
2146 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

Robust Brain Age Estimation Based on sMRI via
Nonlinear Age-Adaptive Ensemble Learning

Zhaonian Zhang , Richard Jiang , Ce Zhang , Bryan Williams , Ziping Jiang, Chang-Tsun Li ,
Paul Chazot , Nicola Pavese, Ahmed Bouridane , Senior Member, IEEE,

and Azeddine Beghdadi , Senior Member, IEEE

Abstract— Precise prediction on brain age is urgently
needed by many biomedical areas including mental rehabil-
itation prognosis as well as various medicine or treatment
trials. People began to realize that contrastingphysical (real)
age and predicted brain age can help to highlight brain
issues and evaluate if patients’ brains are healthy or not.
Such age prediction is often challenging for single model-
based prediction, while the conditions of brains vary dras-
tically over age. In this work, we present an age-adaptive
ensemble model that is based on the combination of four
different machine learning algorithms, including a support
vector machine (SVR), a convolutionalneural network (CNN)
model, and the popular GoogLeNet and ResNet deep net-
works. The ensemble model proposed here is nonlinearly
adaptive, where age is taken as a key factor in the non-
linear combination of various single-algorithm-based inde-
pendent models. In our age-adaptive ensemble method,
the weights of each model are learned automatically as
nonlinear functions over age instead of fixed values, while
brain age estimation is based on such an age-adaptive inte-
gration of various single models. The quality of the model is
quantified by the mean absolute errors (MAE) and spearman
correlation between the predicted age and the actual age,
with the least MAE and the highest Spearman correlation
representing the highest accuracy in age prediction.By test-
ing on the Predictive Analysis Challenge 2019 (PAC 2019)
dataset, our novel ensemble model has achieved a MAE
down to 3.19, which is a significantly increased accuracy
in this brain age competition. If deployed in the real world,
our novel ensemble model having an improved accuracy
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could potentially help doctors to identify the risk of brain
diseases more accurately and quickly, thus helping pharma-
ceutical companies develop drugs or treatments precisely,
and potential offer a new powerful tool for researchers in the
field of brain science.

Index Terms— Brain age, biomarks, ensemble deep learn-
ing, mental healthcare, rehabilitation.

I. INTRODUCTION

THE increasing aging population presents many acute
challenges globally in the 21st century, with a profound

impact on all aspects of life. Amongst them, brain function
decline and neurodegenerative diseases in the aging population
result in serious economic, medical, and societal issues to
our society [1], [2]. In life science and biomedical domain,
methods of predicting and assessing the risk of age-related
neurodegeneration in the elderly and related treatments to
reduce and reverse the process are one of the fundamental
research topics [3]. Although brain aging is a natural process,
there are individual differences in the changes of brain volume,
cortical thickness, and white matter microstructure [4]–[6].
In addition, the degree of deviation in brain aging trajectory
for a particular person from the average trajectory of healthy
brain aging has been shown to reflect the individual’s future
risk of developing neurodegenerative diseases [7], [8]. There-
fore, building models based on the characteristic patterns of
brain aging within neuroimaging data and detecting the aging
trajectories of individual brains offer a new perspective for
studying brain aging differences [3].

The accurate prediction of brain age has not only critical
scientific significance but also extensive clinical value [9].
Research has shown that along with the increased difference
between the predicted brain age and the biological age, the risk
of mortality or physical problems increases, together with the
increased likelihood of early death [10]. Brain age estimation
can diagnose patients with Alzheimer’s disease [66], [67], psy-
chiatric disorders [68], physical problems [69] and traumatic
brain injuries [70] according to accelerated brain age. This
method can also predict the conversion from mild cognitive
impairment to Alzheimer’s disease in the future [71]. This
approach can not only diagnose disease, but also provides the
basis for good living habits; for example, Steffener et al. [8]
proved that high education and physical exercise can help
make brain activity and keep young. Luders et al. [7] reported
that the brains of people who meditate regularly are more
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active than those of normal people of the same age. Also,
the work Erus et al. [72] suggested that accelerated cognitive
development is an important factor leading to accelerated
brain development in young subjects. Cheng et al. [73] used
a two-satge 3D convolutional network for brain age esti-
mation. He et al. [74] utilized a global-local vision trans-
former to achieve a good accuracy on brain age estimation.
Peng et al. [75] exploited a simple lightweight fully convo-
lutional network to address the challenges on the brain age
estimation. These single-method models have demonstrated
their merits on this challenging topic.

Predicting brain age can also play a meaningful role in
medical development, with clinical trials being an important
part of clinical science [12], [13]. At present, many phar-
maceutical companies across the world are committed to the
research of medicine for the treatment of age-related diseases.
However, the effect of these medications will not be obvious
in the short term. Even experienced doctors cannot judge
whether the drugs have played a role, so the curative effect
may take several years to follow up. This problem makes
it difficult for pharmaceutical companies to collect medical
data, which restricts the research and development of aging
diseases medicine [13]. Nevertheless, brain age estimation
provides an alternative direction to address the problem in
observing the effects of drugs, by the changes of predicted
human brain age [13]. In recent years, deep learning has been
the main approach for the estimation of brain age, as it can
capture subtle changes in the brain through hierarchical feature
representations in an end-to-end way [3]. Existing research
has shown that the difference between predicted brain age
and the participant’s actual age is small for healthy peo-
ple [3], [7], [10]. The development of deep learning in brain
age estimation enables pharmaceutical companies to conduct
follow-up investigations from the beginning of patients taking
drugs, so as to know the effect of drugs in time and acquire
patients’ data at fast pace.

The process of brain condition detection by brain age
estimation has basically two steps. Initially, we need to develop
a model that can determine the biological age of a healthy
person with this state of the brain based on brain neuroimaging
data [3]. This model can be determined by training deep
learning models on healthy samples. Subsequently, we would
compare the predicted age and real age. If a sample’s predicted
brain age is older than his real age, it represents poor brain
health. It is worth noting that the training data must be
collected from healthy people, because the age predicted by the
model would show the age of a person generated from healthy
people under similar brain conditions. For example, if the
training data contains samples with diseases, the predicted
age will not represent the age that the patient should be at
in this brain condition, consequently, the comparison between
the predicted age and the true age is meaningless.

A frequently used method for brain age estimation is making
a classification or regression for brain images [1], [14]. There
exist several machine learning methods for this purpose. Previ-
ously, Huang et al. [41] applied CNNs in brain age estimation,
and notably, Cole et al. [42] implemented a 3D CNN, which is
trained on T1-weighted MRI, to predict brain age and achieved

Fig. 1. The contributions of our AAE model.

promising results. Our initial motivation is to identify which
of the various models for predicting brain age works best,
and find the most suitable model for each age stage. Further,
we aim to establish a novel ensemble model by combining
different independent models together, and benchmark with
single independent model on brain age prediction.

The major innovation of this work relates to a novel non-
linear age-adaptive ensemble model (nl-AAE), which is con-
sidered as a nonlinear function in the combination of multiple
independent models. The age-adaptive ensemble model, with
the advantages of multiple independent models, can be fully
learned over the characteristics of the brain of each age group,
thus achieving high accuracy of the predictions. Here, we have
considered four different independent models, including a
GoogLeNet, a ResNet, an SVR, and a self-designed CNN
model. The nonlinear age-adaptive learning encoded in our
ensemble model utilizes the changed weights of the constituent
models based on the age of the sample. The combined model
is adaptable to age changes nonlinearly and learns the brain
characteristics over different ages.

We have tested our nl-AAE models using the PAC
2019 competition dataset, and benchmarked our models with
four constituent algorithms. Such integrated model has great
potential to provide a highly accurate measure of brain
health for clinical trials of neuroprotective therapies, screening
groups of people at-risk of poorer cognitive aging, and provide
mechanistic insights into the downstream consequences of dif-
ferent aging-related diseases. Figure 1 shows the contributions
of our AAE model, it has higher accuracy in predicting brain
age compared to other classical methods, which can make
it has better performance in Alzheimer’s detection, traumatic
brain injury detection, Schizophrenia detection, medicine test-
ing and so on.

The remainder of the paper is organized as follows.
Section II reviews the existing relevant work. Section III
gives a preliminary overview on existing models. Section IV
presents our proposed nonlinear age-adaptive ensemble model.
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Section V shows the experimental results. Finally, Section VI
concludes the whole paper.

II. RELATED WORK

Previously, brain age prediction is conducted using feature
extraction with brain MRIs followed by a classification or
regression analysis. However, useful information might be
lost since the manually engineered features are not likely
to explicitly describe the relevant information on brain age.
To be specific, pre-processing the image subjectively requires
additional assumptions at the various stages during the pre-
processing pipeline. However, these assumptions can hardly
be satisfied, which can result in a model error [16], [17].
Besides, extracting features manually is a time-consuming
task. In practice, decisions should be made within a few
minutes to avoid the delay of treatment in the application. The
above issues are the main reasons why brain age prediction
was not widely adopted.

The emergence of deep learning models provides a pos-
sibility to address those issues. Convolutional neural net-
works, which are widely adopted in image classification tasks,
have shown great potential in visual feature extraction. The
astonishing learning ability and automated decision-making
pipeline of CNN models make it a perfect alternative for brain
age estimation that can improve the efficiency for medical
consultation, clinical diagnosis as well as treatment decision
making [2], [18], [19]. At present, deep learning not only has
successfully developed in the field of diagnosing schizophrenia
[20], ADHD [21], autism [22], and Alzheimer’s disease [23],
but also helps to identify new biomarkers [24] and formulating
new hypotheses [25].

Although deep learning has achieved success in biomedical
fields, there are still several remaining challenges in terms
of technology and practical applications [3], [26]–[28]. For
example, deep neural networks require large sample sizes
for fitting models, while neuroimaging datasets often have
relatively smaller capacities [29], [30]. The data scarcity has
restricted the ability to learn image features effectively, and the
problem of overfitting can also appear. Compared with 2D neu-
roimaging data, 3D images require larger GPU memory, which
means that successful models in 2D data are not necessarily
feasible in 3D scenes (e.g., ImageNet classification [31], [32]).
Besides, further improving the model accuracy is a long-term
objective in deep learning research. Literature shows that deep
learning models fail to achieve the best result for certain
tasks [33], [34]. Another open question is how to choose the
suitable complexity of the model. The no free lunch theorem
suggests that task specified design is necessary for to achieve
better result.

Ensemble modeling provides a solution in choosing the best
predictive model in machine learning. An ensemble model
combines the prediction from several models to make the final
prediction, by which the overall performance of the model is
increased [35]. Several strategies of combining the prediction
from individual models were proposed, such as averaging,
voting, to improve performance. As early as 1785, Marquis de
Condorcet argued that if the probability of each independent

Fig. 2. Age and sex distribution of the MRI brain dataset.

voter being correct is above 0.5, then the addition of more
voters increases the probability of the majority vote being
correct [36], which is a strong evidence to show that ensemble
models have better performance than individual models.

III. PRELIMINARIES ON BRAIN AGE ESTIMATION

A. Dataset

The dataset we used here is based on [3], including
2641 healthy individuals’ brain sMRIs and information of
samples such as their age and gender. The sample age ranged
from 16 to 90 years old, the average age of samples is
35.8 years old, and the standard deviation of age is 16.2 years.
Of the participants, 53% are females, and 47% are males.
The average age of females is 37 years old, and the standard
deviation of females’ age is 17.2 years. The average age
of males is 34.6 years old, and the standard deviation of
males’ age is 14.9 years. The age distribution of the data is
shown in Figure 2. Here we remark that the dataset has an
unbalanced distribution, with fewer data samples in the aged
population and more data samples toward younger population.
Cole et al. [42] shows the details of the samples.

B. Data Features

In our project, we use two different kinds of data as input
for the models. One is Gray Matter and White Matter Maps,
the other is Surface-Based Processing of Gray Matter.

The Gray Matter and White Matter Maps were distributed
by the PAC organization. The pre-processing of nonlinear
registration for the brain sMRIs used MNI152 space. Then,
these images were segmented using DARTEL and SPM12 as
different tissues, such as Gray Matter and White Matter so that
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each tissue has a map and the map was smoothed by using a
4-mm kernel. For more details, please refer to [42]. This kind
of data is used for the input of self-defined CNN, ResNet and
GoogLenet in our project.

As for Surface-Based Processing of Gray Matter, we extract
the vertex-wise measurements of cortical thickness and surface
area based on the sMRIs by using FreeSurfer 6.0 [44]. As such.
a vertex-wise feature of seven subcortical nuclei thickness
and surface was also extracted by the ENIGMA-shape pro-
tocol [45], [46]. After these data-pre-processings, we get
nearly 650,000 gray matter measurements per individual.
This processing method was used by Baptiste Couvy-
Duchesne et al. [47], and they proved that these processed
data have a max association with age. This kind of data is
used for the input of SVR in our project.

C. Basic Independent Models

Recent progress on deep neural networks [50]–[52] has
greatly enlightened the applications of medical biomet-
rics [53]–[55] for health diagnosis, particularly toward
understanding how neurons in brain function [56] and dys-
function [57]. In this work, we aim to exploit deep learning
techniques with ensemble approaches for our brain age esti-
mation task.

Before we describe the architecture of the ensemble model,
we first introduce the basic blocks of our proposed model.
According to previous research, each of the models has
remarkable performance in estimating brain age [3], [41], [42].

1) Convolutional Neural Networks: The CNN we have
built was implemented using Keras with TensorFlow as
backend. For the first 5 consecutive blocks, each of them
consists of a 3 × 3 × 3 3D convolution layer, a Batch
Norm layer, an ELU activation and a Max Pooling layer.
As for the 6th block, it contains a dropout layer and the
7th block contains a fully connected layer. The input
data is a 3D volume image of 121 × 145 × 121 pixels,
and the convolutional part of this model reduces this
image to 128 feature maps of size 4 ×5 ×4. The finally
fully connected layer reduces the feature maps down to
the numbers that stand for predicted ages.
We train this model on two channels by using the
concatenation of gray matter and white matter. The
loss function is MAE, and the optimization machine is
Adam. The learning rate is 0.001, the decay is 10−4, β1
is 0.9 and β2 is 0.999.

2) GoogLeNet (Inception V1): This structure is used for
brain age estimation in [43]. It is composed of a stem
network, two inception modules, a max-pooling layer,
five inception modules (note that two of them are con-
nected to an auxiliary regression each), a max-pooling
layer, two inception modules, an average pooling layer,
a dropout layer, and a fully connected layer. Compared
to Google’s Inception V1, it changes the softmax layer to
a fully connected layer as the final layer so that this task
becomes a regression task but not a classification task.
The convolutional filter in this model consists of an input
layer, a convolutional layer, a batch normalization layer,

a ReLU activation and an output layer. The stem network
consists of an input layer, a convolutional filter, a max-
pooling layer, two convolutional filters, a max-pooling
layer and an output layer. In the inception modules, there
is an input layer, seven convolutional filters, a max-
pooling layer, a concatenation layer and an output layer.
The auxiliary regression, which is used for mitigating
the vanishing gradient problem, is composed of an input
layer, an average pooling layer, a convolutional filter,
a fully connected layer, a ReLU layer, a dropout layer,
a fully connected layer and an output layer.
The input data of this model is 3D maps of gray matter
density with 121 × 145 × 121 pixels, and the output is
the predicted age. The loss function is MAE, and we use
Adam as the model’s optimization machine, the learning
rate is 0.0001 and the batch size is 8.

3) ResNet: The parameters of the ResNet we built are
similar to the above CNNs built by ourselves. The
difference is that the ResNet includes residual blocks,
while our self-built CNNs do not have these blocks.
The ResNet consists of 5 residual blocks, each followed
by a max pooling layer of kernel size 3 × 3 × 3 and
stride 2 × 2 × 2, and one fully connected block. The
residual block is a combination of layers which are
repeated twice inside. This combination consists a 3D
convolutional layer with stride 1 × 1 × 1 and kernel
size 3 × 3 × 3, a batch renormalization layer, and an
ELU activation function. It also adds the signal feeding
into the residual block to the output of a layer close
to the end of the block. The fully connected block is a
multilayer perceptron which has one hidden layer. The
input layer has 128 × 4 × 5 × 4 = 10240 neurons, there
are 256 neurons that use an ELU activation function in
the hidden layer (FC 1), and there is a single neuron
in the output layer. A dropout layer, whose keep rate is
0.8, is employed following the hidden layer. And finally
the output layer (FC 2) performs a linear regression on
the hidden layer features.
We use 3D maps of gray matter density as input data,
and MAE as loss function. The model is optimized using
Adam with a learning rate of 0.001. We set the decay
is 10−4, β1 is 0.9 and β2 is 0.999.

4) SVR: SVM is a classical machine learning model which
construct a set of hyperplanes that separate the feature
space. It was first used for the binary classification task,
and then it was updated to the regression version called
SVR, which can solve the regression tasks. In this work,
we use SVR with a radial basis function kernel, the
input data is Surface-Based Processing of Gray Matter,
which has nearly 650,000 gray matter measurements per
individual, and the output is the sample’s predicted age.
The implementation we used is package scikit-learn in
Python. The number of epochs we set is over 300 to
keep the models with the highest accuracy.

With the above four models, we will investigate these models
over different age groups and establish an ensemble model
based on these independent models.
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IV. PROPOSED AGE-ADAPTIVE ENSEMBLE MODEL

A. Fundamentals of Ensemble Learning

Ensemble learning completes learning tasks by constructing
and combining multiple learners. It is also referred to as
a multi-classifier system or committee-based learning. The
general structure of an ensemble learning model is to generate
a group of individual learners first, and then combine them
with a certain fusion strategy. In general, the generalization
performance of ensemble learning is better than the individual
learners [58], [59].

There are six common types of ensemble learning mod-
els: Bayes optimal classifier, Boosting, Bootstrap aggregating
(bagging), Bayesian model averaging (BMA), Bayesian model
combination (BMC), and Stacking.

Bayes optimal classifier is based on Bayesian decision
theory. It is an ensemble of all the hypotheses in the hypothesis
space [60]. Until now, it is still a popular supervisor learning
for the problem of classification.

Boosting is an algorithm that can boost weak learners to
strong ones [61]. It first trains a base learner from the initial
training set, and then adjust the distribution of training samples
according to the performance of the base learner, so that the
misclassified samples will receive more attention in the follow-
up. This process is repeated until the number of base learners
reaches the pre-specified value.

Bagging is the most famous representative of parallel type
ensemble learning. Its principle is based on bootstrap sam-
pling [62]. For a subset with capacity of m is constructed
with sampling with replacement. For an ensample model with
T base learners, T subsets are generated to train each of
the learners. The prediction is then made by fuse the results
from base learners. Random Forest is one of the most famous
extended variants of Bagging.

BMA, BMC and Stacking represent different model com-
bining strategies. BMA [63] uses the weighted average method
to combine the models where the weight of each model is
equal to the posterior probability of the model. BMC [64] is
an algorithmic correction to BMA. Instead of sampling each
model in the ensemble individually, it samples from the space
of possible ensembles.

Stacking first trains the initial learner from the initial data
set, and then generates a new data set for training the sec-
ondary learner. In this new data set, the output of the primary
learner is used as the sample input feature, and the initial
sample’s label is still used as the sample label. In general,
the secondary learner always uses the logistic regression
model [65]. Stacking is usually provide better robustness than
BMA and BMC, since BMA and BMC are sensitive to model
approximation errors.

B. Proposed Nonlinear Age-Adaptive Ensemble Model

Through extensive experimentations, we found that the
performance of all the models is influenced by the true age
of samples (see part V). This indicates that some models are
suitable for predicting young samples, and some models are
suitable for older samples. In order to improve the prediction
accuracy, we built a model named nonlinear age-adaptive

ensemble model. Different from the stacking strategy, our
ensemble model can adjust weights of inside independent
models according to the ground truth label.

The proposed framework is shown in Fig.3. First, we used
different independent models as the initial learners. In our
work, we employed four models: SVR, ResNet, GoogLeNet,
and our own CNN. We used them to predict brain age,
recorded the prediction results of these independent models,
and then used these results as input values for the ensemble
model.

Thereafter, we divided the sample into many groups by
age, and in each group, there is an ensemble model which
is combined by the independent models.

M =
∑

ωi Hi (1)

Here, M represents the prediction result of the ensemble
model in a determined age group, Hi means the prediction
result of the i -th independent model in this age group, and ωi

is the weight of the i -th independent model in this age group
with

∑
ωi = 1.

Our model adopts a novel method to decide the weights of
independent models. In each age group, we set a loss function,
its equation is shown below:

J (ω) = 1

2
(Hω − Y )T (Hω − Y ) (2)

H is an m×n-dimensional matrix, m is the number of sam-
ples, n is the number of independent models, ω is an n×1-
dimensional vector, which is (ω1, ω2, . . . , ωn)T , ωi means the
weight of the i -th independent model, Y is a m×1-dimensional
vector, which is (y1, y2, . . . , yn), and yi is the i -th sample’s
real age.

In this work, we tested two optimizers in minimizing the
loss function. The gradient descent updates the weights by
moving towards the steepest direction:

ω = ω − αH T (Hω − Y ) (3)

where α is learning rate.
The ordinary least squares can also accomplish this task,

it can be described as below:
ω=(H T H )−1H T Y (4)

It is worth noting that the results from these two methods are
the same after experiments.

For each age group, we then obtain a series of suitable
weights for independent models, so that the model is able to
adaptively combine the results from base models for different
age groups. Formally, the age-adaptive model can be expressed
as:

F(x) =
∑

A∈age
ωA H (x, pA) (5)

Here, “age” represents the set of different age ranges, x is input
data, ωA is the value of ω at age A, and pA is the parameters
of independent models at age A.

The process of predicting the brain age of the sample is
as follows. First, each independent model predicts the brain
age of the sample, we record them as (H1, H2, . . . , Hn).
Once done, we calculate the average of all predicted ages
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Fig. 3. The schematic view of our nonlinear age-adaptive ensemble method on brain age estimation.

and call it Have, Have = mean(H1 + H2 + . . . + Hn). Next,
we check which age group Have belongs to. For each age
group Gi ∈ (G1, G2, . . . , Gn), there is an ensemble model
Mi ∈ (M1, M2, . . . , Mn) that combines the results of base
models adaptively. In particular, if Have ∈ Gi , then we select
Mi as the final ensemble model, and use it to predict the age
of the sample. Figure 3 shows the estimation process of our
ensemble model, and List I gives the list of the pseudocode
of our method.

List 1 List of Pseudocode on Our Brain Age Estimation
Begin

Input brain sMRI as x
H1 = Res Net (x)
H2 = GoogLeNet (x)
H3 = C N N(x)
H4 = SV M(x)
Have = mean(H1 + H2 + H3 + H4)
For i = 1 to n

If Have ∈ Gi Then
Age – adaptive ensemble model = Mi

End If
End For
Final result = Age – adaptive ensemble model (x)
Output Final result

End

V. EXPERIMENTAL RESULTS

A. Experimental Results

The test method used is based on a 5-fold-cross-validation
strategy, with the mean MAE and Spearman correlation
between the predicted age and the actual age of them as final
results.

The details of MAE for each model in a 5-fold-cross-
validation are shown in Table I. Min means the minimum
MAE, Max represents the maximum, and Mean is the average
of 5 results in 5-fold-cross-validation while Std relates to the
standard deviation of results, which represents the degree of
dispersion of the results of the model. For the Std, Table I
shows that the 6-layer CNN has the greatest value of 0.22,

Fig. 4. Performance of each individual model.

followed by SVR with 0.21. For the ResNet architecture,
Std value is 0.08, which is the minimum of all models.
OE and MedianE have the same value of 0.13, nl-AAE-2 and
nl-AAE-c are 0.12, GoogLeNet and nl-AAE-6 are 0.11, and
MeanE is 0.1. These results suggest the results of 6-layer-CNN
have the largest degree of dispersion. In contrast, the results of
ResNet have the smallest degree of dispersion, which means
the predictions of ResNet are more stable.

Our test results are shown in Figure 4 and Table II.
In Table I, we first present the results of 4 independent models:
SVR, 6-layer self-built CNN, ResNet and GoogLeNet. The
achieved mean errors in term of years are 5.15, 4.33, 3.99 and
3.88 years in age, and the Spearman correlation between
predicted age and real age are 0.83, 0.89, 0.88 and 0.89,
respectively. We then combine the prediction of base learners
together using the median and mean of their predictions. The
result shows that the median based ensemble model has a
larger mean error than the mean value based ensemble model.
The possible reason is that a median-based ensemble model
actually only chooses one model each time, and ignores other
models that are not the median outputs.

Following these preliminary tests, we investigate the non-
linear age-adaptive model. First, we used only one linearly
approximated ensemble model to be applied to the data sample
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TABLE I
THE DETAILS OF MAE FOR EACH MODEL IN 5-FOLD-CROSS-VALIDATION

TABLE II
RESULTS OF ALL THE MODELS

of all ages. In other words, we first test the performance
of ensemble model without age-adaptive. Compared with
naive fusing strategies, the model performance is marginally
improved with a MAE of 3.52 years, and the Spearman
correlation of 0.91 (OE in Table II).

In our second experiment, we divided the prediction results
of four independent models into two groups. The first group
contains the samples over 40 years old while the other group
contains the samples under 40 years old. We separately trained
the models on two sets of data, and used the results of
4 base models as the input feature of secondary learner.
By establishing two ensemble models for different groups and
combining them into a non-linear ensemble model, a lower
MAE with 3.45 years is achieved, but its Spearman correlation
also drops to 0.89 (nl-AAE-2 in Table II).

Next, we divided the prediction results into six parts accord-
ing to the actual age of the samples, which were 10-20 years
old, 20-30 years old, 30-40 years old, 40-50 years old,
50-60 years old, and 60-90 years old, then we applied the same
method to build the non-linear ensemble model (nl-AAE-6 in
Table II). This time, the ensemble model’s average MAE is
3.39 years, and its Spearman correlation improves to 0.95.

Finally, we divided the data more finely, taking all the same
age sample as a group, but due to the small amount of data,

we can only use a simplified method, that is, for samples from
17 to 30 years old, we treated each age as a group. However,
the size of data decreases as age increases. Therefore, for
the 30 to 60-year-old samples, we took every 5 years old
samples as a group. Likewise, we group the 60 to 70-year-
old samples and the 70 to 90-year-old samples. We refer this
finely split model as a “continuous” (or year-wise) model,
namely nl-AAE-c in Table II. The ensemble model trained
on this division provides the best performance with a MAE of
3.19 years and a Spearman correlation of 0.95.

Here, we present a comparison of our model with previ-
ous researchers’ models which are also tested on the PAC
2019 dataset. Couvy-Duchesne et al. [43] built an ensemble
model combined by 7 different algorithms, and its performance
is attractive with a MAE of 3.33 years. Da Costa et al. [48]
developed an ensemble of shallow machine learning methods
(e.g., Support Vector Regression and Decision Tree-based
regressors) with a MAE of 3.75 years. Soch [49] thought
that distributional transformation (DT) can map the predicted
values to the variable’s distribution in the training data, which
would improve decoding accuracy, and finally his model’s
performance is good with a MAE of 4.58 and spearman
correlation between predicted age and the actual age of 0.93.
These research results are attractive. By summarizing the
experience of the previous researchers, we have developed the
AAE method resulting in a marginal improvement compared
to the previous research results.

The brain age gap represents the difference between pre-
dicted age and chronological age. Figure 5 shows the brain
age gap as functions of the chronological age using 7 different
machine-learning methods. The slope of the line in Figure 5
indicates how much the prediction accuracy of the model
is affected by increasing the age. As such, the prediction
accuracy of AAE has the lowest influence by aging, and the
prediction accuracy of SVR is most affected by aging.

The above experiment provides the following inspirations:
1) deep neural networks are in-general better than SVR; 2)
all ensemble models have lower errors than discrete models;
3) our age-adaptive models have better performance than
non-adaptive ensemble models; 4) finer the age-based division,
lower the error can be achieved by the nl-AAE-c model.

B. Investigation on Age-Sensitivity per Models

The age-sensitivity shows the trend of MAE for each model
according to the age. Therefore, in this section, we investigate
the age-sensitivity of the models we built previously. Figure 6
shows the results suggesting that all the models are good at
predicting young people but not old people where the MAE
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Fig. 5. The brain age gap and MAE as functions of the chronological
age using 7 different machine-learning methods, the horizontal black line
represents 0 brain age gap.

Fig. 6. Age-sensitivity of models.

increases with the age of the sample. As for independent
models, GoogLeNet and ResNet are more sensitive for age,
their MAE has a significant increase in the age of 20 to 30,
but SVR does not change drastically as a whole. Besides,
GoogLeNet has the best performance for middle-aged people,
and the MAE of all models has a significant change when the
sample age is 70 years old.

The age-sensitivity of nonlinear age-adaptive ensemble
model is similar to that of the independent models but more
stable. Obviously, as the sample age increases, the MAE
becomes larger and the model’s performance gets worse and
worse. When the samples’ age is 50 to 60, the model’s
performance is the worst, with MAE exceeding 5. For a
machine learning perspective, this is due to the lack of older
samples that resulted in an insufficient training of the model.
From a medical perspective, we believe that this is due to
the fact that the differences between the brains of different
people will become larger as age grows, which in turn will
increase the difficulty of prediction. On the other hand, brain
differences between young people are not that big. Therefore,

Fig. 7. Individual models’ weights in nl-AAE-c.

when training the model in the future, we can increase the
proportion of young people’s data to improve the accuracy of
the model.

C. Learning the Model Weights

Figure 7 shows the change of each independent model’s
weights in the AAE according to the age. Through this figure,
we can know the different importance of each independent
model in the AAE at different ages.

The SVR’s weights are relatively average for a sam-
ple between 25 and 70 years old. But for young samples
from 10 to 25 years old, SVR does not perform well, which
shows that SVR is not suitable for predicting the age of young
people.

The CNN model plays an important role in the prediction
results when the sample age ranges from 20 to 50 years old.
CNN receives a high weight in the prediction of the data of
young samples, while for the data of old samples, CNN has
less contribution to the ensembled result.

GoogLeNet model is important in the AAE among elder
groups. Although it has average weights in the 20-40 age
groups, its prediction significantly determines the results of the
ensemble models in the elder groups, especially for middle-
aged. This shows that the function of GoogLeNet is powerful,
and it is suitable to predict the age of middle-aged and elderly
samples.

ResNet model has basically maintained high weights for
samples aged 10-35 years old, which shows that it is suitable
for predicting the age of young samples. In the data of
middle-aged and elderly people aged 35 to 70, it has average
performance therefore it does not have a large weight. But
for data over 70 years old, it has a good performance, which
means that ResNet is suitable for inferring the age of people
over 70 years old.

VI. DISCUSSION

A. Discussion of AI Models

In this work, we have proposed a nonlinear age-adaptive
ensemble (nl-AAE) model for brain age estimation with better
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results than other benchmark models. The most important
contribution of this work is the age adaptive fusing strategy
which significantly improves the performance of the ensemble
model. To the best of our knowledge, no previous literatures
documented this strategy. The characteristic of AAE is that
it not only combines the advantages of multiple models, but
the weights of independent models also change with age.
This makes the AAE become a dynamic model, where the
prediction results are more accurate given BrainAge projection
is sensitive to age change.

Although our model yields state-of-art prediction results,
there are still several issues that can be improved in future
works. First, more advanced models can be introduced as
initial models. For example, as for GoogLeNet, we used the
Inception V1 version, now it has already had Inception V4
versions.

Second, MAE is generally used to evaluate the performance
of the model. However, MAE is affected by age distribution
and the number of objects in the training set, so MAE of
different data sets cannot be directly compared. The lower the
physiological age of the general object, the smaller the brain
difference and the smaller the MAE value of the same age
individuals. Actually for adolescents, the MAE value of the
monomodular prediction model is 1 to 2 years, and that of
the multimodal prediction model is about 1 year. However,
for individuals of all ages or middle-aged and old age, the
MAE value of the prediction model can only reach 4-5 years
in general. Meanwhile, the larger the overall age span of
the object is, the larger the evaluation index MAE will be.
Therefore, the comparison between models can be made with
various factors.

Third, we can try more ensemble methods, and compare
their performance for brain age estimation in our future work.
The approach we have used in this work is to re-weight
the results of multiple independent models by integration
and utilizing a nonlinear function which can have many
types. For example, one can select only the best performing
independent models as the ensemble model for each age group.
In addition, we can also change the method of re-weighting.
Using a multiple layer perceptron to combine the results of
independent models is an interesting idea, although its training
speed may be a little slower, its prediction accuracy is worth
investigating.

Fourth, the gender is always an important variable in many
experiments, based on the subtle differences between men’s
and women’s brains. Therefore, the gender may be a key
factor in improving model prediction accuracy. In our future
work, we will investigate the influence of gender on brain age
estimation and consider gender as a factor in our experiments.

Brain age prediction is a burgeoning research field that
is developing rapidly. Brain age prediction models based on
neuroimaging and their applications are increasing day by day.
A growing number of researchers are using brain age analysis
to explore brain aging in the course of health and disease, and
many new and promising avenues of research are emerging.
From the perspective of image modes, various image modes
have their advantages and disadvantages, and the fusion of
information from multiple modes is more likely to further

improve the performance of the model. In addition, with the
improvement of the architecture of the convolutional neural
network and the appearance of the image data set of big data,
we believe that the performance of the future model is likely
to be further improved. The key to future model development
is to continuously improve the accuracy of the model while
improving the generalization ability of the model for new data.
The ultimate goal of this field is to build a brain age model
based on large image sets that completes that can be applied
to provide accurate personalized cloud diagnosis services.

B. Discussion of Medical Findings

From our research, we also have some interesting findings
from medical perspectives. First, we found that the perfor-
mance of constituent models decreased with the age of the
sample, which implies that young people have their brains
in similar conditions. In addition, we have found that with
an increase of age, the risk of people suffering from brain
diseases increases, too. The differences between the brains
are getting larger, and the accuracy of the model’s prediction
begins to decline. However, these results may be influenced by
biological reasons, sample size or problems with the model,
or a combination of both, so in the future, we still need to
find a fairer way to prove these findings.

From the results of our experiments, we believe that changes
in the brain can be divided into 4 stages, namely 0-30 years
old, 30-50 years old, 50-70 years old and 70-80 years old.
The criterion for classification is whether there is a significant
change in the model’s performance in predicting age. From
Figure 5, we notice that during the period of 0-30 years old,
the human brain undergoes a significant process of change.
Speaking at a meeting of the Academy of Medical Sciences
in Oxford in the UK, researchers explained that our brains
slowly transition to adulthood, which is finally reached in our
30s. After the age of 30, the brain’s working memory capacity
begins to slowly decline [39], which is in agreement with our
research findings. At the age of 30 to 50, the brain changes
little, but there will be a significant change around the age of
50. Research in the British Medical Journal [40] also shows
that in a group of people who were first tested on various
mental abilities when they were 45–49 years old, reasoning
skills declined by 3.6 percent over 10 years. At the age of
50-70, the brain does not change much, but after the age
of 70, the brain will have the last significant change. Peter
Jones’s research also shows that the overall volume of the
brain begins to shrink when we’re in our 30s or 40s, with the
rate of shrinkage increasing around age 60-70 [39], the results
of our experiments can also be evidence of it.

Exercise, reading, meditation and other similar behaviors
are good methods to prevent brain disease [7], [8]. People who
exercise, meditate regularly, and those with higher education
levels have lower predicted brain age than their peers, which
shows that their brains are more active and the risk of brain
diseases is lower. A study reported in [37] analyzed samples
over the age of 50 and found that people who do not exercise
or who exercise little have their brains about 5-10 years older
than those who exercise regularly. Another recent research
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found that stem cells in the brain’s hypothalamus likely control
how fast aging occurs in the body [38]. Specifically, the
number of hypothalamic neural stem cells naturally declines
over the life of the animal, and this decline accelerates aging.
Researchers injected hypothalamic stem cells into the brains of
normal old and middle-aged mice, whose stem cells had been
destroyed, the measures of aging were slowed or reversed.
This is an exciting discovery, which will be an important step
in slowing down aging and treating brain diseases. The brain
age prediction model in this article is sensitive to changes in
the brain, and we believe it can be a useful tool for detecting
medicine performance.

VII. CONCLUSION

In this paper, we proposed a nonlinear age-adaptive ensem-
ble method for brain age estimation from MRI images. From
our experiments, we clearly show that ensemble models can
in general achieve lower errors than discrete models, and
our nonlinear age-adaptive ensemble models are consistently
better than age-agnostic ensemble models. Among discrete
models, GoogLeNet basically has a good performance on
data of all age groups, especially for middle-aged and old
samples. With the significantly increased accuracy on brain
age estimation, our nonlinear age-adaptive ensemble models
can potentially help doctors to identify the risk of brain
diseases more accurately and efficiently, help pharmaceutical
companies develop drugs or treatments more precisely, and
provide a powerful tool for researchers in the field of brain
science.
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