
J
H
E
P
0
6
(
2
0
2
2
)
1
4
9

Published for SISSA by Springer

Received: April 15, 2022
Accepted: May 15, 2022

Published: June 27, 2022

Phase structure of self-dual lattice gauge theories
in 4d

Mariia Anosova,a Christof Gattringer,b,1 Nabil Iqbalc and Tin Sulejmanpasicc
aUniversität Graz, Institut für Physik,2
Universitätsplatz 5, 8010 Graz, Austria
bFWF Austrian Science Fund,
Sensengasse 1, 1090 Vienna, Austria
cDepartment of Mathematical Sciences, Durham University,
Stockton Road, Upper Mountjoy, Durham DH1 3LE, United Kingdom
E-mail: mariia.anosova@uni-graz.at, christof.gattringer@fwf.ac.at,
nabil.iqbal@durham.ac.uk, tin2019@gmail.com

Abstract: We discuss U(1) lattice gauge theory models based on a modified Villain
formulation of the gauge action, which allows coupling to bosonic electric and magnetic
matter. The formulation enjoys a duality which maps electric and magnetic sectors into
each other. We propose several generalizations of the model and discuss their ’t Hooft
anomalies. A particularly interesting class of theories is the one where electric and magnetic
matter fields are coupled with identical actions, such that for a particular value of the
gauge coupling the theory has a self-dual symmetry. The self-dual symmetry turns out
to be a generator of a group which is a central extension of Z4 by the lattice translation
symmetry group. The simplest case amenable to numerical simulations is the case when
there is exactly one electrically and one magnetically charged boson. We discuss the phase
structure of this theory and the nature of the self-dual symmetry in detail. Using a suitable
worldline representation of the system we present the results of numerical simulations that
support the conjectured phase diagram.

Keywords: Lattice Quantum Field Theory, Phase Transitions, Anomalies in Field and
String Theories, Spontaneous Symmetry Breaking

ArXiv ePrint: 2203.14774

1On leave from: Universität Graz, Institut für Physik, Universitätsplatz 5, 8010 Graz, Austria.
2Member of NAWI Graz.

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP06(2022)149

mailto:mariia.anosova@uni-graz.at
mailto:christof.gattringer@fwf.ac.at
mailto:nabil.iqbal@durham.ac.uk
mailto:tin2019@gmail.com
https://arxiv.org/abs/2203.14774
https://doi.org/10.1007/JHEP06(2022)149


J
H
E
P
0
6
(
2
0
2
2
)
1
4
9

Contents

1 Introduction 1

2 Self-dual modified Villain models 4
2.1 The gauge field partition sum 4
2.2 Duality transformation 6
2.3 Self-duality and self-dual symmetry 8
2.4 Coupling electric and magnetic matter 10
2.5 Computable self-dual limits 11
2.6 Field-theoretical description away from self-duality 13
2.7 Generalization of the lattice model, symmetries and anomalies 15

2.7.1 General charge theories and 1-form ’t Hooft anomalies 15
2.7.2 General numbers of electric and magnetic flavors 17
2.7.3 The self-dual non-abelian gauge theory 19

2.8 The phase diagram of self-dual scalar QED 19

3 Numerical simulation 21
3.1 Switching to a dual worldline formulation 21
3.2 The self-dual point revisited 23
3.3 Setup of the computation and general results 24
3.4 Analysis of the endpoints 27

4 Conclusion and future prospects 29

A The RG equations 31
A.1 Setup 31
A.2 The RG analysis of scalar QED 34

A.2.1 Solving the equations (A.8) 36

1 Introduction

U(1) gauge theories are widely thought to be effective theories, not only for electrody-
namics, but also for many condensed matter systems. In four-dimensional spacetime it is
the common lore that the U(1) theory of electrodynamics is an effective theory, possibly
arising from a non-abelian gauge theory in the UV. Such UV completions always require
magnetic monopoles, whose masses and effects are fixed by the UV theory. Furthermore, it
is well known that monopoles also emerge in Wilson’s lattice regularization of U(1) gauge
theories. In both of these UV completions, the simplest U(1) gauge theory necessarily has
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minimally charged magnetic monopoles, even when no electric field is present. It is tempt-
ing to conclude that any UV completion of a U(1) gauge theory must necessarily contain
unit charge magnetic monopoles.

The first hint that this cannot be true in general comes from lower dimensional anti-
ferromagnetic spin-systems. Such systems are known to be well described by an emergent
U(1) gauge theory. The most familiar example is that of an anti-ferromagnetic spin chain
that is effectively described by a 1+1d O(3) model [1], which in turn flows to an effective
1+1d abelian gauge theory. In two spatial dimensions, anti-ferromagnets have a similar
emergent U(1) gauge theory, but now in 2+1 space-time dimensions. Such an effective
theory naively has a U(1) conserved current1 jµT = 1

2π ε
µνρFνρ,2 where Fµν is the U(1)

field strength tensor. But no such U(1) symmetry exists in the UV spin system, and so
the effective theory must have operators that break the U(1) symmetry explicitly. Such
operators are monopoles,3 and they are almost always relevant [2].4 This again agrees with
the lore that UV completions of the U(1) gauge theory always requires monopoles.

However, there is something different in this setup. Haldane has shown that unit-charge
monopoles couple to geometric phases of the underlying spin systems [1], and, depending on
the underlying lattice symmetries, may obliterate the unit charge monopoles, preserving a
discrete ZN subgroup of the U(1)-topological magnetic symmetry. Therefore such systems,
while not preserving the full U(1)-topological symmetry, do preserve a subgroup of it. So
at least in such systems monopoles of unit charge, albeit 2+1d monopole-instantons, are
not part of an effective theory.

The discussion also makes clear that the absence or presence of dynamical monopoles
is a question of symmetry. A theory without dynamical monopoles has more symmetries.
Indeed in continuous 4d spacetime, the 2-index current Jmµν = 1

4π εµνρσ∂
νF ρσ is identically

conserved by the Bianchi identity in the absence of monopoles.5 So an abelian gauge theory
a priori allows for more symmetries than its non-abelian counterparts.

Furthermore, free abelian gauge theories have an electric-magnetic self-duality,6 but
such a duality is always explicitly broken in continuum descriptions of interacting U(1)
gauge theory because of the inability to couple electric and magnetic matter simultaneously.
In non-abelian gauge theories the situation is different. In the Coulomb regime of such
theories, monopoles can appear as solitons, and ever since Montonen and Olive [8], the

1The current is U(1) because the charges are quantized in magnetic flux units.
2The current is conserved off-shell, so it is commonly called a topological symmetry. Note, however, that

this designation depends on the description of the theory. Indeed a free U(1) gauge theory is equivalent to
a compact boson, where the topological symmetry becomes a normal Noether-like shift-symmetry of the
boson.

3Note that monopoles are space-time localized in 2+1d, i.e., they are instantons.
4The monopole operators are known/conjectured to be irrelevant at certain 3d fixed points (see,

e.g., [3–7]).
5The free 4d U(1) gauge theory has two 1-form symmetries in the continuum. These follow from the

two sets of Maxwell equations ∂µFµν = 0 and ∂µεµνρσFρσ = 0.
6Here we refer to self-duality in a broader sense, i.e., that the model is mapped to itself, but perhaps with

some coupling changed. However, in this work we mostly will study the self-duality in a more restrictive
sense, i.e., that the theory maps exactly to itself under the duality transformation. Self-duality then should
be viewed as a symmetry of the theory.
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pursuit of theories with electric and magnetic duality has been of interest, with all known
cases being supersymmetric theories.7 The non-abelian structure of the theory therefore
has two effects. 1: it furnishes a UV completion via asymptotic freedom, and 2: it allows
for a local Lagrangian description of a theory with both electric and magnetic matter.

However, a non-abelian UV completion of an abelian theory, inevitably determines the
matter content of the full theory to a large extent. For example a common feature of the
abelianized non-abelian theory is the presence of magnetic monopoles with unit magnetic
charge, and the charged W-bosons with unit fixed electric charge.

Still there should be no basic obstacle to formulating U(1) gauge theories with magnetic
and electric matter on equal footing. Indeed such objects are mutually local, but the
problem is that the continuum Lagrangian cannot be formulated with a local magnetic
and electric gauge potential. One may therefore refer to such theories (if they exist as
continuum theories) as non-Lagrangian theories.

However, in [9] two of us showed that such theories are possible on the lattice, where
a Lagrangian can be formulated in such a way that it treats electric and magnetic matter
on equal footing.8 In this formulation monopoles are not artifacts of a lattice theory, but
can have an action associated with them. Such theories are not only interesting in their
own right, but they also may lead to new quantum field theories which are beyond the
one captured by non-abelian gauge theories. In this paper we continue the line of work
initiated in [9] (compare also [14, 15]) and study the self-dual U(1) lattice system with a
single electrically and a single magnetically charged boson. We discuss in detail the possible
phase structure of the system and, using a suitable worldline representation, present results
of a Monte Carlo simulation that allow for checking the conjectured phase diagram.

The results of the paper are presented in two main sections. Section 2 discusses gen-
eralities of self-dual modified Villain models and is organized as follows: in subsection 2.1
we review the pure-gauge construction of [9], and in subsection 2.2 we discuss the electric-
magnetic duality. In subsection 2.3 we present the self-dual symmetry and discuss its
mixing with lattice translation symmetries. In subsection 2.4 we introduce matter fields,
focusing on bosonic matter primarily. In subsection 2.5 we discuss some computable limits
of the scalar self-dual model, while in subsection 2.6 we present the perturbative analysis
of scalar models far away from the self-dual point. In subsection 2.7 we discuss larger
gauge charge and flavor generalizations, and ’t Hooft anomalies of the flavor symmetries
and 1-form symmetries. We also discuss a non-abelian model with exact electric- magnetic
self-dual symmetry. In subsection 2.8 we condense all of the previous discussion into a
self-dual scalar QED phase diagram.

Section 3 is devoted to the numerical simulation of one-flavor self-dual scalar QED. As
a first step we introduce the necessary worldline representation in subsection 3.1 and then,
in subsection 3.2, collect self-dual relations and introduce suitable order parameters which
we need for the numerical analysis. In subsection 3.3 we discuss the numerical setup and

7The original conjecture of Montonen and Olive was for a non-supersymmetric Georgi-Glashow model,
which, as is now known, does not enjoy a self-dual symmetry.

8Similar reasoning was also useful in 2d U(1) gauge theories with the θ-term [10–13].
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general results of the condensation transition. We show that the theory has two transitions,
one 1st order and one 2nd order. We analyze these transitions in subsection 3.4.

Finally in section 4 we conclude and discuss some future prospects, specifically ad-
dressing the search for the novel interacting conformal fixed points.

2 Self-dual modified Villain models

2.1 The gauge field partition sum

In this subsection we summarize the construction of modified U(1) Villain lattice models
which was discussed in detail in [9].9 We consider a 4-d hypercubic lattice Λ with lattice
extents Nµ, µ = 1, 2, 3, 4 and a total number of sites V ≡ N1N2N3N4. We may think of
Λ as the union of Λ(0),Λ(1),Λ(2),Λ(3) and Λ(4), which are the sets of all sites, links, faces,
cubes and hypercubes.10 The lattice discretization in [9] relies on the Villain-like gauge
action given by11

Sg[Ae, n] =
∑
p

1
2
(
(dAe)p + 2πnp

)2
, (2.1)

where the sum runs over the plaquettes p. (dAe)p is the discretized gauge field flux (defined
below) around the links l of the plaquette p, built out of the gauge fields Ael living on
the links l, where the superfix “e” stands for electric, emphasizing that this gauge fields
naturally couples to electric matter. The np are integers living on plaquettes — the so-called
Villain variables.

Explicitly, by labeling the square plaquettes on a hypercubic lattice12 with the lattice
site x of its root point and two indices µ, ν = 1, 2, 3, 4, we define the exterior lattice
derivative operator d by

(dAe)x,µν = Aex+µ̂,ν −Aex,ν −Aex+ν̂,µ +Aex,µ , (2.2)

where µ̂ indicates a vector in the direction µ. Using this we define the field strength living
on the plaquettes p as

Fp ≡ (dAe)p + 2πnp (⇔ Fx,µν ≡ (dAe)x,µν + 2πnx,µν ) . (2.3)

9This construction was also applied for describing fracton models in [16] and for formulating models
with non-invertible symmetries [17].

10In general Λ(r) is the set of all r-cells, where a 0-cell is a vertex or site, a 1-cell is a link, edge or bond,
a 2-cell is a face, etc.

11Whenever we write a sum
∑

c
or a product

∏
c
over the cells c of the lattice, we always take into account

only one orientation of the cell. Moreover, since an r cell c of the hypercubic lattice is an r-dimensional
hypercube uniquely defined by a vertex x and r orthonormal vectors µ̂1, µ̂2, . . . , µ̂r, we can always write
instead of c, an ordered multiplet (x, µ1µ2, . . . µr) which uniquely determines c, such that the sum

∑
c
is

defined as
∑

c
≡
∑

x

∑
µ1<µ2<···<µr

, and similarly for the product
∏
c
.

12While these models can be formulated on arbitrary lattices, they are most natural on the hypercubic
lattice. The reason is that the hypercubic lattice and its dual lattice are isomorphic, and since, as we will
review, the self-dual symmetry maps the two into each other, such that the self-dual symmetry is only a
genuine symmetry on the hypercubic lattice.
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We can always restrict Ael 13 such that Ael ∈ [−π, π). The partition function is defined as
follows,

Z =
∑
{n}

∫
D[Ae] e−β Sg [Ae,n] , (2.4)

where we introduced β = 1
e2 , which plays the role of the inverse electric coupling squared.

We also defined some short-hand notation,∫
D[Ae] ≡

∏
l

∫ π

−π

dAel
2π =

∏
x

∏
µ

∫ π

−π

dAex,µ
2π , (2.5a)

∑
{n}
≡
∏
p

∑
np∈Z

=
∏
x

∏
µ<ν

∑
nx,µν∈Z

. (2.5b)

The lattice discretization summarized in (2.1) – (2.5) is the well known Villain formula-
tion [18] of U(1) lattice gauge theory.

However, while the theory (2.4) has an electric 1-form center symmetry,14 it does not
display the magnetic 1-form symmetry expected in four space-time dimensions. The reason
is that if the sum over the np is unconstrained, then the model has dynamical monopoles,
which are identified with the configurations for which (dn)c 6= 0, where c is a 3-cube,
labeled by one vertex x and there directions µ, ν, ρ (see, e.g., [9, 19–21]). Here d is again
the exterior lattice derivative, with the action on 2-forms explicitly defined as

(dn)x,µνρ = nx+ρ̂,µν − nx,µν + nx+µ̂,νρ − nx,νρ + nx+ν̂,ρµ − nx,ρµ , (2.6)

or, in short hand
(dn)c =

∑
p∈∂c

np , (2.7)

where ∂c is the boundary of c, i.e., the set of all (outward) oriented faces of the cube c.
To properly define a free gauge theory, we need to eliminate these monopoles by im-

posing the constraint
(dn)c = 0 ∀c ∈ Λ(3). (2.8)

One way for implementing the constraint is to introduce Lagrange multipliers Amc assigned
to the cubes c of the lattice Λ. Here the superscript m stands for magnetic since, as we will
see, the Lagrange multipliers will turn out to be a natural definition of a magnetic gauge
field. We thus may write the set of constraints (2.8) as∏

c

∫ π

−π

dAmc
2π e i (dn)c Amc =

∫
D[Am] e i

∑
c∈Λ(3) (dn)c Amc , (2.9)

13One may be tempted to define a field strength to be just (dA)p. However, this is a total derivative, and
all fluxes of it over a closed 2-cycle on the lattice will vanish. Moreover, we can redundantly allow Al to
take values on the whole real line R. Then the system enjoys a discrete 1-form gauge symmetry, and only
the combination dAp + 2πnp is gauge invariant [9].

14The 1-form symmetry can be seen by noting that shifts Ael → Ael + Vl, with Vl such that (dV )p = 0,
are a symmetry. Naively, the symmetry group then is H1(M,R), where M is the underlying space-time
manifold. However, shifts of Ael by 2πZ are a gauge symmetry, and hence should not be considered a global
symmetry. So the group is H1(M,U(1)). For a 4-torus this is just U(1)× U(1)× U(1)× U(1), where each
U(1) group corresponds to a different cycle of the 4-torus. The operators charged under the various U(1)
parts are the (electric) Willson loops wrapping around these cycles.
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where we defined, ∫
D[Am] ≡

∏
c

∫ π

−π

dAmc
2π . (2.10)

2.2 Duality transformation

Having defined the Villain form of the gauge field Boltzmann factor augmented with the
constraint (2.9) we are now ready to discuss the duality transformation. We apply the
partial integration formula (see the appendices of [9] and [15]) to the exponent of the
constraint (2.9) and find,∑

c

(dn)cAmc =
∑
x

µ<ν<ρ

(
nx+ρ̂,µν − nx,µν + nx+µ̂,νρ − nx,νρ + nx+ν̂,ρµ − nx,ρµ

)
Amx,µνρ =

=
∑
x

µ<ν

nx,µν
(
Amx−ρ̂,µνρ −Amx,µνρ

)
= −

∑
p

np (∂A)p , (2.11)

where we defined the divergence operator ∂ on the lattice,

(∂Am)x,µν =
∑
ρ

(Amx,µνρ −Amx−ρ̂,µνρ) , (2.12)

which is the discrete version of the continuum divergence ∂ρAmµνρ. The lattice divergence
operator can also be written as

(∂Am)p =
∑
c∈∂̂p

Amc , (2.13)

where ∂̂p is the coboundary of p, i.e., the set of all cubes c whose boundary contains p (see
again the appendices of [9, 15] for details and generalizations).

Since for the cubic lattice also the dual lattice is cubic, we can define the Hodge star
(again see, e.g., [9]) which maps r-cells (below denoted as c(r)

x,µ1µ2···µr) of the original lattice
Λ to (D− r)-cells15 of the dual lattice Λ̃, where D is the space-time dimension, which here
of course is D = 4. Analogously one can define a ?-operator which takes r-cells (below
denoted as c̃(r)

x̃,µ1µ2···µr) of Λ̃ to (D − r)-cells of Λ. We will denote both of these with the
same symbol “?”. The star operators are defined as follows

?c
(r)
x,µ1µ2···µr =

∑
µ′r+1<µ

′
r+2<···<µ

′
D

εµ1µ2...µrµ′r+1···µ
′
D
c̃

(D−r)
x̃−µ̂′r+1−µ

′
r+2···−µ̂

′
D,µ̂
′
r+1µ

′
r+2···µ

′
D
, (2.14a)

?c̃
(r)
x̃,µ1µ2···µr =

∑
µ′r+1<µ

′
r+2<···<µ

′
D

εµ1µ2...µrµ′r+1···µ
′
D
c

(D−r)
x+µ̂1+·+µ̂r,µ′r+1µ

′
r+2···µ

′
D
, (2.14b)

where
x̃ = x+ 1̂ + 2̂ + . . . D̂

2 , (2.15)

is a site on the dual lattice obtained by a translation of x. Some examples for the action
of the ?-operator are illustrated in figure 1.

15A 0-cell is a vertex, a 1-cell is a link, a 2-cell is a face, etc.
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Figure 1. Examples for the action of the ?-operator in 2d (left) and 3d (right).

Furthermore, we can define the action of the ?-operator on an r-form Ac(r) living on
the r-cells c(r) ∈ Λ(r), as (?A)c̃(D−r) ≡ A?c̃(D−r) . In the case at hand, we have a 3-form
(Ae)c living on cubes c ∈ Λ(3), such that we obtain for (?Am)l̃ living on the dual links l̃

(Ãm)l̃ ≡ (?Am)l̃ ≡ (Am)?l̃ . (2.16)

We will need the important property that d? = ?∂, as well as the fact that ?2 acting on a
r-form Ac(r) is the identity up to a sign (−1)r(D−r), i.e., ?2Ac(r) = (−1)r(D−r)Ac(r) .

Applying this machinery now to eq. (2.11) we find∑
c

(dn)cAmc = −
∑
p

np(∂Am)p = −
∑
p

np(?2∂Am)p = −
∑
p

np(dÃm)?p , (2.17)

such that the partition function is given by

Z =
∑
{n}

∫
D[Ae]

∫
D[Ãm] e−

β
2
∑

p

(
(dA)p+2πnp

)2
−i
∑

p
np(dÃm)?p . (2.18)

Now we use the Poisson resummation formula∑
n

e−
β
2 (F+2πn)2−inF̃ = 1√

2πβ
∑
m

e
− 1

2(2π)2β
(F̃+2πm)2+iFF̃/(2π)+imF

, (2.19)

to obtain yet another form of the partition function

Z = 1
(2πβ)3V

∑
{m}

∫
D[Ae]

∫
D[Am] e−

1
2(2π)2β

∑
p
((dAm)?p+2πmp)2+i

∑
p
mp(dAe)p

, (2.20)

where V = N1N2N3N4 is again the total number of sites of the toroidal lattice.16 Note that
the term (dAe)p(dAm)?p dropped out because it is zero17 when summed over p. By writing

16The overall factor (2πβ)−3V is just 1/
√

2πβ from (2.19) to the power of the number of plaquettes of
the lattice 6V .

17This follows from a “partial integration” formula, similar to what we used in (2.11), and the fact that
d2 = 0.
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mp = (?m)?p = (m̃)?p, (Ae)p = (Ae)?(?p) and noting that we can replace the sum over p
with the sum over p̃ = ?p. Therefore the dual form of the partition function is given by

Z = 1
(2πβ)3V

∑
{m}

∫
D[Ae]

∫
D[Ãm] e−

1
2(2π)2β

∑
p̃

(
(dAm)p̃+2πm̃p̃

)2
+i
∑

p
m̃p̃(dAe)?p̃

. (2.21)

This is our final expression for the duality tranformation.18 Notice that it is almost iden-
tical (up to details we will discuss soon) to (2.18), with β → β̃ = 1

(2π)2β . Moreover when
β = β∗ = 1

2π the theory is self-dual, and hence has an enhanced symmetry. The self-duality
in fact does not square to unity, but to charge-conjugation C. The reason for this is that
in (2.21) the phase term has a different sign than in (2.18), which means that the self-
duality requires not just exchanging the gauge field Ae with Ãm, but also flipping the sign
of one of them, hence squaring to a pure charge conjugation. However, even this is too
naive in our lattice theory, as the exchange of the two gauge fields also requires shifting
the lattice to the dual lattice, and we will see that the self-dual transformation squares to
a charge conjugation C and an overall lattice shift. We discuss this in detail below.

2.3 Self-duality and self-dual symmetry

Comparing the dual form (2.21) with the original partition sum (2.18) we see that the
change (Ae, Ãm) → (−Ãm, Ae), 2πβ → /(2πβ) switches the original partition function to
the structure of the dual one. However, we cannot simply replace (Ae, Ãm) by (−Ãm, Ae),
because Ae lives on the original lattice Λ, while Ãm lives on the dual lattice Λ̃. So we must
define the dual transformation such that it also incorporates the map from Λ to Λ̃. We
accomplish this by defining the translation operator T , that shifts the lattice by the vector
ŝ = 1̂+2̂+...D̂

2 , i.e., it shifts from Λ to Λ̃. Thus the operator T translates the r-cell of the
lattice Λ to the r-cell of the dual lattice Λ̃ as follows

Tc(r)
x,µ1µ2...µr = c̃

(r)
x+ŝ,µ1µ2...µr

. (2.22)

Consequently, if we perform the replacement

Ael → −ÃmT (l) ,

Ãm
l̃
→ Ae

T (l̃) ,

m̃p̃ → nT (p̃) ,

(2.23)

in (2.21), the same form as in (2.18) is obtained,19 up to an overall constant and of course
the change of coupling β → β̃ = 1

(2π)2β . Thus we find

Z(β) = (2πβ)−3V Z

( 1
β(2π)2

)
, (2.24)

18This duality was referred to as Kramers-Wannier duality in [9], which is a bit imprecise because the
original Kramers-Wannier duality does not in fact map a theory back to itself, but maps it back to the same
theory coupled to a TQFT [22]. In contrast the electric-magnetic duality we discuss here is an exact duality.
It can be converted to a Kramers-Wannier type of duality by gauging one of the 1-form symmetries. This
was discussed in [17] (see also [23]).

19Note that T? = ?T as can be checked from the expressions (2.14).
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which we can also write in a more symmetric way as follows,

(2πβ)
3V
2 Z(β) = (2πβ̃)

3V
2 Z(β̃) with β̃ = 1

4π2β
. (2.25)

This relation for the partition sum generates relations for observables: taking the loga-
rithm of both sides and differentiating with respect to β, we obtain a relation between the
expectations values of the field strength squared as

〈F 2〉β ≡ −
1

3V
∂

∂β
lnZ(β) = − 1

3V
∂

∂β
ln
(
(2πβ)−3V Z

(
β̃)
)

= 1
β
− 1

3V

(
∂

∂β̃
lnZ(β̃)

)
dβ̃

dβ
= 1

β
− 〈F 2〉

β̃

1
4π2β2 , (2.26)

where we defined F 2 ≡
∑
x,µ<ν(Fx,µν)2/(6V ) = Sg[Ae, n]/(3V ). The subscripts β and β̃

attached to
〈
F 2〉 indicate the coupling the respective vevs are computed with. The relation

can be rearranged in a more symmetric form as [15]

β
〈
F 2
〉
β

+ β̃
〈
F 2
〉
β̃

= 1 . (2.27)

Another derivative with respect to β generates a duality relation for the corresponding
susceptibilities,

β 〈F 2〉β − β2 χβ = β̃ 〈F 2〉
β̃
− β̃2 χ

β̃
, (2.28)

with
χβ ≡ −

∂

∂β
〈F 2〉β = 3V

〈
(F 2 − 〈F 2〉β)2

〉
β
. (2.29)

We conclude this subsection by identifying the self-dual symmetry. When β = β̃ =
1

4π2β , the duality maps our theory to itself, and hence becomes a genuine symmetry. By
virtue of (2.23), we define the self-duality operator S to act on gauge fields as follows (and
of course β → β̃)

S =

Ael → −ÃmT (l) ,

Ãm
l̃
→ Ae

T (l̃) .
(2.30)

The square of the transformation is given by (note that ˜̃β = β)

S2 :

Ael → −AeT 2(l) ,

Ãm
l̃
→ −Ãm

T 2(l̃) ,
(2.31)

i.e., it acts as charge conjugation and a diagonal translation of the lattice in all directions
by one lattice unit, which we will call D. The translation D forms a group Z on an infinite
lattice, while on our finite periodic lattice we find DN = I for some integer N , so that D gen-
erates a ZN subgroup, which we will call Z. The duality transformation S, the charge con-
jugation C and diagonal shifts D furnish a group G, which satisfies the following identities

S2 = CD , (2.32)
C2 = I . (2.33)
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The generator D commutes with S and C and so Z is the center of G. Furthermore,
G/Z ∼= Z4. Indeed S4 = D2 is a pure center element, and so is equivalent to the identity
element in G/Z. One way to phrase this is to say that G is a central extension of Z4 by Z.

The fact that this algebra involves the lattice shift D makes clear that the self-dual
symmetry does not act in an on-site manner; its action necessarily involves lattice trans-
lations. This is consistent with the no-go theorem of [24], which argues that any theory
with electric-magnetic self-duality cannot be regularized in a manner which realizes the
symmetry in an on-site fashion.

If we assume, however, that the lattice symmetries are unbroken by the vacuum of
the theory, then the vacuum can at most be acted on by G/Z ∼= Z4. This Z4 group is
generated by a self-duality generator S for which S2 = C is the charge-conjugation. If
we further assume that charge conjugation is unlikely to be broken in the vacuum (below
we justify this with numerical results for the system we studied), we then conclude that
the vacuum will transform at most under Z2 ∼= Z4/Z2. If this happens we will say that
self-dual symmetry is spontaneously broken.

2.4 Coupling electric and magnetic matter

We now couple electrically charged matter φe to the electric gauge field Ae and magnetically
charged matter φ̃m to the magnetic gauge field Ãm. We write the partition function with
gauge fields coupling to electric and magnetic matter fields in the form

Z(β, Je, Jm) ≡
∫
D[Ae]

∫
D[Am] Bβ [Ae, Ãm] Z[Ae, Je] Z̃

[
Ãm, Jm

]
, (2.34)

where Bβ [Ae, Ãm] is the weight of the free gauge theory derived in (2.18), i.e.,

Bβ [Ae, Ãm] = e
−β2
∑

p

(
(dA)p+2πnp

)2
−i
∑

p
np(dÃm)?p . (2.35)

In (2.34) we introduced the partition sums Z and Z̃ for electric and magnetic matter (de-
fined below), which also depend on two coupling parameters Je and Jm for the electric and
magnetic matter fields. The electrically charged matter fields φex ∈ U(1) we parameterize
as φex = e iϕ

e
x with ϕex ∈ [−π, π). They couple to the electric background gauge field Ae via

the partition sum

Z[Ae, Je] ≡
∫
D[φe] e JeSe[φe, Ae] ,

∫
D[φe] ≡

∏
x

∫ π

−π

dϕex
2π , (2.36)

Se[φe, Ae] ≡
1
2
∑
x,µ

[
φe ∗x eiA

e
x,µ φex+µ̂ + c.c.

]
=
∑
x,µ

cos
(
ϕex+µ̂ − ϕex +Aex,µ

)
. (2.37)

The magnetically charged scalar field φ̃mx̃ ∈ U(1), which we parameterize as φ̃mx̃ = e iϕ̃
m
x̃

with ϕ̃mx̃ ∈ [−π, π), lives on the sites x̃ of the dual lattice and couples to the magnetic
gauge field Ãmx̃,µ on the links of the dual lattice. The corresponding partition sum has the
same form as the partition sum (2.36) for the electric matter but for the magnetic matter
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is defined entirely on the dual lattice:

Z̃
[
Ãm, Jm

]
≡
∫
D
[
φ̃m
]
e JmS̃m

[
φ̃m, Ãm

]
,

∫
D
[
φ̃m
]
≡
∏
x̃

∫ π

−π

dϕ̃mx̃
2π , (2.38)

S̃m
[
φ̃m, Ãm

]
≡ 1

2
∑
x̃,µ

[
φ̃m ∗x̃ eiÃ

m
x̃,µ φ̃mx̃+µ̂ + c.c.

]
=
∑
x̃,µ

cos
(
ϕ̃mx̃+µ̂ − ϕ̃mx̃ + Ãm

x̃,µ

)
. (2.39)

Here we have coupled electric and magnetic matter using U(1)-valued matter fields, but it
is straightforward to generalize this construction to complex-valued bosonic matter or also
to fermionic fields [9].

Self-duality of the full theory essentially follows from the self-duality of the pure gauge
theory we already discussed above, combined with the interchange of electric and magnetic
matter (see [9, 15] for a more detailed discussion). The corresponding self-duality relation
for the partition function is given by

Z(β, Je, Jm) =
( 1

2πβ

)3V
Z
(
β̃, J̃e, J̃m

)
, (2.40)

with β̃ = 1
4π2β

, J̃e = Jm , J̃m = Je .

Again we can generate self-duality relations for observables by evaluating derivatives of
lnZ with respect to the couplings. The pure gauge theory sum rules (2.27) and (2.28)
generalize to,

β 〈F 2〉β,Je,Jm + β̃ 〈F 2〉
β̃,J̃e,J̃m

= 1 , (2.41)
and

β 〈F 2〉β,Je,Jm − β2 χβ,Je,Jm = β̃ 〈F 2〉
β̃,J̃e,J̃m

− β̃2 χ
β̃,J̃e,J̃m

. (2.42)
Derivatives with respect to Je and Jm generate field expectation values for the electric
and magnetic matter fields. Exploring the duality relation (2.40) one finds the following
self-duality relation for the electric and the magnetic action densities se ≡ Se/4V and
s̃m ≡ S̃m/4V :

〈se〉β,Je,Jm ≡
1

4V
∂

∂Je
lnZ(β, Je, Jm) = 〈s̃m〉β̃,J̃e,J̃m . (2.43)

According to the self-duality relation (2.43), the electric and magnetic field expectation
values are converted into each other when changing from weak to strong coupling and
simultaneously interchanging the electric and magnetic coupling parameters.

2.5 Computable self-dual limits

Let us now discuss various limits of the model. First we consider the limit when Je = Jm =
J → 0. In this case the model is a pure gauge theory model. Moreover the model has
so-called 1-form magnetic and electric symmetries, which can be seen from (2.35) by taking
Ae → Ael +δl with δel such that (dδe)l = 0, and similarly for Ãm

l̃
→ Ãm

l̃
+ δ̃m

l̃
with (dδe)l̃ = 0.

These 1-form symmetries are continuous U(1) symmetries in the case of a free theory. They
act non-trivially on Wilson loops W e(C) and ’t Hooft loops Wm(C̃) defined as

W e(C) = ei
∑

l∈C A
e
l , Wm(C̃) = ei

∑
l∈C̃ Ã

m
l̃ , (2.44)

where C and C̃ are closed paths on the lattice and the dual lattice, respectively.
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Moreover the model has a ’t Hooft anomaly between these two symmetries, which in
a way guarantees that the photon is exactly massless in a free theory, as the anomaly
is generically saturated by breaking either the electric or the magnetic 1-form symmetry,
leaving a goldstone boson — the photon [25]. We discuss this anomaly, or rather the
anomaly between the discrete subgroups of the electric and magnetic 1-form symmetries,
in section 2.7. We can see the presence of this massless phase explicitly by integrating out
the field Ãm. We solve the constraint (dn)c = 0 by setting

np = (dk)p , (2.45)

where kl is an integer living on links. This ansatz is correct only locally and not fully
general on our compact lattice, such that we now formally take the lattice to be infinite to
illustrate our point.20 Now we can remove kl by a shift of gauge fields21 Ael → Ael − kl and
obtain the action

βSg =
∑
p

β

2 (dAe)2
p , (2.46)

which describes free photons and has no phase transition as a function of coupling because
now the coupling can be absorbed in the field redefinition22 Ael → Ael /

√
β.

Now let us discuss the opposite limit and take Jm = Je = J →∞ in (2.36) and (2.38).
In this case the matter contribution becomes dominant and will pin the gauge fields to
values such that the phase difference between sites carries no action cost. This effectively
imposes the constraint that

Ael = 2πsel
Aml = 2πsml

, sel , s
m
l ∈ Z . (2.47)

Notice that the phase factor in the action (2.35) drops out and our total action is just

Stot = β

2 (2π)2∑
p

((dse)p + np)2 . (2.48)

Moreover the Villain variables np-s are now unconstrained and we can shift them np →
np− (dse)p to eliminate sel completely. Finally our partition function is given by a product
of the plaquette contributions

ZJ=∞ ≡ lim
Je→∞
Jm→∞

Z(β, Je, Jm) =
(∑

n

e−
β

2π2 n
2
)6V

, (2.49)

20Alternatively we can take the kl to have general boundary conditions on our toroidal lattice.
21In order to do this we must a priori take Al ∈ R, which we can always do [9].
22It is tempting to say that the action (2.46) describes a non-compact gauge field. However, this is not

quite right, as the choice of gauge was not possible to perform on a compact manifold, nor is it compatible
with the insertion of a ’t Hooft line — two distinguishing features of the compact gauge theory. Rather
this should be thought of as a compact gauge theory where there are no dynamical monopoles, i.e., they
have been supressed by the constraint on the Villain variables np. Such a theory is locally the same as the
non-compact R-gauge theory, but not globaly.
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where 6V is the total number of plaquettes. We can express the result via the elliptic
function θ3 and obtain

ZJ=∞ =
(
θ3(0, e−

β

2π2 )
)6V

. (2.50)

This theory is clearly trivially gapped, and has no phase transition as a function of β. The
fact that the theory is now featureless and that there is a distinction between electric and
magnetic condensation is the Shenker-Fradkin continuity [26].

What about intermediate values Je = Jm = J? This regime is generally strongly
coupled, and we will have to resort to lattice simulations to answer the question fully, but
before we do so, let us perform a qualitative analysis to see what we can expect.

2.6 Field-theoretical description away from self-duality

Let us first consider moving away from self-duality by studying the regime where the inverse
gauge coupling β is large. The electric matter is then weakly coupled, but the magnetic
matter is strongly coupled.23 So we expect the magnetic matter to get a large mass and
decouple from the system, and the system is described by the condensation of electrically
charged matter. Altering J is then related to the change of the mass squared parameter
m2 of the scalar. The limit where J → ∞ corresponds to the deep Higgs phase where
m2 → −∞ causes the scalar to condense. On the other hand J → 0 corresponds to the
scalar decoupling limit m2 →∞.

The transition between the two regimes is expected around m2 ∼ 0. If the mass is low
enough, we expect a description in terms of continuum scalar QED. This is an extremely
well-studied system, where the usual Coleman-Weinberg analysis [27] shows that the one-
loop effective potential for the scalar generically has a minimum away from the origin, and
thus the transition is expected to be first order.

This can also be understood from a renormalization group analysis, as we briefly review
below. We present the argument for N e

f scalar flavors, where the e in the superscript
stands for “electric” as the matter is electrically coupled. In this section we will omit
the superscript e (i.e., Nf = N e

f ) as we are considering only electrically coupled matter,
but in later sections we will sometimes consider N e

f electrically coupled flavors and Nm
f

magnetically coupled flavors.
We now want to discuss the order of the transition, which changes for Nf sufficiently

large. The continuum action describing the interaction of electrically charged matter with
the photon takes the form

S[φ,A] =
∫
d4x

 1
4e2F

2 +
Nf∑
i=1

(
|∂φi|2 +m2|φi|2

)
+ λ

4

Nf∑
i=1
|φi|2

2
 . (2.51)

There are three couplings which are of interest: the electric coupling squared e2, the mass
squared m2 and the φ4 coupling λ. When m2 > 0, the relevance of this coupling drives

23We note that by performing the duality transformation (2.40), the same analysis describes the large β̃
regime, and thus may be re-interpreted as the confinement transition associated with the condensation of
magnetic charges. To avoid confusion we will use terminology appropriate to the Higgs transition.
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the system to a free photon phase. When m2 < 0 the system is likewise driven to a scalar
condensed phase. We thus have to understand what happens exactly at m2 = 0. At this
point e2 and λ are marginally irrelevant and an analysis of the beta functions shows that
they flow logarithmically towards smaller values of the couplings e2, λ.

The precise character of the transition now turns out to depend on Nf . The standard
calculation gives the RG equations for m2 = 024 (see e.g. [28–30]),

dg

d`
= −Nfg

2

3 , (2.52a)

dλ

d`
= −(Nf + 4)λ2 + 6λg − 6g2 , (2.52b)

where g = e2, and ` is the RG flow “time”.25 As is commonly done, these RG equations only
take into account the marginal couplings, and ignore the infinite set of irrelevant couplings
that a-priori are not expected to be important.

The point λ = e2 = 0 is a fixed point. The question is whether this fixed point is
reached. If it is, then the transition at m2 = 0 is 2nd order. Naively, since both g and λ are
marginally irrelevant, it seems this is always true. However, note that it takes infinite flow
time ` for g to reach zero, while it is not excluded that λ becomes zero in finite flow time.
If that happens the last term −6g2 in (2.52b) will push λ to negative values. When λ is
negative, however, the would-be irrelevant couplings such as φ6 become important as they
stabilize the potential, i.e., they become dangerously irrelevant. If this happens the system
flows to a Higgs phase at m2 = 0, while for m2 > 0 it is in a photon phase, rendering the
transition discontinuous.

This indeed happens for Nf small enough as we explain in the appendix, and in par-
ticular for Nf = 1.26 On the other hand, if one takes the large Nf limit in equations (2.52),
implies that the fixed point e2 = λ = 0 is generically reached for Nf sufficiently large.27

Then there should exist a window 1 < Nf < N∗f for which the couplings (e2, λ) flow
in the infrared towards the origin but then generically miss the mean-field point at zero
coupling (e2, λ) = (0, 0), instead heading off towards large negative coupling λ, leading to
a 1st order transition.

However, when Nf ≥ N∗f , the dynamics along the RG flow and thus the topology of
the solution space is different such that there exists an open set of initial data with positive
(e2, λ) which are attracted in the far IR towards (e2, λ) = (0, 0), rather than generically
“missing” the origin. Thus one can now arrive at the gapless weak-coupling critical point

24The overall coefficient of the 2nd order RG equations can always be chosen by a simple redefinition
gi → cgi for constant c. We have decided to completely remove the factors of π which come from the
integration over the volume of the 3-sphere.

25The “flow time” is given by ` = −log(µ/µ0) where µ0 is the initial mass-dimension cuttoff scale, and
µ < µ0 is the final cutoff scale.

26For Nf = 1, the 1st order transition also follows from the standard effective potential of Coleman and
Weinberg [27].

27While the large Nf limit seems to indicate that this happens for any initial values, this is in fact not
the case. The reason is that the decay of λ toward zero is faster than the decay of e2, rendering subleading
terms at large Nf potentially important. A careful analysis is presented in the appendix.
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by tuning only m2, and the transition may be second order, described by a mean-field
phase transition with vanishing couplings.28 In appendix A.2 we show that N∗f = 183.

The upshot of this analysis is that for a small number of electric flavors N e
f (and if mag-

netic monopoles are heavy) the Higgsing transition separating the Coulomb from the Higgs
phase is expected to be first-order. By electric-magnetic duality, this also implies that for
a small number of magnetic flavors Nm

f (and if electric charges are heavy), the confinement
transition separating the Coulomb phase from a confined phase is expected to be first-order.
Thus both of the lines bounding the Coulomb phase in figure 2 are first-order lines.

We note that in [32, 33] it was argued that the introduction of an ad hoc monopole mass
term leads to a region of the phase diagram where the confinement-deconfinement transition
is 2nd order. Since this setup is in the same universality class as the Abelian-Higgs model
studied here, we conclude that the transition observed in [32, 33] is never continuous but
is weakly 1st order. In fact in [33] it was observed that the alleged 2nd order transition is
not universal. The likely explanation is the presence of two marginally irrelevant couplings
which could keep the system in the vicinity of the non-interacting fixed point until exponen-
tially large volumes are reached, thereby obscuring the 1st order nature of the transition.

2.7 Generalization of the lattice model, symmetries and anomalies

Here we discuss several generalizations of our lattice model, the symmetries which arise
and their ’t Hooft anomalies. This section is quite independent from the rest of the paper,
and can be skipped at first reading.

The lattice model with one flavor of electric and magnetic matter has very little sym-
metries, and hence is not very constrained. However, it can be generalized in several ways,
which introduces more symmetries with ’t Hooft anomalies. We will first consider the
generalization to general charges of the dynamical electric and magnetic matter, and then
to introducing flavor multiplets. We conclude by formulating a non-abelian gauge theory
with a self-dual electric-magnetic symmetry.

2.7.1 General charge theories and 1-form ’t Hooft anomalies

We consider coupling matter with charges qe and qm larger than 1, i.e., the electric matter
fields couple to link phases eiqeAl and the magnetic matter to eiqmÃl̃ . The model then has
1-form global symmetries Z[1]

qe ×Z[1]
qm , as is clear from the invariance of the action under the

transformation

Ael → Ael + 2πkl
qe

, (2.53)

Am
l̃
→ Ãm

l̃
+

2πk̃l̃
qm

, (2.54)

where kl and k̃l̃ are such that

(dk)p = 0 ∀ p ∈ Λ, and (dk̃)p̃ = 0 ∀ p̃ ∈ Λ̃ . (2.55)
28It is interesting to note that the only possible conformally-invariant critical point for a parity-invariant

theory with a U(1) 1-form symmetry — in this case magnetic flux conservation — is the free fixed point [31].
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We can also consider introducing background gauge fields for the 1-form symmetries. As
we now show, there is an obstruction to putting background gauge fields for both 1-form
symmetries simultaneously, which is a manifestation of the ’t Hooft anomaly. Indeed, if
we want to put background fields for the electric center symmetry, we must promote the
shifts (2.53) to be valid for any kl, not necessarily only those obeying the constraint dk = 0.
We do this by introducing a background 2-form gauge field (i.e., living on plaquettes)
Be
p = 2πbep

qe
, be ∈ Z, and replacing in the gauge action29

(dAe)p + 2πnp → (dAe)p + 2πnp +
2πbep
qe

. (2.56)

The 1-form electric center symmetry is now a gauge symmetry

Ael → Ael + 2πkl
qe

, (2.57)

bep → bep − (dk)p . (2.58)

However, note that now Be
p is supposed to be a Zqe-valued gauge field, which means

that setting bep to be an integer multiple of qe, i.e., bep = mpqe, mp ∈ Z, should be the same
as not putting a background at all. Indeed for a gauge-kinetic term, we can always shift
np → np −mp to absorb such a field, but must recall that np also appears in the Lagrange
multiplier term involving the magnetic field Ãm

l̃
. Hence we also must replace

i
∑
p

(dÃm)?pnp → i
∑
p

(dÃm)?p
(
np +

bep
qe

)
. (2.59)

So far so good. We have managed to put a consistent background gauge field for a 1-form
electric center symmetry. But now we find that in order to promote the magnetic center
symmetry to a gauge symmetry, we must replace

(dÃm)p̃ →
(

(dÃm)p̃ +
2πb̃mp̃
qm

)
, b̃mp̃ ∈ Z . (2.60)

In particular the Lagrange multiplier term in the action becomes

i
∑
p

(dÃm)?p
(
np +

bep
qe

)
→ i

∑
p

(
(dÃm)?p +

2πb̃m?p
qm

)(
np +

bep
qe

)
. (2.61)

But in the above, the shift b̃mp̃ by arbitrary integer multiples of qm is not a symmetry, as
such shifts will get a contribution from the cross term between b̃m and be. Indeed we find
that under b̃mp̃ → b̃mp̃ + rp̃qm, rp̃ ∈ Z, the action changes by

i2πr?p
qe
bep . (2.62)

29Notice that despite be taking all integer values, it should be thought of as a Zqe gauge field, because
shifts of be → be+qe can be absorbed by a corrsponding shift of the dynamical Villain variables np → np−1.
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Can this non-invarinace be fixed by a local counter-term? Indeed such a term should be
linear in be and b̃m to reproduce the transformation above. Morover, it should be invariant
under the shift of bep by integer multiples of qe. The only such counter-term is given by

Scounter = −i2πP
qe

∑
p

b̃m?pb
e
p , P = 0, 1, 2, . . . , qe . (2.63)

Now the shift bmp̃ → b̃mp̃ + rp̃qm changes the counter-term as follows

∆Scounter = −i2πPqm
qe

∑
p

r?pb
e
p , (2.64)

which restricts P to be such that

Pqm = 1 mod qe . (2.65)

If such a P can be found then there is no mixed anomaly between the two 1-form symme-
tries. In particular the above condition translates to GCD(qm, qe) = 1. So we found that
there is a mixed ’t Hooft anomaly if GCD(qm, qe) 6= 1.

2.7.2 General numbers of electric and magnetic flavors

We now consider SU(N e
f ) and SU(Nm

f ) matter multiplets, which can be either fermionic
or bosonic. We couple these to the electric and magnetic gauge fields respectively. This is
done in the standard way by with a gauge invariant hopping term

∑
x,µ

Ne
f∑

I=1
φI ∗x e i A

e
x,µ φIx+µ̂ + c.c. , (2.66)

where φx is the a matter field on the lattice, coupling to an electric gauge field Ae. The
index I is an SU(N e

f ) flavor index. A similar expression can be written for the magnetic
multiplet, ∑

x̃,µ

Nm
f∑

I=1
φ̃I ∗x̃ e i Ã

m
x̃,µ φ̃Ix̃+µ̂ + c.c. . (2.67)

Note that the global symmetry is not SU(N e
f ) × SU(N e

f ) but PSU(N e
f ) × PSU(N e

f ),30 be-

cause the transformation by the center element which takes φIx → exp
(

2πi
Ne
f

)
φIx is part

of the U(1) electric gauge transformation, and similarly for the transformation with the
center of SU(Nm

f ).
Now let us couple the symmetry to a background gauge field. We promote

∑
x,µ

Ne
f∑

I=1
φI ∗x e i A

e
x,µ φIx+µ̂ →

∑
x,µ

Ne
f∑

I,J=1
φI ∗x U e,IJx,µ φJx+µ̂ (2.68)

where U ex,µ is an SU(N e
f ) matrix. However, recall that the symmetry we wish to gauge is

really PSU(N e
f ), while our link matrices U ex,µ are SU(N e

f ). To do this we must make sure
30PSU(N) ≡ SU(N)/ZN .
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that there exists a gauge symmetry U ex,µ → exp
(
i

2πsx,µ
Ne
f

)
U ex,µ, with sx,µ = 1, . . . , N e

f − 1,
which effectively removes the center of SU(Nf ) and renders the gauge field a PSU(N e

f )
gauge field. This can be accomplished by shifting Aex,µ → Aex,µ −

2πsx,µ
Ne
f

, which is not
a symmetry of the kinetic term however. To turn it into a symmetry we introduce a
background 2-form ZNe

f
gauge field bep like before and replace the kinetic term and the

Lagrange multiplier term by(
(dAe)p + 2πnp

)2
→
(

(dAe)p + 2πnp +
2πbep
N e
f

)2

, (2.69)

i(dÃm)?p
(
np +

bep
qe

)
→ i(dÃm)?p

(
np +

bep
N e
f

)
. (2.70)

Note that the gauge invariant flux is now (dAe)p + 2πnp + 2πbep
Ne
f
, and can be fractional.31

Now the background gauge field U ex,µ ∈ SU(N e
f ) has its center promoted to a gauge

symmetry, and hence represents a PSU(N e
f ) gauge background. As part of this back-

ground we had to introduce 2-form gauge fields which are meaningful mod N e
f , i.e., bep =

0, 1, . . . , N e
f − 1 mod N e

f . The remaining steps closely follow the discussion of the ’f Hooft
anomaly with 1-form symmetries. We spell them out for convenience.32

We first repeat the same for PSU(Nm
f ), and replace the expression (2.67) with

∑
x̃,µ

Nm
f∑

I,J=1
φ̃I ∗x̃ Um,IJx̃,µ φ̃Jx̃+µ̂ + c.c. . (2.71)

Again we have to promote the shift of an SU(Nm
f ) by a center to a gauge symmetry,

Umx̃,µ → exp
(

2πisx̃,µ
Nm
f

)
Umx̃,µ must be a symmetry for any sx̃,µ = 1, 2, . . . Nf − 1 and for any

link (x̃, µ). Now we have a problem similar to the one we encountered when we spoke about
center symmetries. To gauge the full PSU(Nm

f ) we must replace (dÃm)p̃ → (dÃm)p̃+ 2πb̃p̃
Nm
f
,

where bp̃ ∈ Z serves as a ZNm
f

2-form gauge field, i.e., we replace

i
∑
p

(dÃm)?p

(
np +

bep
N e
f

)
→ i

∑
p

(
(dÃm)?p +

2πb̃m?p
Nm
f

)(
np +

bep
N e
f

)
. (2.72)

Here we have the same problem as in the case of higher charged matter, with the
similar conclusion that an ‘t Hooft anomaly between PSU(N e

f ) and PSU(Nm
f ) exists if

GCD(N e
f , N

m
f ) 6= 1.

31We can additionally demand that (dbe)c = 0 mod 2π, i.e., that bep is a representative of H2(M,ZNe
f
),

where M is the underlying space-time manifold. This will not change any arguments below. Then bep is a
representative of the well-known characteristic class w2 ∈ H2(M,ZNe

f
) of the PSU(Ne

f ) principal bundle.
32A way to understand the similarity is to introduce SU(Ne

f ) gauge fields without introducing the be

field. In the presence of SU(Ne
f ) gauge fields only, the setup has a global bonus 1-form Z[1]

Ne
f
symmetry,

and the anomaly analysis largely reduces to the analysis of the global 1-form symmetries we discussed
previously. This bonus 1-form symmetry is precisely there because by considering only SU(Ne

f ) background
fields, we effectively ignore PSU(Ne

f ) gauge bundles which cannot be lifted to SU(Ne
f ) gauge bundles. Then

we can think of placing background gauge fields be for this bonus 1-form symmetry, which is the same as
introducing the w2 ∈ H2(M,ZNe

f
) classes we discussed previously.
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coulomb phase 
(gapless photon)

Higgs phase 
(electric matter 
condensing)

Confined phase 
(magnetic matter 
condensing)

Shenker-Fradkin 
continuity

Phase Diagram for

Figure 2. A cartoon of the phase diagram in the J , log(2πβ) plane.

2.7.3 The self-dual non-abelian gauge theory

This will be our last generalization, and it is a small change on the multi-flavor theory we
just discussed. The idea is to now promote the SU(N e

f ) and SU(Nm
f ) link field U el and

Uml gauge background into a dynamical one. This leaves the theory as having two 1-form
symmetries Z[1]

Ne
f
× Z[1]

Nm
f
. If GCD(N e

f , N
m
f ) 6= 1, the two 1-form symmetries have mixed ‘t

Hooft anomalies. This then is a model which is a fully fledged non-abelian gauge theory
with gauge group SU(N e

f ) × SU(Nm
f ), and a self-dual symmetry exchanging the two non-

abelian gauge groups SU(N e
f ) and SU(Nm

f ). This theory is extremely interesting, as it is a
fully non-abelian theory, with electric-magnetic duality. However, all these theories have a
complex-action problem, and cannot be simulated in the form we so far used, and so-called
worldline representations of either electric or magnetic matter must be used. If the matter
is charged under a dynamical gauge group, it is not clear that worldline representation will
be useful in solving the complex-action problem.

2.8 The phase diagram of self-dual scalar QED

Here we collate all of the information we discussed so far to come up with a phase diagram
for the self-dual lattice theories. We focus primarily on N e

f =Nm
f = 1 with only bosonic

matter, whose phase diagram is sketched in figure 2. We plot the diagram as a function of
J=Je=Jm and log(2πβ), because under self-duality log(2πβ)→− log(2πβ), such that the
diagram has to have a symmetry around the line log(2πβ)=0, which is the self-dual line.

On the one hand we said that as Je = Jm = J → ∞ we have a gapped phase, with
no phase transition as the coupling β is varied. This is illustrated on the far right of the
diagram. The phase J = 0 is a free photon phase, which is the far left of the diagram. The
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coulomb phase 
(gapless photon)

Higgs phase 
(electric matter 
condensing)

Confined phase 
(magnetic matter 
condensing)

Phase Diagram for

??

??

possible self-dual  
fixed point

2nd order if                 and 1st 
order otherwise

1st order

2nd order if                 and 1st 
order otherwise

Figure 3. The conjectured phase diagram for sufficiently large Ne
f = Nm

f = Nf . The limits β ∼ 0
or β ∼ +∞ can have a 2nd order phase transition if Nf ≥ 183, as discussed in section 2.5.

limits β → ∞ and β → 0 are treatable perturbatively in the Abelian-Higgs model, and
exhibit a 1st order transition for Nf = 1.

Now let us consider the self-dual line β = 1/(2π) and change J from zero to infin-
ity. Since the theory will be trivially gapped for J sufficiently large, we expect a phase
transition. In fact dialing J to higher values is driving the system towards preferring a
condensation of matter. But since condensing electric matter (the Higgs phase) confines
magnetic matter, and condensing magnetic matter (the confined phase) confines electric
matter, a tension is expected between the condensation of electric and magnetic matter
so that a phase coexistence line should emerge at some value J = J1. Since the electric
and magnetic condensed phases coexist, this regime spontaneously breaks the self-dual
symmetry. This is depicted by the horizontal blue line segment in figure 2.

On the other hand if we crank up J sufficiently high, we know that eventually the
phase coexistence will disappear, as we discussed in section 2.5, and the coexistence phase
should disappear at some value J = J2 > J1. The disappearance of the 1st order line is a
critical point. Since the critical point restores the discrete self-dual symmetry, we expect
this to be in the 4d Ising universality class, which is a Gaussian fixed point. Indeed our
numerical results will agree with this.

A more interesting question is what happens at the transition between the free-photon
phase and the self-dual broken phase, i.e., the leftmost point of the horizontal segment
in figure 2. This is the point where the 1st order transitions which were computable in
the β = 0 and β = ∞ limits, meet at the self-dual point. As we will see, numerical
computations reveal this point to be a triple point, i.e., a coexistence point of three phases.
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Let us quickly discuss the phase diagram for other generalizations. We first consider
N e
f = Nm

f = 1, theory with charges qm = qe = q > 1. As we discussed, this theory
has a mixed anomaly between Z[1]

q -electric and Z[1]
q -magnetic 1-form symmetries. These

anomalies are matched by either a photon phase or by spontaneous breaking of electric
and/or magnetic 1-form symmetries. If the Z[1]

q -electric symmetry is spontaneously broken,
we call that the Higgs phase, while the confined phase spontaneously breaks Z[1]

q -magnetic.
However, now these two phases cannot be continuously connected, because they break
different symmetries, so instead of the coexistence line ending, we expect that it continues
all the way to J =∞.

A similar picture is expected for N e
f = Nm

f = Nf > 1 theories, except that now
the Higgs and confined phases are respectively breaking PSU(Nf )-electric and PSU(Nf )-
magnetic global symmetries, which will be gapless. Another point we should make is that
for sufficiently large Nf , we saw that the regimes β → 0 and β →∞ have 2nd order phase
transitions, and so it is possible that this regime continues all the way to the self-dual
point. This would indicate the existence of a new, self-dual fixed point. This is sketched
in figure 3. A similar phenomenon is known to occur for Z2 gauge theory in 3d, where it
is believed that two continuous Ising lines meet at a novel self-dual critical point [34].

3 Numerical simulation

3.1 Switching to a dual worldline formulation

We now want to study the minimal interacting self-dual theory with N e
f = Nm

f = 1
numerically and analyze the phase diagram sketched in figure 2. However, self-dual U(1)
gauge theory coupled to electric and magnetic matter as introduced in section 2.4 is not
yet suitable for a numerical simulation, since the gauge field Boltzmann factor (2.34) has
a complex phase and does not give rise to a real and positive weight that can be used in a
Monte Carlo simulation. In this subsection we now show that this complex action problem
can be overcome by switching to a worldline formulation for the magnetic matter.

In order to prepare the Boltzmann factor (2.35) for the worldline formulation we rewrite
the second exponent in (2.35) by switching to the dual lattice using the identity33

(dn)x,µνρ = −
∑
σ

εµνρσ ( ∂ ñ )x̃−σ̂,σ , (3.1)

which is straightforward to check (see the appendix of [15]). Thus the gauge field Boltzmann
factor assumes the form

Bβ [Ae, Am] =
∑
{n}

e−β Sg [Ae, n] ∏
x̃,µ

e−iÃ
m
x̃,µ(∂ñ)x̃,µ , (3.2)

where we have converted the sum in the second exponent of the Boltzmann factor into a
product over all links of the dual lattice.

33We remark that the step of switching to the dual Villain variables is not essential but simplifies the dis-
cussion here and also the actual computer code used in the simulations discussed in subsections 3.3 and 3.4.
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The second step is to use the well known worldline representation for U(1) gauge field
theories (see, e.g., [35, 36]). It is straightforward to convert this worldline representation to
the dual lattice where the magnetic matter partition sum (2.38) is defined. The worldline
representation then reads (compare the appendix of [9] for the notation used here)

Z̃[Ãm, Jm
]

=
∑
{k̃}

∏
x̃,µ

I
k̃x̃,µ

(Jm)

[∏
x̃

δ
((
∂k̃
)
x̃

)]∏
x̃,µ

e i Ã
m
x̃,µ k̃x̃,µ

 , (3.3)

where In(x) denotes the modified Bessel functions. The partition function is a sum over
configurations of the dual flux variables k̃x̃,µ ∈ Z assigned to the links (x̃, µ) of the dual
lattice, where ∑

{k̃}

≡
∏
x̃,µ

∑
k̃x̃,µ∈Z

. (3.4)

The flux variables are subject to vanishing divergence constraints

(
∂k̃
)
x̃
≡

d∑
µ=1

[
k̃x̃,µ − k̃x̃−µ̂,µ

]
= 0 ∀ x̃ , (3.5)

which in (3.3) are implemented with the product of Kronecker deltas. These constraints
enforce flux conservation at each site x̃ of the dual lattice, such that the k̃x̃,µ form closed
loops of flux on the dual lattice. At every link (x̃, µ) of the dual lattice the dual magnetic
gauge field Ãmx̃,µ couples in the form e i Ã

m
x̃,µ k̃x̃,µ which gives rise to the second product

in (3.3). The configurations of the dual flux variables k̃x̃,µ come with real and positive
weight factors given by the Bessel functions.

With the gauge field Boltzmann factor in the form (3.2) and the dependence of the par-
tition sum Z̃[Ãm, Jm

]
on the dual magnetic gauge field Ãmx̃,µ given by the last factor in (3.3)

we can now completely integrate out the dual magnetic gauge field. The corresponding
integral reads (compare (2.34) and use

∫
D[Am] =

∫
D[Ãm] ),∫

D[Ãm]

∏
x̃,µ

e−iÃ
m
x̃,µ(∂n)x̃,µ

∏
x̃,µ

e i Ã
m
x̃,µ k̃x̃,µ

 =
∏
x̃,µ

∫ π

−π

dÃmx̃,µ
2π e iÃ

m
x̃,µ

[
k̃x̃,µ−(∂ñ)x̃,µ

]
=
∏
x̃,µ

δ
(
k̃x̃,µ − (∂ñ)x̃,µ

)
. (3.6)

Integrating out the dual magnetic gauge fields has generated link-based constraints that
completely determine the flux variables as

k̃x̃,µ = (∂ñ)x̃,µ ∀(x̃, µ) . (3.7)

Note that the configurations (3.7) also obey the vanishing divergence constraints ∂k̃ = 0
from (3.5), due to ∂2 = 0 (see the appendix of [15]).

Thus we may summarize the final form of self-dual scalar lattice QED with a worldline
representation for the magnetic matter:

Z(β, Je, Jm) =
∫
D[Ae]

∑
{n}

∫
D[φe] e−β Sg [Ae, n] + JeSe[φe, Ae]

∏
x̃,µ

I(∂ñ)x̃,µ(Jm)

 . (3.8)
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Obviously all weight factors in (3.8) are real and positive, such that this form now is
accessible to numerical Monte Carlo simulations. Note that here the Villain variables are
not subject to any constraints, which in some aspects makes a numerical simulation of (3.8)
simpler than the simulation of the pure gauge theory (2.18), where configurations of the
Villain variables need to obey the closedness constraint (2.8).

It is interesting to consider the limit Jm → 0. Using the fact that for the Bessel
functions limx→0 I0(x) = 1 and limx→0 In(x) = 0 ∀ n 6= 0, one finds that in (3.8) only
those configurations of the Villain variables survive where the dual Villain variables obey

(∂ñ)x̃,µ = 0 ∀ (x̃, µ) ⇐⇒ (dn)x,µνρ = 0 ∀ (x, µνρ) , (3.9)

where in the second form we used (3.1) to identify this constraint as the closedness condition
for the Villain variables on the original lattice. Thus we find

lim
Jm→0

Z(β, Je, Jm) =
∫
D[Ae]

∑
{n}

e−β Sg [Ae, n] Z[Ae, Je]

∏
x

∏
µ<ν<ρ

δ
(
(dn)x,µνρ

) . (3.10)

Although not self-dual, this is an interesting theory in its own right, as it describes U(1)
lattice gauge fields coupled to electric matter without magnetic monopoles that appear in
the usual lattice discretization of this system. Finally we remark that a second limit Je → 0
reduces the partition sum to our pure gauge theory partition sum (2.18) without monopoles.

We conclude the discussion of the worldline form by expressing the expectation value
〈s̃m〉β,Je,Jm that appears in the duality relation (2.43) in terms of the worldline variables.
The expectation value is obtained from a derivative of lnZ with respect to Jm, and this
derivative can of course also be applied to Z(β, Je, Jm) in the form (3.8). A few lines of
algebra give

〈s̃m〉β,Je,Jm = 1
4V

∂

∂Jm
lnZ(β, Je, Jm) = 1

4V

〈∑
x̃,µ

I ′(∂ñ)x̃,µ
(Jm)

I(∂ñ)x̃,µ(Jm)

〉
β,Je,Jm

. (3.11)

3.2 The self-dual point revisited

To prepare for the numerical simulations presented in the next two subsections we here
discuss suitable observables at the self-dual point of the inverse gauge coupling, i.e., at

β = β̃ = β∗ ≡ 1
2π . (3.12)

Furthermore we may set Je and Jm equal to the same value J such that

Je = Jm = J̃e = J̃m = J . (3.13)

In other words, the theory has only one remaining parameter, i.e., the coupling J .
With this choice for the couplings the self-duality relation (2.41) simplifies to,

β∗ 〈F 2〉β∗, J + β∗ 〈F 2〉β∗, J = 1 , (3.14)
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which implies that 〈F 2〉β∗, J is constant,

〈F 2〉β∗, J = π ∀ J . (3.15)

We remark, that the self-duality relation (2.42) for the second moment of F 2 does not
constrain the susceptibiliy for the self-dual couplings (3.12), (3.13).

The self-duality relation (2.43) that links the electric and the magnetic action densities,
for the self-dual couplings (3.12), (3.13) assumes the form

〈se〉β∗, J = 〈s̃m〉β∗, J ∀ J . (3.16)

An interesting question, already touched upon in the previous subsections, is wether self-
duality can be broken spontaneously as a function of J . Such a symmetry breaking should
become manifest in a violation of the two relations (3.15) and (3.16).

For the further analysis we introduce the two order parameters

Mg ≡ |F 2 − π| and Mm ≡ |se − sg| , (3.17)

which are normalized such that

〈Mg〉β∗, J 6= 0 and 〈Mm〉β∗, J 6= 0 , (3.18)

signal the breaking of self-duality. The absolute value in the definitions (3.17) was intro-
duced to allow for a non-zero expectation value also on a finite lattice. We will also analyze
the corresponding susceptibilities

χg ≡ V

〈(
Mg − 〈Mg〉β∗, J

)2〉
β∗, J

and χm ≡ V

〈(
Mm − 〈Mm〉β∗, J

)2〉
β∗, J

,

(3.19)
as well as the Binder cumulants

Ug ≡ 1 −
〈
(Mg)4〉

β∗, J

3
〈
(Mg)2〉2

β∗, J

and Um ≡ 1 −
〈
(Mm)4〉

β∗, J

3
〈
(Mm)2〉2

β∗, J

. (3.20)

3.3 Setup of the computation and general results

In this subsection we present our results for the simulation of the full theory at the self-
dual point as discussed in subsection 3.2, i.e., at β = β∗ ≡ 1/2π with Je = Jm = J . In a
second study we keep J fixed and vary β in the vicinity of β∗ for studying the nature of
the transition when crossing the critical line of the phase diagram shown in figure 2.

These simulations are based on the partition sum in the worldline form (3.8), which uses
the electric gauge fields Anµ(x) ∈ [−π, π) and the Villain variables nx,µν ∈ Z for the gauge
field degrees of freedom, and φex = eiϕx , ϕx ∈ [−π, π) for the electric matter. There are no
constraints left for these variables and they can be updated efficiently using local Metropolis
updates, which we organize in sweeps, i.e., one Metropolis update of all degrees of free-
dom. For equilibration we use 106 sweeps followed by 105 measurements of our observables
separated by 20 sweeps for decorrelation. For the finite size scaling analysis of the critical
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Figure 4. Vacuum expectation value (top row), susceptibility (middle row) and Binder cumulant
(bottom row) for the gauge field order parameter Mg (lhs. column) and the matter order parameter
Mm (r.h.s. column). The results are for the self-dual value β = β∗ ≡ 1/2π and are plotted as a
function of J . We compare different volumes as indicated in the legends.

exponents the number of measurements is increased to 106. The error bars we show are
statistical errors determined with the jackknife method combined with a blocking analysis.

In figure 4 we show our results for the order parameters 〈Mg〉, 〈Mm〉 (top row), for
the susceptibilities χg, χm (middle row) and for the Binder cumulants Ug and Um (bottom
row). The lhs. column shows the result for the respective gauge field quantities, while the
rhs. column is for the matter fields. The observables are plotted as a function of J and
were determined for volumes 44, 64, 84 and 104 at fixed gauge coupling β = β∗ = 1/2π,
i.e., the self-dual value.
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Figure 5. The gauge field order parameter (lhs.) and the matter order parameter (rhs.) as a
function of the rescaled gauge coupling ln(2πβ), for values across the self-dual value β∗ ≡ 1/2π.
The matter field coupling is set to J = 0.6 here.

All observables suggest that there is indeed spontaneous symmetry breaking as a func-
tion of J with endpoints located at J1 ∼ 0.52 and J2 ∼ 0.7. Below J1 and above J2 the
order parameters 〈Mg〉 and 〈Mm〉 approach 0 in the infinite volume limit, while inside
the interval (J1, J2) they remain finite. The corresponding susceptibilities develop peaks
near J1 and J2 that scale with the volume. Finally the Binder cumulants allow for a first
assessment of the nature of the endpoints: near J1 they develop minima which hints at a
first order endpoint at J1. At J2 the Binder cumulants for the different volumes intersect
in a common point which indicates second order behavior at the endpoint J = J2. We will
study the nature of the two endpoints in more detail in the next subsection.

As already announced, we also want to cross-check the nature of the transition when
vertically crossing the critical line in the phase diagram figure 2. For this study we now
keep the matter field coupling fixed at J = 0.6 and vary the gauge field coupling β in the
vicinity of β = β∗. The corresponding plots for the gauge field order parameter (lhs. plot)
and the matter order parameter (rhs.) are shown in figure 5. In order to fully display the
symmetry of the first order transition we plot the gauge field coupling on the horizontal
axis in the rescaled form ln(2πβ), which is odd under duality transformations and gives
0 at the self-dual point. The gauge field and the matter order parameters on the vertical
axes are plotted in the form

β〈F 2〉 − 1
2 and 〈se〉 − 〈sm〉 , (3.21)

which is a form that is again odd under duality transformations, as can be seen from (2.41)
and (2.43). Since both, the rescaled coupling and the order parameters are odd under
duality transformations, the plots for the order parameters must be antisymmetric functions
of ln(2πβ). This is indeed what we observe in figure 5. When comparing the different
volumes we find that the observables quickly develop the discontinuity at ln(2πβ) = 0,
which is the expected first order signature when driving the symmetry breaking coupling
β through the self-dual point. Thus we confirm that the vertical line in the phase diagram
figure 2 is indeed of first order.
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Figure 6. The Binder cumulant for the gauge field order parameter (lhs.) and the matter order
parameter (rhs.). For different volumes we show the results at β = β∗ as a function of J and zoom
into the region near the first order transition point at J1 ∼ 0.52.

3.4 Analysis of the endpoints

The first round of analysis in the previous subsection suggested that the endpoint at J1 ∼
0.52 is first order, while the one at J2 ∼ 0.7 is of second order. In this subsection we now
aim at determining more precisely the values of J1 and J2 and at characterizing the two
endpoints.

For the transition at J1 we observed the formation of minima in the two Binder cu-
mulants. The positions of the minima converge towards the true value J1 when increasing
the volume. Since in the two bottom plots of figure 4 this is a little hard to see, in figure 6
we zoom into the region near J1. We find that both Binder cumulants form minima and
that for all volumes except for the smallest volume 104 the positions of the minima agree.
Thus we conclude that we find a first order transition at J1 = 0.518(2), where the error is
given by the stepsize in J we use, i.e., ∆J = 0.002.

For the transition at J2 ∼ 0.7 figure 4 suggests that the transition is of second order.
In that case the Binder cumulants are expected to obey the finite size scaling formula

U ∼ A + B L1/ν (J − J2) , (3.22)

where A and B are constants and ν is the critical exponent for the scaling of the correlation
length. Thus, when plotting the Binder cumulants as a function of L1/ν (J−J2) the results
for different volumes V = L4 should collapse to universal straight lines — given that ν and
J2 are chosen correctly. As discussed in subsection 2.8, we conjecture that the transition is
in the 4d Ising universality class, i.e., a Gaussian fixed point, such that we expect ν = 1/2.
We test this hypothesis by setting ν = 1/2 in the scaling formula (3.22) and in figure 7 plot
the Binder cumulants as function of L2 (J − J2), where J2 is treated as a free parameter
which we choose such that we find the best collapse of the data for different L. The lhs.
plot in figure 7 shows the results for the gauge field Binder cumulant, while the rhs. is
for the matter Binder cumulant. In both cases the collapse confirms the expected critical
exponent ν = 1/2 and the critical coupling is determined to be J2 = 0.700(1).

Finally we also try to confirm the universality class of the second order transition
by analyzing the susceptibilities and the corresponding critical exponent γ, which for the
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Figure 7. The Binder cumulant for the gauge field order parameter (lhs.) and the matter order
parameter (rhs.). We plot the results at β = β∗ as a function of j L1/ν with j = J−J2 and ν = 1/2.
We compare the results for different volumes L4.

conjectured Gaussian fixed point would be γ = 1. Again we employ finite size scaling which
for the susceptibilities takes the form (we define j ≡ J − J2),

χ ∼ Lγ/ν
(
g(jL1/ν) + f(jL1/ν)

ln(L)

)
, (3.23)

where here also the leading logarithmic corrections are taken into account. Considering
only the constant term in the expansion of the scaling function f , i.e., setting f = −a, where
a is some constant we find that χL−γ/ν + a/ ln(L) should be a universal function of jL1/ν

for a suitably chosen parameter a. In figure 8 we plot the combination χL−γ/ν + a/ ln(L)
with γ = 1 as a function of jL1/ν for different volumes L4. The lhs. plot is for the gauge
field susceptibility, while the r.h.s. shows the results for the matter susceptibility. The
parameter a was chosen such that the collapse of the data for the different volumes is
optimized. We find that the collapse is not as good as for the Binder cumulants, but
nevertheless confirm, that a value of γ = 1 is plausible. We may summarize the discussion
of the endpoints as follows: at J1 = 0.518(2) we find a first order transition, while at
J2 = 0.700(1) the transition is of second order with critical exponents that are compatible
with the conjectured 4d Ising universality class, i.e., a Gaussian fixed point.

We finally explore the possibility expressed in subsection 2.3 that charge conjugation
C might be broken in the vicinity of the horizontal line of the phase diagram sketched in
figure 2. For this study we consider the following two order parameters that are odd under
C, which in continuum language are defined as

T1 ∼
∑
µ

jeµ ∂µ
∑
α<β

FαβFαβ and T2 ∼
∑
µ

jeµ ∂µ
∑
α<β
ρ<σ

εαβρσ Fαβ Fρσ . (3.24)

Here jeµ is the current of the electric matter which we discretize as jex,µ = Imφe ∗x e
iAex,µ φex+µ̂.

For the discretization of the field strength we use (2.3) and the partial derivative ∂µ is
discretized with a nearest neighbor difference.

In figure 9 we show our results for 〈|T1|〉 and 〈|T2|〉 in the top row of plots, while at
the bottom the two expectation values are rescaled with L2. We work at a fixed matter
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Figure 8. Finite size scaling analysis of the gauge field (lhs. plot) and matter (rhs.) susceptibilities.

coupling of J = 0.65 and compare four different volumes L4 with L = 8, 10, 12 and 14. The
results are again plotted as a function of ln(2πβ). Note that the order parameters are not
symmetrized under S, such that here we do not expect symmetry under β ↔ β̃.

The top row of plots show that both expectation values 〈|T1|〉 and 〈|T2|〉 vanish in the
thermodynamic limit. In the bottom plots we show L2 〈|T1|〉 (lhs.) and L2 〈|T2|〉 (rhs.).
This rescaling collapses the data and establishes that the volume scaling is ∝ 1/L2 = 1/

√
V ,

including also the small remnant of the first order transition at ln(2πβ) = 0, i.e., at the
self dual point β = 1/2π.

The 1/
√
V behavior may be understood be viewing the values for T1 and T2 at some

space-time point as independent random variables. The distribution of the average of
random variables with sample size N has a standard devation scaling as 1/

√
N . In our

case the values of the order parameters T1 and T2 on the V space-time points are not fully
independent, but since there is a mass-gap, N is roughly given by the volume V = L4. This
gives rise to the 1/

√
V scaling we observe. We conclude that the order parameters T1 and

T2 have vanishing expectation value in the thermodynamic limit and C remains unbroken.

4 Conclusion and future prospects

In this work we discussed the possible phase structure of self-dual U(1) lattice gauge theories
based on a modified Villain action. We have seen that the space of such theories is large,
allowing arbitrary matter to be coupled electrically and/or magnetically. When coupling
multiplets of such matter fields the electric and magnetic flavor symmetry that arises often
has ’t Hooft anomalies, eliminating the possibility of a trivially gapped phase.

An interesting question is whether any of such theories have a self-dual CFT fixed
point. The natural place to look for the new fixed points is the self-dual line β = 1/2π as
in that case the coupling is protected by self-duality. For a single electric and magnetic
bosonic flavor N e

f = Nm
f = Nf = 1 we argued, and numerically confirmed, that the phase

structure along the self-dual line has two transitions as the bosonic matter condenses. The
transition from the photon phase to the Higgs/confined phase is 1st order, continuing in
the Higgs/monopole coexistence phase, which breaks the self-dual symmetry spontaneously.
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Figure 9. Results for the C-breaking order parameters T1 and T2. In the top row of plots we show
〈|T1|〉 (lhs.) and 〈|T2|〉 (rhs.) for different volumes L4 with L = 8, 10, 12, 14. The results are plotted
as a function of ln(2πβ) and we use a matter field coupling of J = 0.65. In the bottom row of plots
we show the rescaled expectation values L2 〈|T1|〉 (lhs.) and L2 〈|T2|〉 (rhs.), illustrating that the
expectation values vanish as 1/L2 = 1/

√
V . All error bars are smaller than the line width.

The coexistence phase then disappears in a 2nd order 4d Ising (i.e. gaussian) transition,
and a trivially gapped phase ensues.

For the case of Nf > 1 the bosonic theory has a mixed ’t Hooft anomaly between
the two flavor symmetry groups PSU(Nf ) × PSU(Nf ) and a trivial phase is not allowed.
Still, the transition between the photon phase and the self-duality broken phase is likely
1st order, because away from the self-dual point for a weak electric (magnetic) coupling
this can be shown by perturbative RG flow equations. However, for Nf > 183 the RG
equations allow for a 2nd order transition, which may persist all the way to the self-dual
line, resulting in an interacting fixed point. If this is the case the fixed point has to be
interacting, because the electric coupling is fixed exactly by self-duality.

We here also add a comment on fermionic self-dual theories. To begin with, let us
consider QED without monopoles and with Nf massive electric flavors of mass me. The
flavor group is PSU(Nf ) and if the electric coupling is sufficiently weak, the theory flows
to a free photon phase. When the mass of the electric flavors is exactly zero, the theory
flows to a theory of free photons and Nf fermions.
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Moreover, the above conclusion must follow even when the coupling is strong, as long
as Nf is sufficiently large. Namely if the coupling is strong, the RG iteration will generate
a term ∝ NfF

2
µν and render the electric coupling weak. It is then natural to conjecture

that for any flavor Nf the massless theory flows to a phase non-interacting photons and
Nf fermions. Note also that the massless limit has an SU(Nf ) axial symmetry, which
has a ’t Hooft anomaly. The anomaly must be saturated, and it is saturated by the free
fermions. One might wonder whether SU(Nf ) could spontaneously break and saturate the
anomaly in this way. This option is certainly not eliminated, but intuitively we expect
to need confinement for spontaneous symmetry breaking, and to generate confinement we
need magnetically charged dynamically matter, which is absent.

Now consider coupling Nf fermions to the magnetic gauge field, and endow the electric
and magnetic fermions with masses me and mm respectively. Then, a natural conjecture is
that when me and mm are non-zero, the theory flows to free photons. If one of the masses
is zero, then by arguments above the theory flows to free massless fermions and photons
(see figure 10). The questions is what happens when both electric and magnetic fermions
are massless. In this case, there exists a vector symmetry PSU(Nf ) × PSU(Nf ) and an
axial vector symmetry SU(Nf ) × SU(Nf ). As we discussed in the main text, the vector
symmetries have mixed ’t Hooft anomalies. However, the axial vector symmetries have ’t
Hooft anomalies individually, which must both be satisfied.

The ’t Hooft anomalies are typically saturated by either spontaneously breaking the
symmetries, or by a CFT. The spontaneous breaking of the symmetry seems unlikely to
us. The reason is that a spontaneously broken phase is typically robust against small
perturbations.34 Yet the massless point is surrounded by free CFTs, which suggests that
the massless point is a CFT itself. Unfortunately this lattice theory cannot be simulated
easily, because of the fermionic sign-problem.

However, for both bosonic and fermionic self-dual theories, one can try to bootstrap the
tentative CFT, imposing the symmetries and ’t Hooft anomalies that we found. The boot-
strap approach may yield insights into whether such CFT phases are expected at small num-
bers of flavors, as well as into the properties of these CFTs. Another interesting approach
is to attempt to build fermionic models which evade the sign problem and simulate them.
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A The RG equations

A.1 Setup

In this section, we discuss the RG flow of Nf complex scalars coupled to a U(1) abelian
gauge field, i.e., the theory described by the action (2.51), which we reproduce here for

34Save for maybe lifting goldstones if the perturbation breaks the broken symmetry.
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Interacting CFT?

Figure 10. The conjectured phase diagram of the theory at the self-dual coupling, with Nf
electric and Nf magnetic fermions. The point when fermions are exactly massless is likely to be an
interacting CFT.

Figure 11. The topology of the diagrams contributing to the running of the φ4-coupling.

convenience:

S[φ,A] =
∫
d4x

 1
4e2F

2 +
Nf∑
i=1

(
|∂φi|2 +m2|φi|2

)
+ λ

4

Nf∑
i=1
|φi|2

2
 (A.1)

We are interested in understanding the order of the phase transition at m2 ∼ 0 that
separates the Higgsed and Coulomb phases. If we can generically arrive at an RG fixed
point by tuning only the single parameter m2, then this means that the phase transition
is of second order. On the other hand, if we generically don’t arrive at such a fixed point,
then the transition will be first order.

To that end, we tune the mass of the scalars to zero, and look at the RG flow equations
for g = e2 and λ. On general grounds they have the form

dg

d`
= −ag2 , (A.2a)

dλ

d`
= −bλ2 − cλg − dg2 , (A.2b)

where ` parametrizes the RG flow, i.e., if Λ is the mass-dimension UV cutoff of the theory,
and we flow to Λ′ < Λ, then ` = log(Λ/Λ′).
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Let us discuss these equations a bit. The first equation is just the running of the gauge
coupling which has no contributions from φ4 interactions to this order. Famously a > 0,
so that the coupling g = e2 becomes more negative in the IR, i.e., QED is IR free.

The diagrams contributing to the beta-function for λ are given in the top of figure 11.
The first of these diagrams is of order λ2, and should have b > 0 (i.e., λ is marginally irrele-
vant). The last diagram is similar, except that a photon runs in the loop. Finally the middle
diagram contributes to the coefficient c in (A.2b) and turns out to be positive, such that c <
0, although the right-hand side is still a negative-definite quadratic form in the (λ, g) space.

Let us now discuss the space of solutions to these equations. The only fixed point is at
(λ, g) = (0, 0). Do we approach this fixed point from generic initial data (λ, g) > 0? As the
right-hand sides of both equations are negative, both couplings (λ, g) become more negative
in the IR. If there was only one coupling (e.g., λ), then this would imply that λ flows to zero
and the theory becomes IR free. However as there are two couplings, it is quite possible
for the RG flow to miss the origin and flow in the infrared towards increasingly negative
(λ, g) (presumably corresponding to a phase where the scalars are condensed). Whether
or not this generically happens requires a more careful study of the RG equations.

To do this, we will seek to construct separatrices in solution space, i.e., one-dimensional
lines L ⊂ (λ, g) running through the origin such that if the system is started with initial
conditions on L, under RG flow the system remains on L for all RG time. To find L, we
just simultaneously solve the following equations:

g = αλ
dg

d`
= α

dλ

d`
(A.3)

with α a constant that is the slope of the line. These have the solutions

α = 0 and α = 1
2d (a− c±K) , K ≡

√
(a− c)2 − 4db . (A.4)

Thus, ifK is positive, we may construct real separatrices along which the RG flow definitely
hits the origin. Because solutions to a first order differential equation cannot cross, this
means that all points inside a funnel between two seperatrices will also hit the origin. We
conclude that if K > 0 there exists an open set of initial data from which we reach the free
fixed point by tuning only a single parameter m2, and thus that the phase transition is
second order. Otherwise, the RG flows cannot be bounded, the couplings flow to negative
infinity, and we expect the transition to be first order. This is borne out by an exact
solution below (see figure 12).

To proceed, we need values for (a, b, c, d), which are given by (2.52) repeated here for
convenience

dg

d`
= −Nfg

2

3 , (2.52a)

dλ

d`
= −(Nf + 4)λ2 + 6λg − 6g2 . (2.52b)

Let us briefly discuss the terms entering the equations above. The beta function
appearing on the r.h.s. of the equation for g is the vacuum polarization, which is enhanced
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Figure 12. The RG flow is bounded by the separatrix solutions g = αλ with α given in (A.4) and
drawn as red lines. The separatrices form a funnel which guaranties that the fixed point is reached
as long as the flow is started within the funnel.

by Nf . The beta function of λ has three contributions given in figure 11. The latter two
diagrams do not get an Nf enhancement, but the first diagram has an enhancement by
Nf + 4 because the flavors can run in a loop.

Putting in these values we see that K > 0 if Nf > 182.95. Thus only if we have more
than 183 flavors is the transition second order.

Finally, we note that in this case we can also exactly solve the RG flow equations. In
the remainder of this appendix we write out the exact solution.

A.2 The RG analysis of scalar QED

Beginning with the general equations (A.2), we can define a new coupling λ̄ = λ + Ag,
where A is a constant chosen such that the g2 term on the rhs. of (A.2b) vanishes. A
simple calculation yields

λ̄ = −bλ̄2 − (c− 2Ab)λ̄g −
(
bA2 + (a− c)A+ d

)
g2 . (A.5)

The g2 term vanishes if we set

bA2 + (a− c)A+ d = 0 , (A.6)

such that

A± = −(a− c)±
√

(a− c)2 − 4db
2b . (A.7)
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The RG equations then take the form

dḡ

d`
= −āḡ2 , (A.8a)

dλ̄

d`
= −b̄λ̄2 − c̄λ̄ḡ , (A.8b)

where

ḡ(`) = g(`) , λ̄(`) = λ(`) +A±g(`) , (A.9)
ā = a , b̄ = b , (A.10)
c̄ = c− 2Ab . (A.11)

The solution of (A.8) can be found explicitly (see appendix A), which we can use to write
down the general solution for λ(`) and g(`).

g(`) = g0
1 + ag0`

, (A.12a)

λ(`) = − (c− a− 2A±b)g(`)
c−2A±b

a

b

(
g(`)

c−a−2bA±
a − g

c−a−2A±b
a

0

)
− (c− a− 2A±b)

g

c−2A±b
a

0
λ0+A±g0

+A±g(`) . (A.12b)

The equation for λ(`) can be rewritten as

g(`) = g0
1 + ag0`

, (A.13a)

λ(`) = −g(`) (∓K)g(`)
∓K
a

b

(
g(`)

∓K
a − g

∓K
a

0

)
±K g

∓K
a

0
λ0
g0

+A±

+A±g(`) , (A.13b)

where as above,
K =

√
(a− c)2 − 4db . (A.14)

Note that both signs used above give the same solution.
If (a − c)2 − 4db < 0 then K = iκ, with κ ∈ R, and the solution must be oscillatory

in `, because it depends on the combination g(`)K/a = ei
κ
a

log(g(`). On the other hand we
expect λ(`) to be monotonically decreasing. Indeed we can write

dλ

d`
= − b

(
λ+ c

2b

)2
+ c2 − 4bd

4b g2 , (A.15)

and as long as c2−4bd < 0 holds λ must be monotone decreasing. This condition is satisfied
for all Nf in equation (A.2).

Since the function λ(`) has to be both oscillatory and monotone, it must be singular
at finite time ` and λ flows to minus infinity at finite `, which means that the fixed point
is not reached and the transition is 1st order.

On the other hand if (a − c)2 − 4db > 0, then K is real and the solution λ(`) is
no longer oscillatory, hence there is no obstruction to the flow reaching the fixed point
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λ = g = 0. This condition is fulfilled if Nf > 182.95.35 What needs to be checked is that
the denominator appearing in the solution does not go to zero for any value of `.

We take the lower sign in (A.13) and examine the possibility that the denominator is
zero, i.e.

b

(
g(`)

K
a − g

K
a

0

)
−K g

K
a

0
λ0
g0

+A−
= 0 , (A.16)

such that

g(`)
K
a = g

K
a

0

1 + K

b

1
λ0
g0

+A−

 . (A.17)

Now since the left hand side is bounded from above by g
K
a

0 , and from below by zero, the
condition that there is no pole is

K

b

1
λ0
g0

+A−
> 0 or K

b

1
λ0
g0

+A−
< −1 . (A.18)

For the first condition to be satisfied we must have

λ0
g0

> −A− . (A.19)

The second condition in (A.18) can be satisfied only if the first is not, i.e., for λ0
g0

+A− < 0.
Upon multiplication of the second equation in (A.18) by λ0

g0
+A− we would find the condition

−A− >
λ0
g0

> −A− −
K

b
. (A.20)

However, since K/b > 0, the above equation is inconsistent because −A− < −a− − K
b .

Hence only the first condition makes sense and we find that the critical ratio of the bare
couplings λ0

g0
is given by

rc = −A− =
Nf +

√
(Nf − 180)Nf − 540 + 18

6 (Nf + 4) , (A.21)

and for λ0/g0 > rc the transition is 2nd order. This is depicted in figure 13.

A.2.1 Solving the equations (A.8)

We wish to solve the following RG equations

dg1
d`

= −ag2
1 , (A.22)

dg2
d`

= −bg2
1 − cg1g2 . (A.23)

35Note that this is precisely the condition for the existence of an interacting Wilson-Fischer fixed point
in the ε-expansion [37].
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Figure 13. The plot of the critical ratio r0 as a function of Nf defined in (A.21). For the ratio of
the bare couplings λ0/g0 in the shaded region the transition is 2nd order.

Obviously g1(`) can be determined easily as

g1(`) = g1(0)
1 + ag1(0)` . (A.24)

Since g1(`) is monotonic, we can view g2 as depending on ` through g1, i.e.,

dg2
d`

= dg1
d`

dg2
dg1

= −ag2
1
dg2
dg1

, (A.25)

where we used the RG equation for g1. Now we see that the RG equation for g2 becomes

− ag2
1
dg2
dg1

= −bg2
2 − cg1g2 , (A.26)

or after rewriting (
−ag2

1
d

dg1
+ cg1

)
g2 = −bg2

2 . (A.27)

Now, replacing
g2(g1) = g

c
a
1 G(g1) , (A.28)

we find that G(g1) satisfies the equation

ag2
1G
′(g1) = bg

c
a
1 G(g1)2 , (A.29)

which is solved by
G(g1) = − c− a

bg
c
a
−1

1 + C
, (A.30)
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where C is a constant. Hence g2(`) is given by

g2(`) = −(c− a) g1(`)
c
a

bg1(`)
c
a
−1 + C

, (A.31)

where g1(`) is given by (A.24). By setting ` = 0 we find C in terms of g1(0), g2(0),

C = −(c− a)g1(0)
c
a

g2(0) − bg1(0)
c
a
−1 . (A.32)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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