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Abstract
Multimodal emotion detection has been one of the main lines of research in the field of
Affective Computing (AC) in recent years. Multimodal detectors aggregate information
coming from different channels or modalities to determine what emotion users are
expressing with a higher degree of accuracy. However, despite the benefits offered by
this kind of detectors, their presence in real implementations is still scarce for various
reasons. In this paper, we propose a technology-agnostic framework, HERA, to facilitate
the creation of multimodal emotion detectors, offering a tool characterized by its modu-
larity and the interface-based programming approach adopted in its development. HERA
(Heterogeneous Emotional Results Aggregator) offers an architecture to integrate differ-
ent emotion detection services and aggregate their heterogeneous results to produce a
final result using a common format. This proposal constitutes a step forward in the
development of multimodal detectors, providing an architecture to manage different
detectors and fuse the results produced by them in a sensible way. We assessed the
validity of the proposal by testing the system with several developers with no previous
knowledge about affective technology and emotion detection. The assessment was
performed applying the Computer System Usability Questionnaire and the Twelve
Cognitive Dimensions Questionnaire, used by The Visual Studio Usability group at
Microsoft, obtaining positive results and important feedback for future versions of the
system.
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1 Introduction

With the first appearance of Affective Computing (AC) 25 years ago [55], and hence of
automatic emotion recognition, the following set of questions arose: What channel broadcasts
emotional information with the highest clarity? How are these different channels related? Are
there any other mechanisms to infer someone’s emotional state? Hundreds of experiments
were carried out, most of them focused on finding emotion traits in facial expressions and in
voices. Furthermore, some research was conducted into whether it was possible to discover
how a person was feeling according to physiological data obtained from them. A later trend
even studied (and still does) how to detect emotions or affective states based on behavior. For
instance, Oehl et al. [51] analyzed the pressure applied on the steering wheel by drivers to
detect stress and thus possible dangerous situations; Yamachi [69] studied how the movement
xof the mouse could express anxiety in the subject; and Jaques et al. [31, 44] investigated how
eye movement could be used to detect emotions which are important for a learning process,
such as boredom or curiosity. Nevertheless, from the beginning there was another trend which
looked at how emotion recognition could be greatly improved by fusing the results from
several emotion recognizers. This type of detector is called a multimodal emotion detector,
since it uses several kinds of emotional information to determine what emotion a person is
expressing [53].

According to several emotion theories (emotions as expressions, emotions as embodi-
ments), emotional episodes activate multiple physiological and behavioural response systems
[2]. In other words, emotional expressions are revealed through several channels at the same
time (face, voice, body posture, etc.), so it makes perfect sense to read these signals from those
different channels simultaneously to perform a better emotion recognition. In fact, analysing
input from a single modality can lead us to wrong results. For instance, facial expression and
voice can be controlled by the person we are reading data from. Physiological signals cannot
be consciously modified, but the information we get from them is very primal: is the person
scared? Is the person excited? When a person writes something, they may not be feeling as
their writing is reflecting. All these modalities provide us with information about how someone
is feeling but attending to just one of them is misleading. Someone may be smiling, but their
physiological signals might be low; someone might have a straight face while saying they are
comfortable, but their voice can reveal they are very nervous; someone can be completely
serious, and being on the edge of a panic attack; someone might be writing about being super
excited about something, while being completely emotionless. All these examples have a
common point: if we only pay attention to one modality of emotion expression, we might be
losing information. That is the reason why multimodal detectors can be so powerful [12].

However, the mere use of a single detector of emotions in just one channel presents several
challenges in itself, so multimodal (MM) systems have largely been ignored in practice.
Although we can find different proposals for multimodal processing methods, multimodal
frameworks, etc., there is still a gap regarding the practical use of these proposals. Besides, the
variety of services in existence [19] for the detection of emotions from one channel or another
makes it difficult for people to easily apply them, not to mention to integrate them all together.

Not only is choosing and acquiring or implementing these emotion recognition services a
complicated task, but also making them work together presents intrinsic challenges. Having
several emotion detection services working at the same time means that we have to spend
additional time making them work together, as we have to wait until we have received data
from all of them, analyse their behaviour and the data they produce, fuse these data correctly so
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the aggregation of the information produces more information, instead of hiding or degrading
that which we already have, etc. This new challenge that arises when we try to use different
emotion recognition services together is one of the reasons why the presence of multimodal
detectors is so scarce in real-world applications (or scarcer than what might be expected given
their recognized superiority over unimodal emotion detection systems) [49].

Another difficulty that researchers have to face when they wish to develop a multimodal
system is the lack of references: the proposals available in the literature or in repositories such
as Github are either very abstract (proposals of UML diagrams of an ideal multimodal system)
or very specific (rigid systems prepared for a certain problem or necessity). This fact defines a
gap in the available resources for developers and researchers who may have operational
emotion detectors but who do not have the resources to develop a system which aggregates
them altogether from scratch.

In the present work, we proposed a framework called HERA (Heterogeneous Emotional
Results Aggregator) in order to try to fill the gaps in the existent literature regarding the lack
of actual implementations of frameworks. In Fig. 1 we can see a simplified diagram showing
the current situation regarding the integration of heterogeneous emotion detection technolo-
gies. This figure highlights the incompatibility problems derived from this integration and how
the HERA framework would fit in this ecosystem to solve these issues.

HERA offers an architecture to manage different emotion detectors producing results in
different formats and to aggregate these heterogeneous results into a single, richer result. As a
proof-of-concept, we have modelled and implemented our proposed framework using
JavaScript and the ExpressJS framework, in the form of a web server, so it is easier to integrate
multimodal emotion detection in an existing project regardless of the technology that the
researchers are already using. Concerning the data fusion, HERA also contains a proposal for a
three-level data fusion model in which data is aggregated in three different phases. Firstly, each

Fig. 1 Conceptual idea of the framework HERA
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individual detector fuses all the data already gathered from previous requests. Secondly,
detectors of the same type fuse their data together, using a data fusion strategy appropriated
to these types of data. Once each group of detectors has aggregated its data and produced a
single result, these data are aggregated again using a second strategy, one that fits this new
context (fusing data coming from different types of affective channels and which can present
contradictory values, for instance). Thus, we fuse the data in a sensible way, correcting
possible discrepancies by fusing data from detectors of the same type and then being able to
find new information when we fuse aggregated data considering its origin and circumstances.
This aggregation process also involves a translation process, through which the heterogeneous
results are translated into a common notation. For this purpose, we have used the PAD model
[49] to represent the results obtained by each detector, so we store every result in the same
format, regardless of the original format it had.

As it was mentioned above, this first implementation of our framework has been developed
using modules and an interface-based programming approach, so it is easy to extend and adapt
to particular cases. Thanks to this development approach, extending HERA is a matter of
implementing new modules, without having to modify its core module at all. Also, thanks to
its server nature, HERA can be deployed on any device capable of running Node (or Docker),
so it can be integrated in an existent project with a minimal impact on the project’s codebase.

Since the framework we propose is not only conceptual, but has been actually implemented
in JavaScript as a tool for other developers, from now on we will refer to HERA indistinctly,
with any of these terms: “framework”, “tool”, server or “system”, depending on the aspect
being highlighted.

It is important to point out that the key contribution of our work relies in the JavaScript
implementation of the framework proposed (along with the modular structure and the data
fusion framework proposed within HERA) and in the fact of offering a tangible tool to
developers working in AC. While the problem of multimodality and emotion detection models
has been tackled many times from many perspectives in literature before, we failed to find a
proposal which actually offered an implementation for developers to easily integrate into their
projects. Despite finding several frameworks which could fill the aforementioned gap in
literature, they still present some deficiencies that we have tried to fix with our proposal.
Since this is the goal of this proposal, the development of new data fusion algorithms or new
forms of automatic classification is out of the scope of this paper.

In this paper, which is divided into six sections, we present a novel tool for integrating
several emotion recognition services in the same place using a modular, scalable, fully
customizable, and three-level multimodal system. In Section 2 we look at key aspects of
multimodal systems, such as the kind of fusion they can use or the different systems that can be
used to represent emotions. In Section 3, we present the implemented system and its different
parts. In Section 4, we review the evaluation process of our multimodal system, together with
the data we harvested during this process. Finally, we present several conclusions and future
work in Section 5.

2 Background concepts and related works

The concept of multimodality already existed in HCI before Affective Computing came into
being. Even when the technology to create these multimodal interactive systems was not yet
available, HCI researchers were already testing how users preferred to interact with a system,
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simulating multimodality using Wizard-of-Oz systems, i.e., systems which seem to work on
their own but, in reality, have ‘a researcher (the “wizard”) who simulates the system responses
from behind the scenes’ [45]. Early studies such as [28] discovered, back in 1991, that users
preferred to interact through several channels at the same time. In [28], a study using a Wizard-
of-Oz prototype was carried out in order to discover how the users preferred to perform a
manipulation task in a three-dimensional space. Almost 60% of the participants preferred to
interact with the system using both gestures and speech. This same phenomenon was described
some years later in [50], where 95% of the users involved stated a preference for multimodal
interaction.

When Affective Computing was defined for the first time in 1995 [54], the existent signal
and data fusing knowledge became the perfect breeding ground for multimodal affective
systems, i.e., systems that fuse data coming from different emotional channels (facial expres-
sion, voice tone, body gestures, electrodermal activity, etc.) to obtain a more accurate
measurement, to correct anomalous samples from defective sensors, to detect affective states
or behaviours that cannot be detected by attending to just one emotional channel, etc. In 1998,
Chen et al. [8] implemented De Silva’s proposed algorithm [61] to classify emotions expressed
in 36 clips of synchronized audio/video, hence building the first actual multimodal human
emotion recognition system. This marked the beginning of a new line of work in Affective
Computing: Multimodal Emotion Recognition (MMER).

This line of research has enormously advanced over the last years, taking advantage of the
power that machine learning and big data offers to AC, what has led to the appearance of very
different proposals to produce multimodal detectors using machine learning [11, 47, 63,
70–72]. While these works provide interesting approaches, the key contribution of this paper
is to offer a software tool addressed to developers so that they can easily integrate these trained
detectors into a bigger system, and this is the reason why the framework HERA does not
include any type of machine learning algorithms in its implementation. Nevertheless, HERA’s
architecture has been designed to allow developers to ingrate their own automatic classifiers
and models as local emotion detection services which behave just as the remote ones. In
addition, although HERA does not use any form of machine learning to integrate data from
different sources at this time, this could be included in future versions.

In the next subsection, we review how the data fusion is carried out, the different levels at
which it can be performed and how these data can be represented. Lastly, we review the
situation of multimodal affective technology today.

2.1 Types of data fusion

One of the inherent challenges in Multimodal Systems is data fusion. While being one of the
key assets of MMER systems, data fusion is also one of the most difficult aspects to
implement. In order to obtain added value from aggregating data from different sources, it is
mandatory to combine them properly. In other words, you cannot just, for instance, calculate
the average of all the data your emotion recognizers produce, but you must fuse these data
following a fusion strategy. In the field of data fusion, there are several fusion strategies, each
one taking place at a different point of the data processing flow [4, 43, 55]:

& Raw-level fusion. A system performs a raw-level data fusion when it works with the data
at their purest level, i.e., as they are produced by the different sensors. Arrays of positions
of each Facial Unit, numbers expressing the skin conductivity or temperature, the heart
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rate, an audio file: these data are raw data. One drawback of this kind of fusion is that
sensors must be measuring the same magnitude in order to be able to fuse their outputs.
You cannot fuse a number expressing someone’s heart rate with a number expressing the
frequency of someone’s voice at a given time, but you can fuse the two measurements of
two different heart rate sensors to reduce the Mean Squared Error (MSE).

& Feature-level fusion. When a system extracts the features expressed by the raw data and
combines them, it performs a feature-level fusion. A feature can be some signal’s mean
during a certain window of time, the name of a posture or a facial expression represented
by an array of mark positions, etc.

& Decision-level fusion. A system performs a decision-level fusion when it combines the
final results produced by each classifier, that is, each emotion detector, these usually being
expressed using the six basic emotions (joy, sadness, fear, anger, disgust and surprise) [15]
together with percentages (joy 38%, sadness 10%, etc.) indicating how much each emotion
is present in the data analysed, although there can be far more affective states identified.
On this final level, we retrieve these affective states, together with their corresponding
score, and compare them all together to obtain a high-level, richer, and more accurate
result. Decision-level fusion is the most commonly used approach for multimodal HCI [2].
The main benefit of this approach over the other ones is that, at this point, all the results are
(almost) on the same page, regardless of the format they had when they were first
produced.

& Hybrid fusion. This approach is actually a combination of feature-level fusion and
decision-level fusion. This type of approach arises when we fuse the features of two
detectors, classify the results using an automatic classifier and then fuse the result of that
classifier with the results produced by another emotion detector (another classifier).

& Model-level fusion. This approach is not exactly a data fusion approach since the data are
not actually fused but fed into another classifier which has been trained to classify
multimodal information.

Since HERA does not implement the emotion detectors, but just requests the results from
them, we will always work on the decision-level, using the PAD format that we define below.

2.2 Emotion representation

Another defining feature of emotion recognizers is the way they represent the detected
emotions. The definition of emotion itself was already a hot topic of discussion in antiquity,
and this discussion is still fully alive today, a fact which has led to the coexistence of 92
emotion theories [34]. Despite this debate about what emotions are, how they are produced or
how they are felt by a person, when it comes to representing them using values, there are
several approaches which are currently being used [35, 40, 60, 66]:

& Categorical models. Also called discrete emotion representation models, these represen-
tation models use categories in the form of labels to represent emotions. With this type of
models, a detected emotion is expressed in terms of the categories we are using. One of the
most extended categorical models is the one proposed by Paul Ekman [15], which uses the
famous six basic emotions to express an emotion. It is also very common to see the
“neutral” category added to this model to represent the absence of emotion. Although these
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models are easy to understand, it may be difficult to choose the correct categories to
accurately represent an emotion.

& Dimensional models. In order to alleviate the inflexibility of categorical models, dimen-
sional models were proposed. Instead of having fixed categories of emotions, these models
use dimensions which express aspects of an emotion, so what was expressed using a fixed
set of categories and a set of percentages is now expressed as a point in a dimensional
space (usually 2D or 3D). One of the most widely used dimensional approaches is the
PAD (Pleasure, Arousal, Dominance) model, which was proposed in [46]. In this model
emotions are expressed in three dimensions, each one in a range of values that usually goes
from −100 to 100 or − 1 to 1. These dimensions convey how pleasant (100) or unpleasant
(−100) a person’s feelings about something are, how aroused (100) or relaxed (−100) a
person feels and how dominant (100) or submissive (−100) a person feels while experienc-
ing an emotion. In Fig. 2 we can see a graphic example of this model, in which fixed
categories representing emotions are now sectors in a 3D space. This type of models
allows us to work with machine learning algorithms in an easier way and also provides us
with a form of representation that can become a layer of abstraction for different categor-
ical models, as we will describe later in this paper.

& Componential models. This type of models could be considered categorical models as
well, since they are built on fixed emotion categories, but they define another dimension of
information, defining hierarchies of emotions (Plutchik model, OCC model) [35] or even
adaptations for specific fields of research (Hourglass of emotions [5]):

After reviewing the different models, the classic PAD model was chosen as the standard
model to represent emotions in our proposed framework. The reason behind this decision is
twofold. Firstly, categorical and component models assume the orthogonality of emotions
which, in contrast, are overlapping. In comparison, the dimensional model better accommo-
dates the inherent overlapping nature of different emotions. Also, when it comes to

Fig. 2 PAD space [74]
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operationalise these models, the dimensional model is easier to implement as well. Secondly,
dimensional models help us overcome the heterogeneity of formats commonly used in the
industry to represent results. Even when most of the emotion detection services which exist
nowadays use a categorical system to represent emotions, they are all different. Hence,
developers find themselves facing a problem of heterogeneity of results: they have different
services producing results based on the same data, but each service expresses its results in a
different way, with a different set of tags, using different ranges of values, what makes it
impossible to merge those results directly. To provide a solution to this problem, we have
included an aggregation mechanism in the proposal of our framework based on translating
every result to a standard format. For this purpose, we have chosen PAD, which allows
developers to express an emotion as a point in a 3D space. By homogenising all the results
produced by each detector, we can aggregate them all together, producing a richer and more
solid final result. In following sections, we will see how it was deployed in HERA.

2.3 Research challenges of multimodal emotion recognition systems

Multimodal systems have been the focus of much work in the last few years. New mechanisms
for reading emotions have been developed, classification tools have become more powerful
and more accessible, and many public databases with multimodal affective data to work with
have been created [49, 55]. Over these years, the initial challenges have been met, but new,
more complex challenges have arisen. Some of these challenges are explained below [4, 14]:

& Limitation of the available data to train emotion detectors. Since emotion detectors are just
automatic classifiers, they rely on the datasets they are fed to be able to perform
appropriately. For a long time, the shortage of multimodal affective databases limited
the amount of works that could be done in this field, even though some multimodal
databases have appeared in the last years (e.g., DEAP [36], RECOLA [57], BP4D+ [73]).
There is also a problem with the use of prepared datasets, and it is that models trained with
these data do not perform well in spontaneous environments [14, 59, 52], although there
are proposals to fix this issue [33, 37, 73].

& No context information being considered.MM systems work better when they consider an
affective state in the context of previous ones, since this makes it possible to better
consider new emotional responses. However, even when there are proposals to consider
this information, contextual information is sometimes overlooked [49].

& Irregular ecosystem. Unless you have access to a set of trained models to detect emotions
in different channels, you are forced to resort to existent, publicly available emotion
detectors (assuming you do not have the time to learn how to develop your own model,
to gather the media necessary to train it, and to improve it to reach an acceptable degree of
accuracy). The ecosystem of the different detectors available over the Internet is quite
extensive. For instance, you can find free open-source detectors which are offered via
TensorFlow models, services offered on payment of a fee which let one analyse media
resources through HTTP requests, etc. The problem here is that each service works in a
specific way and has its own advantages, which makes the learning and integration process
very slow at the beginning.

Even though these are some of the challenges researchers and developers working in the field
of AC have to address, the irregularity of the ecosystem is the most difficult to overcome,
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especially when developers try to make different services work together. In order to solve this
problem, we have developed HERA, a framework to integrate different emotion detection
services together that only demands the developer to complete a small template of code in
order to integrate a new service into a bigger ecosystem. In Section 3, we will describe how
HERA is organised and how it is used.

As it was stated above, the main contribution of this proposal does not rely on the training
of an automatic classifier or any other model, but in the development of a framework to
integrate very heterogeneous technologies together. This approach does not use machine
learning algorithms, as the goal is to merge results based on empirical knowledge.

2.4 Multimodal emotion recognition systems

As we mentioned above, the concept of multimodality has been around for quite a long time now
and not just in theory.Multimodal systems have been deployed and tested in fields such as education
[1, 13, 20, 27, 29, 32, 68], healthcare [6, 7], marketing [5, 30, 38, 42, 58] or gaming [22, 59].

However, most of the systems developed in these cases were completely ad-hoc, that is,
they were developed thinking specifically about the use case they were going to be applied in,
there being very little effort on the part of the academic community to develop more abstract
systems or frameworks for developing multimodal emotion recognition systems.

Prior to the development of the HERA system, we reviewed the existing literature to study
possible frameworks or systems that were created for this purpose. The related works we found
are briefly described next. Gonzalez-Sanchez et al. proposed an agent-based software archi-
tecture of a generic multimodal framework using design patterns [23], a proposal that they
implemented and tested in several real scenarios with different types of inputs [24].

Zheng et al. proposed a multimodal framework specifically to recognise emotion from EEG
and eye movement [75].

Maël Fabien’s team, in partnership with the French Employment Agency, developed a
multimodal emotion recognition system in the form of a web app (using Flask) which analyses
facial, vocal and textual emotions. This system is meant to be used to analyse the face, voice
and written text of a person being interviewed for a job offer [17].

Myeongjang Pyeon started the development of a web-based interactive multimodal emotion
recognition framework but left it unfinished and undocumented [56].

Alepis and Virbou [1] developed a proposal which is the closest to our proposal we have
been able to find, although it is designed specifically for mobile phones and handheld devices.

The W3C Multimodal Interaction Working Group has proposed a framework to develop
multimodal systems, that is, systems that allow the users to interact through different interac-
tion channels [65]. Even though multimodality, when it comes to interaction, does not
completely correspond to multimodality when it comes to emotion detection, the Multimodal
Interaction Framework (MMI) presents a similar architecture to the one proposed in this work.
Among the similarities with our approach, this framework (MMI) is also based on different
components in charge of receiving input data to produce a result, in this case, multimodal
interactions to produce a concrete action on the system. Nevertheless, in the MMI framework,
the second level component performs semantic interpretations of the multimodal actions,
whereas in our proposal the second level component performs the translation to a common
format (PAD) of the different emotion recognition sources (facial, voice, etc.). Regarding
emotions, W3C has also proposed a notation to represent them using XML, based on the
different emotion models that we presented above [64].
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Even though a lot of different implementations of multimodal systems can be found on
Github, most of them cover specific use cases instead of giving the structure or tools necessary
to create one of those systems. The HERA system aims to fill that gap. In the next section, a
description of the system can be found, together with an explanation of the decisions that were
made in order to develop it.

3 System description

HERA is a three-level multimodal emotion detection framework designed to manage different
emotion detectors in one place, detect emotions in multimedia resources using these recog-
nizers and aggregate results from each emotion detection service. Essentially, HERA (from
now on also referred to as the server, the framework, the tool, or simply the system) works like
a proxy for other services, these being a third-party emotion recognizer, a device streaming
affective or physiological data, etc. Instead of communicating with the services directly,
having to spend additional time synchronizing them, performing the authentication process
that they may need, discriminating between them depending on the type of resource one
wishes to analyse and so on, one can simply tell the system which services one wishes to use
and provides it with the settings that those detectors need. When this setting is finished, HERA
will simply wait for the analysis requests to arrive, processing them according to the type of
media that the request contains and the kind of affective information that the system should
seek in this media. HERA will automatically redirect the analysis request to the proxies that
can handle these requests, later storing the results that each service produces.

It should be noted that this proposal is not a closed ecosystem with a limited number of
services. Our project has been developed following an Interface-Based Architecture in order to
increase the modularity and maintainability of the system. This means that every detector
implements the same interface (see Detector subsection), so adding more detectors (proxies) to
the system is a matter of implementing this interface for each of them.

In the next subsections, the HERA ecosystem is described in detail.

3.1 Development approach

This first version of HERA was developed in the form of an API REST using Node.js and the
framework Express.js [16]. The development of this framework as an API was based on these
principles:

& Interoperability. Developing the framework as a module of a specific technology or
programming language would have restricted its access to possible users, since researchers
or developers working in AC may already be working with a certain technology or
framework. If this technology is not compatible with the technology used to develop our
tool, or the developers do not know how to use it, they would not be able to use our
system, making our tool available only to developers who are familiar with this technology
or those that could integrate it with the technology they are already using. In order to
facilitate access to HERA and expand our target user group, we developed this proposal as
a web server (which can also be containerized using Docker), taking advantage of the
universality of HTTP communications, which can be implemented with most of the
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technologies available nowadays, so HERA can be used in any project regardless of the
underlying technology.

& Independency. When developers are working on an application that involves emotion
detection, they have to use valuable time and resources in coding all the aspects related to
emotion detection and processing, polluting the codebase with code that does not actually
do anything in the app, but which manages aspects that it does not manifest in the final
application view. With this approach, i.e., keeping all the emotion processing logic aside,
on a separate server, developers just need to take care of capturing the media that they wish
to analyse, communicating with HERA and handling the results that the system produces.

& Easy to extend. In order to make this framework an appealing multimodal system for
developers to use, we need to design it so that it is able to work with many different
services. However, we cannot code all the needed functionality to work with every
possible device or service in existence. Even if HERA includes some well-known detec-
tors (that is, their corresponding interface implementation), such Face++, which has
already been implemented, developers may need to change how the system works with
them, or they may need to communicate with a brand new emotion detection service, so
this framework needs to be easy to extend, using the mechanisms provided by JavaScript
in this case so it is simple to add support for new devices.

Based on these three precepts, the HERA system was developed as a web server with Node.js,
using the Express framework to build the REST API infrastructure. Thus, our framework is
designed to be deployed on a Node server and used as part of a bigger system, as the diagrams
in the next figures (Fig. 3 and Fig. 4) show.

In the next subsection, the different artifacts and components of HERA are described in
detail.

3.2 Architecture

In Fig. 3, we can see a standard UML deployment diagram which shows our framework in a
simulated real context. As explained above, HERA is actually a Web server built with Node.js
and ExpressJS, so it can run on a server or in a Docker container, for instance. Once the server
is deployed, developers using this framework would communicate with it using HTTP
requests, which work with the TCP/IP protocol. In the right-hand part of the diagram, we
can see several services as examples of information sources for which HERA could act as a
proxy. The first one represents a Generic Emotion Recognition Service, usually offered as an
API which requires an access token that the API owners must issue for you previously. It is

Fig. 3 Architecture - Deployment diagram
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very common to pay for this kind of services to integrate emotion detection in an application,
since the companies who makes them offer well-trained emotion recognizers as a service.
These services usually work over HTTPS, receiving an item of multimedia which holds
affective information (a picture or a video, a sound file, an excerpt from a text, etc.) and
returning a set of results in a specific format, usually a categorical approach (the emotion
detected is expressed in terms of Ekman’s six basic emotions [15]). However, this service
could also be a local server providing an emotion detection service implemented by the
developers themselves using the scikit-learn package, for instance. The other three nodes
represent physical devices that could be attached to the device running our server or to the User
application directly. These physical devices could communicate their results via HTTP
(through an intermediary system) or directly to HERA, using more direct protocols such as
USB or Bluetooth. In the case of devices measuring physiological variables, the results would
be rawer, requiring some processing on the server before they can be translated into a more
understandable format, but we will look at this topic in the next subsection.

Returning to Fig. 3, we can see that the system is made up of five main artifacts:

& api.js. This file holds all the API-related logic. Even though there are a couple more files
related to the Express framework and the API logic, the declaration of the different
endpoints that the developers reach from their external applications can be found in api.js.

& users.js. In order to be able to keep track of requests coming from different applications (or
from the same application but for different purposes), HERA implements sessions using
the users.js artifact. This artifact contains logic to create new users, which are actually

Fig. 4 Architecture - Component diagram
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sessions, using cookies, to add information (detectors) to these sessions, to refresh sessions
and to delete them when a certain timeout is reached.

& core.js. This artifact contains the core functionality of the API, that is, the management of
the different detectors, all of them organized in different groups depending on the affective
channel in which they can detect affective information and the orchestration of the
subsequent data fusion (after performing the analysis of media resources).

& detector.js. This artifact contains the key building block of the API: an abstraction for a
device or a system providing affective information. For each emotion information provid-
er, whether it be a physical device, a paid API offered by a third party or an automatic
classifier trained to identify emotions running locally, HERA creates a Detector object,
which will act as a proxy for this service, handling the requests that usually would be sent
directly to it. Following the principle of keeping the system modular, each detector
implements part of its functionality as an external module that is imported when the
Detector object is created. We will review this in Subsection 3 of this section.

& merge.js. This artifact contains the different strategies that can be used to fuse the affective
data. These strategies receive a list of PAD triplets, which come from the results produced
by the different detectors and return a single PAD triplet. In addition, since the strategies
also follow a modular approach, they can be defined by following another format or
adding more elements (or properties) to the final result, creating new information based on
that which we already have, and this is one of the main assets of HERA.

In Fig. 4 we can see a component diagram showing how the different artifacts work together to
fulfil the users’ requests:

& The api.js artifact from Fig. 4, here represented by the API component, exposes the API
endpoints that users reach using HTTP requests. This API has been developed using
Express.js, and the different endpoints can be reached using GET and POST requests. In
the following subsections, we will specify how many endpoints HERA offers and what
information they need to operate.

& As stated above, the system uses sessions to tell incoming requests apart and to store
detector handlers, so the API component needs the functionality exposed by the User
Management component, which corresponds with the users.js artifact.

& Likewise, the User Management component uses the logic offered by the Detector
Handler component (implemented in the core.js artifact) to attend to the users’ requests.
This component contains logic to add new detectors to the current session, to organize
them into groups depending on the input they can handle, to forward requests to the
corresponding group and to fuse the data available in every detector.

& In order to use a detector in this framework, developers must have previously implemented
a set of methods so this detector can be handled by the system (although HERA already
includes several Detectors that are implemented in its repository). These methods consti-
tute the Detector interface. In the following section we will see this interface in detail.

& Finally, both detectors and the Detector Handler of a session need access to the data fusion
strategies, which are managed by the Data Merging Strategies component. Each detector
use strategies to merge their own results into a single value (a PAD triplet), while the
Detector Handler uses strategies at two different levels: first, it fuses the results coming
from each category of detector, and afterwards it fuses together the results produced in this
previous first fusion. We will see how this process works in the following subsection.
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In the next subsections we will review how the data fusion is performed, how the detectors are
integrated in the system and what would be the regular workflow of the framework.

3.3 The detector interface

As we mentioned at the beginning of Section 3, in order to be an effective tool, HERAmust be
able to work with all types of affective information providers, whether it be an API receiving
requests over HTTPS and returning JSON objects with a certain content, a physical device
streaming an array of data via a USB port, or a device communicating with the system through
Bluetooth packages. Not only must the system deal with data in very different forms, but also
with the idiosyncrasies imposed by each detector (authentication processes, gathering of data,
etc.). In order to deal with this range of possibilities, HERA uses the Detector class as an
abstraction layer, treating every different detector as a Detector object. Every detector has an id
(which is usually its name), the kind of content in which it can find affective information (face,
voice, body, etc.), a list of the media formats it supports (images, video, audio tracks, etc.), a
delay property which indicates the average response time of the detector, the address where
the detector delivers its service (if any), and two lists storing the results produced, one with the
original results and one with the corresponding PAD translations. In an object-oriented (OO)
programming language, Detector would be an abstract class and every specific detector would
be a new class which would extend it, adding the functionality that this new detector could
need. However, since basic JavaScript does not support abstract classes directly, HERA
implements it using modules: every detector is implemented as a module which must export
three key functions, which are associated with a Detector object in runtime. These three
functions are:

& initialize. This method takes care of any initialization tasks that your detector needs. For
instance, if this detector is a proxy for a third-party service offered via Internet, developers
may need to obtain an auth token first. If this detector is a proxy for a bluetooth wristband,
developers may need to put their discovery and connection code in this method. If
developers do not need any initialization, they should just return a resolved promise
(Promise.resolve).

& extractEmotions. This is the main method of every detector, the one in charge of
performing the actual emotion detection, whether this be forwarding a media resource to
an API over the internet, reading RAW data from a sensor, etc. This method receives three
parameters, namely context, media and callback. Context is the environment from which
the method is called, usually a Detector object. This is done so that these methods can be
specified in a separate file, but results can be stored correctly in the corresponding Detector
object. Media is a path to the file which holds the affective information, if there is any. If
there is no file (maybe the detector reads some RAW data from a certain port or socket in
this method), this parameter will stay unused for the sake of the aforementioned interface-
based programming paradigm. The final parameter, namely callback, is an optional
callback to handle the retrieved data, in case further manipulations are needed.

& translateToPAD. This method is one of the keys of this proposal, since it is the part of
HERA that allows us to integrate heterogeneous emotion detectors. In order to actually be
able to treat all the detectors in the same way, we need to translate all the results they
produce to the same language. The chosen language for this task is the PAD format, which
we introduced in Section 2. This method must implement the transformation of the
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incoming results, so the affective results (whatever their format is) received by a detector
are translated into a triplet of three numbers, each one being a value between −1 and 1,
which stands for how negative or positive the expressed emotion is, how relaxed or excited
the person is, and how passive or dominant that person feels while experiencing that
emotion, respectively. In Fig. 5, we can see an example of the type of transformation this
method does.

Regarding the organization of these different modules, it is highly recommended to keep
them organised in folders according to categories (a face folder for modules of detectors
which support facial-expression-based emotion detectors, a voice folder for voice-based
emotion detectors, etc.), although this is not actually necessary since the path to a given
detector’s functions is fully specified in the request for setting up the different detectors.

In the next subsections we will see how this uniformized data is integrated and how these
methods are associated with their corresponding detector.

3.4 Data fusion

In Section 2 we introduced one of the key aspects of a multimodal system, namely the fusion
of different types of data coming from different sources of affective information. Since
multimodal systems gather information with different formats coming from different sources,
they need to perform a transformation and/or an integration task of this data in order to produce
a coherent final result. Therefore, the first thing to do when a new result is produced is to
translate it into its corresponding PAD value. Every detector keeps a list of all the results they
have produced, so the data fusing challenge is to turn a set of lists of PAD results into a single
result while considering the context of all the detectors, as some of these results may have been
produced by different detectors of the same type analysing the same media file (e.g., two face-
based emotion detectors analysing the same picture), by different detectors analysing media
resources with different formats (e.g., one result produced by a face-based emotion detector
and one result produced by a voice-based emotion detector), by detectors with a very different
rate of result production (e.g., one detector has produced 3 results and another detector has
produced 1.000 results), etc.

We have designed a fusion framework which fuses data three times, one per level:

& The first level is made up of the specific detectors that have been integrated into HERA,
that is, emotion detection services which had had their Detector interface implemented. In
other words, we say that an emotion detection service has been integrated into HERA

Fig. 5 Example of translateToPAD
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when we have created a file which contains the three methods mentioned in the previous
section to communicate with said detection service and to translate its responses. The
fusion in this level is done by telling every detector to aggregate its results from the current
session into one result. At this point, each detector has turned its list of results into a single
PAD triplet.

& The second level is made up of the categories of detectors detecting emotions in the same
modality. HERA organises detectors by placing those which can detect emotions in the
same modality under the same group, this way, when a request of emotion detection over
this category arrives, HERA forwards this request to each detector capable of fulfilling it.
The fusion at this level is done by aggregating the results produced by the fusion in the
previous level together, always grouping these results by category. At this point, HERA
has a PAD triplet per category. Since the detectors of each category have all produced a
result for each request received, aggregating all the results of the same category into one
helps to decrease small discrepancies.

& In the third level of this data fusion framework, HERA aggregates the output of the
previous level into a final single PAD triplet. The aggregation strategy at this level might
be more complex than the one used in the previous levels, since now we might have to
consider different weights for the different categories, metadata attached to the PAD triplet
produced by each category, etc.

Figure 6 shows a sequence diagram that models the data fusion process throughout the whole
system:

& The user sends a merging data request to HERA through the results endpoint (Fig. 7). As it
is stated in the documentation, this request demands three parameters: a list of channels

Fig. 6 Fusion strategy diagram
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that are going to be merged, the name of the strategy that the API has to use to aggregate
the local data and the name of the strategy that the API has to use to aggregate the data of
detectors from different categories. In Fig. 7, we can see a request to this endpoint using
JavaScript and the request package. In this snippet, we are asking HERA to fuse all the
data from the “face” and “voice” channels. In our tool, a channel is a group of detectors
which can extract emotions from a certain modality. For instance, the channel “face” a list
of detectors which can read emotions from the face of a person (facial expression). The
channels’ names can be fully customized by the users of HERA.

& When HERA receives a “/results” request, it forwards the request to the Detector Handler
component of the API, which keeps the detectors organized in categories. Since each
detector on each category holds a list of results in PAD format, HERA must combine all
these results into one. To do so, HERA will request every Detector object to aggregate its
own results using the local strategy localStrategy that was attached to the request.

& Each Detector object keeps two lists of the results produced in the current session: one list
contains the results in its raw form, while the other one contains the PAD version of those
same results. When the mergeResult method is invoked, the Detector calls the
applyStrategy function from the merge.js module, which applies the fusion strategy
specified in the aforementioned request to a list of PAD results. The merge.js module
has all the implemented strategies organised in a dictionary. In the context of HERA, a
strategy is a function which receives a list of triplets, each triplet representing an emotion
in a PAD space, and returns a single triplet. In Fig. 8, we can see an example of a strategy,
which performs an average operation over the different coordinates of the PAD values of
the list. Since HERA is implemented in JavaScript, we can also take advantage of the
capabilities of the language to add extra properties and metadata to this final result.

& Once every detector has aggregated its data using the localStrategy strategy, they return
this single PAD data to the Detector Handler object. At this point, HERA has a PAD triplet
per Detector, being these detectors organised in categories. The next step is to aggregate

Fig. 7 /results request endpoint

Fig. 8 Strategy example
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the PAD triplets from the same category into one. To do so, HERA will repeat the
operation from the previous step: for each category, the Detector Handler object will
invoke the applyStrategy method from merge.js, passing a list with as much results as
detectors objects there are in that said category. Because of the similarity of results, the
same localStrategy strategy from the previous step is used.

& Once HERA has obtained a PAD triplet per category, the Detector Handler will call the
applyStrategy function again with these triplets as arguments, using the globalStrategy
strategy this time. Usually, the localStrategy strategy will be an easier operation since the
data to aggregate is much more similar, while the globalStrategy strategy will probably
consider the context of the each triplet, possible metadata added to the triplets, etc.,
although the same strategy could be used in the different steps of the process.

& Using the globalStrategy strategy, a single PAD triplet, which could possibly hold
additional metadata, is produced. This final result is sent back to the user, finishing the
merging workflow.

3.5 System workflow

After having reviewed the different parts of the proposed framework, now we will see how all
these pieces work together (Fig. 9). Once the server is running (deployed on a Node server and
attending to requests in a specific port), the workflow is as follows:

& Requesting an access token. As we mentioned above, HERA uses sessions to distinguish
where the requests are coming from and/or to group different sets of detectors. These
sessions are implemented using cookies, which store an access token that the server
provides us with. This access token must be included in any request directed to the server
in the future, otherwise we will not be able to access its functionality, and it will warn us
about the absence of an access token. In order to obtain our access token, we must send a
request to the API’s root (endpoint “/”). In response, the system will create our session on
the server and send us in return our unique access token stored in the userId cookie. This id
allows us to communicate with the rest of the endpoints. Trying to communicate with these
endpoints without including this unique id in the request will return an error (“Session
wasn’t initialized. Send request to “/” first”). This id is linked to a
user object which will store the detectors’ proxies, the data returned by these, etc.

& Setting up the server. Once we have our access token, we can communicate with HERA so
that it creates a proxy for each detector we wish to use in the current session. To do so, we
must send a request to the “/init” endpoint, attaching to said request the information
about the detectors we wish to use. This endpoint will link a DetectorHandler object
to our user session and will create a Detector object for each detector specified in the
request (this setting information can be included directly in the request or stored in a file on
the server if we are always using the same detectors, in which case we must specify the
route of this file in our request). Our system also supports a benchmarking process for each
detector: if we provide each category of detectors with a folder containing resources that
those detectors can analyse, setting up a detector at this endpoint will start a benchmarking
task, in which all the resources from the corresponding folder will be analysed using this
detector. From this task an average response time is calculated so that we can later filter
detectors out depending on their response time.
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& Requesting a media analysis looking for emotions. After calling the previous endpoint,
HERA is ready to handle our emotion analysis requests. In order to request an analysis, we
must reach the “/analyse” endpoint, sending to it the resource we wish to analyse, if
any (the server may need to pick this resource itself from a socket or a USB port), the type
of resource it is and how the affective information is coded, that is, whether it has to
analyse the resource by looking for faces, for voices, etc. HERA uses this information to
forward the requests to the detectors capable of taking this request, all of them organized in
categories under our DetectorHandler object. This endpoint uses the
extractEmotion function of each detector to retrieve the corresponding results, and
the translateToPAD functions to store the results. The response to this endpoint does
not contain the results, since they must be requested through the next endpoint.

Fig. 9 System workflow
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& Asking for results. Finally, once the detectors have produced the required results,
developers would poll on the HERA server to ask for the integration of the produced
results using the “/results” endpoint. In order to communicate with this endpoint,
we have to indicate what data merging strategies HERA should use to aggregate the
results and what channels should be aggregated together. In this way, this endpoint can
be used to retrieve the RAW results for a single channel, a PAD triplet with additional
properties produced by aggregating all the existent results, etc.

The framework also includes another endpoint which developers can use to filter detectors out
once they have been created. Thus, developers have an additional tool to control their detectors.

& Filtering detectors. After creating the detectors, we may wish, for instance, to filter out
detectors which are too slow, or maybe we have lost one of our affective channels and we
wish to remove that category of emotion detectors. To do so, we can send a request to the
“/setup” endpoint, indicating which categories we are actually going to need or a
threshold that the average response time of each detector must satisfy (to remove detectors
which take longer than that threshold to complete a request). As per the rest of the API, this
endpoint can be modified to add options and filters.

4 Framework evaluation

An evaluation of the system was conducted with seven software developers, all of them with
previous experience in the development of applications and in the use of APIs. In this section,
the different aspects of the assessment are presented.

HERA was developed under the hypothesis that separating the emotion processing logic
from the main application, and providing a modular data fusion framework would help
developers to integrate emotion detection in their applications more quickly and more easily,
and also give them the possibility of further exploiting the affective information they could
gather. In this evaluation we seek to prove this hypothesis.

4.1 Participants and context

For this experiment we recruited seven software developers aged between 22 and 35 years old,
all of them with experience in the development of server-side applications and in the use of
third-party APIs. Any of them had previous experience with emotion-related technologies,
although two of them were familiar with AC concepts. We decided to recruit developers with
no previous knowledge on emotion detection technologies so that they could focus on the
process of integrating technologies together from a beginner’s perspective. According to Jakob
Nielsen, even five participants are sufficient to detect 85% of the usability problems in a
system [48]. Although seven participants may seem a small number, as the main goal was to
assess the validity of the system by specialists in the field of software development, we
considered more important to have representative participants than to recruit many people
with similar skills repeating the same tasks.

The setup of the experiment consisted of two devices. The first device was a web server
deployed on the Amazon Web Services (AWS) platform, which is accessible at all times. This
platform was responsible for keeping a HERA server instance running. Evaluation tasks
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involving HTTP requests to the system were carried out by directing those requests to this
server. The second computer was the computer used by each developer participating in this test
to perform the corresponding evaluation tasks. Prior to the evaluation, each developer was
asked what equipment they would rather use, and all of them decided to use their personal
computer, even though they were also offered a computer which had all the software they
might need to complete the evaluation tasks. The HERA server was launched using Node.js
v12.14.0 and Express v4.16.0, and the evaluation tasks were performed using Node.js
v12.14.0 and two different Python versions (2.7 and 3.7).

4.2 Evaluation metrics

After reviewing previous studies on API usability assessment [2, 10, 26, 62, 67], especially the
API evaluation framework used by The Visual Studio Usability group at Microsoft [9], we
decided to adopt a combination of the Twelve Cognitive Dimensions Questionnaire and the
Computer System Usability Questionnaire (CSUQ) [3, 25, 41]. The Cognitive Dimensions
framework was proposed in 1989 as a framework to evaluate the different aspects
(dimensions) of a programming language, but in the last few years it has been applied to
specific products, such as APIs, for instance. These dimensions are the following: abstraction
level, learning style, working framework, work-step unit, progressive evaluation, premature
commitment, penetrability, API elaboration, API viscosity, consistency, role expressiveness
and domain correspondence. To apply this framework, we prepared a questionnaire with
twelve questions, one per dimension, so that participants could manifest their impressions of
the API regarding each dimension. For example, does the API expose all its functionality, or
does it expose only certain abstractions of different functionalities? How easy is to make a
change? Does the API work in a consistent way? This is a sample of the kind of questions that
the users had to answer. In line with [9], we gave this questionnaire to the participants before
and after performing the evaluation, to contrast their expectations of how the API should work
against their impressions of how it actually works. Regarding the CSUQ, this is a questionnaire
of 19 questions, all of them answered with a 7-point Likert scale, about the usability of the
product being tested [39]. Altogether, users complete three questionnaires: one to check their
expectations, one to gather their impressions of the tool (using the cognitive dimensions
framework), and finally one to measure the usability of the tool.

4.3 Experimental design

After considering previous works on the assessment of APIs [2, 10, 26, 62], we designed the
following evaluation framework:

(i) Research design. The experiment was designed as a within-subjects experiment, so users
could appreciate the process of using the HERA system against the use case of not having
it, that is, having to communicate with several emotion detectors manually, sync the
return of results and the posterior fusion of data. Hence, each participant is put through
three programming exercises which are essentially identical. This exercise consists of a
set of tasks whose final goal is to communicate with two emotion detection services, so
they analyse a media file looking for emotional responses. The participants wrote three
programs to: (1) communicate with two different emotion detection services, namely
Face++ and DummyDetector; (2) request an emotion analysis of a given media file, a
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picture in this case; and (3) fuse the different results of each detector into a single metric.
For the first exercise, the participants chose their preferred programming language to
communicate with these emotion recognition services. For the second exercise, they used
the same language to write requests as if they were going to be sent to our server, while
for the third exercise they had to use a different programming language to actually
communicate with our server, although all of them used JavaScript or Python. The second
exercise serves as a training process in the use of HERA, in which users learn how to use
it, which involves communicating with the different endpoints, configuring the proxies on
the server, and asking for an analysis and the corresponding results. In the final exercise,
the users recovered the requests they wrote in the second exercise and adapted them to be
sent to the server that was actually deployed, so that it would be able to act as a proxy for
the Face++ and DummyDetector services.

(ii) Intervention. An instance of the server was launched using the Amazon Web Services
Elastic Beanstalk service, which allows us to easily deploy a web application or
infrastructure. As was stated in the instructions script that was given to the participants,
interaction with the system would be carried out through HTTP requests directed to the
AWS server. The participants were also offered a computer prepared with all the
software needed to complete the different programming tasks, but they were also offered
the possibility of using their own laptops if they were more comfortable programming on
their own computers.

The whole evaluation process was divided into four parts.

(i) Introduction to the Test. The participants were introduced to the HERA System and to the
context in which it exists, covering such things as the existence of different emotion
recognition systems, how every system is different, how there is no norm for how things
should be done, etc. In this first phase, they were given a document with instructions on
what they had to do during the assessment, and information they would need in the
process. After reading this script, they would complete the Twelve Cognitive Dimensions
Questionnaire, answering the questions by thinking only in terms of the expectations they
had about how the HERA System should work.

(ii) First part of the Test. In this part of the test, the participants had to communicate with
Face++ and DummyDetector to ask for the emotions presented in a picture of a face. For
this task, they used the programming language they preferred in order to communicate
with the different servers, to store the results and to combine them in some way (they
were advised to take the mean of the results representing the emotion “happiness”
according to each different service).

(iii) Training with HERA. Once they had finished the first part of the evaluation, they
performed a simulation using HERA. Using the programming language of their prefer-
ence again and the documentation from the evaluation script and from the framework’s
repository [18], they had to write a structure for a set of generic requests aimed at each
endpoint of the API.

(iv) Second part of the Test. In this second part, the participants communicate with the
HERA system in order to ask it to carry out the previous task for them. The participants
communicate with an instance of the system deployed on AWS to authenticate them-
selves, to set up the different proxies for each detector (Face++ and DummyDetector), to
ask for an emotion recognition analysis on a media file (a picture) and a subsequent
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fusion of the results. This second part is done with a programming language that is
different from the one used in the previous exercise. The goal of this is to make sure that
the users focus on the behaviour of the framework, and that they are not distracted by the
idiosyncrasies of a specific programming language.

(v) Completing usability questionnaires. After completing the three programming exercises,
the participants completed the Twelve Cognitive Dimension Questionnaire again, this
time answering the questions by considering their actual impressions of the tool, and the
Computer System Usability Questionnaire. In this last questionnaire, a set of demograph-
ic questions were included.

The data collected during the evaluation were subsequently analysed, and the outcomes are
described below.

4.4 Evaluation outcomes and discussion

During the evaluation, we measured the time it took the participants to finish each part,
together with the errors they made (regarding the use of HERA, not the libraries they need to
make the HTTP requests), and the times they needed help from the evaluator. In Table 1 we
can see the time each participant needed to finish each part, the errors they made and the times
they needed assistance (the participants’ data have been anonymized).

In Fig. 10 we can see the average time the participants needed to finish each part. This
parameter shows a dramatic reduction in the time needed to finish a task, thus validating part of

Table 1 Participants data

Participant Total time Time first phase Time training phase Time second phase Errors Assistances

Participant #1 0:52:28 0:25:55 0:21:20 0:05:13 0 0
Participant #2 0:59:05 0:27:32 0:23:51 0:07:41 1 0
Participant #3 1:21:11 0:39:46 0:23:24 0:18:01 1 4
Participant #4 0:50:50 0:20:36 0:20:55 0:09:19 1 0
Participant #5 0:50:33 0:14:42 0:30:30 0:05:21 0 5
Participant #6 0:34:52 0:15:34 0:14:06 0:05:12 1 2
Participant #7 0:37:55 0:14:24 0:17:27 0:06:04 0 2

Fig. 10 Average time spent by phase
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our initial hypothesis, namely that after a previous training phase, which is not very expensive
in terms of time, the use of HERA becomes very straightforward. Also, we must bear in mind
that, since the evaluation is highly scripted, the participants save a lot of time in the first phase
that is not reflected in the data gathered. The tasks of studying how to integrate emotion
recognition in the system, how to gather the media, and analysing the different response
formats of each detector (without having an evaluator helping you to dissect an HTTP
response or an intricate JSON object) are all highly time-consuming, and they are not reflected
in the first column of the figure, even though this phase already took the longest on average.

In Fig. 11 we can see a more detailed view of the data from Table 1 (omitting the time from
the training phase). In this figure, each pair of columns represents the time it took a participant
to finish the first and second phase. It is clear that the first phase took much longer to complete
(around 20 minutes), in comparison with the second one (between 5 and 7 minutes). Due to the
characteristics of this sample (small groups, little data dispersion), we carried out a Mann–
Whitney U test to mathematically assess this time difference between the two phases, which
led us to state that the two sets of data are significantly different with an alpha value of 0.05 (U
= 3.0, p = 0.00364).

Finally, we can see the results gathered by the different questionnaires in Fig. 12 and
Fig. 13. In Fig. 12 we can see the average response for each question. Since this questionnaire
was composed by placing the positive value of the answer as the highest value (7 in this case),
the higher the average response, the more positive the answer is, and the higher the total score,
the higher the user satisfaction is. In this case, the average response for almost all the questions
is above 5, with an average standard deviation of 0.9993, excepting the ninth question.

This question, which asks about the clarity of error messages returned by the API, has a
standard deviation of 1.66 (a high value for such a narrow set of options). This difference of
opinions was actually explained by the participants who gave a low value as an answer in later
interviews.

The two users who answered that question with the lowest values had several issues with
the HTTP library that they were using (bad URLs, wrong way of attaching data to the request,
etc.), which gave them message errors they did not fully understand, due to a lack of
knowledge of that particular library. Since they associated these vague errors with our server

Fig. 11 Time spent per phase and user
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(when the server was not even receiving the request), they gave a low score in that field. The
rest of the questions received, on average, good scores. The total average score of this
questionnaire is 106.5 out of a total of 133, which equals to 8.01 out of 10. This mark, along
with the small deviation for each answer, can be interpreted as an agreement from the
participants regarding the high usability of the system.

Finally, in Fig. 13, we can see the two spider diagrams we obtained by plotting the answers
given to each dimension of the Twelve Cognitive Dimensions Questionnaire. By following the
approach in [9], we surveyed the participants before and after, in order to be able to contrast
their expectations and their impressions of the application. On average, we can see how our
framework met most of their expectations, even improving upon what they were expecting,
especially in the dimensions of Learning style, Premature Commitment, API Viscosity, Role
Expressivity and Domain Correspondence.

With these results, we can conclude that the recruited developers found the tool useful to
integrate technologies they were not familiar with. It is important to remark that this was the
goal of this assessment. Since there are no other tools like HERA on literature to reduce the
slope of the learning curve when it comes to integrate different emotion detectors and develop
multimodal detectors, developers usually find it difficult to start developing this kind of
detectors. This may lead to the development of defective multimodal systems or even to the
abandonment of a project, in favour of a simpler unimodal detector. Although we reviewed
some projects about multimodal detectors in section 2.4, these were designed ad-hoc for
specific purposes or platforms, so the effort of trying to adapt these to a new scenario might be

Fig. 12 Average answers of the Computer System Usability Questionnaire

Fig. 13 Average responses of Twelve Cognitive Dimensions Questionnaire
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even bigger than the effort of researching multimodality properly and develop a solution from
the ground up. HERA is an effort to assist those developers in the elaboration of multimodal
systems. However, further assessment with more archetypes of developers is still needed to
assess the tool.

Regarding the application of HERA, this framework has been designed as a separate
application that can be launched anywhere thanks to the underlying technology that we have
used in its development. This approach just adds another entity to any existent architecture,
leaving the mainframe of this existent application cleaner than it would be if all the emotion-
related logic had to be written from scratch in the system. Some of the scenarios that would
benefit from the use of HERA are the following:

& Applications with educational purposes. The idea of HERA actually spawned during the
development of multimedia applications with education purposes [20, 21], when the
development of said applications exposed the limitations and difficulties of building
multimodal systems. In the context of these previous works, a tool deployed in the
backend of the application would have helped us to develop the system, even if it had
needed some customization.

& Applications handling multimedia content. Part of HERA needs to be capable of handling
different types of multimedia input, being it in the form of a stream, a file, etc. Even if this
first version has been more focused on the fusion of data, the proper management of
multimedia information can be a valuable asset of HERA on its own.

& Applications involving business processes. Some of the activities that companies carry out,
like costumer attention, can harvest great benefits from opinion mining and other forms of
emotion detection. A system like HERA can help develop a more tailored solution to
analyse the input of clients.

5 Conclusions

In this paper we have reviewed HERA, a framework developed in JavaScript to support the
creation of multimodal emotion detectors and their subsequent integration with other applica-
tions, and the evaluation process that we carried out to test the first version. HERA has been
developed while following the principles of modularity, independency and extendibility, since
it is offered as an open-source tool that other developers are encouraged to adopt and help
grow. With this tool, we strive to fill a gap in the existent literature, bringing together theory
and implementation, and supporting our proposal in a standard format, namely the PAD
classification system. The system proposed in this paper is designed to offer an easy way of
including emotion recognition in an existing system in a straight-forward way, and reducing
the usual workload involved in this task. Integrating our framework in another application’s
infrastructure is a matter of launching a Node server running the framework and sending
HTTP requests to it, with this having only a minor impact on the app source code. Since the
framework has been developed over Express and is open source, a new web application could
be developed by even using the framework source code as a starting point. Although using this
framework is not completely immediate, since it requires a previous setup and user training
phase, we have proved empirically that the benefits of using this framework, in terms of time
and effort, are worth this preparation phase. We tested the tool with real users, who used it to
develop a small demo, which revealed some of HERA’s strong and weak points.
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One of the current challenges is to go on developing HERA so that it can support more
forms of interactions and new detectors. Even though one of its key aspects is that it is easy to
extend, the more features it has from the beginning, the more likely it is that new developers
use it, thus enlarging the community of HERA’s users, which will help us to find bugs and
make HERA bigger, safer and more solid. In order to tackle this challenge, we will review
existent mainstream emotion detection services to integrate them into HERA. This extension
process will also include popular handheld and wearable devices, which will contribute to
extend the communication capabilities of HERA.

This first version of the framework is specially focused on the fusion of data, but HERA
can still be improved to increase its capabilities regarding the management of media input, so
that developers can stream multimedia data to HERA and request analysis over these contin-
uous streams, instead of making punctual requests each time.

When it comes to the fusion of data, HERA can greatly benefit from having a wide variety
of algorithms to aggregate data all together. We will consider different usages of this tool to
develop algorithms to cover the different needs of future developers.

Lastly, the management of results within HERA can open the door to machine learning, that
could be applied once we have gathered enough results, previously validated by experts. This could
help to triple validate the aggregated data and/or to increase even more the richness of the data.
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