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1 Introduction & summary of results

1.1 Introduction

An understanding of controlled supersymmetry (SUSY) breaking in string theory is among
the principal goals in string phenomenology for establishing a connection between string
theory and our reality. It also plays a significant role in holographic descriptions of non-SUSY
quantum field theories (QFTs) and within the general debate of Swampland conjectures.

One of the canonical methods for breaking SUSY in string theory involves balancing
anti-branes in warped throats [1]. Despite their consequential applications in holographic
QFT [2, 3], string cosmology [4, 5], and black hole physics [6], some aspects of these
anti-branes configurations are not yet fully understood. Over the last decade, many works
have been dedicated to exploring their properties. In the subsequent paragraphs, we review
the Kachru-Pearson-Verlinde (KPV) [2] configuration, a frequently-discussed exemplar
metastable configuration of anti-branes, and briefly summarise the discussions on some of
its properties.

Our starting point is the Klebanov-Strassler (KS) throat [7] in ten-dimensional type
IIB supergravity. The KS throat involves a six-dimensional deformed conifold, a four-
dimensional Minkowski space, and non-trivial F3, F5, and H3 fluxes. One can intuitively
think of the KS throat as the solution resulting from placing D3 and D5 brane charges at
the tip of a Ricci-flat (deformed) conifold. The D3 and D5 brane charges induce non-trivial
F3, F5, and H3 fluxes, resulting in a warped, fluxed throat geometry.

Anti-D3 branes near the tip of the KS throat are attracted to the tip via both grav-
itational and “electromagnetic” forces. By analysing the non-abelian action of the stack
of anti-D3 branes in the probe approximation, ref. [2] observed that these anti-D3 branes
polarise via the Myers effects [8] to a spherical NS5 brane with dissolved anti-D3 brane
charge wrapping an S2 inside the S3 of the geometry at the tip of the KS throat. In some
regime of parameters, this spherical NS5 brane stabilises along the azimuthal angle direction
ψ. More specifically, let p denote the number of anti-D3 branes and M the strength
of the background KS fluxes. Ref. [2] demonstrated that when p/M is between 0 and
(p/M)crit ≈ 0.080488, the effective potential of the NS5 brane has a metastable minimum,
see figure 1. This metastable state of spherical NS5 brane with dissolved anti-D3 brane
charge at the tip of the KS throat is commonly referred to as the Kachru-Pearson-Verlinde
(KPV) state. Note that this spherical NS5 state is classically stable,1 but can tunnel
quantum mechanically through the classical barrier to the true minimum at the South pole.
However, the rate of this quantum tunnelling effect can be exponentially suppressed by
choosing a suitably large M [2].

As we mentioned already, the initial discovery of the KPV state was based on a brane
probe analysis. Its existence beyond the probe limit became controversial when unphysical

1The claim that the spherical NS5 brane is classically stable is not yet fully settled and requires further
investigations. The observation in [2] is simply that the spherical NS5 feels a balance of gravitational and
“electromagnetic” forces in the azimuth direction ψ of the S3 that it wraps. One might be worried that there
exist classical perturbations that make the NS5 state unstable. There have been studies on whether this
happens, e.g. [9, 10], which we will discuss further in the Outlook section.
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Figure 1. On the left, we present an illustrative picture of the tip of the KS throat, which is an
S3. The coordinate ψ ∈ (0, π) is the azimuthal angle of this S3. The red circle illustrates the KPV
state, which is a spherical NS5 state (wrapping an S2 of the S3) that experiences a balance of force
along the azimuthal angle ψ. On the right, we present the effective potential of a spherical NS5
state at the tip of the KS throat for p/M = 0.03. As we can see from the plot, the potential has a
metastable minimum at ψ ≈ 0.3. This is the KPV state.

singularities were found in the backreacted supergravity description of anti-D3 branes in
the KS throat. By studying the linearised backreaction of smeared2 anti-D3 branes, ref. [11]
observed that the backreacted supergravity description for the smeared anti-D3 branes
must have unphysical3 singularities in the 3-form flux. Later works [13–16] showed that the
unphysical flux singularities in the anti-D3 branes supergravity description persist even when
one gets rid of all the approximations (e.g., linearisation of the anti-branes backreaction,
smearing). However, [17] observed that the arguments for unphysical singularities in the
supergravity description of smeared/localised anti-D3 branes do not extend to the case of
spherical NS5 branes. In particular, the IR and UV gluing conditions, which is the key
to previous observations of unphysical singularities, can be expressed in terms of a Smarr
relation [17, 18]. While localised/smeared anti-D3 branes cannot satisfy the Smarr relation
with a regular horizon, spherical NS5 branes can. As the KPV state is the polarised state
of anti-D3 branes and should be considered in supergravity as spherical NS5 branes with
dissolved anti-D3 brane charge, [17, 18] effectively found for the KPV state a possible way
out of the unphysical singularities that plagued backreacting anti-branes.

As the result of [17] is a negative of a negative, i.e. it is an argument that polarised
branes do not run into the same problems that smeared/localised branes do, [17] had only
provided the necessary (but not sufficient) conditions for the existence of a well-behaved
supergravity solution of backreacted anti-branes. As such, supplementary direct evidence
for the existence of the KPV state is needed. Using the blackfold approach [19–21], ref. [22]
provided further positive evidence. The result of [22] fits perfectly with the lifting of the

2The anti-branes are smeared homogeneously across the S3 tip of the KS throat.
3Initially, these divergences were deemed unphysical because they were divergences without an obvious

physical origin. However, using Gubser’s criterion for identifying good versus bad singularities [12], later works,
e.g. [13], argued that these singularities are indeed unphysical and cannot be resolved using string theory.
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no-go theorem in [17]. In the extremal limit, [22] recovered the KPV spherical metastable
NS5 state. Away from extremality, it uncovered a metastable black NS5 state and observed,
in agreement with expectations, that its metastability is lost when its horizon geometry
resembles that of a localised black anti-D3 state. As these works were done using very
different methods, they together constitute a strong argument for the existence of the
KPV state.

We note in passing that there are many works relevant to the existence of the KPV
state that are not exhaustively covered in this introduction. Such works include, for
example, a string theory resolution for the singularities in the case of a single anti-D3
brane [23], investigations on the effect of temperature on the anti-D3 branes singularities [13,
24–26], discussions on the resolution of anti-D6-brane singularities in the supergravity
regime via brane polarisation [27], and studies of analogous anti-brane configurations in
M-theory [3, 17, 28, 29].

The results in [17] and [22] are indirect. In both cases, an explicit construction of the
wrapped NS5-brane state at the tip of the KS throat is technically very demanding and still
missing. The strategy behind the blackfold approach of ref. [22] is based on a perturbative,
long-wavelength analysis of the supergravity equations. In this context, one would like
to construct a perturbative supergravity description of the KPV configuration using the
technique of matched asymptotic expansions (MAE), where the solution is approximated in
the far zone by the background solution of interest (here the KS throat) and in the near
zone by a uniform flat-space p-brane solution (here the D3-NS5 bound state). By studying
a subset of the matched asymptotic equations for D3-NS5 branes in the KS throat, [22] was
able to distil useful information about the backreacted description of the KPV state in the
leading order of the perturbative expansion, but did not construct the full, leading-order
perturbative solution of wrapped NS5 branes in supergravity.

The idea of using a subset of the matched asymptotic equations (constraint equations)
to learn about the backreacted description of a brane configuration in some background lies
at the “soul” of the blackfold approach. In the blackfold approach, the constraint equations,
which are dubbed blackfold equations, provide a (p+ 1)-dimensional effective worldvolume
description of the dynamics of a p-brane solution. When viewed in isolation, the blackfold
equations are only the necessary conditions for a matched asymptotic solution. As such,
statements made using the blackfold approach are only truly conclusive when a regular
perturbative solution in MAE can be constructed. The claim that the blackfold equations
guarantee a regular matched asymptotic solution is dubbed the blackfold conjecture and
this conjecture is baked into many of the blackfold applications including that of [22]. The
conjecture is correct in the fluid-gravity correspondence [30] in AdS/CFT and has been
proven at leading order in the MAE expasion in pure Einstein gravity in flat space [31].
It is not known, however, if it is generally valid in supergravity with generic asymptotics.
In particular, it has not been proved to be valid in the context of the highly-nontrivial
configurations of anti-branes in the warped, fluxed KS throat. It is the lack of this proof
that motivates the study in this paper.

This work aims to construct the (leading order) perturbative supergravity description
for the KPV state by suitably employing the procedure of MAE. We will see that, even
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within the leading order MAE, the construction is demanding. A particularly challenging
aspect that we were unable to address fully has to do with the expression of the KS fluxes in
suitable adapted coordinates. We noticed, however, that there is a convenient modification
of the KS solution (in the long-wavelength expansion of interest) that satisfies the SUGRA
equations and simplifies the problem. We present a solution of the corresponding MAE that
describes the backreaction of the KPV anti-brane state in the background of this modified
KS solution. This result, taken in conjunction with previously known results [17, 22], serves
as further, more direct, evidence in favor of the existence of a backreacted KPV state
without unphysical singularities. It also serves as a non-trivial example for the validity of
the blackfold conjecture in complicated charged p-brane configurations in supergravity with
warped/fluxed asymptotics. An explicit perturbative supergravity solution is also expected
to be useful in studies of other properties of the KPV state that are currently inaccessible.
Some of these properties are discussed at the end of the paper, in the Outlook section.

1.2 Method outline & summary of results

Let us assume that we want to construct a solution describing a configuration of a (black)
p-brane with two characteristic length scales —rh and R — in an asymptotic background
with characteristic length scale L. rh is a near-horizon scale (e.g. a horizon radius or a charge
radius for charged solutions) and R is a characteristic scale of worldvolume inhomogeneities
that parametrises the deviations of the configuration from the homogeneous, planar p-brane
solution. A Matched Asymptotic Expansion (MAE), see e.g. [32, 33], can be understood in
this context as a general procedure where the (super)gravity profile of the above configuration
is analysed in two asymptotic regions: the far-zone (r � rh), where the profile can be
approximated by small deformations of the asymptotic background solution and the near-
zone (r � R, L), where the profile can be approximated by small deformations of a seed
near-horizon solution. r is a radial coordinate transverse to the p-brane. In cases of a large
scale separation, rh � R, L, one can obtain information on the (super)gravity profile by
matching the two asymptotic regions across a large overlap zone. Using this information, one
can construct an ansatz for the (super)gravity fields, based on long-wavelength deformations
of the near-zone seed, where the worldvolume inhomogeneities/background effects on the
seed are taken into account perturbatively in powers of r/R, r/L. Plugging this ansatz into
the (super)gravity equations, solving the resulting differential equations at appropriate order
of r/R and r/L, one arrives at an approximate description for the desired configuration
when R and L are large.

In the context of the KPV metastable state, we are interested in the supergravity
description of spherical NS5 branes with dissolved anti-D3 brane charge wrapping an S2

inside an S3 at the tip of the KS throat. In this paper, we will focus exclusively on extremal
solutions, but we note that similar methods could be applied to study also non-extremal
solutions with a finite black hole horizon. In this problem, the length scale rh is the
characteristic near-horizon scale associated to the planar D3-NS5 bound state. This is the
extremal horizon of the bound state, which will be denoted as ρc in the main text. The
length scale R is controlled by the size of the S2 that the NS5 wraps, while the background
length scale L is set by the size of the S3 at tip of the KS throat. As discussed in [22], as
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Figure 2. Pictorial depiction of the MAE for KPV metastable states in the Klebanov-Strassler ge-
ometry.

long as the spherical NS5 branes are not located at the North or South poles (sinψ 6= 0),
we can always tune our configuration to have a large scale separation, i.e. rh � R, L, by
choosing suitable large background fluxes, that is a suitably large parameter M .

A pictorial depiction of the near, far, and overlap zone in the MAE of KPV metastable
states appears in figure 2. In figure 2, we depict as a red circle the metastable state of
spherical anti-D3-NS5 branes warping an S2 inside the S3 at the tip of the Klebanov-Strassler
throat. The picture on the right is a pictorial description of the matched asymptotic solution.
It is a zoomed-in description of the backreacted metastable anti-D3-NS5 branes at the tip
of a large-M KS throat. In the picture, we depict the metastable anti-D3-NS5 branes as a
dot. The four transverse dimensions are represented as the two dimensions of the graph.
To describe the different zones of the matched asymptotic expansion, we have drawn 3
concentric circles. The near zone is inside of the middle circle. The far zone is the area
between the inner-most and the outer-most circle. The overlap zone is the area between
the inner circle and the middle circle, the purple region.

The seed of our MAE is the extremal planar D3-NS5 bound state. The relevant
asymptotic background is the KS throat expanded/truncated to some order in λ ≡ 1/

√
M .4

The reason why we only care about the KS throat in the large-M limit, instead of its
exact description, is because the aim of our MAE procedure is to produce a perturbative
description that approximates the metastable state when R and L are large. As such, we
are really matching the seed D3-NS5 bound state to a far-zone asymptotic background
approximated by the KS throat appropriately expanded/truncated to some order in λ.

In this paper, we work up to first order in the λ-expansion. However, as we were
unable to express all the necessary forms of the 3-form fluxes in adapted coordinates, we
could not straightforwardly expand the fluxes in λ and obtain their first-order description.
Nevertheless, we noticed that there is a modification of the KS solution at first order in λ
which simplifies the profile of the metric and 3-form fluxes but (crucially) retains the validity
of the supergravity equations. For this modified perturbative KS solution, we managed to

4We use λ ≡ 1/
√
M as our small parameter because the radius of the wrapped S2 (i.e. the R scale) and

the radius of the S3 at the tip (i.e. the L scale) both go like
√
M .
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solve the leading order MAE completely. We report results based on this modification.5
The modified description ignores cross-angles components in the metric and 3-form fluxes
(see appendix D). For example, for the asymptotic background F3 flux, we use F3 ∼ λω3,
where ω3 is the volume form of the S3 at the tip. If we expand and truncate the F3 flux of
the KS solution to first order in λ, we will find not only a λω3 component but also some
cross-angles components. However, we note that if we scale the λω3 component of this F3
by a constant factor of 2/

√
3, we can reproduce without the cross-angles components the F3

energy-momentum tensor Tµν(F3) to leading order in λ. By taking this scaled λω3 component
as the modified F3, we guarantee that the leading order contribution of the F3 to the metric
equation is unchanged. A similar logic is applied to obtain the modified H3 flux. Then,
together with the metric and F5 flux, which are left untouched, we can check explicitly that
these fluxes satisfy all the supergravity equations to the relevant order in λ, i.e. to order λ
in the flux equations and to order λ2 in the dilaton and metric equations.

With the form of the asymptotic solution fixed, our first task is to construct the
overlap-zone solution. This solution is a matched asymptotic solution of the linearised
D3-NS5 bound state, i.e. the D3-NS5 solution to leading order in ρc (the extremal horizon
radius of the D3-NS5 branes), and the modified leading order in λ KS background. We
require that the overlap-zone profile recovers the asymptotic background in the ρc → 0
limit, the linearised seed in the λ→ 0 limit, and flat space in the simultaneous λ, ρc → 0
limit. As such, in compact notation we can write the overlap-zone description as

Xoverlap = Xflat + λXbackground + ρ2
c Xbrane + λρ2

c Xcorrections . (1.1)

The extremal horizon radius ρc appears in this expression as ρ2
c because the leading

non-trivial order of ρc in the far-zone description of D3-NS5 bound state is ρ2
c . Xoverlap

denotes the overlap-zone profile. Xflat denotes the flat space profile. The combination
Xflat + λXbackground gives the description of the KS solution to leading order in λ, and
the combination Xflat + ρ2

c Xbrane gives the description of the far-zone, flat-space D3-NS5
solution to leading order in ρc. The λρ2

c Xcorrections are the needed corrections to ensure
that the overlap-zone profile Xoverlap is a SUGRA solution to leading order in λ and ρc. By
studying the SUGRA equations to leading order in λ and ρc, together with the regularity
conditions, the correction terms λρ2

c Xcorrections can be explicitly determined, giving us the
overlap-zone solution. One interesting point in the overlap-zone discussion is the recovery
of the effective worldvolume equations6 derived using the blackfold approach in [22]. As
the blackfold equations are the necessary conditions for the construction of an overlap-zone

5It would be useful to understand better the origin of the 3-form flux modification, e.g. if it can be
extended to higher orders in the λ-expansion and how it is related to the KS solution. In this paper, we
will leave this important question aside and focus on the leading-order MAE of the modified perturbative
solution as an instructive example of an explicit leading-order MAE in ten-dimensional type-IIB supergravity
that describes the backreaction of anti-3-branes in a non-trivial fluxed, warped background.

6This is the version of the worldvolume blackfold equations in [22] when one considers the extremal,
time-independent case. This is the relevant case for us because we are constructing a metastable state,
which is a time-independent configuration of extremal D3-NS5 branes. In [22], the effective worldvolume
equations were used to explore also the behaviour of the KPV state under time-dependence and non-zero
thermal effects.
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solution, we should be able to recover the above equations from our overlap-zone analysis;
indeed, we show explicitly that we can. The only difference with the equations reported
in [22] are certain factors of 2/

√
3 which can be traced back to the rescaled components of

the F3 and H3 fluxes in the modified asymptotic KS solution.
Armed with an explicit overlap-zone solution, we proceed to set up an ansatz for the

leading-order solution across the full spacetime that describes how the KS asymptotics
connects to the near-zone deformation of the D3-NS5 seed. This ansatz contains 8 unknown
functions, namely gM (ρ), gωω(ρ), gρρ(ρ), gΦ(ρ), gωϕ(ρ), gθ2φ2(ρ), gx0123(ρ), and gωϕθ2φ2(ρ),
which depend only on the adapted radial coordinate ρ. Plugging this ansatz into the
SUGRA equations yields a set of coupled ordinary differential equations (ODEs) for these
8 unknown functions. We present an analytic solution of these equations. The analytic
solution involves undetermined integration constants that can be fixed completely by further
imposing the regularity conditions at the origin and by requiring that the solution recovers
correctly the far-zone modified KS throat asymptotics. In this manner, we verify that
there is an explicit leading-order MAE construction of a polarised anti-brane solution
without unphysical singularities that interpolates between the D3-NS5 near-zone seed and
the far-zone modified KS asymptotics.

1.3 Outline of paper

The main results of the paper are contained in section 2. In subsection 2.1 we setup
the near-zone D3-NS5 bound state seed and elaborate on the far-zone Klebanov-Strassler
asymptotics. In this subsection we explain the long-wavelength limit of interest and describe
how we modify the expanded KS solution to evade the technical issues that arise when one
attempts to express the KS 3-form fluxes in adapted coordinates.

In subsection 2.2 we present the results of the overlap-zone analysis relegating many of
the details of the computation to appendix E. An aspect of the analysis that is highlighted
here is the derivation of the blackfold effective worldvolume equations (in agreement with
previous results in ref. [22]).

In subsections 2.3 and 2.4 we setup an ansatz for the full leading order MAE, insert it in
the supergravity equations and solve the resulting ODEs. In the process we demonstrate how
the regularity conditions fix the undetermined integration constants and exhibit the absence
of unphysical singularities in the final solution. We conclude in section 3 with a summary
of our results and a discussion of open questions and potential further computations.
A summary of our conventions and useful details of our computations are collected in
the appendices.

2 The matched asymptotic expansion

In this section, we construct a perturbative description of a metastable NS5 state using the
procedure of matched asymptotic expansion (MAE). We begin in subsection 2.1 with the
description of the near and far-zone asymptotics in adapted coordinates. For the near-zone,
this is the D3-NS5 bound state. For the far-zone, this is the KS throat to leading order in
λ (with a modification that will be specified). In subsection 2.2, we derive the overlap-zone
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solution. In subsection 2.3, we set up an ansatz for the leading order matched asymptotic
solution and describe the set of ODEs that arise from inserting the ansatz into the SUGRA
equations. We perform a preliminary check of our matched asymptotic equations by using
them to recover the overlap-zone solution, and find the sub-leading order corrections required
for an overlap-zone solution to higher order in ρc. In subsection 2.4, we solve the matched
asymptotic equations analytically with the aid of appropriate computer software. The
general solution contains undetermined integration constants. However, all these constants
can be fixed by imposing suitable regularity conditions and the far-zone asymptotics.

2.1 Specifics of the near-zone and far-zone asymptotics

2.1.1 The extremal D3-NS5 bound state

In this subsection, we provide a description of the extremal D3-NS5 bound state in adapted
coordinates. This solution serves as the seed (i.e., the near-zone asymptotics) for our
matched asymptotic construction. Here, we simply quote the solution and refer the reader
to appendix B for details on how it is obtained.

The metric of the D3-NS5 bound state is

ds2 = b20D
−1/2

(
− (dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 +D (dω2 + ω2dϕ2)

+H
(
dρ2 + ρ2

(
dζ2 + sin2 ζ

(
dθ2

2 + sin2 θ2dφ
2
2

)) ))
(2.1)

with

H = 1 + ρ2
c

b20 ρ
2 , D =

(
sin2 θH−1 + cos2 θ

)−1
. (2.2)

The dilaton field is
e2φ = HD−1 , (2.3)

and the gauge fields are

C2 = ω

sin2ψ0

(
ψ0−

1
2 sin2ψ0

)
dω∧dϕ+b20

(
1−DH−1

)
tanθωdω∧dϕ, (2.4)

B2 =−2ρ2
c cosθ sin2 ζ cosθ2 dζ∧dφ2 , (2.5)

C4 =−b40 (1−H−1) sinθ dx0∧dx1∧dx2∧dx3−2b20 ρ2
c sinθ sin2 ζ cosθ2ωdζ∧dφ2∧dω∧dϕ

+ ω

sin2ψ0

(
ψ0−

1
2 sin2ψ0

)
dω∧dϕ∧B2 . (2.6)

b0 is a constant given by b20 ≈ 0.93266. In the above description, the coordinates xi, ω,
and ρ have dimensions of length, the coordinates ϕ, ζ, θ2, and φ2 are angles and, are, thus,
dimensionless. The only dimension-full parameter is ρc, which has units of length. The rest,
e.g., ψ0 and θ, are dimensionless.
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2.1.2 The Klebanov-Strassler throat in the large-M limit

In this subsection, we collect the far-zone asymptotics of our matched asymptotic solution.
Recall that the method of MAE only allows one to describe configurations where the
effects of the bending/background can be formulated perturbatively as long-wavelength
deformations of a known seed solution. This is possible when the configuration of interest
possesses a large separation of scales, i.e. the characteristic length scale of the seed is much
smaller than the characteristic length scale of the bending/background. As discussed in [22],
this happens when M is sufficiently large. Thus, technically, we are not discussing a generic
KPV configuration but KPV configurations with a sufficiently large M . Accordingly, for
our far-zone asymptotics, we want to consider a perturbative expansion of the KS throat in
the large-M limit.

In the subsequent paragraphs, we summarise the properties of a modified version of the
KS throat solution at leading order in λ ≡ 1/

√
M . We will explain how we come to such a

description, but relegate most details to the appendices C and D. In appendix C, we discuss
aspects of the KS throat that are immediately relevant for its role as a background for
metastable anti-branes. This includes a derivation of the KS metric in adapted coordinates.7
In appendix D, we derive our modified leading order in λ description of the KS throat.

Coordinates in the large-M limit. When we take the limit M → ∞, we have to
appropriately rescale our coordinates to make sense of the KS metric and gauge fields in
such limit. As an illustrative example, let us consider the metric of an S2 with radius

√
M :

ds2 = M(dψ2 + sin2 ψdω2) . (2.7)

In the limit M →∞, the metric blows up and the inverse metric becomes degenerate. To
obtain finite expressions, we define a rescaled coordinate:

ψ̃ =
√
Mψ (2.8)

with ψ̃ ∈ (0,∞). Then, in the M →∞ limit, the metric becomes the well-defined metric of
flat space in polar coordinates:

ds2 = dψ̃2 + ψ̃2dω2 . (2.9)

Defining the small parameter λ ≡ 1/
√
M , we can easily find the expansion of the

metric (2.7)

ds2 = dψ̃2 +
(
ψ̃2 − λ2 ψ̃

4

3 + λ4 2 ψ̃6

45

)
dω2 +O

(
λ6
)
, (2.10)

which corrects the leading order flat-space result (2.9).
By using the rescaled coordinate ψ̃ as (2.8), we have effectively zoomed into the North

pole of the S2 where ψ = 0. For the study of the KPV state, we would like to zoom into
7A similar appendix has already appeared in [10], but, for convenience of the reader, we present the

relevant details again here.
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the local patch around a local equilibrium at some azimuthal angle ψ0 6= 0. In that case,
the required coordinate scaling is

ψ̃ = λ−1 (ψ − ψ0) . (2.11)

Expressing ψ in terms of ψ̃, the S2 metric (2.7) becomes

ds2 = dψ̃2 + λ−2 sin2
(
λψ̃ + ψ0

)
dω2

= dψ̃2 + λ−2
(
sin λψ̃ cosψ0 + cosλψ̃ sinψ0

)2
dω2

= dψ̃2 + λ−2
(
sin2 ψ0 + 2λψ̃ cosψ0 sinψ0 + λ2ψ̃2 cos2 ψ0 − λ2ψ̃2 sin2 ψ0 +O(λ3)

)
dω2 .

(2.12)

In this case, we also need to rescale the ω coordinate:

ω̃ = λ−1 sinψ0 ω . (2.13)

Altogether, in this limit the S2 metric can be written as:

ds2 = dψ̃2 + dω̃2 + 2λ cotψ0 ψ̃ dω
2 + λ2

(
cot2 ψ0 − 1

)
ψ̃ dω2 +O(λ3) . (2.14)

We can now return to the KS geometry. Near the tip, the KS metric can be written as

gµνdx
µdxν = Mb20

(
− (dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 + dr2

+ dψ2 + sin2 ψ
(
dω2 + sin2 ωdϕ2

)
+ r2(dθ2

2 + sin2 θ2dφ
2
2)
)

+O(r2) (2.15)

where b20 ≈ 0.93266. Completely analogous to the S2 case, we need to implement in the
large-M limit the coordinate transformations:

x̃i = λ−1xi , r̃ = λ−1r ,

ψ̃ = λ−1 (ψ − ψ0) , ω̃ = λ−1 sinψ0 ω , (2.16)

where i runs from 0 to 3.

Modified KS throat solution at leading order in λ. Expanding the KS metric at
any order of λ is straightforward. One only needs to apply the coordinate scaling (2.16) to
the KS metric in adapted coordinates and truncate to the desired order. As an example,
we present the explicit form of the KS metric to order λ2 in eq. (D.4). Similarly, one can
obtain the expansion of the F̃5 flux to any order in λ in the same way. In eq. (D.10), we
present F̃5 to order λ2.

Unfortunately, the 3-form fluxes are considerably more involved. In this case, we could
not find a full description of the H3 and F3 fluxes in adapted coordinates, and did not
manage to implement a straightforward expansion in powers of λ. However, we noticed two
things. First, the components of the leading-order H3 and F3 fluxes along the two spheres
of the background are easily expressed in adapted coordinates

H3 = −2λ r2 sin θ2 dr ∧ dθ2 ∧ dφ2 + . . . , (2.17)
F3 = 2λω dψ ∧ dω ∧ dϕ+ . . . . (2.18)
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These components alone do not yield a leading-order SUGRA solution. Nevertheless, we
observed that if we rescale these components by a factor of 2/

√
3, we arrive at a profile

that satisfies all the SUGRA equations to the relevant order of λ. In particular, with this
simple rescaling (and by dropping the complicated cross-angle components of the 3-form
fluxes), one can satisfy all the flux SUGRA equations to order λ and the dilaton/metric
SUGRA equations to order λ2 (the leading order where the H3, F3 fluxes are relevant). The
resulting background is an on-shell modification of the leading-order expansion of the KS
solution near the tip. It contains all of the key ingredients of the KS solution (3- and 5-form
fluxes and warped metric), hence, we will proceed to consider the MAE of anti-branes in
this context.

Let us now collect the modified KS throat solution at first order in λ. This profile will
serve as the far-zone asymptotics for our MAE. We have the metric is

ds2
10 = b20

(
− (dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 + (1 + 2λρ cos ζ cotψ0) (dω2 + ω2dϕ2)

× dρ2 + ρ2
(
dζ2 + sin2 ζ(dθ2

2 + sin2 θ2dφ
2
2)
) )

. (2.19)

The non-trivial gauge fields are

B2 = − 4√
3
λρ3 sin2 ζ cos ζ cos θ2 dζ ∧ dφ2 −

4√
3
λρ2 sin3 ζ cos θ2 dρ ∧ dφ2 , (2.20)

C2 = 4√
3
λ ρ cos ζ ω dω ∧ dϕ+ ω

sin2 ψ0

(
ψ0 −

1
2 sin 2ψ0

)
dω ∧ dϕ , (2.21)

C4 = − 4√
3
λρ3 sin2 ζ cos ζ cos θ2

ω

sin2 ψ0

(
ψ0 −

1
2 sin 2ψ0

)
dζ ∧ dφ2 ∧ dω ∧ dϕ

− 4√
3
λρ2 sin3 ζ cos θ2

ω

sin2 ψ0

(
ψ0 −

1
2 sin 2ψ0

)
dρ ∧ dφ2 ∧ dω ∧ dϕ . (2.22)

Through direct substitution into the SUGRA equations (A.4)–(A.9), one can check that
this profile indeed satisfies all SUGRA equations to first order in λ.

2.2 Overlap-zone analysis

In this subsection, we discuss the overlap-zone description of our matched asymptotic
solution. This is obtained by matching the linearised D3-NS5 bound state and the modified
leading order KS throat in such a way that all SUGRA equations are satisfied to leading
order in λ and ρ2

c . We relegate the details of the derivation to appendix E. Here, we present
the final result and, subsequently, make connections to the results obtained in [22].
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2.2.1 The overlap-zone solution

The overlap-zone metric takes the form

gµνdx
µdxν = b20

(
1− ρ

2
c sin2 θ

2b20ρ2

)(
−(dx0)2+(dx1)2+(dx2)2+(dx3)2

)
+b20

(
1+ ρ2

c sin2 θ

2b20ρ2 +2λρcosζ cotψ0

)(
dω2+ω2dϕ2

)
+b20

(
1+ ρ2

c

b20ρ
2−

ρ2
c sin2 θ

2b20ρ2

)(
dρ2+ρ2

(
dζ2+sin2 ζ

(
dθ2

2 +sin2 θ2 dφ
2
2

)))

+λρ2
c cosζ

[
gM (ρ)

(
−(dx0)2+(dx1)2+(dx2)2+(dx3)2

)
+gωω(ρ)

(
dω2+ω2dϕ2

)

+gρρ(ρ)
(
dρ2+ρ2

(
dζ2+sin2 ζ

(
dθ2

2 +sin2 θ2dφ
2
2

)))]
, (2.23)

where the correction functions gM (ρ), gωω(ρ), and gρρ(ρ) are given by8

gM (ρ) = sin2 θ (2 cot θ + sec θ + tan θ)√
3 b20 ρ

, (2.24)

gωω(ρ) = sin2 θ (−2 cot θ + sec θ + tan θ)√
3 b20 ρ

, (2.25)

gρρ(ρ) = 4 cos θ (1− 2 sin θ) + (1 + 7 cos 2θ) (sec θ + tan θ)
6
√

3 b20 ρ
. (2.26)

The dilaton sourced by the anti-branes is

φ = ρ2
c cos2 θ

2 b20 ρ2 + λρ2
c

cos θ (1 + sin θ)√
3 b40 ρ

. (2.27)

The C2 gauge field is

C2 = ω

sin2 ψ0

(
ψ0 −

1
2 sin 2ψ0

)
dω ∧ dϕ+ 4√

3
λ ρ cos ζ ωdω ∧ dϕ

+ ρ2
c

ρ2 sin θ cos θ ωdω ∧ dϕ+ λρ2
c

A cos ζ
ρ

ωdω ∧ dϕ (2.28)

with

A = 2√
3 b20

(
1 + sin θ

)(
3 sin θ − 1

)
. (2.29)

8In the expressions below, we have used (2.38) to express cotψ0 in term of θ.
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The B2 gauge field is

B2 = − 4√
3
λρ3 sin2 ζ cos ζ cos θ2 dζ ∧ dφ2 −

4√
3
λρ2 sin3 ζ cos θ2 dρ ∧ dφ2

− 2 ρ2
c cos θ sin2 ζ cos θ2 dζ ∧ dφ2

+ λρ2
c B ρ sin3 ζ sin θ2dθ2 ∧ dφ2 (2.30)

with
B = − 2√

3 b20
cos2 θ . (2.31)

Finally, the C4 gauge field is

C4 = −b20 sin θ ρ
2
c

ρ2 dx
0 ∧ dx1 ∧ dx2 ∧ dx3 − 2 b20 ρ2

c sin θ sin2 ζ ω cos θ2 dω ∧ dϕ ∧ dζ ∧ dφ2

+ λρ2
c

C1 cos ζ
ρ

dx0 ∧ dx1 ∧ dx2 ∧ dx3 + λρ2
c C2 ρ sin3 ζ ω sin θ2 dω ∧ dϕ ∧ dθ2 ∧ dφ2

+B2 ∧ (C2)0 (2.32)

with
C0 = ω

sin2 ψ0

(
ψ0 −

1
2 sin 2ψ0

)
dω ∧ dϕ , (2.33)

and

C1 = 2√
3

(
cos θ

(
1− sin θ

)
+ tan θ

(
1 + sin θ

))
,

C2 = − 2√
3

(
cos θ

(
1 + sin θ

)
+ tan θ

(
1 + sin θ

))
.

(2.34)

2.2.2 Recovery of the blackfold equations

In [22], the conditions for the existence of the metastable state were obtained by solving
the effective worldvolume equations of the blackfold approach. For a static configuration at
extremality, these equations are

cotψ0 = 1
b20

√
1 + tan2 θ + 1

b20
tan θ (2.35)

with
tan θ = 1

b20 sin2 ψ0

(
πp

M
−
(
ψ0 −

1
2 sin 2ψ0

))
. (2.36)

Here, ψ0 is the value of the azimuthal angle of the S3 around which the spherical anti-D3-NS5
branes wraps and p is defined as

p = Q3
4π2Q5

(2.37)

with Q3 and Q5 the conserved charges carried by the anti-D3-NS5 branes. As the blackfold
equations form the necessary conditions for the construction of a matched asymptotic
solution, we should be able to recover them from our overlap-zone solution.

In our matched asymptotic construction, we have introduced two independent parame-
ters: ψ0, which is the azimuthal angle of the S3 at the tip of the KS throat that we zoom
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into, and tan θ, which is the ratio of the D3 and NS5 brane charges in the D3-NS5 bound
state. We observe that the overlap-zone SUGRA equations (SUGRA equations to leading
order in λ and ρ2

c) force these two parameters to obey a relationship that is independent of
the correction terms:

cotψ0 = 2√
3

( 1
b20

sec θ + 1
b20

tan θ
)
. (2.38)

This equation is identical to equation (2.35) with the exception of a 2/
√

3 factor in front
of the r.h.s. The origin of this factor can be traced to the fact that we have rescaled the
relevant component of the KS F3 and H3 fluxes by a factor of 2/

√
3 in order to obtain a

simplified leading order in λ description of them.
Recall that equation (2.36) is derived in [22] by, first, computing the conserved charges

Q3 and Q5 from current conservation equations. In particular, the conserved charges are
given by:

Q5 =−
∫
∗j6 =−Cρ2

c cosθ , (2.39)

Q3 =−
∫
∗(J4−∗(∗j6∧C2)) =−ΩWrapped S2×Cρ2

c

(
b20 sinθ+ cosθ

sin2ψ0

(
ψ0−

1
2 sin2ψ0

))
,

(2.40)

where ΩWrapped S2 = 4πM sin2 ψ0 is the surface area of the S2 wrapped by the anti-D3-NS5
branes. The constant C is given by C = Ω3/8πG with Ω3 = 2π2 the surface area of a unit
S3. Then, by introducing the parameter p/M via the identification p = Q3/(4π2Q5), one
obtains equation (2.36).

Before continuing, let us stress that the parameter p/M is finite in the large-M regime.
As Q3 is a total charge that includes the surface area of the spherical NS5 (4πM sin2 ψ0),
the charge ratio p actually scales as M . Therefore, the parameter p/M has its M factors
cancelled and, thus, is finite in the large-M limit. For convenience, we define

p∗ ≡ p/M = Q3
4π2M Q5

=
ΩWrapped S2 ×Q3

4π2MQ5
= 4πM sin2 ψ0Q3

4π2MQ5
= sin2 ψ0Q3

πQ5
(2.41)

with Q3 a charge density over the wrapped 2-sphere. Using p∗, eq. (2.36) becomes:

tan θ = 1
b20 sin2 ψ0

(
πp∗ −

(
ψ0 −

1
2 sin 2ψ0

))
. (2.42)

We can similarly derive eq. (2.42) from the overlap-zone solution. First, we compute
the conserved charges Q3 and Q5 of the overlap-zone solution from the fluxes (using Gauss’
law), and then, parametrise the charge ratio Q3/Q5 using p∗. We obtain:

Q5 = 1
16πG lim

ρ→∞

∫
ζ,θ2,φ2

H3 = −Cρ2
c cos θ , (2.43)

Q3 = 1
16πG lim

ρ→∞

∫
ζ,θ2,φ2,ω,ϕ

F5 = −V ol2 × Cρ2
c

(
b20 sin θ + cos θ

sin2 ψ0

(
ψ0 −

1
2 sin 2ψ0

))
,

(2.44)
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where C is again C = Ω3/8πG with Ω3 = 2π2 the surface area of a unit S3, and V ol2 the
(regularized) volume of an R2. In the above computations, we have used H3 = dB2 with B2
given in (2.30), and F5 = dC4 with C4 given in (2.32). Comparing the Q3 charge computed
here and the one computed in [22], i.e. (2.40), we note that there is a difference in volume
factors —ΩWrapped S2 versus V ol2. This difference is a result of blowing up the wrapped S2

(
√
M sinψ0 →∞). On the other hand, we note that the charge densities Q3 are identical

in both computations. Therefore, defining the parameter p∗ as

p∗ = sin2 ψ0Q3
πQ5

(2.45)

and plugging in Q3 = −Cρ2
c

(
b20 sin θ + cos θ

sin2 ψ0

(
ψ0 − 1

2 sin 2ψ0
))

and Q5 = −Cρ2
c cos θ yields

equation (2.42).
To summarise, we have obtained directly from the overlap-zone solution the “blackfold

equations”

cotψ0 = 2√
3

( 1
b20

sec θ + 1
b20

tan θ
)
, (2.46)

tan θ = 1
b20 sin2 ψ0

(
πp∗ −

(
ψ0 −

1
2 sin 2ψ0

))
. (2.47)

2.3 ODE reduction of the SUGRA equations

2.3.1 Ansatz and resulting ODEs

Drawing inspiration from the overlap-zone solution (2.23)–(2.32), we postulate the following
ansatz for the leading-order matched asymptotic solution at all orders of ρc. For the metric
we set9

ds2
10 = b20D

−1/2
[
− (dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 +D

(
dω2 + ω2dϕ2

)

+H
(
dρ2 + ρ2

(
dζ2 + sin2 ζ

(
dθ2

2 + sin2 θ2dφ
2
2

)) )]
+ 2b20λ ρ cos ζ cotψ0(dω2 + ω2dϕ2)

+ λρ2
c cos ζ

[
gM (ρ)

(
− (dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

)
+ gωω(ρ)

(
dω2 + ω2dϕ2

)

+ gρρ(ρ)
(
dρ2 + ρ2

(
dζ2 + sin2 ζ

(
dθ2

2 + sin2 θ2dφ
2
2

)) )]
(2.48)

with

H = 1 + ρ2
c

b20 ρ
2 , D =

(
sin2 θH−1 + cos2 θ

)−1
. (2.49)

For the dilaton we set
φ = 1

2 ln(HD−1) + λρ2
c cos ζ gΦ(ρ) , (2.50)

9Note that all unknown functions are functions of ρ2
c . The λρ2

c scaling in front is simply for convenience.
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and for the gauge fields

C2 = ω

sin2 ψ0

(
ψ0 −

1
2 sin 2ψ0

)
dω ∧ dϕ+ b20

(
1−DH−1

)
tan θ ωdω ∧ dϕ

+ 4√
3
λ ρ cos ζ ω dω ∧ dϕ+ λρ2

c cos ζ gωϕ(ρ)ωdω ∧ dϕ , (2.51)

B2 = − 4√
3
λρ3 sin2 ζ cos ζ cos θ2 dζ ∧ dφ2 −

4√
3
λρ2 sin3 ζ cos θ2 dρ ∧ dφ2

− 2 ρ2
c cos θ sin2 ζ cos θ2 dζ ∧ dφ2

+ λρ2
c sin3 ζ gθ2φ2(ρ) sin θ2dθ2 ∧ dφ2 , (2.52)

C4 = −b40 (1−H−1) sin θ dx0 ∧ dx1 ∧ dx2 ∧ dx3

− 2b20 ρ2
c sin θ sin2 ζ cos θ2 ω dζ ∧ dφ2 ∧ dω ∧ dϕ

+ λρ2
c cos ζ gx0123(ρ) dx0 ∧ dx1 ∧ dx2 ∧ dx3

+ λρ2
c sin3 ζ gωϕθ2φ2(ρ)ω sin θ2 dω ∧ dϕ ∧ dθ2 ∧ dφ2

+B2 ∧ (C2)0 . (2.53)

We have denoted
(C2)0 = ω

sin2 ψ0

(
ψ0 −

1
2 sin 2ψ0

)
dω ∧ dϕ . (2.54)

The ψ0 and θ parameters are related by the equation:

cotψ0 = 2√
3

( 1
b20

sec θ + 1
b20

tan θ
)
. (2.55)

In this ansatz, the functions gM (ρ), gωω(ρ), gρρ(ρ), gΦ(ρ), gωϕ(ρ), gθ2φ2(ρ), gx0123(ρ),
and gωϕθ2φ2(ρ) are unknown functions of the adapted radial coordinate ρ only. They should
also depend parametrically on the parameters ρc and θ (assuming we have expressed ψ0 in
terms of θ via eq. (2.55)). Inserting the ansatz (2.48)–(2.53) into the SUGRA equations
yields a set of ODEs on the ρ-dependence of the 8 unknown functions. The reduction of
the full set of PDEs to a system of ODEs is encouraging. We emphasise that our ansatz is
at least cohomogeneity-two and depends on ρ and ζ. We have explicitly identified the ζ
dependence and the remaining ρ-dependence is captured by the aforementioned functions.

As a preliminary check of the ansatz, we expand and solve the resulting ODEs order by
order in the ρc expansion to recover the overlap-zone solution in (2.23)–(2.32) and produce
the sub-leading order corrections needed for an overlap-zone solution to higher order in ρc.

Overlap-zone solution to sub-leading orders. To find the overlap-zone solution
beyond the leading order in ρc we insert the expansions

gM (ρ) = a1
ρ

+ b1ρ
2
c

ρ3 + c1ρ
4
c

ρ5 + d1ρ
6
c

ρ7 + . . . , (2.56)

gωω(ρ) = a2
ρ

+ b2ρ
2
c

ρ3 + c2ρ
4
c

ρ5 + d2ρ
6
c

ρ7 + . . . , (2.57)

gρρ(ρ) = a3
ρ

+ b3ρ
2
c

ρ3 + c3ρ
4
c

ρ5 + d3ρ
6
c

ρ7 + . . . , (2.58)
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gΦ(ρ) = a4
ρ

+ b4ρ
2
c

ρ3 + c4ρ
4
c

ρ5 + d4ρ
6
c

ρ7 + . . . , (2.59)

gθ2φ2(ρ) = a5ρ+ b5ρ
2
c

ρ
+ c5ρ

4
c

ρ3 + d5ρ
6
c

ρ5 + . . . , (2.60)

gωϕ(ρ) = a6
ρ

+ b6ρ
2
c

ρ3 + c6ρ
4
c

ρ5 + d6ρ
6
c

ρ7 + . . . , (2.61)

gx0123(ρ) = a7
ρ

+ b7ρ
2
c

ρ3 + c7ρ
4
c

ρ5 + d7ρ
6
c

ρ7 + . . . , (2.62)

gωϕθ2φ2(ρ) = a8ρ+ b8ρ
2
c

ρ
+ c8ρ

4
c

ρ3 + d8ρ
6
c

ρ5 + . . . , (2.63)

into the matched asymptotic ODEs and truncate the resulting equations to some order of
ρc to obtain a set of algebraic equations for the coefficients: a, b, c, etc. In particular, to
recover the overlap-zone solution, we solve for the coefficients ai (i = 1, . . . , 8) by considering
the order ρ2

c algebraic equations. In this manner, we obtain

a1 = sin2 θ(2 cot θ + sec θ + tan θ)√
3 b20

, (2.64)

a2 = sin2 θ(−2 cot θ + sec θ + tan θ)√
3 b20

, (2.65)

a3 = 4 cos θ(1− 2 sin θ) + (1 + 7 cos 2θ)(sec θ + tan θ)
6
√

3 b20
, (2.66)

a4 = cos θ(1 + sin θ)√
3 b40

, (2.67)

a5 = −2√
3 b20

cos2 θ , (2.68)

a6 = 2√
3 b20

(
1 + sin θ

)(
3 sin θ − 1

)
, (2.69)

a7 = 2√
3

(
cos θ

(
1− sin θ

)
+ tan θ

(
1 + sin θ

))
, (2.70)

a8 = − 2√
3

(
cos θ

(
1 + sin θ

)
+ tan θ

(
1 + sin θ

))
. (2.71)

As one can easily check, these results are indeed consistent with the overlap-zone solution
in eqs. (2.23)–(2.32).

With all the ai coefficients determined, we can proceed to consider the order ρ4
c algebraic

equations and solve for the bi coefficients. At this point we notice that the order ρ4
c algebraic

equations can be reduced to only two constraints. This means that 6 of the bi are left
undetermined. We choose to set

b5 = b8 = 0 . (2.72)

This choice is motivated by the observation that in the seed D3-NS5 solution (2.1)–(2.6),
the B2 gauge field (2.5) and the components of the C4 gauge field (2.6) in the angular
directions truncate to order ρ2

c (as opposed to being an infinite sum of ρkc terms). We will
see momentarily that this truncation can be implemented consistently at arbitrarily high
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order (and in the next subsection that this choice leads to a well-behaved solution). At this
point, eqs. (2.72) leave 4 undetermined b-coefficients.

Considering the order-ρ6
c algebraic equations, we can solve for the ci coefficients, which

are expressed in terms of the 4 undetermined bi coefficients. We can choose the latter to set
c5 = c8 = 0. For the higher-order coefficients we can similarly use the allowed freedom to
set the corresponding corrections to the gθ2φ2 and gωϕθ2φ2 unknown functions to zero. We
will implement this observation to motivate a concrete ansatz for the unknown functions
gθ2φ2 and gωϕθ2φ2 in the full solution of the next subsection.

2.4 Solving the matched asymptotic ODEs

The expectation that the unknown functions in the B2 gauge field and the components of
the C4 gauge field along the angular directions truncate to order ρ2

c means that we have
already obtained their full profile in the above perturbative expansion:

gθ2φ2(ρ) = −2 cos2 θ ρ√
3 b20

, gωϕθ2φ2(ρ) = −2 (1 + sin θ) (tan θ + cos θ)√
3

ρ . (2.73)

Inserting these functions into the F̃5 duality equation, we obtain the gx0123(ρ) function
for free

gx0123(ρ) =
2H sec θ

(
ρ2
c +

(
−2b20 ρ2 + ρ2

c

)
sin θ

)
+D

(
ρ2
c sin 2θ + 4b20ρ2 tan θ

)
√

3ρ2
c ρDH2 . (2.74)

Expanding gx0123(ρ) in terms of ρc, we verify that it reproduces the sub-leading order
overlap-zone results (namely, the coefficients a7, b7, c7, d7, etc).

With 3 functions in eqs. (2.73)–(2.74) determined, our task reduces to finding only 5
unknown functions. These remaining unknown functions are: gφ(ρ), gM (ρ), gωω(ρ), gρρ(ρ),
and gωϕ(ρ). To make progress with our system of ODEs, we first note that the B2 equation
and the F̃5 duality equation10 are algebraic equations of the functions gφ(ρ), gM (ρ), gωω(ρ),
gρρ(ρ), and gωϕ(ρ). Using these two equations, one can write 2 unknowns in terms of the
others. In particular, we can express gωϕ(ρ) and gM (ρ) in terms of gφ(ρ), gωω(ρ), and
gρρ(ρ). After the above step, we are left with three unknowns: gφ(ρ), gρρ(ρ) and gωω(ρ).
Naively, we still have a list of ODEs to satisfy. However, by substituting in all the known
corrections functions, we easily see that the gρρ(ρ), gφ(ρ), and gωω(ρ) also share an algebraic
relationship. This allows us to write gρρ(ρ) in terms of gφ(ρ) and gωω(ρ). After a few
trivial simplifications, we are left with only two unknowns functions: gωω(ρ) and gφ(ρ), and
two independent ODEs. With the help of appropriate computer software (Mathematica),
these two second order ODEs can be solved analytically to give gωω(ρ) and gφ(ρ). The
solution has 4 unknown integration constants. However, we note that these 4 integration
constants can be uniquely determined by requiring the absence of all unphysical singularity

10Above, we mentioned already the F̃5 duality condition. Notice that the F̃5 duality condition yields
2 independent equations, one from the dx0 ∧ . . . ∧ dx3 ∧ dρ component and the other from the angular
component dω ∧ dϕ ∧ dρ ∧ dθ2 ∧ dφ2. The determination of gx0123(ρ) arises from the angular component
dω ∧ dϕ ∧ dρ ∧ dθ2 ∧ dφ2 of the duality equation. Here we are interested in the equation that comes from
the dx0 ∧ . . . ∧ dx3 ∧ dρ component.
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at the origin and by imposing that the solution recovers the correct far-zone asymptotics
in the ρc → 0 limit. Finally, as a check, we take all our unknown functions, e.g. gM (ρ),
gωω(ρ), gρρ(ρ), gΦ(ρ), gωϕ(ρ), gθ2φ2(ρ), gx0123(ρ), and gωϕθ2φ2(ρ), substitute them into the
ansatz (2.48)–(2.53), and plug everything into the SUGRA equations (A.4)–(A.9) to verify
that we indeed have a valid solution to first order in λ.

Before writing down the explicit description of the gM (ρ), gωω(ρ), gρρ(ρ), and gωϕ(ρ)
unknown functions, let us mention a computational caveat. As the matched asymptotic
ODEs are rather complicated, analysing them with generic θ causes Mathematica to be
extremely slow. As such, it is computationally convenient to set the parameter θ to specific
values, e.g. θ = π/6. The choice of θ specifies the exact metastable state we are interested
in. For example, by looking at the blackfold equations (2.46)–(2.47), we see that the choice
θ = π/6 corresponds to a metastable state at ψ0 ≈ 0.436351 with p/M ≡ p∗ ≈ 0.0475869.
While computationally a choice like θ = π/6 is convenient, physically such a choice is
not special. If we set θ to any other value, given that such a value of θ corresponds to a
metastable state, we expect everything to work in the same way. The gM (ρ), gωω(ρ), gρρ(ρ),
and gωϕ(ρ) correction functions in the case θ = π/6 are given by:

gφ(ρ) = 3ρ
4b40ρ2 + 3b20ρ2

c

, gM (ρ) = 3ρ
2
√

4b40ρ4 + 7b20ρ2ρ2
c + 3ρ4

c

, (2.75)

gωω(ρ) = 2ρ

ρc
(4b2

0ρ
2

ρ2
c

+ 3
)3/2√

b20ρ
2 + ρ2

c

− 6
√

4b40ρ4

ρ4
c

+ 7b20ρ2

ρ2
c

+ 3 + 9

+
b20ρ

2
(

16b20ρ2 − 8
√

4b40ρ4 + 7b20ρ2ρ2
c + 3ρ4

c + 25ρ2
c

)
ρ4
c

 ,
(2.76)

gρρ(ρ) = 3
4b20 ρ

√
ρ2
c

4b20ρ2 + 3ρ2
c

+ 1 , (2.77)

gωϕ(ρ) = 8
√

3b20ρ3(
2b20ρ2 + 3ρ2

c

) (
4b20ρ2ρc + 3ρ3

c

)2
ρ4

c

(
3− 18

√
b20ρ

2 + ρ2
c

4b20ρ2 + 3ρ2
c

)

− 32b40ρ4

√
b20ρ

2 + ρ2
c

4b20ρ2 + 3ρ2
c

+ 6ρ2
c

√
4b40ρ4 + 7b20ρ2ρ2

c + 3ρ4
c

+ 2b20ρ2
[
ρ2
c

(
1− 24

√
b20ρ

2 + ρ2
c

4b20ρ2 + 3ρ2
c

)
+ 4

√
4b40ρ4 + 7b20ρ2ρ2

c + 3ρ4
c

] .
(2.78)

As one can easily check by taking the leading order terms in the large-ρ expansion,
our unknown functions recreate the overlap-zone results (2.64)–(2.71). We note that all
our unknown functions do not exhibit any unphysical singularities at ρ = 0. They are
either explicitly regular or exhibit a divergence that is already present in the seed D3-NS5
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solution. In particular, the function gρρ(ρ) diverges at ρ = 0, but the ρρ component of the
D3-NS5 solution is already singular at ρ = 0, since it involves the prefactor D−1/2H ∼ 1/ρ2.
Consequently, we can express gρρ(ρ) as gρρ(ρ) = D−1/2H gρ(ρ). Then, one can use gρ(ρ) =(
D−1/2H

)−1
gρρ(ρ) as the unknown function in the ansatz, instead of gρρ(ρ). We observe

that gρ(ρ) is regular at ρ = 0.
In figure 3, we plot the 8 correction functions for the case θ = π/6 (blue curves), θ = π/4

(green curves), and θ = π/3 (yellow curves) with ρc set to 111 in the domain ρ ∈ (0, 10).
The key take away from these plots is that there is no unexpected divergence, all corrections
are indeed regular throughout their domain. In addition, as one can explicitly calculate,
the potentially worrisome 3-form field strength H3, F3 and their squares are all regular.

3 Conclusions & outlook

3.1 Conclusions

In this paper, we constructed a perturbative solution of wrapped five-branes with 3-brane
charge in ten-dimensional type IIB supergravity. More specifically, we constructed the
leading-order matched asymptotic description of a metastable state of NS5 branes in a
warped background with fluxes that is closely related to a specific long-wavelength limit of
the Klebanov-Strassler solution. Our solution interpolates between a near-zone wrapped
D3-NS5 bound state with negative 3-brane charge and a far-zone modification of the KS
background with positive 3-brane charge. The lack of a convenient description of the KS
3-form fluxes in suitable adapted coordinates prevented us from constructing the solution
in the background of the exact long-wavelength limit of the KS solution. As a compromise,
we were able to find a simplifying modification of the long-wavelength expansion of the
KS solution that solves the supergravity equations and allows a straightforward use of
adapted coordinates. In this simplified context, we could address concretely the backreaction
properties of a metastable anti-brane state that shares many of the characteristic features
of the KPV state in the KS background.

We established the following key results:

(a) From the constraint equations of the full supergravity analysis we recovered the
conditions for the existence of the wrapped NS5 metastable state that are already
present in [2] (from a DBI perspective), or in [22] (from the perspective of the blackfold
equations). Our result includes an extra factor of 2/

√
3 that can be traced back to

the modification of the KS asymptotics mentioned above.

(b) We have established the existence of a leading-order perturbative solution that does
not exhibit any unphysical singularities. This is the first example of an explicit
construction of a MAE for multi-charge black branes in a background with non-trivial
geometry and fluxes in supergravity. The construction of a regular solution gives
further evidence in favor of the blackfold conjecture reviewed in the Introduction. In

11The choice ρc = 1 can be understood as a particular choice of scaling of the radial coordinate ρ that
measures distances in units of ρc.
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Figure 3. Plot of the 8 correction functions, namely gM (ρ), gωω(ρ), gρρ(ρ), gΦ(ρ), gωϕ(ρ), gθ2φ2(ρ),
gx0123(ρ), and gωϕθ2φ2(ρ), in the domain ρ ∈ (0, 10) with ρc set to 1 for the case θ = π/6 (blue
curves), θ = π/4 (green curves), and θ = π/3 (yellow curves).
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addition, the close relation of our construction to the physics of the metastable KPV
state is further supportive evidence to the claim that the KPV state is described by
a well-behaved solution in the supergravity regime. In this sense, our results are a
useful addition to the effective worldvolume analysis of ref. [22].

3.2 Outlook

As we mentioned in the previous paragraphs, in this paper, we considered the backreaction
of the polarised state of anti-3 branes in a perturbative modification of the KS background.
It would be very interesting to determine if this modification can be extended to an exact
supergravity solution and to understand its properties in supergravity and holography.
One can also examine analogous questions in M-theory in the context of the CGLP
background [34].

Another interesting direction has to do with the stability properties of the backreacted
metastable solutions. Claims regarding the metastability of the KPV state from the DBI
analysis in [2] and subsequently from the blackfold approach in [22] only refer to the balance
of force felt by the spherical NS5 branes in the azimuthal angle ψ of the S3 at the tip of
the KS throat. They are not complete statements about the stability properties of the state
under generic perturbations. In the context of their numerous applications, particularly
the cosmological string de Sitter construction of ref. [4], it is important to determine
whether these anti-branes are truly metastable under generic perturbations. By studying
the backreacted profile of localised anti-D3 branes at the tip of the KS throat, [9] observed
that a test anti-D3 brane in such a background would feel a repulsive force away from
the localised branes. This tachyonic behaviour is then used to argued that the polarised
state of anti-D3 branes, i.e. the spherical NS5 branes with dissolved anti-D3 brane charge,
has classical instabilities [35]. On the other hand, by studying generic deformations of
the KPV state using the blackfold approach, [10] observed that classical instabilities are
not allowed. The disparity of the two results, in [9, 35] and [10], could be due to the
fact that these works are applicable in complementary regimes of validity. In particular,
while the technique employed in [9] is reliable for studying situations where the spherical
polarised state has a small/finite radius and is located near the North pole, i.e. when
M is small, the results in [10] are reliable when the spherical polarised state has a very
large radius and is located away from the North pole, i.e. when M is large. Furthermore,
it is worth noting that the setup in [10] may not be able to observe directly12 potential
fragmentation instabilities. Therefore, it could be that the instabilities observed in [9]
simply went undetected.

It would be interesting to explore further the stability properties of the perturbative
metastable solution derived in this paper. In particular, one can compute the dynamics

12In certain cases, the leading order blackfold equations can detect the onset of a fragmentation instability.
For example, the onset of the Gregory-Laflamme (GL) instability in black strings [36, 37] and black rings [38]
whose end point is fragmentation [39, 40] can be observed by an analogous blackfold stability analysis [20, 41].
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of a probe anti-brane in such background and see if the tachyonic modes observed in the
description of localised anti-D3 branes persist in the description of spherical NS5 branes.13
It would also be interesting to determine the supergravity solution of the non-extremal
metastable states of wrapped D3-NS5 branes by solving the corresponding MAE to leading
order. Ref. [22] demonstrated (using the blackfold equations) that such configurations
should exist up to a critical value of the non-extremality parameter. In this context one can
also perform a further probe analysis to examine the existence of potential fragmentation
instabilities in the presence of thermal effects. Similar exercises can be performed in the
context of metastable states of anti-branes in M-theory [3] supplementing the results in [29].
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A Notations and conventions

For the benefit of the reader we collect here some of the basic conventions that we use
throughout the paper:

• The signature is mostly plus (−+ + + . . .).

• Greek letters (α, β, . . .) are used for the indices of the ten-dimensional spacetime.
Latin letters (a, b, . . .) are used for the worldvolume indices.

• The Hodge star operator of a p-form on an n-dimensional manifold is defined as

(∗A)µ1...µn−p = 1
p!εν1...νpµ1...µn−pA

ν1...νp (A.1)

with εν1...νpµ1...µn−p the Levi-Civita tensor.

• The type IIB supergravity action is given by

IIIB = 1
16πG

∫
M10

d10x

{
√
−g

[
e−2φ

(
R+ 4∂µφ∂µφ−

1
2 |H3|2

)

−1
2 |F̃1|2 −

1
2 |F̃3|2 −

1
4 |F̃5|2

]

− 1
2C4 ∧H3 ∧ F3 + 1

2B2 ∧ C2 ∧H3 ∧ F3

}
(A.2)

where the gauge invariant field strengths are defined as

F̃q+2 = Fq+2 −H3 ∧ Cq−1 (A.3)
13It is possible that instabilities observed for the polarised sphere in the small/finite radius regime (small

M) do not persist in the large radius regime (large M). An analogous example of this picture can be found
in the study of black rings where an instability (elastic mode instability) is observed for fat rings, i.e. rings
with small curvature radius, but is not observed for thin rings, i.e. rings with large curvature radius, [40, 41].
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with Fq+2 ≡ dCq+1. There is an extra Chern-Simon term in the action (A.2) compared
to the one in most string theory books, e.g. [42], because we use a different convention
of F̃5. The corresponding type IIB SUGRA equations, that we are solving throught
the paper, are:

φ equation:

4e2φ∇µ
(
e−2φ∂µφ

)
+R+ 4∂µφ∂µφ−

1
12(H3)µ1µ2µ3(H3)µ1µ2µ3 = 0 . (A.4)

B2 equation:

d

(
e−2φ ? H3 − ?F̃3 ∧ C0 −

1
2 F̃5 ∧ C2 + 1

2C4 ∧ F3 −
1
2B2 ∧ C2 ∧ F3

)
= 0 . (A.5)

C0 equation:
d(?F1) +H3 ∧ ?F̃3 = 0 . (A.6)

C2 equation:
d
(
?F̃3

)
+H3 ∧ ?F̃5 = 0 . (A.7)

C4 equation:
d
(
?F̃5

)
−H3 ∧ F3 = 0 . (A.8)

gµν equation:

e−2φGµν + 2∇µ
(
e−2φ∂νφ

)
− 2∇ρ

(
e−2φ∂ρφ

)
gµν = Tµν(φ) +Tµν(H3) +Tµν(F1) +Tµν(F3) +Tµν(F5)

(A.9)
with

Tµν(φ) = 4e−2φ
(
∂µφ∂νφ− 1

2g
µν∂λφ∂

λφ

)
, (A.10)

Tµν(H3) = e−2φ

4

(
Hµµ1µ2

3 H ν
3 µ1µ2 −

1
6g

µν |H3|2
)
, (A.11)

Tµν(F1) = 1
2

(
Fµ1 F

ν
1 −

1
2g

µν |F1|2
)
, (A.12)

Tµν(F3) = 1
4

(
F̃µµ1µ2

3 F̃ ν
3 µ1µ2 −

1
6g

µν |F̃3|2
)
, (A.13)

Tµν(F5) = 1
2

1
48

(
F̃µµ1...µ4

5 F̃ ν
5 µ1...µ4 −

1
10g

µν |F̃5|2
)

(A.14)

where |Fp|2 = 1
p!(Fp)µ1...µp(Fp)µ1...µp .

B The extremal D3-NS5 bound state

The type IIB supergravity solution of the extremal D3-NS5 bound state is well known. In
this appendix, we remind readers of the pertinent details and, for later convenience, rewrite
it in adapted coordinates. We also make some convenient gauge and convention choices.
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Extremal D3-NS5 solution in a different convention and coordinates system.
From [10] and references therein, we have the supergravity description of the extremal
D3-NS5 bound state:

ds2 = D−1/2
(
−dt2 +D

(
(dx1)2 + (dx2)2

)
+

5∑
i=3

(dxi)2
)

+HD−1/2
(
dr2 + r2dΩ2

3

)
(B.1)

with

D =
(
sin2 θH−1 + cos2 θ

)−1
, H = 1 + r2

h

r2 (B.2)

where dΩ2
3 is the standard S3 metric dΩ2

3 = dψ2 + sin2 ψ
(
dω2 + sin2 ωdϕ2). The dilaton

field is given by

e2φ = HD−1 , (B.3)

and the gauge fields are given by

C2 = − tan θ(H−1D − 1) dx1 ∧ dx2 , (B.4)
B2 = −2 r2

h cos θ ϕ sin2 ψ sinω dψ ∧ dω , (B.5)

C4 = (H−1 − 1) sin θ dt ∧ dx3 ∧ dx4 ∧ dx5 + r2

r2
h cos2 θ

B2 ∧ C2 . (B.6)

This solution is expressed in the convention where

F̃5 = F5 +B2 ∧ F3 (B.7)

with Fq+2 ≡ dCq+1. Note that this is not the convention we will follow. Our convention
will be

F̃5 = F5 −H3 ∧ C2 . (B.8)

More details about how the C4 gauge field in the two conventions are related will be
presented momentarily.

Converting to adapted coordinates. Firstly, let us transform the above description
of the D3-NS5 bound state to coordinates adapted to the geometry of our problem. In our
case, this involves expressing the x1, x2 directions in spherical coordinates together with
some trivial scaling and renaming. In particular, we do:

t→ b0 x0 , x3 → b0 x
3 , x4 → b0 x

4 , x5 → b0 x
5 , r → b0 ρ , (B.9)

x1 → b0 ω cosϕ , x2 → b0 ω sinϕ , ψ → ζ , ω → θ2 , ϕ→ φ2 (B.10)
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with b0 a constant given by b20 ≈ 0.93266.14 For convenience, we shall also rename the
extremal horizon radius rh as ρc. Altogether, the D3-NS5 metric in adapted coordinates is

ds2 = b20D
−1/2

(
−(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 +D (dω2 + ω2dϕ2)

+H
(
dρ2 + ρ2

(
dζ2 + sin2 ζ

(
dθ2 + sin2 θ2dφ

2
2

)) ))
(B.11)

with

H = 1 + ρ2
c

b20 ρ
2 , D =

(
sin2 θH−1 + cos2 θ

)−1
. (B.12)

The dilaton field is
e2φ = HD−1 , (B.13)

and the gauge fields are

C2 = b20

(
1−DH−1

)
tan θ ωdω ∧ dϕ , (B.14)

B2 = −2 ρ2
c cos θ φ2 sin2 ζ sin θ2 dζ ∧ dθ2 , (B.15)

C4 = b40(H−1 − 1) sin θ dx0 ∧ dx1 ∧ dx2 ∧ dx3 + b20 ρ
2

ρ2
c cos2 θ

B2 ∧ C2 . (B.16)

Relating different conventions of F̃5. Different conventions for F̃5 translate to different
conventions for C4. They are related by redefining C4 as

(C4)new = (C4)old + ξB2 ∧ C2 (B.17)

with a constant ξ. In particular, we can move from the F̃5 = F5 +B2 ∧ F3 convention to
the F̃5 = F5 −H3 ∧ C2 convention by a shift of C4 with ξ = 1:

(F̃5)old = d(C4)old +B2 ∧ F3 = d(C4)new −H3 ∧ C2 = (F̃5)new (B.18)

It should be clear that the value of F̃5 is unchanged under the shifting of conventions. They
are really just equivalent ways of collecting the gauge fields.

In our convention of F̃5 = F5 −H3 ∧ C2, the C4 gauge field is

(C4)new = b40(H−1 − 1) sin θ dx0 ∧ dx1 ∧ dx2 ∧ dx3 +
(

b20 ρ
2

ρ2
c cos2 θ

+ 1
)
B2 ∧ C2 . (B.19)

14At this point, the b0 scaling looks arbitrary. Later on when we discuss the KS throat, we will write KS
metric with the constant factor b2

0 ≡
22/3√a0

3√3
in front. The b0 factors here will make things more convenient

when doing the MAE.
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Some gauge choices. With retrospect, let us make some gauge choices that will make
things simpler in subsequent manipulations. Let us add to the C2 gauge field a pure
gauge term:

ω

sin2 ψ0

(
ψ0 −

1
2 sin 2ψ0

)
dω ∧ dϕ (B.20)

where ψ0 is a constant. Note that, in our convention of F̃5 = dC4 −H3 ∧ C2, a pure gauge
shift in the C2 field also induces a gauge shift in the C4 field. As we require the gauge
invariant field strength F̃5 to be gauge invariant, the shift in C4 is given by

ω

sin2 ψ0

(
ψ0 −

1
2 sin 2ψ0

)
dω ∧ dϕ ∧B2 . (B.21)

Let us also express the B2 field in a new gauge:

B2 = −2 ρ2
c cos θ sin2 ζ cos θ2 dζ ∧ dφ2 . (B.22)

We can easily check that this expression of B2 and (B.15) are equivalent as they give the
same H3 = dB2.

Extremal D3-NS5 solution in adapted coordinates and the right convention.
With all the massaging done, we come to our description of the extremal D3-NS5 solution
in adapted coordinates. The metric takes the form

ds2 = b20D
−1/2

(
−(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 +D (dω2 + ω2dϕ2)

+H
(
dρ2 + ρ2

(
dζ2 + sin2 ζ

(
dθ2

2 + sin2 θ2dφ
2
2

)) ))
(B.23)

with

H = 1 + ρ2
c

b20 ρ
2 , D =

(
sin2 θH−1 + cos2 θ

)−1
. (B.24)

The dilaton field is
e2φ = HD−1 , (B.25)

and the gauge fields are

C2 = ω

sin2ψ0

(
ψ0−

1
2 sin2ψ0

)
dω∧dϕ+b20

(
1−DH−1

)
tanθωdω∧dϕ, (B.26)

B2 =−2ρ2
c cosθ sin2 ζ cosθ2 dζ∧dφ2 , (B.27)

C4 =−b40 (1−H−1) sinθ dx0∧dx1∧dx2∧dx3−2b20 ρ2
c sinθ sin2 ζ cosθ2ωdζ∧dφ2∧dω∧dϕ

+ ω

sin2ψ0

(
ψ0−

1
2 sin2ψ0

)
dω∧dϕ∧B2 . (B.28)

b0 is a constant given by b20 ≈ 0.93266. In the above description, the coordinates xi, ω,
and ρ have dimensions of length, the coordinates ϕ, ζ, θ2, and φ2 are angles and, are, thus,
dimensionless. The only dimension-full parameter is ρc, which has units of length. The rest,
e.g., ψ0 and θ, are dimensionless.

As a check, one can take the above description of the D3-NS5 bound state and plug it
into the SUGRA equations (A.4)–(A.9) to verify that, indeed, it is a solution.
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C The Klebanov-Strassler throat

In this appendix, we discuss the Klebanov-Strassler (KS) throat in 10-dimensional type
IIB supergravity. The throat involves a 6-dimensional deformed conifold, a 4-dimensional
Minkowski space, and non-trial F3, F5, H3 fluxes which in turn induce warping effects on
the flat space and the conifold. For further information on the KS throat, we refer readers
to the original paper [7] or the review [43].

C.1 The 6-dimensional deformed conifold

In this section, we review the parametrisation of the 6-dimensional deformed conifold. The
conifold is defined by the equation

4∑
i=1

z2
i = ε2 (C.1)

where zi are complex numbers and ε characterises the degree of deformation, i.e. if ε = 0,
we have a normal cone. In order to obtain a parametrisation of the space, a clever trick is
to define the matrix

W =
(
z3 + iz4 z1 − iz2
z1 + iz2 −z3 + iz4

)
. (C.2)

Then, the defining equation becomes

detW = −ε2 . (C.3)

It is easy to see that

W0 =
(

0 εeτ/2

εe−τ/2 0

)
(C.4)

is one possible solution. Furthermore, if we define two SU(2) matrices Lj with j = 1, 2 then

W = L1.W0.L
†
2 (C.5)

also satisfies the equation detW = −ε2. As argued in [44], the metric of the deformed
conifold is then

ds2
6 = Ftr

(
dW †dW

)
+ G|tr(W †dW )|2 (C.6)

where

F(τ) = (sinh 2τ − 2τ)1/3

2× 21/3 × ε2/3 sinh τ
, (C.7)

G(τ) = 2− 3 coth2 τ + 3τ(cosh τ/ sinh3 τ)
12× ε8/3(cosh τ sinh τ − τ)2/3 . (C.8)

Euler angles parametrisation of the deformed conifold. One can parametrise the
Lj matrices using Euler angles as

Lj =
(

cos θj

2 e
i(ψj+φj)/2 − sin θj

2 e
−i(ψj−φj)/2

sin θj

2 e
i(ψj−φj)/2 cos θj

2 e
−i(ψj+φj)/2

)
(C.9)
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with (ψj , φj) range from 0 to 2π and θ ranges from 0 to π. Plugging the parametrised
expression of W = L1.W0.L

†
2 into (C.6) yields the metric of the deformed conifold written in

angular coordinates ψj , θj , φj . As the coordinates ψ1 and ψ2 only appear in W as ψ1 + ψ2,
we can define a new coordinate ψ = ψ1 + ψ2. The deformed conifold metric in these
coordinates is

ds2
6 = 1

2ε
4/3K(τ)

[
1

3K3(τ)(dτ2 + (g5)2) + cosh2
(τ

2
)

[(g3)2 + (g4)2] + sinh2
(τ

2
)

[(g1)2 + (g2)2]
]

(C.10)
where the function K(τ) is given by

K(τ) = (sinh 2τ − 2τ)1/3

21/3 sinh τ
, (C.11)

and the gi forms are given by:

g1 = − sin θ1dφ1 − cosψ sin θ2dφ2 + sinψdθ2√
2

, (C.12)

g2 = dθ1 − sinψ sin θ2dφ2 − cosψdθ2√
2

, (C.13)

g3 = − sin θ1dφ1 + cosψ sin θ2dφ2 − sinψdθ2√
2

, (C.14)

g4 = dθ1 + sinψ sin θ2dφ2 + cosψdθ2√
2

, (C.15)

g5 = dψ + cos θ1dφ1 + cos θ2dφ2 . (C.16)

Let us note further that, as argued in [44], the metric

ds2 = 1
2(g5)2 + (g4)2 + (g3)2 (C.17)

and
ds2 = (g1)2 + (g2)2 (C.18)

are the metric of respectively the standard S3 sphere with radius
√

2 and the standard S2

sphere with radius
√

2. By expanding (C.10) in τ , we note that the S3 described by the
combination ds2 = 1

2(g5)2 + (g4)2 + (g3)2 is the S3 at the tip and the S2 described by the
combination ds2 = (g1)2 + (g2)2 is the S2 away from the tip.

Spherical parametrisation of the deformed conifold. The Euler parametrisation of
the deformed conifold described above is the parametrisation found in the original paper by
Klebanov and Strassler [7]. However, for our purposes, it is more convenient to parametrise
the conifold using spherical coordinates.

In the Euler angles parametrisation of W , the coordinates ψ1 and ψ2 only appear as
ψ1 + ψ2. So, instead of relabelling the final result, we can parametrise L2 with only two
angles (θ2, φ2):

L2 =
(

cos θ2
2 e

iφ2/2 − sin θ2
2 e

iφ2/2

sin θ2
2 e
−iφ2/2 cos θ2

2 e
−iφ2/2

)
. (C.19)
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Previously, we inserted this L2, and an L1 that is parametrised as (C.9), intoW = L1W0L
†
2 to

obtain a parametrised expression forW . Now, before plugging in the explicit parametrisation
for L1 and L2, we note that W0 can be written as

W0 = εf(τ)σ1 + εg(τ)σ2 (C.20)

where

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 1
−1 0

)
, (C.21)

and

f(τ) = cos(i τ/2) , g(τ) = −i sin(i τ/2) . (C.22)

Thus, we can write

W = L1.
(
εf(τ)σ1 + εg(τ)σ2

)
.L†2 (C.23)

= εf(τ)L+ εg(τ)L.L̂ (C.24)

where L ≡ L1.σ1.L
†
2 and L̂ ≡ L2.(σ1)−1.σ2.L

†
2.

As L is a unitary complex matrix with detL = −1, we can parametrise L using spherical
coordinates as

L =
(
− sinψ sinω cosϕ+ i sinψ sinω sinϕ cosψ − i sinψ cosω

cosψ + i sinψ cosω sinψ sinω cosϕ+ i sinψ sinω sinϕ

)
. (C.25)

On the other hand, the parametrisation of L̂ comes directly from the parametrisation of L2:

L̂ =
(
− cos θ2 −eiφ2 sin θ2

−e−iφ2 sin θ2 cos θ2

)
. (C.26)

Inserting the spherically parametrised W into (C.6), we obtain the metric of the deformed
conifold in spherical coordinates. As the description of the deformed conifold in spherical
coordinates is complicated and not particularly illuminating, we will not write down its full
expression here.

C.2 The KS metric in adapted coordinates

The original description of the KS throat is expressed in Euler angles coordinates: x0, x1,
x2, x3, τ , ψ, θ1, φ1, θ2, φ2. For our purposes, it proves useful to express the KS metric
in spherical angles coordinates: x0, x1, x2, x3, r, ψ, ω, ϕ, θ2, φ2. These new coordinates
are obtained by a trivial rescaling of the original Minkowski and radial coordinates, and
a spherical parametrisation of the 6-dimensional deformed conifold. In particular, the
coordinates x0, x1, x2, x3, and τ of the Euler angles coordinates system can be transformed
to the coordinates x0, x1, x2, x3, and r of the spherical angles coordinates system via
the scaling

xi →
√

2√a0M

31/6 × ε2/3
xi , τ → 2 r , (C.27)

where i runs from 0 to 3.
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As discussed in [7], the KS metric is given by

ds2
10 = h−1/2(τ)

(
−(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

)
+ h1/2(τ)ds2

6 (C.28)

where ds2
6 is the metric of the deformed conifold and the h(τ) is the warping effect induced

by the non-trivial fluxes:

h(τ) = M2 22/3ε−8/3
∫ ∞
τ

dx
x coth x− 1

sinh2 x
(sinh 2x− 2x)1/3 (C.29)

= M222/3ε−8/3 (a0 + a2τ
2 + a4τ

4) +O(τ6) (C.30)

with a0 ≈ 0.71805, a2 = −(3× 61/3)−1, and a4 = (18× 61/3)−1.
Applying to (C.28) the coordinate scaling (C.27) and substituting into ds2

6 the descrip-
tion of the conifold metric in spherical coordinates, we arrive at the expression of the KS
metric in our desired coordinates system. Again, as such a metric is complicated, we shall
not write it down explicitly here. However, let us note that if we subdue terms of order r2

or higher in all but the dΩ2
2 directions, we can write the KS metric as:

gµνdx
µdxν = Mb20

(
− (dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 + dr2

+ dψ2 + sin2 ψ
(
dω2 + sin2 ωdϕ2

)
+ r2(dθ2

2 + sin2 θ2dφ
2
2)
)

+O(r2) (C.31)

where b20 = 22/3√a0
31/3 ≈ 0.93266. This metric is particularly useful when we care only about

the physics at the tip of the KS throat, e.g. [22].

D The Klebanov-Strassler throat in the large-M limit

In this appendix, we discuss a long-wavelength approximate description for the KS throat
in the large-M limit. In particular, we shall derive a modified leading order in λ ≡ 1/

√
M

description of the KS throat. The modified description ignores cross-angles components in
the 3-form fluxes and the metric but retains the validity of the supergravity equations to
appropriate order of λ.

D.1 The KS metric in the large-M limit

As discussed in section 2.1.2 in the main text, to make sense of the KS solution in the
large-M limit, one has to introduce the coordinates transformations:

x̃i = λ−1xi , r̃ = λ−1r ,

ψ̃ = λ−1 (ψ − ψ0) , ω̃ = λ−1 sinψ0 ω , (D.1)

where i runs from 0 to 3. Applying the above transformations to the description of the
KS metric in adapted coordinates, and truncating to appropriate order of λ, we arrive
at an approximate description for the KS metric in the large-M limit. For MAE, it is
most convenient to define an adapted radial coordinate that controls the normal distance
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from our branes. As our D3-NS5 branes source is located at ψ̃ = 0, r̃ = 0, such a radial
coordinate is given by

ρ̃2 = r̃2 + ψ̃2 . (D.2)

Note that ψ̃ ∈ (−∞,∞). Thus, instead of having r̃, ψ̃, we can parametrise the KS throat
with ρ̃, ζ̃:

r̃ = ρ̃ sin ζ̃ , ψ̃ = ρ̃ cos ζ̃ . (D.3)

The purpose of the tildes on the coordinates is to differentiate between the original
coordinates and the λ-scaled ones. However, as we will only work with λ-scaled coordinates
from here onwards, let us subdue all the tildes to simplify our syntax. To order λ2, the KS
metric in adapted coordinates is

ds2
10 =

22/3
(
−(dx0)2 +(dx1)2 +(dx2)2 +(dx3)2

)(
a0−2a2λ

2ρ2 sin2(ζ)
)

3√3√a0

−
22/3(dρ)2

(
−5a0λ

2ρ2 sin2(ζ)−10a2λ
2ρ2 sin2(ζ)−a0λ

2ρ2 cos(2ζ) sin2(ζ)+2a0λ
2ρ2 cos2(ζ) cos(2θ2) sin2(ζ)−5a0

)
5 3√3√a0

−
22/3ρ2(dζ)2

(
2a0λ

2ρ2 cos(2θ2) sin4(ζ)−5a0λ
2ρ2 sin2(ζ)−10a2λ

2ρ2 sin2(ζ)+a0λ
2ρ2 cos(2ζ) sin2(ζ)−5a0

)
5 3√3√a0

−
22/3ρ2 sin2(ζ)

(
d(θ2)2 +d(φ2)2 sin2(θ2)

)(
(a0−30a2)λ2ρ2 sin2(ζ)−15a0

)
15 3√3√a0

+ 22/3

5 3√3√a0
(dω)2

(
−5a0λ

2ρ2 cos2(ζ)+5a0λ
2ρ2 cot2(ψ0) cos2(ζ)+10a0λρcot(ψ0) cos(ζ)

+7a0λ
2ρ2 sin2(ζ)+10a2λ

2ρ2 sin2(ζ)+a0λ
2ρ2 cos(2θ2) sin2(ζ)

+2a0λ
2ρ2 cos(2ϕ−2φ2−2ψ0) sin2(ζ) sin2(θ2)+5a0

)

− 22/3

15 3√3√a0
ω2(dϕ)2

(
15a0λ

2ρ2 cos2(ζ)−15a0λ
2ρ2 cot2(ψ0) cos2(ζ)

−30a0λρcot(ψ0) cos(ζ)+5a0λ
2ω2 csc2(ψ0)−21a0λ

2ρ2 sin2(ζ)−30a2λ
2ρ2 sin2(ζ)

−3a0λ
2ρ2 cos(2θ2) sin2(ζ)+6a0λ

2ρ2 cos(2ϕ−2φ2−2ψ0) sin2(ζ) sin2(θ2)−15a0

)

+d(ζ)

[
− 8 22/3√a0λ

2ρ3 cos(ζ)d(ρ) sin2(θ2) sin3(ζ)
5 3√3

+ 2 22/3√a0λ
2ρ3ω cos(ϕ−φ2) csc(ψ0)d(θ2) sin3(ζ)

3√3

+ 4 22/3√a0λ
2ρ3ω cos(ϕ−φ2−ψ0)d(ϕ) sin(2θ2) sin3(ζ)

5 3√3

+ 2 22/3√a0λρ
3d(φ2) sin2(θ2)(λω cot(θ2) csc(ψ0) sin(ϕ−φ2)−1) sin3(ζ)

3√3

+ 4 22/3√a0λ
2ρ3d(ω) sin(2θ2) sin(ϕ−φ2−ψ0) sin3(ζ)

5 3√3

]

−

22/3√a0λρ
2d(φ2)d(ω) sin2(ζ)

×
(

2λω cot(ψ0) sin2(θ2)+λρcos(ζ) csc(ψ0) sin(2θ2) sin(ϕ−φ2−2ψ0)+sin(2θ2) sin(ϕ−φ2−ψ0)
)

3√3
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+d(ρ)

[
− 4 22/3√a0λ

2ρ2ω cos(ζ) cos(ϕ−φ2−ψ0)d(ϕ) sin(2θ2) sin2(ζ)
5 3√3

− 2 22/3√a0λρ
2 cos(ζ)d(φ2) sin(θ2)(λω cos(θ2) csc(ψ0) sin(ϕ−φ2)−sin(θ2)) sin2(ζ)

3√3

− 4 22/3√a0λ
2ρ2 cos(ζ)d(ω) sin(2θ2) sin(ϕ−φ2−ψ0) sin2(ζ)

5 3√3

]

+d(θ2)

[
− 2 22/3√a0λ

2ρ2ω cos(ζ) cos(ϕ−φ2) csc(ψ0)d(ρ) sin2(ζ)
3√3

− 2 22/3√a0λρ
2(cos(ϕ−φ2−ψ0)+λρcos(ζ) cos(ϕ−φ2−2ψ0) csc(ψ0))d(ω) sin2(ζ)

3√3

+ 2 22/3√a0λρ
2ωd(ϕ)(λρcos(ζ) csc(ψ0) sin(ϕ−φ2−2ψ0)+sin(ϕ−φ2−ψ0)) sin2(ζ)

3√3

]

+d(ϕ)

[
− 4 22/3√a0λ

2ρ2ωd(ω) sin2(θ2) sin(2ϕ−2φ2−2ψ0) sin2(ζ)
5 3√3

− 22/3√a0
3√3

λρ2ω sin(ψ0) sin2(ζ)d(φ2)

(
λρcos(ζ) cos(ϕ−φ2) cos(2ψ0) sin(2θ2) csc2(ψ0)

+2λω sin2(θ2) csc(ψ0)+cos(ϕ−φ2) cot(ψ0) sin(2θ2)

+2λρcos(ζ) cot(ψ0) sin(2θ2) sin(ϕ−φ2)+sin(2θ2) sin(ϕ−φ2)

)]
+O

(
λ3) . (D.4)

Note that, in the strict limit λ→ 0, the KS metric becomes flat:

ds2
10 = 22/3√a0

3√3

[
− (dt)2 + (dx1)2 + (dx2)2 + (dx3)2 + dω2 + ω2dϕ2

× dρ2 + ρ2
(
dζ2 + sin2 ζ

(
dθ2

2 + sin2 θ2dφ
2
2

)) ]
+O (λ) . (D.5)

D.2 The KS fluxes in the large-M limit

From [7], we can write the F̃5 flux in adapted coordinates:

F̃5 = − 8M3√2√a0 l(r)
31/6ε10/3 h2(r)K2(r)

dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ dr

+ 2M2 l(r) sin2 ψ sinω sin θ2 dψ ∧ dω ∧ dϕ ∧ θ2 ∧ dφ2 (D.6)

with

l(r) = 2r coth 2r − 1
4 sinh2 2r

(sinh 4r − 4r) , (D.7)

h(r) = M2 22/3ε−8/3
∫ ∞

2r
dx
x coth x− 1

sinh2 x
(sinh 2x− 2x)1/3 , (D.8)

K(r) = (sinh 4r − 4r)1/3

21/3 sinh 2r
. (D.9)
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Applying the coordinate transformations (D.1) and the radial transformation (D.3), and
truncating to the appropriate order of λ, we arrive at an approximate description of the F̃5
flux in the large-M limit. In particular, the F̃5 flux to order λ2 is

F̃5 =−16
9 λ

2ρ sin ζ
[
ρcosζ dt∧dx1∧dx2∧dx3∧dζ+sin ζ dt∧dx1∧dx2∧dx3∧dρ

+ρ2 sin2 ζ ω sinθ2
(
ρ sin ζ dω∧dϕ∧dζ∧dθ2∧dφ2−cosζ dω∧dϕ∧dρ∧dθ2∧dφ2

)]

+O
(
λ3
)
. (D.10)

As we cannot easily write down the description of the H3 and F3 fluxes in adapted
coordinates, it is trickier to obtain their approximate description in the large-M limit.
However, let us make a few comments. Firstly, as the KS metric becomes Minkowski in the
strict λ→ 0 limit (D.5), we expect all fluxes to disappear in this limit. Secondly, though
we don’t have the full description of the H3 and F3 fluxes in the adapted coordinates, we
know that they have the components:15

H3 = −2M tanh2 r

(1
2 + r

sinh 2r

)
sin θ2 dr ∧ dθ2 ∧ dφ2 + . . . (D.11)

F3 = 2M
(1

2 + r

sinh 2r

)
sin2 ψ sinω dψ ∧ dω ∧ dϕ+ . . . (D.12)

where the . . . refers to components of the fluxes that involve cross terms between the angles
of the S3 at the tip of the KS throat and the S2 away from the tip. Thus, we know that
the leading order in λ descriptions of the H3 and F3 fluxes contain:

H3 = −2λ r2 sin θ2 dr ∧ dθ2 ∧ dφ2 + . . . , (D.13)
F3 = 2λω dψ ∧ dω ∧ dϕ+ . . . , (D.14)

where . . . refers to other terms that can already appear at order λ.
As we expect the cross-angles components to contribute to the metric equations (via the

energy-momentum tensor) and the dilaton equation (via the square |H3|2), simply taking
the components described in (D.13)–(D.14) as our far-zone H3 and F3 fluxes will not yield
a valid SUGRA solution. However, we note that if we scale the (D.13)–(D.14) components
by a factor of 2/

√
3, we can reproduce without the cross-angles components the H3 and

F3 energy-momentum tensors to leading order in λ. By taking these scaled components as
the modified H3 and F3 fluxes, we guarantee that their leading order contribution to the
metric/dilaton equations is unchanged. Together with the order-λ2 KS metric (D.4) and
F̃5 flux (D.10), one can check that we indeed have a valid SUGRA solution to the relevant
order in λ. In particular, the H3 and F3 flux profile:

H3 = − 4√
3
λ r2 sin θ2 dr ∧ dθ2 ∧ dφ2 +O(λ2) , (D.15)

F3 = 4√
3
λω dψ ∧ dω ∧ dϕ+O(λ2) (D.16)

satisfies the dilaton/metric equations to order λ2 and the flux equations to order λ.
15Here, the coordinates are the original coordinates and not the λ-scaled ones.
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D.3 The KS throat to leading order in the large-M limit

Let us now collect the modified description of the KS throat to leading order in λ.
The leading, first-order contribution to the KS metric can easily be obtained by

truncating away the order λ2 terms from the expression in (D.4). We further observe
that truncating away also the cross-angles components of the metric at first order in λ

doesn’t affect the SUGRA equations to the relevant order in λ. As a result, to simplify the
problem, we will implement this extra truncation as an additional feature of the modified
KS solution in the far-zone region. In particular, we will assume that the metric of our
far-zone asymptotics is:

ds2
10 = 22/3√a0

3√3

(
−(dx0)2 +(dx1)2 +(dx2)2 +(dx3)2 +(1+2λρcosζ cotψ0) (dω2 +ω2dϕ2)

×dρ2 +ρ2
(
dζ2 +sin2 ζ(dθ2

2 +sin2 θ2dφ
2
2)
))

. (D.17)

The fluxes of the far-zone asymptotics are the modified first order description of the KS H3,
F3, and F5 fluxes presented in the previous subsection. These can be described via the B2,
C2, and C4 gauge fields:

B2 = − 4√
3
λρ3 sin2 ζ cos ζ cos θ2 dζ ∧ dφ2 −

4√
3
λρ2 sin3 ζ cos θ2 dρ ∧ dφ2 , (D.18)

C2 = 4√
3
λ ρ cos ζ ω dω ∧ dϕ+ ω

sin2 ψ0

(
ψ0 −

1
2 sin 2ψ0

)
dω ∧ dϕ , (D.19)

C4 = − 4√
3
λρ3 sin2 ζ cos ζ cos θ2

ω

sin2 ψ0

(
ψ0 −

1
2 sin 2ψ0

)
dζ ∧ dφ2 ∧ dω ∧ dϕ

− 4√
3
λρ2 sin3 ζ cos θ2

ω

sin2 ψ0

(
ψ0 −

1
2 sin 2ψ0

)
dρ ∧ dφ2 ∧ dω ∧ dϕ . (D.20)

Through direct substitution, one can verify that the SUGRA profile (D.17)–(D.20) is a
valid SUGRA solution to linear order in λ.

E Derivation of the overlap-zone solution

In this appendix, we derive the leading overlap-zone description of the matched asymptotic
solution, i.e., a SUGRA solution to leading order in ρ2

c and λ where ρc is the charge radius
of the extremal D3-NS5 bound state.

E.1 The far-zone description of the D3-NS5 bound state

The order ρ2
c far-zone description of the D3-NS5 bound state can be easily obtained from

its full description in (2.1)–(2.6). The metric is

gµνdx
µdxν = b20

(
1− ρ

2
c sin2 θ

2b20ρ2

)(
−(dx0)2+(dx1)2+(dx2)2+(dx3)2

)
+b20

(
1+ ρ2

c sin2 θ

2b20ρ2 +2λρcosζ cotψ0

)(
dω2+ω2dϕ2

)
+b20

(
1+ ρ2

c

b20ρ
2−

ρ2
c sin2 θ

2b20ρ2

)(
dρ2+ρ2

(
dζ2+sin2 ζ

(
dθ2

2 +sin2 θ2 dφ
2
2

)))
. (E.1)
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The dilaton is
φ = ρ2

c cos2 θ

2 b20ρ2 , (E.2)

and the non-trivial gauge fields are

C2 = ω

sin2 ψ0

(
ψ0 −

1
2 sin 2ψ0

)
dω ∧ dϕ+ ρ2

c

ρ2 sin θ cos θ ωdω ∧ dϕ , (E.3)

B2 = −2 ρ2
c cos θ sin2 ζ cos θ2 dζ ∧ dφ2 , (E.4)

C4 = −b20 sin θ ρ
2
c

ρ2 dx
0 ∧ dx1 ∧ dx2 ∧ dx3

− 2 ρ2
c cos θ

sin2 ψ0

(
ψ0 −

1
2 sin 2ψ0

)
sin2 ζ ω cos θ2 dω ∧ dϕ ∧ dζ ∧ dφ2

− 2 b20 ρ2
c sin θ sin2 ζ ω cos θ2 dω ∧ dϕ ∧ dζ ∧ dφ2 . (E.5)

E.2 Overlap-zone C2

The overlap-zone C2 gauge field can be decomposed as

C2 = (C2)0 + (C2)λ + (C2)ρ2
c

+ (C2)λρ2
c

(E.6)

where

(C2)0 = ω

sin2 ψ0

(
ψ0 −

1
2 sin 2ψ0

)
dω ∧ dϕ , (E.7)

(C2)λ = 2λ ρ cos ζ ωdω ∧ dϕ , (E.8)

(C2)ρ2
c

= ρ2
c

ρ2 sin θ cos θ ωdω ∧ dϕ , (E.9)

(C2)λρ2
c

= λρ2
c

(
Correction terms

)
. (E.10)

By requiring that the overlap-zone C2 satisfies the relevant SUGRA equation to leading
order in λ and ρ2

c , we can obtain the λρ2
c correction terms in the parenthesis of the r.h.s. of

eq. (E.10).
The C2 SUGRA equation is given by

d
(
?F̃3

)
+H3 ∧ ?F̃5 = 0 . (E.11)

As C0 = 0, we have:
d
(
? F3

)
+H3 ∧ F̃5 = 0 . (E.12)

To order λρ2
c , we can write ?F3 as

?F3 = ?
(
(F3)0 + (F3)ρ2

c
+ (F3)λ + (F3)λρ2

c

)
(E.13)

= ?λρ2
c
(F3)0 + ?λ(F3)ρ2

c
+ ?ρ2

c
(F3)λ + ?flat(F3)λρ2

c
(E.14)

where the subscript denotes the order we care about. For example, ?λ means the Hodge
dual is performed with respect to the λ corrected (KS) metric. With (F3)0 = d(C2)0 = 0,
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(H3)0 = 0, (F̃5)0 = 0, and (F̃5)λ = 0, the C2 SUGRA equation to leading order in λ and ρ2
c

can be written as

d
(
?λ (F3)ρ2

c
+ ?ρ2

c
(F3)λ + ?flat(F3)λρ2

c

)
+ (H3)λ ∧ (F̃5)ρ2

c
= 0 (E.15)

with

(H3)λ =− 4√
3
λρ2 sin2 ζ sinθ2

(
ρcosζ dζ∧dθ2∧dφ2 +sin ζ dρ∧dθ2∧dφ2

)
, (E.16)

(F̃5)ρ2
c

=−2b20 ρ2
c sinθ ω sin2 ζ sinθ2 dζ∧dθ2∧dϕ∧dφ2∧dω

+ 2b20 ρ2
c sinθ
ρ3 dx0∧dx1∧dx2∧dx3∧dρ , (E.17)

d
(
?λ (F3)ρ2

c

)
= 4b40λρ2

c sin2 ζ cosζ sinθ cosθ sinθ2 cotψ0 dx
0∧dx1∧dx2∧

dx3∧dζ∧dθ2∧dρ∧dφ2 , (E.18)

and

d
(
?ρ2

c
(F3)λ

)
= −8 b40√

3
λρ2

c sin2 ζ cos ζ cos(2θ) sin θ2 dx
0 ∧ dx1 ∧ dx2∧

dx3 ∧ dζ ∧ dθ2 ∧ dρ ∧ dφ2 . (E.19)

Bringing all known expressions to the r.h.s., the C2 SUGRA equation becomes

d
(
?flat

(
d (C)λρ2

c

))
=−d

(
?λ (F3)ρ2

c

)
−d
(
?ρ2

c
(F3)λ

)
−(H3)λ∧(F̃5)ρ2

c
(E.20)

=−Aλρ2
c sin2 ζ cosζ sinθ2 dx

0∧dx1∧dx2∧dx3∧dζ∧dθ2∧dρ∧dφ2
(E.21)

with the constant A given by

A = 4
3b

2
0

(
−2
√

3 + sin θ
(
3 b20 cos θ cotψ0 + 2

√
3 (1 + 2 sin θ)

))
. (E.22)

Equation (E.21) can be solved easily. In particular, plugging in the ansatz

(C2)λρ2
c

= λρ2
c cωϕ(ρ, ζ)ωdω ∧ dϕ (E.23)

yields the differential equation

A sin ζ cos ζ + b40 ρ
(
2 cos ζc(0,1)

ωϕ + sin ζ
(
c(0,2)
ωϕ + ρ

(
3c(1,0)
ωϕ + ρc(2,0)

ωϕ

)))
= 0 . (E.24)

Solving this differential equation yields cωϕ:

cωϕ(ρ, ζ) = A
4 b40

ζ + 1/2 sin 2ζ
ρ sin ζ + c1ζ + c2

ρ sin ζ (E.25)

where c1 and c2 are integration constants.
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Regularity conditions & integration constants. The regularity conditions of the C2
gauge field at ζ = 0 and ζ = π fix the integration constants c1 and c2. In particular,
we obtain:

c1 = − A4 b40
, c2 = 0 . (E.26)

This yields the final expression

cωϕ(ρ, ζ) = A cos ζ
4 b40 ρ

. (E.27)

E.3 Overlap-zone B2

Let us consider the overlap-zone B2 SUGRA equation:

d

(
e−2φ ? H3 − ?F̃3 ∧ C0 −

1
2 F̃5 ∧ C2 + 1

2C4 ∧ F3 −
1
2B2 ∧ C2 ∧ F3

)
= 0 . (E.28)

As C0 vanishes, the equation becomes

d

(
Eφ ? H3 −

1
2 (dC4 −H3 ∧ C2) ∧ C2 + 1

2C4 ∧ F3 −
1
2B2 ∧ C2 ∧ F3

)
= 0 (E.29)

where, for convenience, we have defined Eφ ≡ e−2φ. We can decompose Eφ as

Eφ = 1 + (Eφ)ρ2
c

+ (Eφ)λρ2
c

(E.30)

and B2 as
B2 = (B2)λ + (B2)ρ2

c
+ (B2)λρ2

c
. (E.31)

Analogous to the C2 case, bringing all the known expressions to the r.h.s., we find that
the B2 SUGRA equation to leading order in λ and ρ2

c becomes:

d
(
?flat

(
d
(
(B2)λρ2

c

)))
= −B λρ

2
c ω sin ζ
ρ2 dx0 ∧ . . . ∧ dx3 ∧ dω ∧ dϕ ∧ dρ ∧ dζ (E.32)

with the constant B given by

B = 4b40 cos θ cotψ0 −
8b20

(
1 + cos2 θ + sin θ

)
√

3
. (E.33)

Using the ansatz

(B2)λρ2
c

= λρ2
c bθ2φ2(ρ, ζ) sin θ2dθ2 ∧ dφ2 , (E.34)

we can easily solve equation (E.32) for the bθ2φ2(ρ, ζ) unknown function:

bθ2φ2(ρ, ζ) = ρ

[
c3 cos ζ + c4

((
ζ − π

2

)
cos ζ − sin ζ

)
+ B̂ sin3 ζ

4 b40

]
(E.35)

where c3 and c4 are integration constants.
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Regularity conditions & integration constants. Interestingly, the integration con-
stants c3 and c4 of the overlap-zone B2 gauge field are fixed by regularity of the next
order (i.e. order λρ4

c) overlap-zone solution. In particular, we can solve for the next order
overlap-zone solution while still leaving the integration constants c3 and c4 in the description
of (B2)λρ2

c
. We then see that regularity conditions for the overlap-zone profile at order λρ4

c

forces the integration constants c3 and c4 to vanish. Thus, we have the final expression for
the bθ2φ2(ρ, ζ) unknown function:

bθ2φ2(ρ, ζ) = B̂ ρ sin3 ζ

4 b40
. (E.36)

E.4 Overlap-zone C4

The C4 SUGRA equation to leading order in λ and ρ2
c is trivial. Instead, the determination

of the overlap-zone C4 gauge field is obtained through the duality condition F̃5 = ?F̃5.
Note that, as F̃5 = dC4 − H3 ∧ C2 and (C2)0 6= 0, the duality condition F̃5 = ?F̃5
contains both (B2)λρ2

c
and (C4)λρ2

c
correction terms. However, we can write (C4)λρ2

c
=

(Ĉ4)λρ2
c

+ (B2)λρ2
c
∧ (C2)0 and try to find (Ĉ4)λρ2

c
instead of (C4)λρ2

c
. By doing this, we

can automatically get rid of the (B2)λρ2
c
corrections in the duality equation, making our

computations simpler.
Analogous to the previous analysis, by explicitly decomposing the fluxes and Hodge

star operations into λ, ρ2
c , and λρ2

c terms, we can express the duality condition to leading
order λ and ρ2

c as a set of differential equations. By choosing a suitable ansatz for the C4
corrections terms, we can solve these equations to obtain (C4)λρ2

c
:

(C4)λρ2
c

= λρ2
c

C1 cos ζ
ρ

dx0 ∧ dx1 ∧ dx2 ∧ dx3 + λρ2
c C2 ρ sin3 ζ ω sin θ2 dω ∧ dϕ ∧ dθ2 ∧ dφ2

+ (B2)λρ2
c
∧ (C2)0 (E.37)

where

C1 = 2√
3

cos θ
(
1− sin θ

)
+ b20 cotψ0 sin θ , (E.38)

C2 = − 2√
3

cos θ
(
1 + sin θ

)
− b20 cotψ0 sin θ . (E.39)

Of course, the general solution obtained from solving the duality condition contains some
integration constants. However, these integration constants are fixed by requiring that the
C4 gauge field is regular at ζ = 0 and ζ = π.

E.5 Overlap-zone dilaton and metric

Contrary to our approach for the fluxes, where it is more convenient to postpone the
specification of an ansatz, for the analysis of the metric and dilaton, it is easier to set an
ansatz right away. Based on the symmetries of our overlap-zone profile, a simple choice for
the ansatz is as follows:

φ = ρ2
c cos2 θ

2 b20ρ2 + λρ2
c Φ(ρ, ζ) , (E.40)
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and

gµνdx
µdxν = b20

(
1− ρ2

c sin2 θ

2 b20ρ2

)(
− (dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

)
+ b20

(
1 + ρ2

c sin2 θ

2 b20ρ2 + 2λρ cos ζ cotψ0

)(
dω2 + ω2dϕ2

)
+ b20

(
1 + ρ2

c

b20ρ
2 −

ρ2
c sin2 θ

2 b20ρ2

)(
dρ2 + ρ2

(
dζ2 + sin2 ζ

(
dθ2

2 + sin2 θ2 dφ
2
2

)))

+ λρ2
c

[
fM (ρ, ζ)

(
− (dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

)
+ fωω(ρ, ζ)

(
dω2 + ω2dϕ2

)
+ fρρ(ρ, ζ)

(
dρ2 + ρ2

(
dζ2 + sin2 ζ

(
dθ2

2 + sin2 θ2dφ
2
2

)) )]
. (E.41)

Here, Φ(ρ, ζ), fM (ρ, ζ), fωω(ρ, ζ), and fρρ(ρ, ζ) are unknown correction functions. Our
task is to find an expression for these functions such that the dilaton and metric satisfy
the relevant SUGRA equations to leading order in λ and ρ2

c . Plugging (E.40)–(E.41) into
the dilaton and metric SUGRA equations (A.4) and (A.9), we obtain a set of coupled
partial differential equations of the unknown functions Φ, fM , fωω, and fρρ. By noting that
the ρ dependence of these unknown functions can be determined purely from dimensional
analysis, we can solve these differential equations and obtain regular expressions for the
unknown functions:

Φ(ρ, ζ) = cos2 θ cotψ0
2 b20

cos ζ
ρ

, (E.42)

fM (ρ, ζ) =
(

1
2 cotψ0 sin2 θ + sin 2θ√

3 b20

)
cos ζ
ρ

, (E.43)

fωω(ρ, ζ) =
(

1
2 cotψ0 sin2 θ − sin 2θ√

3 b20

)
cos ζ
ρ

, (E.44)

fρρ(ρ, ζ) =
(

1
12
(
1 + 7 cos 2θ

)
cotψ0 + 2 cos θ (1− 2 sin θ)

3
√

3 b20

)
cos ζ
ρ

. (E.45)

We note that the overlap-zone dilaton and metric SUGRA equations enforce a relation-
ship between the constants ψ0 and θ:

cotψ0 = 2√
3

( 1
b20

sec θ + 1
b20

tan θ
)
. (E.46)

This equation is independent of the correction terms.
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E.6 Summary of the overlap-zone solution

We can now collect the overlap-zone solution. The metric is

gµνdx
µdxν = b20

(
1− ρ

2
c sin2 θ

2b20ρ2

)(
−(dx0)2+(dx1)2+(dx2)2+(dx3)2

)
+b20

(
1+ ρ2

c sin2 θ

2b20ρ2 +2λρcosζ cotψ0

)(
dω2+ω2dϕ2

)
+b20

(
1+ ρ2

c

b20ρ
2−

ρ2
c sin2 θ

2b20ρ2

)(
dρ2+ρ2

(
dζ2+sin2 ζ

(
dθ2

2 +sin2 θ2 dφ
2
2

)))

+λρ2
c

[
fM (ρ,ζ)

(
−(dx0)2+(dx1)2+(dx2)2+(dx3)2

)
+fωω(ρ,ζ)

(
dω2+ω2dϕ2

)

+fρρ(ρ,ζ)
(
dρ2+ρ2

(
dζ2+sin2 ζ

(
dθ2

2 +sin2 θ2dφ
2
2

)))]
, (E.47)

with

fM (ρ, ζ) =
(

1
2 cotψ0 sin2 θ + sin 2θ√

3 b20

)
cos ζ
ρ

, (E.48)

fωω(ρ, ζ) =
(

1
2 cotψ0 sin2 θ − sin 2θ√

3 b20

)
cos ζ
ρ

, (E.49)

fρρ(ρ, ζ) =
(

1
12
(
1 + 7 cos 2θ

)
cotψ0 + 2 cos θ (1− 2 sin θ)

3
√

3 b20

)
cos ζ
ρ

. (E.50)

The dilaton is
φ = ρ2

c cos2 θ

2 b20ρ2 + λρ2
c Φ(ρ, ζ) (E.51)

with
Φ(ρ, ζ) = cos2 θ cotψ0

2 b20
cos ζ
ρ

. (E.52)

The C2 gauge field is

C2 = ω

sin2 ψ0

(
ψ0 −

1
2 sin 2ψ0

)
dω ∧ dϕ+ 2λ ρ cos ζ ωdω ∧ dϕ

+ ρ2
c

ρ2 sin θ cos θ ωdω ∧ dϕ+ λρ2
c

A cos ζ
4 b40 ρ

ωdω ∧ dϕ (E.53)

with
A = 4

3b
2
0

(
−2
√

3 + sin θ
(
3 b20 cos θ cotψ0 + 2

√
3 (1 + 2 sin θ)

))
. (E.54)

The B2 gauge field is given by

B2 = − 4√
3
λρ3 sin2 ζ cos ζ cos θ2 dζ ∧ dφ2 −

4√
3
λρ2 sin3 ζ cos θ2 dρ ∧ dφ2

− 2 ρ2
c cos θ sin2 ζ cos θ2 dζ ∧ dφ2

+ λρ2
c

B ρ sin3 ζ

4 b40
sin θ2dθ2 ∧ dφ2 (E.55)

– 41 –



J
H
E
P
0
6
(
2
0
2
2
)
0
5
5

with
B = 4b40 cos θ cotψ0 −

8b20
(
1 + cos2 θ + sin θ

)
√

3
. (E.56)

The C4 gauge field is given by

C4 = −b20 sin θ ρ
2
c

ρ2 dx
0 ∧ dx1 ∧ dx2 ∧ dx3 − 2 b20 ρ2

c sin θ sin2 ζ ω cos θ2 dω ∧ dϕ ∧ dζ ∧ dφ2

+ λρ2
c

C1 cos ζ
ρ

dx0 ∧ dx1 ∧ dx2 ∧ dx3 + λρ2
c C2 ρ sin3 ζ ω sin θ2 dω ∧ dϕ ∧ dθ2 ∧ dφ2

+B2 ∧ (C2)0 (E.57)

with
(C2)0 = ω

sin2 ψ0

(
ψ0 −

1
2 sin 2ψ0

)
dω ∧ dϕ , (E.58)

and

C1 = 2√
3

cos θ
(
1− sin θ

)
+ b20 cotψ0 sin θ , (E.59)

C2 = − 2√
3

cos θ
(
1 + sin θ

)
− b20 cotψ0 sin θ . (E.60)

The constants ψ0 and θ are related by

cotψ0 = 2√
3

( 1
b20

sec θ + 1
b20

tan θ
)
. (E.61)

Through direct substitution, one can easily check that the above profile satisfies all SUGRA
equations to leading order in λ and ρ2

c .
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