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The development of abilities and skills in the first years 
of life lays the foundation for lifelong development 
(Shonkoff & Phillips, 2000), including academic achieve-
ment (Duncan et al.,  2007), health behaviors (Pagani & 
Fitzpatrick,  2014), and college graduation (McClelland 
et al.,  2013). Spanoudis and Demetriou  (2020) proposed 
that the human mind comprises several domain-specific 
processes (verbal, quantitative, spatial, causal, social, and 
linguistic) and a central control, involving integrative and 
cognizance processes. They suggested that these mental 

functions and their interactions are served by overlap-
ping brain structures and therefore do not work in isola-
tion. Many studies have investigated associations between 
several of these domain-specific processes, most prom-
inently between reading and mathematics as shown in a 
recent meta-analysis by Peng et al.  (2020). Prior studies 
have used different methodological approaches, ranging 
from univariate or purely correlational, cross-sectional 
research to more complex multivariate longitudinal mod-
els. Such methodological variation might come at the 
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Abstract

Understanding how early reading and mathematics co-develop is important from 

both theoretical and pedagogical standpoints. Previous research has provided 

mixed results. This paper investigates the development of reading and mathematics 

in a longitudinal sample of N = 355,883 students from the United Kingdom (2005–

2019) aged 5 to 12 (49% girls). Results indicate a positive relation between the 

development of the two domains. In addition, a substantial statistically significant 

positive association between prior reading scores and subsequent changes in 

achievement in mathematics was found, whereas changes in reading were smaller 

for students with a higher prior performance in mathematics. The findings suggest 

that acquiring good reading skills is highly relevant for developing mathematics 

skills. Implications for theory and practice are discussed.
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cost of addressing seemingly similar but actually differ-
ent research questions (RQs; e.g., Orth et al., 2021; Usami 
et al., 2019). Overall, these studies have produced mixed ev-
idence on the co-development of reading and mathematics, 
with some studies indicating that mathematics is a stronger 
predictor of subsequent reading (e.g., Duncan et al., 2007), 
some indicating that the two domains are reciprocally re-
lated (e.g., Koponen et al.,  2007; Little et al.,  2021; Peng 
et al., 2020; Vanbinst et al., 2020), and some suggesting that 
reading is a stronger predictor of subsequent mathematics 
skills or growth (e.g., Erbeli et al., 2021; Shin et al., 2013).

In this paper, we used a large-scale dataset of over 
350,000 students from the United Kingdom between the 
ages of 5 and 12 years and aimed to extend previous re-
search on the co-development of reading and mathematics 
during primary school. Investigating this co-development 
is important because knowledge about it can inform pol-
icy and practice on how a hypothetical minimally inva-
sive intervention on one skill (e.g., reading) that did not 
directly affect the other (e.g., mathematics) may transfer 
to the other skill in the coming period. More practically 
speaking, knowledge about whether improving reading 
achievement also leads to progress in mathematics or vice 
versa can help educators prioritize when deciding how to 
invest limited resources in fostering students' skill devel-
opment. In this study, we propose three sets of RQs from 
a univariate perspective (e.g., How does mathematics 
achievement develop over time?), a bivariate perspective 
(e.g., How do mathematics and reading develop in con-
cert?), and considering reading and mathematics sub-
scores and potentially differential developmental paths 
across subgroups (e.g., Are there differences in associa-
tions across grades or for different ability levels?).

The co-development of mathematics and reading

The relation between the development of reading and the 
development of mathematics has long been an area of 
research (Monroe & Engelhart, 1931). There is still un-
certainty about the shape of this relation although more 
recent studies have tended to apply increasingly sophis-
ticated statistical approaches over and above simple cor-
relations (e.g., Bailey et al.,  2020; Duncan et al.,  2007; 
Grimm, 2008; Peng et al., 2020; Shin et al., 2013).

As outlined by Erbeli et al. (2021) and based on differ-
ent frameworks on the development of reading and math-
ematics (e.g., Ehri, 2005; Geary, 1994; Perfetti, 1985), it 
seems reasonable to believe that mathematics and read-
ing co-develop because they go through similar stages: 
(a) First, children begin elementary school with basic 
competencies, for instance, knowledge about sounds and 
respective letters in reading and counting or the compre-
hension of quantities in mathematics. Following this, 
(b) a phase of procedural strategies follows, in which 
children are required to learn the alphabet and rela-
tions between different numerical representations (e.g., 

visual and phonological). (c) These strategies are applied 
and updated over time and saved in children's long-term 
memory and finally, (d) the strategies are applied in sce-
narios, which are increasingly cognitively demanding, for 
instance, because they require complex inferences or 
strategies. Erbeli et al.  (2021) suggested that because 
reading and mathematics develop through these similar 
stages, it seems reasonable to assume that they might in-
fluence each other as they develop.

These theoretical considerations are also supported 
by different empirical studies. For instance, in a meta-
analysis, Peng et al.  (2020) considered data from more 
than 360,000 participants (between the ages of 2 and 
81.24) and found a substantial partial correlation be-
tween reading and subsequent mathematics when hold-
ing prior mathematics achievement constant (r  =  .20, 
p < .05). In addition, they found evidence for the opposite 
direction in which mathematics predicted later reading 
while controlling for prior reading achievement (r = .22, 
p < .05). Besides this meta-analysis, there are several lon-
gitudinal studies that have focused in particular on the 
development of reading and mathematics in students 
over time (see Table 1). These studies were not considered 
in the abovementioned meta-analysis, used different 
methods for analyzing longitudinal data, and thus pro-
vide important additional evidence that can contribute 
to our understanding of the reciprocal relations between 
mathematics and reading achievement.

In one of these studies, Grimm  (2008) investigated 
associations between growth in students' achieve-
ment in mathematics from age 9 through 14 (Grades 3 
to 8 in the United States) and their reading and math-
ematics achievement in Grade 3, focusing on average 
yearly growth in three domains: Problem Solving and 
Data Interpretation, Mathematical Computation, and 
Mathematical Concepts and Estimation. His results 
suggest a positive relation between reading achievement 
and achievement growth in mathematics in all domains, 
even after student characteristics (e.g., gender and eth-
nicity) and prior mathematics achievement were con-
trolled for. Grimm's study did not control for cognitive 
abilities; therefore, it remains unclear whether reading 
and mathematics are naturally related because of com-
mon underlying dimensions and similar cognitive pro-
cesses, as suggested by other scholars (Bailey et al., 2020; 
Rhemtulla & Tucker-Drob,  2011; Wrigley,  1958). In 
another study, Shin et al.  (2013) used bivariate latent 
growth curve (BLGC) models to investigate how read-
ing and mathematics developed over time for students 
in midwestern school districts in the United States (from 
Grades 4 to 7). The authors found that reading growth 
was positively associated with growth in mathematics. 
In addition, their study provided particularly interesting 
results regarding intercept-slope associations: Whereas 
reading achievement in Grade 4 was positively associ-
ated with learning gains in mathematics from Grades 4 
to 7, mathematics achievement in Grade 4 was negatively 
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associated with reading growth from Grades 4 to 7. 
This suggests that students with a higher achievement 
in mathematics in Grade 4 had less positive growth in 
reading over time.

Finally, Erbeli et al.  (2021) investigated longitudi-
nal reciprocal relations between reading and mathe-
matics. They focused on N = 554 academically at-risk 
students from Texas, who were assessed repeatedly 
over the course of elementary school (Grades 1 to 4). 
Applying growth curve models and dual latent change 
score (LCS) models, they found that particularly av-
erage and above-average reading performances of at-
risk students were associated with larger subsequent 
changes in mathematics. The authors reported that 
this association was stronger for students with low 
mathematics performance.

To sum up, recent findings in this area have been 
mixed, with some studies indicating that mathematics is 
a stronger predictor of subsequent reading (e.g., Duncan 
et al., 2007), some indicating that the two domains are 
associated with one another (e.g., Little et al., 2021; Peng 
et al., 2020), and some suggesting that reading is a stron-
ger predictor of subsequent mathematics skills or growth 
(e.g., Bailey et al., 2020; Shin et al., 2013).

Methodological considerations

Recently, Bailey et al.  (2020) argued that many effects 
from prior studies on the relation between mathematics 
and reading may be confounded, as most studies have 
not disentangled within-person variation from stable 
between-person differences. This critique mirrors cur-
rent methodological discussions on the value and use of 
the cross-lagged panel model (CLPM) versus the random 
intercept CLPM (RI-CLPM). In the context of CLPMs 
and RI-CLPMs, between-person variation can be un-
derstood as time-stable (trait-like) differences between 

individuals, whereas within-person variation can be un-
derstood as intraindividual (state-like) fluctuations over 
time (Hamaker et al., 2015; Mulder & Hamaker, 2020). 
The CLPM does not distinguish between these two 
sources of variance, whereas the RI-CLPM separates 
them (Usami et al., 2019). Obviously, the criticism that 
between- and within-person variation is confounded 
can be generalized to most prior studies in this area, 
including prior meta-analytical findings. Most interest-
ingly, Bailey et al.  (2020) found that results from tradi-
tional CLPMs and RI-CLPMs have not matched well: 
Statistically significant cross-lagged coefficients from 
CLPMs disappeared or even reversed when they were 
modeled with RI-CLPMs.

However, even findings from RI-CLPMs might not 
ultimately provide the best answer on reciprocal effects 
between reading and mathematics achievement. As 
outlined by Lüdtke and Robitzsch  (2021), these models 
might not necessarily perform better than traditional 
CLPMs or full forward CLPMs (Marsh & Craven, 2006) 
in detecting causal reciprocal effects and might be suit-
able only in a limited set of practical scenarios and given 
strong assumptions (e.g., Andersen,  2021). In addition, 
as outlined in more detail by Usami et al.  (2019), LCS 
models, such as the ones we applied in this paper, allow 
users to control for unobserved time-varying and time-
invariant confounding variables and might therefore 
provide an even stronger inferential basis for addressing 
the question of whether there are reciprocal effects be-
tween reading and mathematics achievement than alter-
native models can provide (e.g., RI-CLPMs).

Keeping this in mind, it becomes evident that the de-
cision to choose a specific (longitudinal) model critically 
depends on the exact RQ that is being addressed and 
assumptions about the structure and nature of the un-
derlying (true) processes (e.g., the existence of trends or 
time-varying or invariant differences between individ-
uals). When investigating reciprocal relations between 

TA B L E  1   Exemplary overview of prior studies, modeling approaches, and findings on longitudinal associations between reading and 
mathematics

Study Model Findings

Bailey et al. (2020) CLPM, RI-CLPM CLPM: Higher cross-lagged coefficients from mathematics to reading than 
vice versa

RI-CLPM: slightly larger cross-lagged coefficients from reading to 
mathematics

Duncan et al. (2007) Multiple regression models Larger regression coefficients when predicting reading from mathematics 
than vice versa

Erbeli et al. (2021) Univariate and Bivariate LCS Reading positively related to changes in mathematics

Peng et al. (2020) Meta-analysis Comparable reciprocal associations between reading and mathematics and 
vice versa

Shin et al. (2013) Bivariate LGC Reading positively related to subsequent mathematics, mathematics 
negatively related to subsequent reading

Note: We only considered studies that investigated models with paths from prior reading to subsequent mathematics and vice versa. Note that the meaning of 
cross-lagged coefficients can differ substantially when different modeling strategies are applied (e.g., Usami et al., 2019).

Abbreviations: CLPM, cross-lagged panel model; LCS, latent change score model; LGC, latent growth curve model; RI-CLPM, random intercept CLPM.
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cognitive variables, both time-varying (e.g., motivation) 
and time-invariant differences (e.g., cognitive abilities, 
socioeconomic background) between individuals seem 
likely to occur and to influence the interplay between 
the two, as is evident from more recent publications (e.g., 
Orth et al., 2021; Usami et al., 2019).

To enhance the understanding of longitudinal models, 
Usami et al. (2019) proposed a unified framework of lon-
gitudinal models that can be used to examine reciprocal 
relations. This framework shows that most of the mod-
els that are commonly used to investigate longitudinal 
reciprocal relations (e.g., RI-CLPMs, LCS models) can 
be placed under one common umbrella, but depending 
on the exact specification of the model, interpretations 
of seemingly similar path coefficients might differ (e.g., 
between the RI-CLPM and the CLPM; see also Orth 
et al., 2021). Table 1 provides an exemplary overview of 
prior studies that investigated longitudinal associations 
between reading and mathematics, the applied methods, 
and the central findings regarding the paths from read-
ing to mathematics and mathematics to reading. Table 1 
does not provide a complete overview of all studies but 
is instead intended to show the great range of methods 
applied to investigate associations between reading and 
mathematics. As can be seen, there is no common agree-
ment on which model should be chosen to investigate 
the (e.g., reciprocal) relation between reading and math-
ematics, as reflected by the huge heterogeneity in the 
models that have been chosen to address this question 
(see Table 1).

In this study, we were interested in how prior achieve-
ment in one domain (reading or mathematics) is related 
to intraindividual changes in the other domain, while 
considering trends and dynamics simultaneously. As 
outlined by Grimm et al. (2017), this question can be an-
swered by applying a dual LCS model. The advantage of 
the dual change score model lies in its combination of as-
pects of growth models and CLPMs: It captures within-
person changes in students' reading and mathematics 
achievement, differences in these changes between stu-
dents, and associations between the different variables 
across measurement occasions (Grimm et al., 2017).

Therefore, in the current study, we extend previous 
research on the co-development of reading and mathe-
matics by using these models and data from a large-scale 
assessment of students in primary school, Grades 1 to 
6 (termed Year 1 to Year 6 in England and P2 to P7 in 
Scotland and Northern Ireland).

The present study

As outlined above, findings on the association and direc-
tion of mathematics and reading achievement in longitu-
dinal data are mixed and model-dependent (see Table 1; 
Bailey et al.,  2020; Grimm,  2008; Usami et al.,  2019). 
In addition, there is a lack of research that has applied 

statistical models that are able to separate between- and 
within-person processes. In this study, we address this 
gap in the literature and closely investigate the associa-
tion between the two constructs from a more general 
perspective by using LGC models (see Figure A1 and A3 
in Appendix S1) and more specifically by using bivariate 
dual LCS models (see Figure 1).

To do this, we considered data from a large set of 
students (N = 355,897), who were assessed several times 
during primary school. Bivariate LCS models are par-
ticularly useful for investigating how changes in read-
ing and mathematics achievement are associated, as 
such models emphasize within-person change. In addi-
tion, they explicitly allow researchers to test for differ-
ences between how reading is associated with changes 
in mathematics and how math is associated with 
changes in reading after accounting for stable develop-
mental processes and time-varying confounders (e.g., 
Grimm et al.,  2016, 2017; Klopack & Wickrama, 2020; 
McArdle,  2009). Considering the rich set of different 
prior studies that have investigated longitudinal asso-
ciations between reading and mathematics, our study 
extends this important literature in three specific ways. 
First, we considered a large set of N = 355,883 students 
from the U.K. education system and followed them from 
Grades 1 to 6. Our study can therefore help to clarify 
the extent to which prior findings are generalizable when 
considering (a) a substantially larger sample than most 
relevant prior studies with (b) more measurement time 
points from (c) students from the United Kingdom rather 
than the United States, including (d) a broad sample of 
students from general elementary school, and applying 
(e) a modeling technique that places a stronger focus on 
within-person processes.

Second, our data allowed us to more thoroughly inves-
tigate whether the associations found for global reading 
and mathematics scores can also be found when consid-
ering subscores. Specifically, we were able to consider 
subscores on Comprehension, Word Decoding, and Word 
Recognition for reading and subscores on Counting and 
Informal Arithmetic (Numbers 1); Algebra and Formally 
Presented Arithmetic (Numbers 2); Measuring, Shapes, 
and Space; and Handling Data for mathematics. The 
consideration of subscores can help to clarify whether 
the general pattern found for reading and mathematics 
is present for all subscores or whether it is mostly driven 
by some of these subscores. Finally, we also conducted 
a closer exploration of potentially differential develop-
mental paths of reading and mathematics, for instance, 
by comparing how associations between mathematics 
and reading might change from Grades 1 to 6 and by in-
vestigating differences in dynamic relations for different 
levels of reading and mathematics achievement.

Specifically, we proposed the following RQs:

RQ 1a: How does academic achievement in mathe-
matics develop over the course of primary education?
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RQ 1b: How does academic achievement in reading 
develop over the course of primary education?
RQ 2a: How does academic achievement in read-
ing and mathematics co-develop during primary 
education?
RQ 2b: How is the change in mathematics associated 
with previous reading achievement and vice versa, 
and which ability is the leading indicator in this dy-
namic process?
RQ 3a: Are there differences in co-developmental 
patterns between global mathematics and reading 
achievement scores and when considering differ-
ent subscores in reading (i.e., Comprehension, Word 
Decoding, and Word Recognition) and mathematics 
(i.e., Counting and Informal Arithmetic, Algebra and 
Formally Presented Arithmetic, Measuring, Shapes, 
and Space, and Handling Data)?
RQ 3b: Are there differences across grades or differ-
ent ability levels in the co-development of reading and 
mathematics?

Based on prior research, we were able to formulate 
four confirmatory (RQs 1a–2b) and two exploratory 
RQs (RQs 3a and 3b): For both RQs 1a and 1b, we ex-
pected to find positive growth in students' achievement. 
This expectation resulted from a large set of prior stud-
ies that found student achievement to increase over the 
course of primary school (e.g., Bailey et al., 2020; Bloom 
et al., 2008). Regarding RQs 2a and 2b, we were partic-
ularly interested in how growth in each construct is re-
lated to growth in the other (RQ 2a) and how changes 
in achievement in one construct (e.g., reading) is related 
to prior achievement in the other construct (e.g., mathe-
matics) and vice versa. Regarding RQ 2a, based on prior 
research (Shin et al., 2013), we assumed to find positive as-
sociations between prior reading and subsequent growth 
in mathematics and negative associations between prior 
mathematics and subsequent growth in reading. For RQ 
2b, we assumed to find positive coupling coefficients 
from reading to mathematics (Erbeli et al.,  2021; Shin 
et al., 2013).

F I G U R E  1   Bivariate latent change score model for two common factors. Note: Time-varying covariates not displayed for the sake of clarity

Bivariate Latent Change Score Model for Two Common Factors
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METHOD

Description of the study and sample

The data used in the current study came from the 
InCAS Assessment (The Interactive Computer 
Adaptive System), which was developed and conducted 
by the Centre for Evaluation and Monitoring (CEM; 
see www.cem.org). Due to legal issues and data protec-
tion rules, race of participants is generally not collected 
in studies by the CEM. Available population data from 
England, Northern Ireland, and Scotland in 2019 indi-
cates that the majority of students in primary educa-
tion are White British: 65.0% England, 81.9% Scotland, 
94.7% Northern Ireland (Scottish Government,  2019; 
Toogood & Robinson,  2020; UK Government,  2020). 
Further detailed information about the ethnicity of pu-
pils in schools in each nation is available in the refer-
ences. The InCAS Assessment was developed to monitor 
students' achievement and progress in primary school 
(ages 5 to 12) and to provide teachers with diagnostic 
information about the strengths and weaknesses of in-
dividual children to inform their teaching. It consists 
of a suite of computer-adaptive tests, including math-
ematics, reading, spelling, and mental arithmetic (see 
Merrell and Tymms (2007) for an explanation of the ra-
tionale and development of the InCAS Assessment and 
Appendix S8 for further information on the sampling 
procedure). We used data provided by the CEM of 
N = 884,826 students from 3695 schools, who were as-
sessed repeatedly during their years in primary school. 
We restricted the dataset to (a) students from schools 
in England, Northern Ireland, and Scotland; (b) data 
from 2005 to 2019 because the assessments from these 
years met standards of comparability; (c) students be-
tween the ages of 5 and 11 in year groups 1 through 
6 (England), between the ages of 5 and 11 in Primary 
2 through Primary 7 (Northern Ireland), and between 
the ages of 5 and 12 in Primary 2 through Primary 7 
(Scotland); and (d) students who were assessed at a 
minimum of two time points, resulting in a sample of 
N = 355,883 students from 2614 schools (49% female stu-
dents; see Table 2).

Instruments

Mathematics achievement

Achievement in mathematics was assessed with the 
InCAS general mathematics test, which included items 
relevant to the national curricula in England, Northern 
Ireland, and Scotland. Students were required to solve 
items from the areas of Numbers 1 (covering counting and 
informal arithmetic), Numbers 2 (covering algebra and 
formally presented arithmetic), Measuring, Shapes, and 
Space (covering the identification and understanding 

of the properties of 2D and 3D shapes and calculations 
involving time), and Handling Data (covering the inter-
pretation and manipulation of information in tables, 
lists, and graphs). An overall mathematics score as well 
as scores for the individual areas were calculated. The 
test took 20 to 25 min, and all items were presented by 
an accompanying audio question prompt for the child 
generated through computer sound files to reduce re-
liance on the student's reading ability. Questions were 
presented as sentences asking the student to look at an 
image, problem, or calculation on the screen and then 
to select the correct answer from a choice of four (e.g., 
“What is the temperature on the thermometer?”; “Look 
at this sum: 2 + 1=? Now click on the answer!”; “In which 
list of fractions are all of the fractions equivalent?”). 
The reliability of mathematics achievement was high 
and ranged from .86 to .95 (Adams, 2005) across the dif-
ferent grade levels.

Reading achievement

The InCAS Assessment has three reading modules that 
are combined to produce an overall reading score: Word 
Recognition, Word Decoding, and Comprehension. In the 
Word Recognition module, students had to identify a 
single target word from a choice of five. The word was 
read aloud to the child using computer sound files, and 
then the child was given the word in the context of a 
sentence. For example, the item “so” (I am “so” tired) 
with the choice of answers: so, saw, sow, sew, os. At the 
easier levels, high- to medium-frequency words were 
given, whereas lower frequency words were used at more 
difficult levels. In the Word Decoding module, students 
had to identify the target word in a list of five unfamil-
iar or nonexistent words. Once again, the target word 
was spoken to the child using computer sound files. For 
example, selecting “frain” from a choice of fran, frin, 
frain, fain, fairn. In the Comprehension module, stu-
dents had to read a passage of writing in which a choice 
of three plausible words was offered for approximately 
every fifth word. A number of different passages were 
available in the software, with the passage presented to 
the student determined by the student's scores in Word 
Decoding and Word Recognition. In each passage, the 
student had to choose the word that best fit that position 
in the sentence. Sometimes this involved choosing the 
word that was grammatically correct or was presented 
in the correct tense (e.g., “The children were/was/is play-
ing with the toys”), and sometimes it involved choosing 
the word that had the correct meaning in the context of 
the sentence (e.g., “The space rocket was a white/while/
long color”). Rasch scores were calculated and linearly 
transformed into age-equivalent scores. The test took 20 
to 25 min. The reading achievement tests had high reli-
ability, ranging from .95 to .98 (Adams, 2005) across the 
different grade levels.
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Developed abilities

We also controlled for students' developed abilities. The 
InCAS Assessment provides an overall developed abil-
ity score that is based on a picture vocabulary test and 
a nonverbal ability test (Luyten et al.,  2017; Merrell & 
Tymms, 2007). For the picture vocabulary test, students 
heard a word and then had to choose one of five pictures 
that represented the word. On the nonverbal ability test, 
students had to identify a specific pattern of dots from 
within a larger more complicated pattern. The nonver-
bal ability test is based on the Moseley (1976) Problems 
of Position (POPS) test. The test took 20 to 25 min. The 
Rasch scores from these tests had high reliability, rang-
ing from .91 to .93 (Adams,  2005) across the different 
grades.

Month of assessment

Schools could choose to undertake the InCAS Assessment 
at any point during the academic year. We, therefore, 
controlled for variation in the months of assessment dur-
ing the academic year. We defined 2-month assessment 

windows (e.g., JAN–FEB, MAR–APR) to control for the 
time of assessment. The choice of 2-month windows re-
sulted from considerations of the ease of the interpreta-
tion of the results and for practical reasons because some 
cells/months had only a few cases (particularly toward 
the end of the school year when the summer holidays 
were beginning). We decided to code the beginning of 
the school year (SEP–OCT) as 0 and the remaining 2-
month blocks in ascending order.

Statistical analyses

To address the different RQs, we first examined de-
scriptive statistics. In doing this, we considered the 
cross-sectional achievement of the students in math-
ematics and reading. Afterward, we performed an 
in-depth analysis of the data by applying a variety 
of models to conduct longitudinal analyses (Grimm 
et al., 2017). As we were particularly interested in de-
velopmental processes, we used latent linear growth 
curve models (RQs 1a and 1b), bivariate LGC models 
(RQs 2a and 3a), and bivariate dual LCS models (RQs 
2b, 3a, and 3b) to investigate the dynamic development 

TA B L E  2   Cross-sectional descriptive statistics

Variable N M SD Min Max

England 355,883 0.23 0.42 0 1.00

Northern Ireland 355,883 0.32 0.47 0 1.00

Scotland 355,883 0.45 0.50 0 1.00

Gender (1 = female) 355,309 0.49 0.50 0 1.00

GenMaths_T_1 53,701 7.01 0.91 3 13.35

GenMaths_T_2 127,203 7.84 1.05 3 14.84

GenMaths_T_3 96,096 8.67 1.32 3 16.00

GenMaths_T_4 212,799 9.05 1.50 3 16.00

GenMaths_T_5 199,470 9.58 1.58 3 16.00

GenMaths_T_6 191,987 10.43 1.54 3 16.00

Reading_T_1 53,592 6.45 1.62 4 14.10

Reading_T_2 127,372 7.83 1.80 4 14.17

Reading_T_3 96,222 8.96 1.93 4 14.46

Reading_T_4 211,281 9.42 2.00 4 16.00

Reading_T_5 198,966 9.82 2.04 4 16.00

Reading_T_6 190,780 10.86 1.96 4 16.00

DevAbil_T_1 52,711 6.44 1.87 3 14.89

DevAbil_T_2 125,148 7.92 1.87 3 16.00

DevAbil_T_3 91,107 9.27 2.00 3 16.00

DevAbil_T_4 182,835 10.11 2.03 3 16.00

DevAbil_T_5 128,579 10.81 2.23 3 16.00

DevAbil_T_6 138,638 11.83 2.06 3 16.00

Note: N = sample size. T_ indicates the year group (e.g., T_1_ = year group 1). We oriented on official enrollment cut-offs and included students who were legally 
allowed to be enrolled in Grade 1 (England: at least 5 years 0 months, Northern Ireland: at least 5 years 2 months, Scotland: at least 5 years 5 months) and students 
whose age would fit these enrollment policies in Grade 6 (England: not older than 11 years 10 months, Northern Ireland: not older than 11 years 11 months, 
Scotland: not older than 12 years 4 months).

Abbreviations: DevAbil, developed abilities; GenMaths, general mathematics; M, mean; SD, standard deviation.
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of reading and mathematics. We expand upon these 
models in the following sections.

LGC models

To investigate growth in students' learning of math-
ematics and reading (RQs 1a and 1b), we specified 
first-order linear LGC models (see Figure A1 in 
Appendix  S1) based on the scores for the six grades 
of students in our study (e.g., Bollen & Curran, 2006). 
The correlations between the latent intercept and slope 
factor indicate potential differences in the growth over 
time, depending on achievement at the first measure-
ment occasion (e.g., a negative correlation suggests 
that students with higher starting values will have shal-
lower growth compared with students with lower start-
ing values and vice versa). LGC models were specified 
separately for mathematics and reading (see Figure A1 
in Appendix S1).

BLGC model

To address RQs 2a and 3a, we specified a joint model with 
both growth curve models for reading and mathematics 
and took a closer look at the correlations of the latent 
intercept and slope factors across the two domains (see 
Figure A3 in the Appendix S1). This was done to obtain 
initial evidence of potential dual-process growth trends. 
A positive correlation between the latent slopes of the 
two domains would indicate that individual growth over 
time in the two constructs develops rather uniformly 
(more/less growth in one domain goes along with more/
less growth in the other domain), whereas a negative 
correlation would indicate differential growth patterns 
(more/less growth in one domain goes along with less/
more growth in the other domain). In addition, the corre-
lation between the intercept and slope factors of oppos-
ing domains (e.g., reading intercept with mathematics 
slope and vice versa) would indicate whether higher or 
lower achievement at the first measurement occasion in 
one domain goes along with steeper or shallower growth 
trends in the other domain.

Bivariate dual LCS model

To address RQs 2b, 3a, and 3b, we specified bivariate 
dual LCS models (McArdle,  2009; see Figure  1). As 
outlined above, we were particularly interested in how 
one construct (e.g., reading) is related to change in the 
other construct (e.g., mathematics) and vice versa. As 
outlined in Equations (1 and 2), in these models, change 
(e.g., �fmit ) is considered to be a function of a constant 
change parameter (�mt), the preceding score on the same 
construct (the proportional change parameter; �mfmi,t−1), 

the preceding score on the other construct (the coupling 
parameter; �mfri,t−1), and a residual term (�mit):

Note that these models often include a so-called inter-
cept factor in addition to the constant change factor 
(McArdle,  2009). However, this intercept factor actually 
coincides with the latent T1 measure of the respective 
construct (Usami et al.,  2019). Comparable to CLPMs, 
LCS models are used to compare the coupling param-
eters across the two opposing constructs (Klopack & 
Wickrama,  2020). LCS models typically assume time-
invariant proportional change and coupling parameters 
(Usami et al., 2019). Exemplary code for this model can be 
found in Appendix S2.

Additional specifications
In all cases, we decided to specify adjusted and unad-
justed models. Adjusted models also controlled for de-
veloped abilities, whereas we controlled for the time of 
the assessment during the year in all models. We ad-
dressed the nested data structure (i.e., students nested in 
schools) using cluster-robust standard errors (Snijders & 
Bosker,  2012). In addition, we applied FIML, which is 
implemented in Mplus (Muthén & Muthén, 1998–2017), 
in all our analyses to deal with missing data. Additional 
information on the statistical analyses can be found in 
Appendix S3.

RESU LTS

The development of academic achievement in 
mathematics (RQ 1a)

We first took a closer look at the development of math-
ematics achievement over time. Descriptive statistics (see 
Table 2) showed a general, cross-sectional improvement 
in test scores over time. On average, students in Grade 
1 had a score of M  =  7.01 points (SD  =  0.91), and this 
score increased over the course of primary school to 
M = 10.43 points (SD = 1.54) in Grade 6 (see Figure A2 
in Appendix S1).

Next, we specified LGC models for reading and math-
ematics. The model fits are displayed in Table 3 (Models 
1 to 4). We specified unadjusted models, which did not 
include developed abilities, and adjusted models, which 
included this time-varying covariate. Both adjusted and 
unadjusted models had sufficient fit with regard to the 
comparative fit index (CFI), Tucker–Lewis index (TLI), 
and root mean square error of approximation (RMSEA), 
above the traditional cut-off criteria (Hu & Bentler, 1999). 
The unadjusted model in mathematics showed a good 
fit to the data, χ2  =  4119.81, p < .001, df  =  46, Bayesian 

(1)�fmit = �mt + �mfmi,t−1 + �mfri,t−1 + �mit,

(2)�frit = �rt + �rfri,t−1 + �rfmi,t−1 + �rit.

 14678624, 2022, 6, D
ow

nloaded from
 https://srcd.onlinelibrary.w

iley.com
/doi/10.1111/cdev.13817 by D

urham
 U

niversity - U
niversity L

ibrary and C
ollections, W

iley O
nline L

ibrary on [03/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1768  |      HÜBNER et al.

information criterion (BIC)  =  5,184,032.032, CFI  =  .97, 
TLI  =  .97, RMSEA  =  .02. The fit statistics for the ad-
justed model were comparable.

Table 4 presents the results of the LGC parameters. We 
found an intercept mean of M = 6.08 and a positive mean 
of the slope of M = 0.86 (both ps < .001) in the unadjusted 
models, and these were strongly comparable to the results 
from the adjusted models. These findings suggest a pos-
itive growth in mathematics achievement scores of 0.86 
points per year, which can be interpreted as an average 
growth of d = .65. In addition, we found variation in both 
parameters (i.e., intercepts and slopes) between students 
(Intercept: s2 = 0.86, p < .001; Slope: s2 = 0.03, p < .001), sug-
gesting that students' academic achievement varied with 
respect to the first measurement occasion and also with 
respect to its growth. When controlling for developed 
abilities, the means of the intercept and slope remained 
comparable (Intercept: M = 6.72, Slope: M = 0.76, both 
ps < .001). In this model, the variation in slopes and inter-
cepts turned out to be smaller and decreased to s2 = 0.30, 
p < .001 (intercept) and s2  =  0.02, p < .001 (slope), which 
might be interpreted as evidence that the covariate ex-
plained some of the individual differences. In addition, 
we found a positive correlation between the growth over 
time and the initial level of mathematics achievement in 
the unadjusted models (r = .34, p < .001), suggesting that 
students with higher mathematics achievement at T1 had 
steeper growth in learning, compared with students with 
lower achievement at T1. This correlation was not statis-
tically significantly different from zero after we adjusted 
for developed abilities (r = −.02, p = .549).

The development of academic achievement in 
reading (RQ 1b)

When we more closely investigated students' reading 
achievement across different grade levels, we found an 
average score of M =  6.45 points (SD =  1.62) in Grade 
1, which increased over the course of primary school to 
M = 10.86 points (SD = 1.96; see Table 2 and Figure A2 
in Appendix S1). A closer look at the fit statistics of the 
LGC models (see Table  2) suggested a sufficient fit of 

the adjusted and unadjusted models for reading achieve-
ment. The model fits for reading achievement in the un-
adjusted model were good, χ2 = 7942.51, p < .001, df = 46, 
BIC = 5,621,686.349, CFI = .97, TLI = .97, RMSEA = .02. 
The fit statistics for the adjusted model were compa-
rable and above the suggested cut-off criteria (Hu & 
Bentler, 1999).

Parameter estimates for the growth curve models are 
presented in Table  4. The intercept for the unadjusted 
model for reading was M = 5.42, and the average growth 
in reading across time was positive M  =  1.11 (both 
ps < .001). The average growth in reading achievement 
amounted to d = .59 per year. These findings were largely 
comparable to the results for the adjusted models. We 
found statistically significant fvariation in both inter-
cepts and slopes between students (Intercept: s2 = 3.74, 
p < .001; Slope: s2  =  0.03, p < .001). When we controlled 
for developed abilities, the variability in the slope and 
intercept decreased to s2 = 1.96, p < .001 (intercept) and 
s2  =  0.03, p < .001 (slope). In contrast to mathematics, 
we found a negative correlation between growth over 
time and initial reading achievement in the unadjusted 
model and the adjusted model (both r = −.37, p < .001), 
suggesting that students with higher abilities at T1 had 
shallower growth in their achievement, compared with 
students with lower achievement at T1.

The joint development of competencies in 
mathematics and reading (RQ 2a)

To investigate the co-development of reading and 
mathematics, we first specified bivariate LGC models, 
which jointly considered mathematics and reading (see 
Figure A3 in the Appendix S1). The fit statistics for the 
unadjusted model were good (χ2  =  16,278.87, p < .001, 
df  =  190, BIC  =  7,866,715.458, CFI  =  .98, TLI  =  .98, 
RMSEA  =  .02). The same held for the adjusted model 
(see Table 3). Results for the bivariate LGC model were 
in line with the proposed cut-off criteria (see Table 3; Hu 
& Bentler, 1999). Results for the means and variances of 
the latent intercept and slope factors were largely com-
parable to the results from the univariate LGC models 

TA B L E  3   Model fits of the linear latent growth curve models

Model Additional adj. �2 df BIC CFI TLI RMSEA

1. Mathematics No 4119.814*** 46 5,184,032.032 .97 .97 .02

3. Reading No 7942.514*** 46 5,621,686.349 .97 .97 .02

5. Mathematics and reading No 16,278.866*** 190 7,866,715.458 .98 .98 .02

2. Mathematics Yes 30,531.86*** 76 7,493,295.36 .97 .96 .03

4. Reading Yes 53,471.01*** 76 8,021,612.57 .97 .96 .04

6. Mathematics and reading Yes 73,072.86*** 250 10,196,532.28 .96 .95 .03

Note: Adjusted models controlled for developed abilities, and all models controlled for the time of assessment.

Abbreviations: BIC, Bayesian information criterion; CFI, comparative fit index; TLI, Tucker–Lewis index; RMSEA, root mean square error of approximation.

***p < .05.
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(see Table 4). In these models, we were particularly in-
terested in the correlations between the intercept and 
slope factors, as initial evidence of the nature of the co-
developmental process.

In the unadjusted models, we found intercept-slope 
correlations that amounted to r = .28 (p < .001) for math-
ematics and r  =  −.36 for reading (p < .001). For mathe-
matics, this suggests that, comparable to the univariate 
model, a higher score at T1 was associated with steeper 
achievement growth from T1 to T6. For reading, higher 
reading achievement at T1 was, similar to the univariate 
models, associated with shallower achievement growth 
over time. Results for the adjusted models were compa-
rable but decreased to r = .05 (p = .048) for mathematics 
and remained similar for reading.

As outlined above, bivariate LGC models were used 
to investigate relations between achievement growth and 
achievement at T1 across the two constructs. First, we 
found a positive association between the growth in both 
constructs, as indicated by a positive correlation between 
slopes in both the unadjusted (rs = .33, p < .001) and ad-
justed (rs = .34, p < .001) models. Achievement in reading 
and mathematics was strongly associated as indicated by 
strong positive intercept correlations (unadjusted model: 
ri = .82, p < .001, adjusted model: ri = .62, p < .001).

Most interestingly, in line with previous research 
(Shin et al., 2013), we found a negative relation between 
the mathematics intercept and growth in reading in the 
unadjusted model r = −.31 (p < .001), whereas the associ-
ation between the reading intercept and growth in math-
ematics was positive r = .37 (p < .001). These results were 
strongly comparable to the results found in the adjusted 
models. Students with higher mathematics achievement 
in Grade 1 showed a somewhat shallower growth in read-
ing achievement from Grade 1 to Grade 6 compared with 
students with lower mathematics achievement in Grade 1 
who showed a somewhat steeper growth in reading from 
Grade 1 to Grade 6. By contrast, students with higher 
reading achievement in Grade 1 had a steeper growth in 
mathematics from T1 to T6 compared with students with 
lower reading achievement at the first measurement oc-
casion who showed a shallower growth in mathematics.

Associations between changes in reading and 
mathematics and prior achievement (RQ 2b)

Model fit

Finally, we specified bivariate dual LCS models for 
mathematics and reading (see Figure 1). As suggested by 
Grimm et al. (2017) and Klopack and Wickrama (2020), 
we specified four types of adjusted and unadjusted mod-
els: (a) models in which all coupling parameters were 
constrained to zero, (b) models in which only coupling 
parameters from reading to changes in mathematics 
were constrained to zero, and (c) models in which only T
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coupling parameters from mathematics to reading were 
constrained to zero. Finally, in the fourth model, (d) 
both coupling coefficients were estimated. Model fits for 
these models are presented in Table 5. Note that all mod-
els adequately represented the data, indicated by good 
global model fits (e.g., RMSEA < .05; CFI and TLI > .95; 
see Table 5).

We compared the adjusted no coupling model with 
the model in which coupling parameters from reading 
to changes in mathematics were constrained to zero 
using Satorra- Bentler-scaled chi-square difference tests 
(Satorra & Bentler, 2010). We found that the model with 
paths from mathematics to changes in reading had a 
statistically significantly better model fit than the no 
coupling model (χ2 = 327.64, df = 1, p < .001). When com-
paring the no coupling model with the model with paths 
from reading to changes mathematics, we found a sta-
tistically significant better model fit of the latter model 
(χ2  =  198.09, df  =  1, p < .001). Finally, the full coupling 
model showed a statistically significant better model fit, 
compared with a model with paths from mathematics to 
changes in reading (χ2 = 381.55, df = 1, p < .001) and com-
pared with a model with paths from reading to changes 
in mathematics (χ2 = 18.94, df = 1, p < .001; see Table 5). 
Regarding unadjusted models, we found a similar pat-
tern of results (see Table 5). In summary, both the ad-
justed solution and the unadjusted solution suggest a 
superior fit of the full coupling model. Practically, this 
can be interpreted as evidence that both reading and 
mathematics are relevant for developmental processes 
on the opposing construct (Grimm et al., 2017).

Proportional change parameters

Next, we conducted a closer examination of the coupling 
parameters in the full coupling model (see Table 6): The 
results were quite stable across all models regarding the 

directions of the parameter estimates and their statisti-
cal significance. Regarding the unadjusted full coupling 
model, the proportional change parameters were β = .26 
for reading and β = −.53 for mathematics (both ps < .001), 
suggesting a higher change in reading for students with 
higher previous reading scores and a lower change in 
mathematics for students with higher previous achieve-
ment in mathematics. In the full coupling model with ad-
justment, the proportional change parameter for reading 
was no longer statistically significant (β = −.04, p = .056) 
and the parameter for mathematics decreased to β = −.18 
(p < .001).

Coupling parameters

Regarding the coupling parameters, we found a similar 
pattern for both the adjusted and unadjusted full cou-
pling models. Here, changes in reading achievement were 
negatively related to prior achievement in mathemat-
ics (βuadj = −.27 and βadj = −.06, both ps < .001), whereas 
changes in mathematics achievement were positively 
related to prior reading achievement (βuadj  =  .72 and 
βadj =  .24, both ps < .001). These findings are in line with 
findings from the partial coupling models in suggesting 
that a higher level of previous reading achievement leads 
to larger changes in subsequent mathematics achievement 
(after previous mathematics achievement is controlled for), 
whereas a higher level of previous mathematics achieve-
ment leads to shallower changes in reading achievement 
(after previous reading achievement is controlled for).

Associations between reading and mathematics 
subscores (RQ 3a)

To address RQ 3a, we specified adjusted and unad-
justed growth curve and bivariate dual LCS models 

TA B L E  5   Model fits of the bivariate dual latent change score models

Model Additional adj. �2 df BIC CFI TLI RMSEA

LCS no coupling No 13,977.575*** 131 7,010,825.560 .98 .98 .02

LCS partial coupling: M → ΔR No 13,286.159*** 130 7,008,460.798 .99 .98 .02

LCS partial coupling: R → ΔM No 12,050.990*** 130 7,002,424.389 .99 .99 .02

LCS full coupling No 10,057.269*** 129 6,994,477.863 .99 .99 .02

LCS no coupling Yes 70,490.87*** 191 9,341,781.69 .97 .97 .03

LCS partial coupling: M → ΔR Yes 71,023.18*** 190 9,341,794.41 .97 .97 .03

LCS partial coupling: R → ΔM Yes 70,319.96*** 190 9,341,106.61 .97 .97 .03

LCS full coupling Yes 70,775.36*** 189 9,340,984.03 .97 .97 .03

Note: Adjusted models controlled for developed abilities, and all models controlled for the time of assessment. LCS full coupling free = no equality constraints on 
coupling and proportional change parameters. Note that the chi-square values reported here cannot be used for chi-square difference testing. Instead, we used the 
recommended Satorra-Bentler-scaled chi-square difference test (Satorra & Bentler, 2010).

Abbreviations: BIC, Bayesian information criterion; CFI, comparative fit index; LCS, latent change score model; M, mathematics; R, reading; TLI, Tucker–Lewis 
index; RMSEA, root mean square error of approximation.

***p < .05.
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for all combinations of reading (i.e., three) and math-
ematics (i.e., four) subscores (see the Instruments 
section). The results from these models can be 
found in Supporting Information (Tables E1–E10 in 
Appendix  S5). The model fit suggested that LGC 
models and LCS models fit the data well (see Tables 
E1 and E2 in Appendix  S5) with all models show-
ing CFI/TIL ≥ .96 and RMSEA ≤ .03. When inspect-
ing results for the BLGC models (see Tables E3–E6 
in Appendix  S5), we were particularly interested in 
the intercept-slope correlations across the different 
subscores. We found statistically significant negative 
correlations between the intercepts of all the mathe-
matics subscores with all the reading subscore slopes, 
whereas the intercepts of the reading subscores were 
positively associated with the mathematics slopes in 
the adjusted models (12 out of 12). This pattern was 
also found for eight of 12 unadjusted models. Similar 
to our findings for the global scores, this suggests 
that higher reading subscores in Grade 1 were asso-
ciated with steeper subsequent growth in mathemat-
ics, whereas higher mathematics subscores in Grade 
1 were associated with shallower growth in reading 
from Grades 1 to 6.

When inspecting the results for the LCM models (see 
Tables E7–E10 in Appendix S5), we found similar results 
for the majority of the models, in line with the reported 
findings when using the global mathematics and read-
ing scores and our findings from the LGCMs: The cou-
pling parameters between prior reading subscores and 
the change in mathematics subscores were positively 
associated, whereas we found a negative association be-
tween prior mathematics subscores and the change in 
reading subscores. This pattern was consistent across all 

the subscores in the unadjusted models. For the adjusted 
models, we found this pattern of results for eight of the 
12 models, whereas for the four models considering the 
reading subscore decoding (i.e., Number 1 and Decoding, 
Number 2 and Decoding, MSS and Decoding, and Data 
and Decoding) we found a positive association between 
prior mathematics subscores and subsequent changes 
in reading subscores. This suggests that for changes in 
decoding, mathematics achievement might be more rele-
vant than for other reading subscores.

Subgroup differences in the co-development of 
reading and mathematics (RQ 3b)

To address this RQ, we re-specified the adjusted LCS 
and allowed the coupling parameters to vary freely 
from time point to time point. Doing this required us 
to constrain two correlations that were not statistically 
significantly different from each other to be equal (r1 
with sr and m1 with sm; see Appendix S2). We found 
the following coupling parameters when predicting 
changes in mathematics from prior reading: βT1 =  .18 
(p < .001), βT2 = .20 (p < .001), βT3 = .02 (p = .646), βT4 = .08 
(p  =  .018), βT5  =  .09 (p  =  .017). Of these, all the coef-
ficients were statistically significantly different from 
each other (all ps < .01) except for βT1 and βT2 (p = .336) 
and βT4 and βT5 (p  =  .267). For coupling parameters 
from prior mathematics to subsequent changes in read-
ing, we found: βT1 = −.54 (p < .001), βT2 = −.55 (p < .001), 
βT3  =  −.50 (p < .001), βT4  =  −.40 (p < .001), βT5  =  −.28 
(p < .001). When comparing the different coefficients, 
we found that all coefficients were statistically signifi-
cant (all ps < .05) except for βT1 and βT2 (p =  .696) and 

TA B L E  6   Results for the bivariate dual latent change score models with full coupling and partial coupling

Model Additional adj.

Proportional change Coupling parameters

β SE p β SE p

LCS partial coupling: M → ΔR No ∆Rti on Rti-1 .13 .01 <.001 ∆Rti on Mti-1 −.17 .01 <.001

∆Mti on M ti-1 .01 .01 .079 ∆Mti on R ti-1 — — —

LCS partial coupling: M → ΔR Yes ∆Rti on Rti-1 −.12 .02 <.001 ∆Rti on Mti-1 .00 .01 .926

∆Mti on M ti-1 −.08 .01 .119 ∆Mti on R ti-1 — — —

LCS partial coupling: R → ΔM No ∆Rti on Rti-1 −.09 .01 <.001 ∆Rti on Mti-1 — — —

∆Mti on M ti-1 −.32 .01 <.001 ∆Mti on R ti-1 .46 .02 <.001

LCS partial coupling: R → ΔM Yes ∆Rti on Rti-1 −.12 .01 <.001 ∆Rti on Mti-1 — — —

∆Mti on M ti-1 −.15 .01 <.001 ∆Mti on R ti-1 .20 .02 <.001

LCS full coupling No ∆Rti on Rti-1 .26 .02 <.001 ∆Rti on Mti-1 −.27 .02 <.001

∆Mti on M ti-1 −.53 .02 <.001 ∆Mti on R ti-1 .72 .03 <.001

LCS full coupling Yes ∆Rti on Rti-1 −.04 .02 .056 ∆Rti on Mti-1 −.06 .01 <.001

∆Mti on M ti-1 −.18 .02 <.001 ∆Mti on R ti-1 .24 .02 <.001

Note: These results are based on models in which achievement scores were standardized on the basis of their respective mean and standard deviation at T1. The fit 
of these models can be found in Table 5.

Abbreviations: LCS, latent change score model; M, mathematics; R, reading; SE, standard error.
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βT2 and βT3 (p =  .483). Overall, these findings suggest 
that associations between prior reading scores and 
changes in mathematics were stronger in earlier grades 
(i.e., G1 and G2) than in later grades. The negative as-
sociations between prior mathematics scores and sub-
sequent changes in reading were stronger in earlier 
years and diminished over time.

We investigated differences in associations for differ-
ent achievement levels in reading and mathematics by 
using a statistical vector plot, which visualizes dynamic 
relations between different levels of the variables under 
investigation (e.g., Grimm et al., 2017; McArdle, 2009). 
The statistical vector field plot that resulted from our 
adjusted LGCM with fully standardized reading and 
mathematics scores (z-standardized) is presented in 
Appendix  S7. We found several interesting patterns. 
First, the largest change in mathematics achievement 
predicted by reading was found for average and above-
average reading achievement levels in combination with 
low mathematics achievement levels. This can be seen in 
the steep arrows in the middle and bottom right of the 
figure. Second, the lower a student's reading achieve-
ment, given a low level of mathematics achievement, the 
smaller the changes in mathematics. This is indicated by 
the arrows that are more horizontal when moving from 
the bottom right of the figure toward the bottom left of 
the figure. Finally, the figure suggests that improvements 
in the average level of mathematics achievement seem 
more likely to happen for students with at least slightly 
above-average reading achievement. This is indicated by 
the horizonal or downward arrows in the middle left of 
the figure, which get steeper when moving to the right of 
the figure. Overall, our results are strongly in line with 
findings from prior studies (e.g., Erbeli et al., 2021) and 
suggest that the association between reading and changes 
in mathematics and vice versa can differ between differ-
ent ability levels.

DISCUSSION

Findings

In this study, we investigated the co-development of 
reading and mathematics. Previous research has pro-
duced mixed evidence on whether reading or mathemat-
ics is the leading indicator in this co-developmental 
process. We first specified univariate LGC models, fol-
lowed by bivariate LGC models and bivariate dual LCS 
models. Particularly, the latter allows for a focus on 
within-person changes, which was called for in previous 
research (Bailey et al., 2020).

Regarding univariate LGC models, our findings sug-
gest that positive development occurs in both mathemat-
ics and reading from Grade 1 to Grade 6. In addition, 
we found variation in reading and mathematics at the 
first measurement occasion as well as in their growth 

trajectories. Next, we investigated the co-development 
of reading and mathematics using bivariate LGC mod-
els. Here, our findings were largely in line with prior 
research in suggesting that initial achievement (inter-
cepts) in mathematics and reading were positively re-
lated to one another, and so were the growth trajectories 
(slopes) in the two opposing constructs (e.g., Aiken, 1971; 
Grimm, 2008). Furthermore, our findings also revealed 
a pattern previously reported by Shin et al.  (2013): 
Students with higher mathematics achievement in Grade 
1 showed shallower growth in reading achievement from 
Grade 1 to Grade 6, even after we controlled for cog-
nitive abilities and initial reading achievement. By con-
trast, students with higher reading achievement in Grade 
1 showed steeper growth in mathematics from T1 to T6 
compared with students with lower reading achievement 
at the first measurement occasion (who showed shal-
lower growth in mathematics).

In order to more closely investigate the question of 
which variable is the leading indicator, we specified ad-
justed and unadjusted bivariate dual LCS models. Here, 
we found that the full coupling model with paths from 
reading to changes in mathematics and vice versa (see 
Table 5) had the best fit to the data. Regarding the cou-
pling parameters, the pattern of results suggests that 
whereas prior reading achievement was positively asso-
ciated with subsequent changes in mathematics, higher 
mathematics achievement was negatively associated with 
subsequent changes in reading achievement. Students 
with higher achievement in reading, therefore, showed 
a somewhat higher subsequent change in mathematics 
achievement compared with students with lower pre-
vious reading achievement. By contrast, students with 
higher achievement in mathematics showed a shallower 
subsequent change in reading achievement compared 
with students with lower prior mathematics achievement.

When we analyzed associations between reading 
and mathematics on the more fine-grained level of 
subscores, we found that we were largely able to rep-
licate the result patterns found for global mathemat-
ics and reading scores. Practically, this suggests that 
our findings for reading and mathematics scores were 
most likely not driven unevenly by some subscores 
more than others. Most interestingly, when inspecting 
how coupling parameters changed over the course of 
primary school, we found that associations between 
prior reading scores and changes in mathematics were 
stronger in earlier grades (i.e., G1 and G2) than in later 
grades and that negative associations between prior 
mathematics scores and subsequent changes in read-
ing were stronger in earlier years and diminished over 
time. Practically, however, the directions of these as-
sociations (see Table  6) remained largely comparable 
across timepoints. Finally, our visualization of differ-
ential associations between reading and mathemat-
ics given different ability levels suggests that, in line 
with prior studies (e.g., Erbeli et al., 2021), particularly 
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students with average to high reading achievement and 
low mathematics achievement made the greatest prog-
ress in mathematics and that with decreasing reading 
achievement, changes in mathematics became smaller.

In summary, our findings are largely in line with re-
cent prior findings in the field in suggesting that reading 
constitutes a relevant predictor of subsequent mathe-
matics (e.g., Erbeli et al.,  2021; Shin et al.,  2013). More 
specifically, we found a positive coefficient for the asso-
ciation between prior reading and subsequent changes in 
mathematics but a negative coefficient for the path from 
prior mathematics achievement to changes in reading 
achievement, which might be explained by the fact that 
our study consisted of elementary school students who 
were mostly concerned with foundational mathematics. 
Future longitudinal studies are required to test whether 
the negative path from mathematics to changes in read-
ing might vanish or even reverse for older students when 
mathematics “heavily involves high-level cognition” 
(Peng et al., 2020, p. 23).

Limitations

There are some limitations that need to be mentioned 
before the implications are outlined. First, although we 
considered a very large set of students using the CEM da-
tabase, we were not able to repeatedly assess all students 
every year. This sometimes resulted in low covariance 
coverage across grades. Specifically, for some grades 
(e.g., Grades 1 and 6), depending on the statistical model, 
there were only about n = 4271 cases (i.e., 1.2%) with in-
formation at both the very first and the very last assess-
ments (e.g., in Grades 1 and 6). Although this might still 
seem to be a large number, this drop in cases might have 
resulted in less precise estimates.

Another limitation resulted from the limited set of 
covariates that we were able to consider. For instance, 
due to limited availability and model complexity, we 
were not able to consider students' socioeconomic sta-
tus or gender in our models. Furthermore, school-level 
variables that might be related to the developmental 
processes were not available. In the adjusted mod-
els, we were able to consider overall developed ability 
scores that were based on a picture vocabulary test and 
a nonverbal ability test. These tests assess learning as-
pects that are not specifically taught in the school cur-
riculum. Future studies should more closely investigate 
differences in these developmental processes between 
boys and girls, consider students' socioeconomic back-
ground, and consider school-level variables in order to 
better explain variation in the co-development of these 
taught skills.

In addition, it seems important to keep in mind that 
our data stems from England, Scotland, and Northern 
Ireland. Generalizations of our findings should not be 
carried out without great caution and consideration of 

the specificities of the learning background and envi-
ronment. Notably, studies from other countries like the 
United States or studies considering different student 
populations such as academically at-risk children (e.g., 
Erbeli et al., 2021; Shin et al., 2013), have provided com-
parable results. However, more studies are needed that 
explicitly investigate potential cross-cultural and cross-
country differences in the co-development of reading 
and mathematics.

Finally, it is important to understand that in order for 
our results to be interpreted in a causal sense, specific as-
sumptions have to hold (e.g., strong ignorability), which 
might be more or less plausible in the specific context 
of our study. In order to address this threat, we made 
use of an additional time-varying covariate and LCS 
models, which have been attested a stronger basis for es-
timating causal effects than other models used in prior 
research on this topic, particularly when trends are pres-
ent in the data (e.g., the CLPM or the RI-CLPM; Usami 
et al., 2019). Furthermore, our models are able to yield 
causal effects only if the underlying data-generating pro-
cess is adequately reflected. This means that if confound-
ing variables are present in our study and these behave 
as our LCS models assume, our models will yield causal 
effects. However, as for all prior studies using longitudi-
nal models from Usami et al.’s (2019) unified framework, 
this remains an untestable assumption.

Implications

The major finding of our study is that reading seems 
to be a particularly important skill for subsequent 
changes in mathematics from early on. There are sev-
eral implications of our study for research on the co-
development of reading and mathematics in the age 
range of students in primary school. First, it seems 
very important to investigate abilities not only from a 
unidimensional but also from a multidimensional per-
spective. This means that in order to understand the 
development of mathematics, it seems important to 
also consider development in reading. Specifically, our 
findings from unidimensional models suggest a con-
tinuous strong (average) development in both reading 
and mathematics. Only when investigating bivariate 
within-person processes were we able to detect the in-
terdependencies of the two constructs, which suggest a 
reciprocal relation between reading and mathematics, 
with positive paths from reading to mathematics but 
negative paths from mathematics to reading. As out-
lined above, this finding might result from the specific 
group of students considered in this study (elemen-
tary school students) and might change as students get 
older. Considering links between initial abilities and 
subsequent achievement growth and changes seems 
important for developing a more complete understand-
ing of these relations across the lifespan.
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Related to this, it seems beneficial to make use of 
more advanced methods along with large-scale data-
sets. Recently, there has been an increase in scientific 
publications and freely available resources on why 
and how to apply (e.g., within-person process) models 
in statistical software (e.g., Bailey et al.,  2020; Berry 
& Willoughby,  2017; Grimm et al.,  2017; Hamaker 
et al., 2015; McNeish & Hamaker, 2020). Unfortunately, 
there is still a lack of applications of these more ad-
vanced methods, which allow for a narrower but also a 
much more complex investigation. Going beyond these 
methods might also include using identification strate-
gies, such as regression-discontinuity designs to investi-
gate effects of mathematics and language interventions 
on the development of achievement (e.g., Gilraine & 
Penney, 2021).

Related to this, what currently seems to be missing 
are more fine-grained developmental theories that can 
be tested using the different models that are available. 
For instance, assumptions about the (im)plausibility of 
accumulating factors as inherent to LCS models or au-
toregressive latent trajectory models seem difficult to 
judge from a theoretical perspective. The same holds 
true for other features of these models, for instance, lin-
ear trend assumptions, which are a common feature of 
latent curve models with structured residuals. A compre-
hensive, applied literature that links theoretical models 
more strongly with these different types of “new” longi-
tudinal models and methods has great potential to en-
hance our knowledge and understanding of reciprocal 
relations in developmental processes.

In the same vein, most of these models do not allow 
for an easy causal interpretation and rely on specific as-
sumptions. From a more general perspective, when con-
sidering our results along with many of the previously 
reported results, for instance, from Erbeli et al. (2021) 
or Shin et al. (2013), the results have been somewhat co-
herent: Associations between prior reading and subse-
quent mathematics are substantial and positive, unlike 
the reverse path from prior mathematics to reading. 
These are important findings that have been repli-
cated in different samples. Notably, before being able 
to judge the causality of these findings, and given the 
huge heterogeneity in available modeling options (see 
Table 1), it seems important to discuss the underlying 
theoretical model of reality more thoroughly in future 
studies. In our study, we decided to apply LCS models 
and LGC models because these models were well suited 
for addressing our RQs on the bidirectional develop-
ment within students and the between-student differ-
ences in this within-student development (e.g., Grimm 
et al., 2017; Klopack & Wickrama, 2020). However, be-
yond the application of these models, it seems prom-
ising to more critically discuss (a) how the different 
models that are currently being applied to study longi-
tudinal relations between the two constructs compare 
with one another, (b) which models are more or less 

reasonable choices for studying the co-development of 
the two constructs, given the models' assumptions, (c) 
which results different models produce, and, most im-
portantly, (d) to what extent these or other models are 
helpful for drawing causal inferences. In addition to 
multiverse- or meta-analyses, future studies might also 
more thoroughly consider new weighting methods for 
continuous treatment variables (e.g., Fong et al., 2018; 
Hübner et al.,  2022; Imai & Ratkovic,  2014) or mar-
ginal structural models (Robins et al., 2000) that focus 
specifically on modeling strategies, interpretations, 
and results to expand the understanding of longitudi-
nal associations between reading and mathematics.

CONCLUSION

The present study investigated the co-development of 
reading and mathematics using a large set of data from 
students in England, Scotland, and Northern Ireland. 
Our findings from bivariate LGC models generally sug-
gest that the development of the two domains is positively 
related. When examining associations more closely, we 
found that students with higher reading achievement in 
Grade 1 showed a steeper average growth in mathemat-
ics from T1 to T6 compared with students with lower 
reading achievement in Grade 1. On the other hand, 
higher achievement in mathematics at T1 was negatively 
associated with growth in reading. Using bivariate dual 
LCS models, we found a statistically significantly posi-
tive association between prior reading scores and subse-
quent changes in achievement in mathematics, whereas 
changes in reading were substantially smaller for stu-
dents with a higher prior performance in mathematics. 
The findings suggest that acquiring good reading skills 
is highly relevant for developing mathematics skills.
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