulation and
FAST. Since the fade threshold IT (Eq. (22)) is computed relative to the mean of the distribution,
the uncorrected and tip/tilt lines are almost identical. For this downlink scenario, temporally
correlated samples were used in both simulations, allowing the fade duration to be computed
which is shown in the lower panel of Fig. 4.

3.2. Uplink

For the uplink case we present the coupled flux distributions in Fig. 5. This configuration
offers quite different distributions to the downlink case, as the aperture used is smaller (12 cm
gaussian beam radius launched on a 48 cm diameter clear aperture) making tip/tilt correction
more effective. Reciprocally we may consider the correction of tip/tilt as correction of beam
wander on the uplink, which is known to dominate the intensity variability for these beam sizes
[5]. For uplink in this scenario there is only a slight advantage for full AO. We observe good
agreement in all configurations between the simulations.

In Fig. 6 we show the fade probability for the three AO configurations. This shows good
agreement for the uncorrected and full AO cases, with an overestimation of the fade probability for
deep fades in the tip/tilt case. This is most likely because the Fourier model is poorer representing
low-order modes leading to a discrepancy in this case. This could likely be alleviated by a change
of pixel scale or by including a greater number of subharmonics in the phase screen generation.

3.3. Speed comparison

In Table 3 we show some timing information for the simulations used above. All simulations
are benchmarked on a server running an Intel Xeon Gold 6244 CPU with 32 cores. For each
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Fig. 4. Fade statistics for the downlink simulations as a function of threshold IT . FAST
results shown as solid lines and MC-WO results as dots. Uncorrected turbulence shown in
blue, tip/tilt in orange and full AO in green. Upper: Fade probability computed from the
5000 samples. Lower: Fade duration. Error bars (MC-WO) and shaded regions (FAST)
indicate the standard error in the mean value obtained via the bootstrap method.

simulation we measure the time taken to initialise the simulation (setup time) and the time per
iteration once it is running.

Table 3. Comparison of simulation time for the simulations used to obtain the above results.

Simulation Iterations Setup time (s) Time per iteration (s) Total time (s)

soapy 5000 13.8 0.0685 353

Osborn et al 5000 0.110 1.23 6150

FAST 5000 0.643 0.00633 32.3

We can see that FAST offers approximately an order of magnitude speed increase compared to
soapy in the downlink case. It should be noted that soapy is highly optimised, and that many of
these optimisations are also available to FAST but have yet to be implemented.

For the uplink, FAST is almost 200 times faster than the simulations presented in Osborn et
al [11]. These uplink simulations are particularly slow due to the sampling requirements of
gaussian beam propagation, i.e. large phase screens are required. Generally since FAST does
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results shown as solid lines, MC-WO results as dots. Uncorrected turbulence in blue, tip/tilt
correction in orange and full AO in green.
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not perform numerical optical propagation, sampling requirements are not as strict leading to a
significant speed increase.

4. Conclusion

We have presented a semi-analytical simulation, FAST, that is capable of modelling the perfor-
mance of an AO corrected bidirectional ground-space optical link at speeds between 10 and
200 times faster than conventional MC-WO simulations. This is accomplished firstly by using a
Fourier domain AO model, which allows us to analytically compute the PSD of the residual phase.
This PSD is used to create phase screens which allow the rapid Monte Carlo characterisation of
the optical link.

We also avoid wave-optical propagation, the cost of which is the simulation functions only
in weak turbulence conditions. However, despite the various limitations and assumptions of
FAST, we have shown that it gives consistent results with MC-WO simulation for both uplink
pre-compensated and downlink post-compensated beams for Rytov variances as high as 0.46.
The scenario simulated here is representative of a GEO feeder link and is therefore of direct
relevance to FSOC.

The simulation occupies the middle ground between theoretical formulae with limited
application to the AO-corrected case, and full end-to-end MC-WO simulation. Since a Fourier
domain AO model is used, many parameters (e.g. DM pitch, loop rate, WFS noise) can be
modified and their effect on the optical link quantified using FAST. At the same time, the
simplified AO and propagation models allow these parameter spaces to be rapidly spanned due to
the short simulation times. We therefore believe that FAST will be a useful tool for the growing
AO/FSOC community, and the code is available at https://github.com/ojdf/fast.
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