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COMPUTING ZERO-DIMENSIONAL

TROPICAL VARIETIES

VIA PROJECTIONS

Paul Görlach, Yue Ren, and Leon Zhang

Abstract. We present an algorithm for computing zero-dimensional
tropical varieties using projections. Our main tools are fast monomial
transforms of triangular sets. Given a Gröbner basis, we prove that our
algorithm requires only a polynomial number of arithmetic operations,
and, for ideals in shape position, we show that its timings compare well
against univariate factorization and backsubstitution. We conclude that
the complexity of computing positive-dimensional tropical varieties via
a traversal of the Gröbner complex is dominated by the complexity of
the Gröbner walk.
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1. Introduction

Tropical varieties are piecewise linear structures which arise from
polynomial equations. They appear naturally in many areas of
mathematics and beyond, such as geometry (Mikhalkin 2005), com-
binatorics (Ardila & Klivans 2006; Feichtner & Sturmfels 2005),
and optimisation (Allamigeon et al. 2018), as well as phylogenet-
ics (Lin et al. 2018; Speyer & Sturmfels 2004), celestial mechanics
(Hampton & Jensen 2011; Hampton & Moeckel 2006), and auction
theory (Baldwin & Klemperer 2019; Tran & Yu 2019). Wherever
they emerge, tropical varieties often provide a fresh insight into
existing computational problems, which is why efficient algorithms
and optimised implementations are of great importance.

Birkhäuser



5 Page 2 of 33 Görlach, Ren & Zhang cc

Computing tropical varieties of polynomial ideals is a funda-
mentally important yet algorithmically challenging task, requiring
sophisticated techniques from computational algebra and convex
geometry. Currently, Gfan (Jensen 2017) and Singular (Decker
et al. 2019) are the only two programs capable of computing gen-
eral tropical varieties. Both programs rely on a traversal of the
Gröbner complex as initially suggested by Bogart, Jensen, Speyer,
Sturmfels, and Thomas (Bogart et al. 2007), and for both programs
the initial bottleneck had been the computation of the so-called
tropical links. Experiments suggest that this bottleneck was re-
solved with the recent development of new algorithms (Chan 2013;
Hofmann & Ren 2018). However, the new approaches still rely
on computations that are known to be very hard, Chan (2013) on
elimination and Hofmann & Ren (2018) on root approximation to
an unknown precision.

In this paper, we study the computation of zero-dimensional
tropical varieties, which is the key computational ingredient in
Hofmann & Ren (2018). The computation uses triangular decom-
position, which was also used in Hofmann & Ren (2018), and skew
projections, which is the key conceptual idea behind Chan (2013).
The triangular decomposition splits the ideal into parts on which
transformations can be efficiently applied. We show that the algo-
rithm requires a polynomial amount of field operations if we start
with a Gröbner basis. In particular, we argue that in the compu-
tation of general tropical varieties, the calculation of the so-called
tropical links becomes computationally insignificant compared to
the Gröbner walk required to traverse the tropical variety.

Note that projections are a well-studied approach in polyno-
mial systems solving; see Sturmfels (2002), Dickenstein & Emiris
(2005) for an overview on various techniques. Our approach can
be regarded as a non-Archimedean analogue of that strategy, since
tropical varieties can be regarded as zeroth-order approximation of
the solutions in the topology induced by the valuation.

Our paper is organised as follows: In Section 3, we introduce a
special class of monomial transformations and study how they act
on triangular sets. In Section 4, we explain our main algorithm for
reconstructing zero-dimensional tropical varieties of triangular sets
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from their projections, while Section 5 analyses the complexity of
our algorithm. Section 6 touches upon some technical details of
the implementation for the special case that the ideal is in shape
position, and Section 7 compares the performance of our algorithm
against a Magma implementation using univariate factorization
and backsubstitution.

Implementations of all our algorithms can be found in the Sin-

gular library tropicalProjection.lib. Together with the data
for the timings, it is available at https://software.mis.mpg.de, and
will also be made publicly available as part of the official Singular
distribution.

2. Background

For the sake of notation, we briefly recall some basic notions of
tropical algebraic geometry and computational algebra that are
of immediate relevance to us. In tropical geometry, our notation
closely follows that of Maclagan & Sturmfels (2015).

Convention 2.1. For the remainder of the article, let K be a
field with non-trivial valuation ν : K∗ → R and fix a multivariate
polynomial ring K[x] := K[x1, . . . , xn] as well as a multivariate
Laurent polynomial ring K[x±] := K[x±

1 , . . . , x±
n ].

Moreover, given a Laurent polynomial ideal I ⊆ K[x±], we
call a finite subset G ⊆ I a Gröbner basis with respect to a
monomial ordering ≺ on K[x] if G consists of polynomials and
forms a Gröbner basis of the polynomial ideal I∩K[x] with respect
to ≺ in the conventional sense, see for example Greuel & Pfister
(2002, §1.6). Finally, a lexicographical Gröbner basis will be
a Gröbner basis with respect to the lexicographical ordering ≺lex

with xn ≺lex · · · ≺lex x1.

While there are many equivalent definitions for tropical vari-
eties, the following definition in terms of coordinate-wise valua-
tions suffices for the purposes of this article. Also note that while
tropical varieties can be defined with multiplicities, we are only
interested in them set-theoretically.

https://software.mis.mpg.de
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Definition 2.2. Let I ⊆ K[x±] be a Laurent polynomial ideal.
The tropical variety Trop(I) ⊆ R

n is given by

Trop(I)

:= cl
({

(ν̂al(p1), . . . , ν̂
al(pn)) ∈ R

n | (p1, . . . , pn) ∈ V
̂Kal∗(I)

})
,

where K̂al denotes the algebraic closure of the completion of K, so
that ν extends uniquely to a valuation ν̂al on K̂al, V

̂Kal∗(I) denotes

the very affine variety of I in the algebraic torus (K̂al∗)n, and cl(·)
is the closure in the Euclidean topology.

In the univariate case, the tropical variety of an ideal I = 〈f〉 ⊆
K[x±

1 ] simply consists of the negated slopes of the Newton polygon
of f (Neukirch 1999, Proposition II.6.3). Our approach for com-
puting zero-dimensional tropical varieties of multivariate ideals is
based on computing sufficiently many projections to the univariate
case.

For it, we will require the notion of triangular decomposition, a
common concept for decomposing ideal into easier parts. If given
a Gröbner basis, its complexity is polynomial time in the number
of variables and the degree of the ideal (Lazard 1992). In practice,
it is fast enough to be a standard tool in some polynomial solvers
such as in Maple (Bernardin et al. 1996-2020).

Definition 2.3. A triangular set T ⊆ K[x] is a finite set of
polynomials, say T = {gn, . . . , g1}, where each gi ∈ K[xi, . . . , xn]
is of the form gi = xdi

i −fi for some di ∈ N>0 and fi ∈ K[xi, . . . , xn]
with xj-degree less than dj for j ≥ i. Note that this makes any
triangular set a reduced lexicographical Gröbner basis.

Proposition 2.4 (Greuel & Pfister 2002, Corollary 4.7.4). Let
J ⊆ K[x] be a zero-dimensional polynomial ideal. Then, there
are triangular sets T1, . . . , Tk ⊆ K[x] such that

√
J =

⋂
T∈T

√
〈T 〉 and 〈Ti〉 + 〈Tj〉 = K[x] for i �= j.
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Since each zero-dimensional ideal can be efficiently decomposed
into triangular sets, we will focus on ideals that are generated by
triangular sets from now onwards. Moreover, we will put special
emphasis on ideals in shape position.

Definition 2.5. A zero-dimensional ideal I ⊆ K[x±] is in shape
position if it is generated by a triangular set T = {gn, . . . , g1}
with di = 1 for i < n, i.e. gi = xi − fi for a univariate polynomial
fi ∈ K[xn] for i < n.

3. Unitriangular transformations on triangular
sets

In this section, we consider special transformations on K[x±] which
arise from unitriangular transformations on the lattice of Laurent
monomials and describe how they operate on triangular sets.

Definition 3.1. For any u = (u2, . . . , un) ∈ Z
n−1
≥0 , we define a

ring automorphism

ϕu : K[x±] → K[x±], xi �→
{

x1 · x−u2
2 · · ·x−un

n if i = 1,

xi if i �= 1,

and a linear projection

πu : Rn � R, (w1, . . . , wn) �→ w1 +
n∑

i=2

uiwi.

We call such a ϕu a slim (unitriangular) transformation.

The reason we restrict ourselves to these simple transformations
is because they allow us to compute a wide range of projections
while being easy to use.

Lemma 3.2. Let ϕu be a slim transformation. Then,

πu(Trop(I)) = Trop(ϕu(I) ∩ K[x±
� ]).
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Proof. We may assume that K is algebraically closed. Note
that the ring automorphism ϕu induces a torus automorphism
fu : (K∗)n ∼−→ (K∗)n with f−1

u (V (I)) = V (ϕu(I)), which in turn in-
duces a linear transformation hu : Rn ∼−→ R

n mapping Trop(ϕu(I))
to Trop(I):

K[x±] K[x±]

induces

(K∗)n (K∗)n

R
n

R
n

ϕu

fu

hu

ν ν

x1

∏
i>1 x

−ui
i x1

(z1, . . . , zn) (z1 · ∏
i>1 z

−ui
i , z2, . . . , zn)

(w1, . . . , wn) (w1 − ∑
i>1 uiwi, w2, . . . , wn)

Hence, with p1 : Rn � R denoting the projection onto the first
coordinate:

Trop(ϕu(I) ∩ K[x±
1 ]) = p1(Trop(ϕu(I)))

= (p1 ◦ h−1
u )(Trop(I)) = πu(Trop(I)). �

Algorithm 3.3. (Unitriangular transformations of triangular
sets)

Input: (T, u), where

◦ T is a triangular generating set of a zero-dimensional ideal
I ⊆ K[x±],

◦ ϕu is a slim transformation.

Output: T ′, a triangular set generating ϕu(I).

1: Suppose g1 := xd1
1 − ∑d1

i=1 pix
d1−i
1 ∈ T with pi ∈ K[x2, . . . , xn].

2: for i = 1, . . . , d1 do
3: p̂i := reduce

(
(xu2

2 · · ·xun
n )ipi, T \ {g1}

)
.

4: return T ′ := T \ {g1} ∪ {xd1
1 − ∑d1

i=1 p̂ix
d1−i
1 }.
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Correctness of Algorithm 3.3. Only the last element in
the triangular set

T =
{

xdn
n − fn, . . . , xd2

2 − f2, x
d1
1 −

d1∑
i=1

pix
d1−i
1

︸ ︷︷ ︸
=g1

}

depends on x1. Therefore, by replacing it with

ϕu(g1) = (q−1x1)
d1 −

d1∑
i=1

pi(q
−1x1)

d1−i,

where q := xu2
2 . . . xun

n ∈ K[x], we get generators of the transformed
ideal ϕu(I) ⊆ K[x±]. Note that multiplying this element with
the monomial qd1 (which is invertible in K[x±]), we pass to the
polynomial generating set of ϕu(I) given by

T \ {g1} ∪ {xd1
1 −

d1∑
i=1

piq
ixd1−i

1 }.

This is a non-reduced Grøbner basis with respect to the lexico-
graphical ordering ≺lex, and replacing piq

i by p̂i, we reduce it mod-
ulo those generators not depending on x1 to obtain the triangular
set T ′. �

One special case that we would like to highlight separately is
when an ideal I is in shape position. For ideals in shape posi-
tion, Algorithm 3.3 simplifies drastically and performs quite well
in practice, see the timings in Section 7. However, the complexity
in Section 5 remains unchanged.

Remark 3.4. (Unitriangular transformations of ideals in shape
position) If I is in shape position, it is generated by a triangular
set T of the following form for fn, . . . , f1 ∈ K[xn]:

T = {xd
n − fn, xn−1 − fn−1, . . . , x2 − f2, x1 − f1}.

This has two main implications:
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(i) It simplifies Algorithm 3.3. The triangular set generating
ϕu(I) is of the form T ′ = {xd

n−fn, . . . , x2−f2, x1−f ′
1}, where

f ′
1 ∈ K[xn] is the univariate polynomial with deg(f ′

1) < d and

(3.5)

f ′
1 ≡

(
x−un

n ·
n−1∏
i=2

f−ui
i

)−1

· f1

≡
(
xun

n ·
n−1∏
i=2

fui
i

)
· f1 (mod xd

n − fn).

In particular, ϕu(I) will be in shape position.

(ii) It allows us to use a wider range of transformations beyond
those considered in Definition 3.1. To be precise, replacing
f1 with f� in Equation (3.5) we may use any transformation
of the form

ϕu : K[x±] → K[x±], xi �→
{

x−u1
1 · · ·x1

� · · ·x−un
n if i = �,

xi if i �= �,

with ui ∈ N.

4. Computing zero-dimensional tropical
varieties via projections

In this section, we assemble our algorithm for computing Trop(I)
for a zero-dimensional ideal I ⊆ K[x±] generated by a triangular
set. This is done in two stages, see Figure 4.1: In the first stage,
we project Trop(I) onto all coordinate axes of Rn. In the second
stage, we iteratively glue the coordinate projections together by
projecting Trop(I) onto more lines.

For the sake of simplicity, all algorithms contain some elements
of ambiguity to minimise the level of technical detail. To see how
these ambiguities are resolved in the actual implementation, see
Section 6.

The following algorithm merges several small projections into
a single large projection. For clarity, when given a finite subset
A ⊆ {1, . . . , n}, we use R

A to denote the linear subspace of R
n
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Figure 4.1: Zero-dimensional tropical varieties via projections.

spanned by the unit vectors indexed by A and pA to denote the
projection R

n � R
A. For w ∈ R

n and I ⊆ K[x±], we denote
wA := pA(w) ∈ R

A and Trop(I)A := pA(Trop(I)) ⊆ R
A.

Algorithm 4.1 (gluing projections).

Input: (T, Trop(I)A1 , . . . , Trop(I)Ak
), where

◦ T is a triangular generating set of a zero-dimensional ideal
I ⊆ K[x±],

◦ A1, . . . , Ak ⊆ {1, . . . , n} are non-empty sets with 1 ∈ A :=
A1 ∪ . . . ∪ Ak.

Output: Trop(I)A ⊆ R
A.

1: Construct the candidate set

C :=
{

w ∈ R
A

∣∣∣ wAi
∈ Trop(I)Ai

for i = 1, . . . , k
}

.

2: Pick a u ∈ Z
n−1
≥0 with ui = 0 for i /∈ A such that the following

map is injective:

πu|C : C → R, (wi)i∈A �→ w1 +
∑

i∈A\{1}

uiwi.

3: Using Algorithm 3.3, transform T into a triangular set T ′ gen-
erating ϕu(I).

4: Compute the eliminant μ ∈ K[x1], i.e. a generator of 〈T ′〉 ∩
K[x1] and read off Trop(μ)⊆R from its Newton polygon.
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5: return {w ∈ C | πu(w) ∈ Trop(μ)}.

Correctness of Algorithm 4.1. First, we show the exis-
tence of a slim transformation ϕu required for Line 2 such that
πu is injective on the candidate set C. Extending the definition of
the linear projection πv from v ∈ N

n−1 in Definition 3.1 to arbitrary
v ∈ R

n−1, it suffices to show that the set

Z := {v ∈ R
n−1
≥0 | πv|T is injective} ⊆ R

n−1

contains an integer point. By the definition of πv, we see that

Z = R
n−1
≥0 \

⋃
w �=w′∈T

Hw−w′ ,

where Hw−w′ :=
{

v ∈ R
n−1

∣∣∣
n∑

i=2

(wi − w′
i)vi = w′

1 − w1

}
.

This describes Z as the complement of an affine hyperplane ar-
rangement in R

B inside the positive orthant. Therefore, Z must
contain an integer point.

Next, note that the candidate set C contains Trop(I)A by con-
struction, so the injectivity of πu|T implies

Trop(I)A = {w ∈ T | πu(w) ∈ πu(Trop(I))}.

Hence, the correctness of the output follows from the equality
πu(Trop(I)) = Trop(μ), which holds by Lemma 3.2. �

The next algorithm computes Trop(I) by projecting it onto
all coordinate axes and gluing the projections together via Algo-
rithm 4.1.

Algorithm 4.2 (tropical variety via projections).

Input: T , a triangular generating set of a zero-dimensional ideal
I ⊆ K[x±].

Output: Trop(I) ⊆ R
n

1: for k ∈ {1, . . . , n} do
2: Compute the eliminant μk ∈ K[xk], i.e. a generator of

〈T 〉∩K[xk], and read off the projection Trop(I){k} =Trop(μk).
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3: Initialise a set of computed projections

W :={Trop(I){1}, . . . , Trop(I){n}}.

4: while W �� Trop(I){1,...,n} do
5: Pick projections Trop(I)A1 , . . . , Trop(I)Ak

∈ W to be merged
together such that 1 ∈ A and Trop(I)A /∈ W for A :=
A1 ∪ · · · ∪ Ak.

6: Using Algorithm 4.1, compute Trop(I)A.
7: W := W ∪ {Trop(I)A}.
8: return Trop(I){1,...,n}.

Correctness and Termination of Algorithm 4.2. In ev-
ery iteration of the while loop, the set W grows in size. As
there are only finitely many sets A ⊆ {1, . . . , n}, we will com-
pute Trop(I) = Trop(I){1,...,n} after finitely many iterations. �

Example 4.3. Consider K = Q equipped with the 2-adic valua-
tion and the ideal

I = 〈 2x4
3 + x3

3 + x2
3 + x3 + 2︸ ︷︷ ︸

=:g3

, x2− 2x3︸︷︷︸
=:f2

, x1− 4x3︸︷︷︸
=:f1

〉 ⊆ K[x±
1 , x±

2 , x±
3 ].

This ideal is in shape position by Lemma 2.5. From the Newton
polygon of g3, see Figure 4.2 (left), it is not hard to see that (for the
sake of clarity, points with multiplicity 2 are highlighted in bold):

Trop(I){3} = Trop(g3) = {−1,0, 1},

Trop(I){2} = {λ + 1 | λ ∈ Trop(I){3}} = {0,1, 2},

Trop(I){1} = {λ + 2 | λ ∈ Trop(I){3}} = {1,2, 3}.

To merge Trop(I){1} and Trop(I){2}, we consider the following pro-
jection that is injective on the candidate set C := Trop(I){1} ×
Trop(I){2}:

π(3,0) : C −→ R, (w1, w2) �−→ w1 + 3w2.
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The corresponding slim transformation ϕ(3,0) sends x1 to x1x
−3
2 and

hence ϕ(3,0)(I) is generated by {g3, x2 −f2, x1x
−3
2 −4x3}, which Al-

gorithm 3.3 transforms into the following lexicographical Gröbner
basis:

ϕ(3,0)(I) =
〈
g3, x2 − f2, x1 − (−16x3

3 − 16x2
3 − 16x3 − 32︸ ︷︷ ︸

=:f ′
1

)
〉
.

The eliminant in K[x1] of ϕ(3,0)(I) can be computed as the resultant

Resx3(g3, x1 − f ′
1)

= 8x4
1 + 752x3

1 + 32256x2
1 + 770048x1 + 8388608.

Figure 4.2 (middle) shows the Newton polygon of the resultant,
from which we see:

Trop(Resx3(g3, x1 − f ′
1)) = {9,5, 1}.

Thus,

Trop(I){1,2} = {(3, 2), (2,1), (1, 0)}.

To merge Trop(I){1,2} and Trop(I){3}, we consider the following
projection that is injective on the candidate set C := Trop(I){1,2}×
Trop(I){3}:

π(0,3) : C −→ R, (w1, w2, w3) �−→ w1 + 3w3.

The corresponding slim transformation ϕ(0,3) sends x1 to x1x
−3
3 and

hence ϕ(0,3)(I) is generated by {g3, x2 −f2, x1x
−3
3 −4x3}, which Al-

gorithm 3.3 transforms into the following lexicographical Gröbner
basis:

ϕ(0,3)(I) =
〈
g3, x2 − f2, x1 − (−2x3

3 − 2x2
3 − 2x3 − 4︸ ︷︷ ︸

=:f ′′
1

)
〉
.

Another resultant computation yields the eliminant in K[x1] of
ϕ(0,3)(I):

Resx3(g3, x1 − f ′′
1 ) = 8x4

1 + 94x3
1 + 504x2

1 + 1504x1 + 2048.
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Figure 4.2 (right) shows the Newton polygon of the resultant, from
which we see:

Trop(Resx3(g3, x1 − f ′′
1 )) = {6,2,−2},

and thus

Trop(I) = Trop(I){1,2,3} = {(3, 2, 1), (2,1,0), (1, 0,−1)}.

♦

Figure 4.2: Newton polygons of g3 and the resultants in Exam-
ple 4.3. Below each vertex is its height, above each edge is its
slope.

Remark 4.4 (Eliminants for ideals in shape position). If an ideal
I is in shape position, say generated by {xd

n −fn, . . . , x1 −f1} with
fi ∈ K[xn], then computing eliminants such as in Line 4 of Al-
gorithm 4.1 and Line 2 of Algorithm 4.2 becomes much simpler.
To compute the eliminant of I in K[x�], it suffices to consider the
two polynomials xd

n − fn, x� − f� ∈ K[x�, xn] instead of the entire
generating set.

5. Complexity

In this section, we bound the complexity for computing a zero-
dimensional tropical variety Trop(I) ⊆ R

n of an ideal generated
by a given triangular generating set using Algorithm 4.2 with the
sequential strategy. The sequential strategy sequentially com-
putes the projections Trop(I){1}, Trop(I){1,2}, . . . until arriving
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at Trop{1,...,n} = Trop(I). For more details on strategies, see Sec-
tion 6.4. We show that the number of required arithmetic opera-
tions is polynomial in the degree of the ideal and the number of
variables.

Combined with the FGLM algorithm (Faugère et al. 1993) and
Lazard’s lextriangular decomposition (Lazard 1992), this shows
that the tropical variety of any zero-dimensional ideal can be com-
puted from its reduced Gröbner basis using polynomially many
arithmetic operations, see Corollary 5.9.

Convention 5.1. For the remainder of the section, we assume
that ν(K∗) ⊆ Q, so that Trop(I) ⊆ Q

n.

For the sake of convenience, we recall some well-known results
on the complexity of arithmetic operations over integral extensions.

Proposition 5.2. (von zur Gathen & Gerhard (2013, Corollary 4.6
+ Section 4.3)) Let R be a ring and let f ∈ R[z] be a monic uni-
variate polynomial of degree d. Then:

(i) Addition and multiplication in R[z]/〈f〉 require at most O(d2)
arithmetic operations in R.

(ii) Computing the qth power in R[z]/〈f〉 requires at most
O(d2 log q) arithmetic operations in R.

Corollary 5.3. Given a triangular set T ⊆ K[x1, . . . , xn] gener-
ating a zero-dimensional ideal I of degree d:

(i) Addition and multiplication in K[x1, . . . , xn]/I require at
most O(d2) arithmetic operations in K.

(ii) Computing the qth power in K[x1, . . . , xn]/I requires at most
O(d2 log q) arithmetic operations in K.

Proof. Suppose T = {gn, . . . , g1} with gi ∈ K[xi, . . . , xn]. Let
Tk := T ∩K[xk, . . . , xn], Rk := K[xk, . . . , xn]/〈Tk〉 for k = n, . . . , 1,
and Tn+1 := ∅, Rn+1 := K. Note that Tk is a triangular set in Rk,
and that Rk is an integral extension of Rk+1 given by

Rk = Rk+1[xk]/〈gk〉.
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For k ≤ n, Remark 5.2 implies that addition and multiplication
in Rk can be carried out using at most O(d2

k) arithmetic operations
in Rk+1 or O(d2

k · · · d2
n) arithmetic operations in K, and that com-

puting a qth power in Rk+1 requires at most O(d2
k log q) arithmetic

operations in Rk+1 or O(d2
k · · · d2

n log q) arithmetic operations in K.
The claimed bounds follow from d = d1 · · · dn. �

Proposition 5.4. Given a triangular set T ⊆ K[x1, . . . , xn] gen-
erating a zero-dimensional ideal I of degree d and a slim transfor-
mation ϕu, Algorithm 3.3 computes the triangular generating set
of ϕu(I) using at most O(

d2
∑

ui>0 log(ui)
)

arithmetic operations
in K.

Proof. Consider the reductions in Algorithm 3.3 Line 3. Re-
ducing (xu2

2 . . . xun
n )ipi by T \ {g1} is equivalent to expressing it in

K[x2, . . . , xn]/〈T \ {g1}〉 as a linear combination of the K-basis
B := {xb2

2 · · ·xbn
n | 0 ≤ bi < di}.

By Corollary 5.3 and since i ≤ d1, expressing (xu2
2 . . . xun

n )i in
terms of B requires at most

O
(( ∑

ui>0

d2
i · · · d2

n log(ui)
)

+ (|{i | ui > 0}| − 1) · d2
2 · · · d2

n

+d2
2 · · · d2

n log(d1)
)

≤ O
(

log(d1)d
2
2 · · · d2

n

∑
ui>0

log(ui)
)

operations in K. As d2 = d2
1d

2
2 · · · d2

n, repeating the computation
for i = 1, . . . , d1 requires at most O(

d2
∑

ui>0 log(ui)
)

operations
in K. The multiplications by pi for i = 1, . . . , d1 do not change the
complexity. �

Lemma 5.5. Given a triangular generating set T ⊆ K[x1, . . . , xn]
of a zero-dimensional ideal I of degree d, the computation of the
eliminant μ ∈ K[xk] of I, i.e. a generator of I ∩ K[xk], requires at
most O(d3) arithmetic operations in K.

Proof. Note that the eliminant μ ∈ K[xk] is also the minimal
polynomial of xk ∈ K[x1, . . . , xn]/I. Hence, it can be computed by
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finding a linear relation among the powers 1, xi, x
2
i , . . . , x

d−1
i . By

Corollary 5.3, computing all powers requires at most O(d3) arith-
metic operations in K and, by Bürgisser et al. (1997, Chapter 16),
computing a linear dependency requires O(dω+ε), where ω < 3 is
the exponent of the complexity of matrix multiplication and ε > 0.

�

Lemma 5.6. Let X,Y ⊆ Q be finite sets of cardinality ≤ d. Then,
there exists a non-negative integer m ≤ (

d2

2

)
such that X ×Y → Q,

(a, b) �→ a − mb is injective. The smallest such m can be found in
O(d4) arithmetic operations in Q.

Proof. The map (a, b) �→ a − mb will fail to be injective if and
only if there exists a pair of points in X × Y lying on an affine
line with slope m. Since there are at most

(
d2

2

)
pairs of points, the

statement follows by the pigeonhole principle.
We can determine all integral slopes attained by a line between

any two points of X × Y with O(
(

d2

2

)
) = O(d4) arithmetic oper-

ations in Q. Picking the smallest natural number not occurring
among these slopes gives the desired m. �

The following proposition deals with the kth call of
Algorithm 4.1 in Line 6 of Algorithm 4.2 running the sequential

strategy. Recall that the strategy sequentially computes the pro-
jections Trop(I){1}, Trop(I){1,2}, . . . until Trop{1,...,n} = Trop(I).

Proposition 5.7. Let I ⊆ K[x1, . . . , xn] be any zero-dimensional
ideal of degree d. Let k ∈ {2, . . . , n} and suppose Algorithm 4.1 is
called with input

◦ T , a triangular set generating a zero-dimensional ideal
I ⊆ K[x±],

◦ Trop(I){1,...,k−1} and Trop(I){k}.

Moreover, assume that the following are known from the previ-
ous call of Algorithm 4.1 in Line 6 of Algorithm 4.2 running the
sequential strategy:
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◦ ϕu′ , a slim transformation such that the restriction of πu′ to
Trop(I){1,...,k−1} is injective,

◦ T ′, the triangular generating set of ϕu′(I).

Then, Algorithm 4.1 for gluing the two projections into
Trop(I){1,...,k} requires at most O(d2(n + d)) and O(d4) arithmetic
operations in K and Q, respectively.

Proof. Applying Lemma 5.6 to X := πu′(Trop(I){1,...,k−1}) and

Y := Trop(I){k}, we can compute a minimal m ≤ (
d2

2

)
such that

(a, b) �→ a−mb is injective on X×Y in O(d4) arithmetic operations
in Q. Setting u := u′ + mek, this means that πu is injective on
Trop(I){1,...,k−1} × Trop(I){k}.

Since ϕu(I) = ϕv(ϕu′(I)) for v := mek − e� and the trian-
gular generating set of ϕu′(I) is already known, we may com-
pute the triangular generating set T ′ of ϕw(I) by applying Algo-
rithm 3.3 to the input T ′ and ϕv. By Proposition 5.4, this requires
O(nd2 log m) = O(nd2 log d) arithmetic operations in K.

By Lemma 5.5, computing the eliminant μ ∈ K[x1] requires
O(d3) arithmetic operations in K, so the overall number of arith-
metic operations in K required for Algorithm 4.1 is O(d2(n+d)). �

Theorem 5.8. Let I be any zero-dimensional ideal in K[x1, . . . , xn]
of degree d. Algorithm 4.2, which computes the zero-dimensional
tropical variety Trop(I), with the sequential strategy requires at
most O(nd2(n + d)) and O(nd4) arithmetic operations in K and
Q, respectively.

Proof. Running Algorithm 4.2 with the sequential strategy
consists of the following non-trivial operations:

◦ computing eliminants μk ∈ K[xk] for k = 1, . . . , n in Line 2,

◦ applying Algorithm 4.1 to Trop(I){1,...,k−1} and Trop(I){k} for
k = 2, . . . , n in Line 5.

Combining Lemma 5.5 and Proposition 5.7 then yields the stated
bounds. �
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Corollary 5.9. Let I ⊆ K[x1, . . . , xn] be any zero-dimensional
ideal in of degree d. Given any Gröbner basis of I, computing
Trop(I) requires at most polynomially many (in terms of n and d)
arithmetic operations in K and Q, respectively.

Proof. Using polynomially many arithmetic operations in K,
any Gröbner basis may be transformed to a lexicographical Gröbner
basis by Faugère et al. (1993), and any lexicographical Gröbner ba-
sis may be decomposed into triangular sets by Lazard (1992). The
claim then follows from Theorem 5.8. �

Remark 5.10 (Comparison with Magma). In Section 7, we com-
pare timings of Algorithm 4.2 to the Magma script in Appendix A
in the special case that the ideal is in shape position, i.e. generated
by a set

{xd
n − fn, xn−1 − fn−1, . . . , x1 − f1} for some fn, . . . , f1 ∈ K[xn].

Our algorithm was implemented with the practical optimizations
outlined in Remark 3.4 and Remark 4.4. The Magma script uses
a p-adic approximation of the roots of the univariate polynomial
xd

n − fn and substitution into fn−1, . . . , f1.
It is difficult to compare the two implementations in terms of

complexity due to their fundamentally different nature. As the
Magma script factorizes xd

n − fn, its complexity depends on the
valuation of the discriminant of xd

n−fn (Ford & Veres 2010). More-
over, the root approximations need to be of sufficiently high preci-
sion to determine the valuation of the substituted polynomials.

In the best case, such as when generating set is a tropical ba-
sis (Hofmann & Ren 2018, Proposition 2.16), the Magma script
terminates instantaneously:

◦ the valuations of the roots of xd
n − fn are distinct and thus may

be read off the slopes of its Newton polygon,

◦ the valuations of fn−1(z), . . . , f1(z), z a root of fn, are uniquely
determined by the valuation of z.

Note that in general the valuation of the discriminant of xd
n − fn

and hence the complexity for its factorization depend in particular
on the coefficients of fn.
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6. Implementation

In this section, we reflect on design decisions that were made in
the implementation of the algorithms available in the Singular

library tropicalProjection.lib. The library contains an imple-
mentation of Algorithms 3.3, 4.1, and 4.2 for the special case that
the ideal is in shape position, as discussed in Remarks 3.4 and 4.4.
We chose to focus our implementation on the case of shape position.
This is the generic case and arbitrary ideals may be transformed
into shape position by applying a unimodular transformation on
the lattice of Laurent monomials to the generators of the ideal.

While the reader who is only interested in the algorithms and
their complexity may skip this section without impeding their un-
derstanding, we thought it important to include this section for
the reader who is interested in the actual implementation.

6.1. Picking slim transformations in Algorithm 4.1 Line 2.
As πu|T is injective for generic u ∈ Z

n−1
≥0 , it seems reasonable to

sample random u ∈ Z
n−1
≥0 until the corresponding projection is

injective on the candidate set. Our implementation, however, iter-
ates over all u ∈ Z

n−1
≥0 in increasing �1-norm until the smallest one

with injective πu|T is found. This is made in an effort to keep the
slim transformation ϕu(I) as simple as possible, since Lines 3–4
are the main bottlenecks of our algorithm.

6.2. Transforming Gröbner bases in Algorithm 4.1 Line 3.
As mentioned, Lines 3–4 are the main bottlenecks of our algo-
rithm. Two common reasons why polynomial computations may
scale badly are explosions in degree or in coefficient size.

Note that the degree of the polynomials is unproblematic in
our algorithm: By Remark 3.4.(i), using Algorithm 3.3 in Line 3
only incurs basic arithmetic operations in K[xn]/〈xd

n − fn〉 whose
elements can be represented by polynomials of degree less than d.
Also, the degree of the eliminant in Line 4 is naturally bounded by
d. Coefficient explosion can be a problem in large examples, which
is why we choose u as small as possible for the transformation.

6.3. Computing eliminants in Algorithm 4.1 Line 4 and
Algorithm 4.2 Line 2. The computation of eliminants of an
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ideal in shape position, say generated by

{xd
n − fn, xn−1 − fn−1, . . . , x1 − f1} with fi ∈ K[xn],

can be carried out in many different ways. For example:

Resultants: We can compute the resultant of the two polynomials
xd

n − fn and x� − f� ∈ K[x�, xn] with respect to the variable xn

by standard resultant algorithms. The eliminant μ� ∈ K[x�] lies
somewhere between the resultant and its squarefree part. In par-
ticular, the tropical variety of the eliminant is the tropical variety
of the resultant.

Minimal polynomial: Note that the eliminant μ� ∈ K[x�] is also
the minimal polynomial of f � ∈ K[xn]/〈xd

n − fn〉. Hence, it can
be computed using by standard minimal polynomial algorithms.

Gröbner bases: Note that {xd
n−fn, x�−f�} ⊆ K[x�, xn] is a Gröbner

basis with respect to the lexicographical ordering with xn ≺ x�.
We can transform this to a Gröbner basis with respect to the lex-
icographical ordering with x� ≺ xn and read off the eliminant μ
from it.

For polynomials with small coefficients, the implementation using
Singular’s resultants seemed the fastest, but Singular’s FGLM

(Faugère et al. 1993) seems to be best when dealing with very large
coefficients, though that may be due to implementation.

For K = Q, however, we can use a modular approach thanks to
the Singular library modular.lib (Steenpass 2019): It computes
the eliminants over Fp for several primes p using any of the above
methods, then lifts the results to Q. This modular approach avoids
problems caused by very large coefficients and works particularly
well using the method based on minimal polynomials from above.
Note that modular.lib only checks correctness of the lifted μ�

probabilistically by picking additional primes p and comparing the
reduction in μ� modulo p with the eliminant over Fp. However,
if we are in the case that the resulting μ� is of maximal degree
d, one can verify correctness by testing whether μ�(f �) = 0 in
K[xn]/〈xd

n − fn〉.
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6.4. Picking gluing strategies in Algorithm 4.2 Line 5. Al-
gorithm 4.2 is formulated in a flexible way. Different strategies of
realising the choice of coordinate sets A1, . . . , Ak in Line 5 can
adapt to the needs of a specific tropicalization problem. The four
gluing strategies that are implemented in our Singular library
are (see Figure 6.1 for an illustration in the case n = 5):

oneProjection: Only a single iteration of the while loop, in
which we pick k = n and Ai = {i} for i = 1, . . . , n.

sequential: n − 1 iterations of the while loop, during which we
pick k = 2 and A1 = {1, . . . , i} and A2 = {i + 1} in the ith
iteration.

regularTree(k): n − 1 iterations of the while loop, which can
be partially run in parallel in �logk n� batches. In each batch, we
merge k of the previous projections. Note that, by Remark 3.4.(ii),
the condition that 1 ∈ A1 ∪ . . . Ak is unnecessary if the ideal is in
shape position.

overlap: (n − 1)n/2 iterations of the while loop, which can be
partially run in parallel in n− 1 batches. During batch i, we pick
k = 2 and A1 = {1, . . . , i}, A2 = {1, . . . , i − 1, j} for j > i.

oneProjection is the simplest strategy, requiring only a single
slim transformation. For examples of very low degree, it is the
best strategy due to its minimal overhead. For examples of higher
degree d, the candidate set C in Algorithm 4.1 can become quite
large, at worst |C| = dn. This generally leads to larger u ∈ Z

n−1
≥0

in Line 2 and causes problems due to coefficient growth.
sequential avoids the problem of a large candidate set C by

only gluing two projections at a time, guaranteeing |C| ≤ d2. This
comes at the expense of computing n − 1 slim transformations,
but even for medium-sized instances we observe considerable im-
provements compared to oneProjection. In Section 5, we have
proved that sequential guarantees good complexity bounds on
Algorithm 4.2.

regularTree(k) can achieve a considerable speed-up by paral-
lelisation. Whereas every while-iteration in sequential depends
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Figure 6.1: Visualisation of different gluing strategies.

on the output of the previous iteration, regularTree(k) allows us
to compute all gluings in parallel in �logk n� batches. The total
number of gluings remains the same.

overlap further reduces the size of the candidate set C com-
pared to sequential, while exploiting parallel computation like
regularTree(k). It glues projections two at a time, but only
those A1 and A2 which overlap significantly. This can lead to
much smaller candidate sets T , at best |T | = d, which makes a
slim transformation obsolete. The strategy overlap seems partic-
ularly successful in practice and is the one used for the timings in
Section 7.

Our implementation in Singular also allows for custom gluing
strategies by means of specifying a graph as in Figure 6.1.

7. Timings

In this section, we present timings of our Singular implementa-
tion of Algorithm 4.2 for K = Q and the 2-adic valuation. We
compare it to a Magma (Bosma et al. 1997) implementation by
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Avi Kulkarni which uses univariate factorization and backsubsti-
tution, see Appendix A. Note that Magma operates under finite
absolute precision, which was chosen to be 21000 by default and was
increased if needed. While Singular is also capable of the same
task, we chose to compare to Magma instead as it is significantly
faster due to its finite precision arithmetic over p-adic numbers.
Our Singular timings use the overlap strategy, a modular ap-
proach and parallelisation with up to four threads. The Singular
times we report on are total CPU times across all threads. (For
reference, the longest example in Singular required 118 seconds
total CPU time, but only 32 seconds real time.) All computations
were run on a server with 2 Intel Xeon Gold 6144 CPUs, 384GB
RAM and Debian GNU/Linux 9.9 OS. All examples and scripts
are available at https://software.mis.mpg.de.

7.1. Random lexicographical Gröbner bases in shape po-
sition. Given d, n ∈ Z>0, we construct random lexicographical
Gröbner bases G ⊆ Q[x1, . . . , xn] of degree d in shape position of
the form

G = {xd
n − fn, xn−1 − fn−1, xn−2 − fn−2, . . . , x2 − f2, x1 − f1},

where fn, . . . , f1 are univariate polynomials in xn of degree d − 1
with coefficients of the form 2λ ·(2k+1) for random λ ∈ {0, . . . , 99}
and random k ∈ {0, . . . , 4999}.

Figure 7.1 shows timings for n = 5 and varying d. Each com-
putation was aborted if it failed to terminate within one hour. We
see that Magma is significantly faster for small examples, while
Singular scales better with increasing degree.

For many of the ideals I, however, Trop(I) has fewer than d dis-
tinct points. This puts our algorithm at an advantage, as it allows
for easier projections in Algorithm 4.2 Line 2. Mathematically, it
is not an easy task to generate non-trivial examples with distinct
tropical points. Picking xd

n − fn to have d roots with distinct val-
uation for example would make all roots live in Q2, in which case
Magma terminates instantly. Our next special family of examples
has criteria which guarantee distinct points.

https://software.mis.mpg.de
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Figure 7.1: Timings for random ideals in shape position.

7.2. Tropical lines on a random honeycomb cubic. Let
V (f) ⊆ P

3 be a smooth cubic surface. In Panizzut & Vigeland
(2019), it is shown that Trop(f) ⊆ R

3 may contain infinitely many
tropical lines. However, for general f whose coefficient valuations
induce a honeycomb subdivision of its Newton polytope, Trop(f)
will always contain exactly 27 distinct tropical lines (Panizzut &
Vigeland 2019, Theorem 27), which must therefore be the tropi-
calizations of the 27 lines on V (f).

We used Polymake (Gawrilow & Joswig 2000) to randomly
generate 1000 cubic polynomials with honeycomb subdivisions whose
coefficients are pure powers of 2. For each cubic polynomial f , we
constructed the one-dimensional homogeneous ideal

Lf ⊆ Q[p12, p13, p14, p23, p24, p34]

of degree 27 whose solutions are the lines on V (f) in Plücker co-
ordinates. Figure 7.2 shows the timings for computing Trop(Lf ),
where Lf := Lf + 〈p34 −1〉 is a zero-dimensional ideal of degree 27.
Out of our 1000 random cubics, 8 had to be discarded because Lf

was of lower degree, i.e. V (f) contained lines with p34 = 0.
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Unsurprisingly, the Singular timings are relatively stable,
while the Magma timings heavily depend on the degree of the
splitting field of Lf over Q2. While the generic splitting field de-
gree is 51840 over Q (Elsenhans & Jahnel 2012), the distinct trop-
ical points of Trop(Lf ) severely restrict the Galois group of the
splitting field over Q2.

Figure 7.2: Timings for the 27 tropical lines on a tropical honey-
comb cubic.

8. Conclusion

If a zero-dimensional ideal I ⊆ K[x±
1 , . . . , x±

n ] is generated by
a given triangular set, we have shown that the tropical variety
Trop(I) ⊆ R

n can be computed using at most O(nd2(n + d)) and
O(nd4) arithmetic operations in K and Q, respectively. Given a
Gröbner basis of a general zero-dimensional ideal, it is thus possible
to compute its tropical variety using polynomially many arithmetic
operations.

For the special case that the ideal is in shape position, we have
implemented our algorithms in Singular using parallelization and
modular techniques, and we have compared its timings for K = Qp

to a Magma implementation using univariate factorization and
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backsubstitution. The timings of our algorithm are relatively con-
stant, while the Magma timings depend strongly on the degree of
the splitting field: For small degrees, it severely outperformed our
algorithm, while for large degrees it is significantly slower.

We would like to conclude the paper with a remark on the com-
plexity of computing tropical varieties Trop(I) for I ⊆ K[x1, . . . , xn]
and d := deg(I) > 0. Currently, there are two distinct methods
for computing tropical varieties:

◦ reconstruction from sufficiently many projections of the trop-
ical variety (Hept & Theobald 2009),

◦ traversing the Gröbner complex along the tropical variety
(Bogart et al. 2007; Markwig & Ren 2019).

Not much is known about the complexity of either method. In fact
not much is known about the combinatorial complexity of tropical
varieties in general (Joswig & Schröter 2018). Both methods gener-
ally involve Gröbner basis computations, though the projections in
the first method may also be computed using numerical techniques
if K = C{{t}} and the ideal is generated over C (Brysiewicz 2020).
However, Theobald has shown that even simple questions on the
combinatorics of the intersection of degree 3 tropical hypersurfaces,
such as deciding whether it is non-empty or connected, are NP-
complete and co-NP-hard (Theobald 2006). And linear tropical
hypersurfaces are known to be tied to mean payoff games; there-
fore, problems such as deciding the dimension of their intersection
are NP-complete (Grigoriev & Podolskii 2015). Due to the Fun-
damental Theorem of Tropical Geometry (Maclagan & Sturmfels
2015, Theorem 3.2.3), deciding whether a tropical variety Trop(I)
is non-empty is at least as hard as deciding whether I has solutions
in the torus.

Currently, gfan and Singular are the only software systems
capable of computing positive-dimensional tropical varieties, and
both use the traversal of the Gröbner complex. The algorithm for
the traversal method consists of two main parts:

1. a Gröbner walk algorithm to walk from one Gröbner polyhedra
to another,
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2. a tropical link algorithm to direct the Gröbner walk along the
tropical variety.

While the computation of tropical links had been a major bottle-
neck of the original algorithm and in early implementations, exper-
iments suggest that it has since been resolved by new approaches
(Chan 2013; Hofmann & Ren 2018). However, the algorithm in
Chan (2013, §4.2) relies heavily on projections, while (Hofmann &
Ren 2018, Algorithm 2.10) relies on root approximations to a possi-
bly exponential precision, so neither approach has good complexity
bounds.

Algorithm 4.2 is designed with Hofmann & Ren (2018, Algo-
rithm 2.10) in mind. Replacing Hofmann & Ren (2018, Algo-
rithm 2.10) in Hofmann & Ren (2018, Algorithm 4.6) with our
Algorithm 4.2 allows us to compute tropical links at the cost of
2n Gröbner basis computations of zero-dimensional ideals of de-
gree d, which is at most single exponential in the number of vari-
ables n (Lakshman 1991; Lakshman & Lazard 1991). The Gröbner
walk, however, requires Gröbner bases computations of initial ide-
als with respect to weight vectors w ∈ Trop(I) with dim Cw(I) =
dim Trop(I) − 1, where Cw(I) denotes the Gröbner polyhedron
of I around w. These initial ideals are of the same dimension
as I and neither monomial, as w ∈ Trop(I), nor binomial, as
dim Cw(I) < dim Trop(I). Moreover, due to how Gröbner bases of
inw(I) can be lifted to Gröbner bases of I, the degrees of their basis
elements coincide. Hence, we expect that the complexity of com-
puting the zero-dimensional Gröbner bases required by our algo-
rithms is less than the complexity of computing the Gröbner bases
required by the traversal of the Gröbner complex. Therefore, the
complexity of tropical varieties via a traversal of the Gröbner com-
plex is still dominated by the complexity of the necessary Gröbner
walk, and not the complexity of computing tropical links.
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A. Appendix: Magma implementation

The comparison of timings in Section 7 is based on the following
Magma implementation by Avi Kulkarni for finite precision p-adic
fields. The function assumes that the ideal is in shape position and
uses univariate factorization and substitution.

1 function pAdicSolutionsOverSplittingField (I, Qp)

2 R := Generic(I);

http://creativecommons.org/licenses/by/4.0/
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3 gs := GroebnerBasis (I); // assumed to be in shape position

4
5 u := UnivariatePolynomial(gs[#gs]);

6 up := ChangeRing(u,Qp);

7 K := SplittingField(up); // main bottleneck of the algorithm

8
9 vars_padic := Variables(ChangeRing(R,K));

10 padic_rts := Roots(ChangeRing(up ,K));

11
12 function backSolve(rt)

13 rt_coords := [rt];

14 for i in [#gs -1 .. 1 by -1] do

15 g := Evaluate(gs[i], vars_padic [1..i] cat rt_coords );

16 rti := Roots(UnivariatePolynomial(g));

17 assert #rti eq 1;

18 Insert (~rt_coords , 1, rti [1][1]);

19 end for;

20 return rt_coords;

21 end function;

22
23 return [ backSolve(rt[1]) : rt in padic_rts], K;

24 end function;
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