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The impact of high speed quoting on execution risk dynamics:
Evidence from interest derivatives markets

Abstract

This paper intends to characterize the effect of high-frequency quoting (HFQ) on the execution risk
of Eurodollar futures. We construct a unique dataset to capture the quoting and trading activities
within the limit order book, which allows us to classify the realised fraction of HFQ activity within
the market. We then estimate the marginal effect of the HFQ fraction on the execution risk through
a novel semi-parametric regression. The results suggest that the effect of HFQ on market quality
is non-linear with critical saturation levels. The HFQ effects on market quality seem to disappear
once certain critical points are reached.

Keywords: Execution Risk, High-frequency Quoting, Market Quality, Semi-parametric Model
JEL Classification: G12, G14

High frequency quoting (HFQ), often thought of as automated quoting at speeds beyond human

reaction times, is considered one of the greatest innovations in the financial markets. Given its cur-

rent relevance and the lack of consensus about its impact on market quality, HFQ is the subject of

considerable policy attention. Theoretically, the positive effects of HFQ derive from lower trading

costs while the negative effects are attached to adverse selection on the part of slower investors

induced by their HFQ counterpart. Scholars have not yet established whether these positive or

negative effects dominate; therefore, empirical studies exploring the impacts of HFQ are divided in

their conclusions. Among the studies supporting the goodness of HFQ, Hendershott et al. (2011)

find that the introduction of the auto-quote facility for US equities has a significantly positive

effect on a number of liquidity proxies. Using statistical experiments based on the introduction of

technologies providing new avenues for HFQ, Hendershott and Moulton (2011) and Riordan and

Storkenmaier (2012) draw similar conclusions about HFQ as a net provider of liquidity. Considering

various markets and asset classes, Harris (1989), Stoll and Whaley (1990), Chan (1992), Huang

and Stoll (1994), Engle et al. (2012), Frino and McKenzie (2002) and Menkveld and Zoican (2014)

either find evidence to suggest that HFQ improves market characteristics or find no evidence that

the liquidity is compromised by the presence or introduction of HFQ. Brogaard et al. (2018) pro-
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pose that when the US equity market experiences extreme price movement, high-frequency traders

(HFTs) provide liquidity, however, they are not the cause for extreme price movement. Employing

a quote-to-trade ratio used by market makers, Rosu et al. (2021) suggests that a generous number

of quotations reduces mispricing and lowers expected returns.

There is abundant evidence for the negative impact of high frequency quoting. In a recent

empirical work using a random sample of intensely traded US equities, Hasbrouck (2018) find that

HFQ generates a much higher quote volatility than if it was traced only to fundamentals. In

addition, HFQ has a negative impact on the informativeness of the US stock market. In a similar

vein, Kirilenko et al. (2017) illustrate that while high-frequency trading (HFT) did not trigger the

2010 Flash Crash, HFTs do exacerbate the degree of price volatility. Using the 2008 short-sale ban,

Brogaard (2017) study the different impacts from HFTs and non-HFTs on market liquidity and find

that some HFQ activities erode market liquidity during the highly volatile short-sale ban period.

From a different perspective, Chakrabarty et al. (2014) find little evidence of a deleterious effect

of the Securities and Exchange Commission (SEC) banning naked access to US equity exchanges

(which hinders the supposed advantage of HFTs) and cite several positive outcomes from this

regulatory action. Furthermore, theoretical contributions from Foucault et al. (2015) and Kyle and

Obizhaeva (2016) show the negative effects of HFT by indicating that the benefits of HFT are

outweighed by a subset of traders having substantially greater opportunities simply through their

high-frequency access.

This paper contributes empirical evidence to the discussion on the effects of HFQ on market

quality. Compared with earlier studies, our analysis focuses on the Eurodollar futures market

because it offers characteristics that allow more general inferences. On the one hand, a markedly

fast market populated by a relatively small number of high-frequency players, such as the Eurodollar

futures market, provides a unique opportunity to study the potential effects of HFQ on market

quality. On the other hand, HFT studies are often characterised by the use of proprietary data

with a corresponding burden of data intensiveness. Consequently, most of the available literature

on HFT are either based on random securities samples with biased results from the choice of
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samples or use data that other scholars cannot access with results that are difficult to replicate.1

The methodology we propose overcomes this shortfall, which enables traders to both work with

the population of trades using the CME venue and identify transactions generated at such high

frequency that they are likely to be related to HFQ, which is not trivial when working with non-

proprietary data.2

To develop our study, we compute a proxy for the fraction of HFQ using order flow data. We

also run a semi-parametric instrumental variable regression to determine the impact of increasing

the HFQ fraction over both calendar time and the term structure of the contracts. Our results

provide rich detail for interpretation. First, this paper reveals that the marginal effect of HFQ order

flow on market quality not only changes in direction, but also in order of magnitude over the term

structure as the level of ambient quoting activity changes. In this sense, our results go some way

to explaining why there is such a lack of consensus in the literature on the impact of HFQ, such as

studies looking at ultra-high-frequency data over short time scales (e.g. all available messages for 1

day, such as Kirilenko et al. (2017)). Second, this paper also extracts the causal effects of exogenous

HFQ adjustments on the market by instrumenting our regression system. Third, in the absence of

the identifying account numbers, the findings suggest that public order flow data from the limit

order can be used to obtain comparable results to studies based on proprietary data, such as CME

Group (2010).Finally, our results suggest that there is no reason to doubt the methodological or

theoretical integrity of either side of the HFQ debate. In fact, both sets of studies can be validated

for both calendar time and term structure in the Eurodollar futures market.

The remainder of this paper is organised as follows. Section 1 outlines our theoretical develop-

ment using an asymmetric information-based model for futures trading. In Section 2, we present

1In a relatively large study of the impact of HFQ order flow on their Globex platform during the aftermath of
the May 2010 Flash Crash, for instance, the Chicago Mercantile Exchange (CME) find that high-frequency order
flow actually increases liquidity (CME Group, 2010). In addition, CME uses their proprietary data to determine if
an account connection to the Globex exchange is generating orders following instructions from an individual (i.e. a
responsible party) or a computer algorithm (i.e. a developer group). These proprietary data are not available to
public data users.

2It is important to note that the CME is not the only venue where Eurodollar futures are traded. For example,
investors can also trade them at the Intercontinental Exchange (ICE) Europe Futures venue. In terms of the volume
of Eurodollar futures traded at the CME, however, the ICE Europe Futures is a small venue. While it is possible
that important spillovers occur from one venue to the other, studies of their impacts are beyond the scope of this
paper.
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our empirical methodology to calculate a set of market quality indicators and high-frequency order

flow proxies. Then, we also introduce a novel semi-parametric partially linear regression to esti-

mate the relationships between the fraction of HFQ order flow and execution risks in the markets.

In Section 3, we describe our Eurodollar futures dataset and provide a general characterisation

of the market. Section 4 includes an analysis of the marginal impact of HFQ on market quality,

and Section 5 concludes. For robustness, we conduct a significant number of ancillary treatments,

which are presented in an extensive online appendix.3

1. A Theoretical Model for Latency-advantaged Traders in Futures Markets

Considering that the Eurodollar futures market is naturally prone to the presence of informed

trading, we begin our analysis by developing a simple linear noisy rational expectations model in

the spirit of Admati and Pfleiderer (1988, 1989) and Watanabe (2008), by highlighting the impact

of the small number of traders with significant trading advantages. Our model predicts that the

fraction of informed trading should exhibit a non-linear relationship with our execution risk and

other market quality indicators, whereby the impact of the small number of traders with significant

trading advantages can have a deleterious effect on market quality. However, this pattern is reversed

when more traders enter the market. Our model is based on two futures traded simultaneously in

the market and Ñ traders, separated between informed traders, denoted by NA, and uninformed

traders, denoted by NB, such that Ñ = NA+NB. Although we only present the case of two futures,

that is, a short maturity future denoted by the subscript S and a long maturity one denoted by

the subscript L, our results are generalisable and analytically tractable for nf futures. We model

1 day of trading; therefore, we set (t) as a continuous time index, such that t ∈ [0, T ] where T = 1

for 1 day.

Let f̃(t) = [f̃S(t), f̃L(t)]′ for f̃(t) ∈ R2 be the log prices of a pair of futures contracts with

maturity dates T̄S and T̄L, respectively. Both maturity dates are such that T̄L > T̄S and T̄i∈{L,S} >

T̄ . This implies that neither future is maturing within the day’s trading and there is no final

3The online appendix is available at https://drive.google.com/file/d/1nINGyzDyMyKpAhCCsXQU4gN_sqXqAmmF/
view?usp=sharing
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settlement.4 In the Eurodollar market, where the reference yield curve from the dollar London

Interbank Offered Rate (LIBOR) is revealed several hours prior to the daily settlements, we assume

that the reference rate is revealed such that the closing price for the day at mark to market,

δ̃(t)−f̃(T̄ ), is the difference between the marked to market futures price, δ̃(t) and the fair valuation,

f̃(T̄ ).5

We presume that all trading takes place within a single day. Our model is slightly stylised in

the sense that the traders, while being marked to market by the stated prices at closing, value their

positions at the agreed equilibrium price, which follows the original Kyle-type model. However, we

examine a bivariate long and short maturity model directly. We set the dynamics of the underlying

valuation of a futures position as:

dδ̃(t) = Σ̃1/2dW̃ (t) (1)

where W̃ (t) is a two-dimensional Brownian motion and subsequently δ̃(t+ ∆t)− δ̃(t) ∼ N (0,∆tΣ̃)

over the interval 0 ≤ t ≤ T . We presume that a maturity effect exists; therefore, we set Σ =

[σij ]ij∈{S,L} such that σSS > σLL. Under the fair valuation assumption, the final true value of

futures δ̃(T ) is known and agreed on with certainty by all participants immediately after time T .

Uninformed traders submit a random aggregate order flow denoted by vector d̃ for each of

the futures over the interval [0, T̄ ]. This order flow is presumed to have unconditional moments

E0[d̃] = 0 and covariance matrix covariance matrix E0[d̃d̃′] = NBΨ̃. In the approaches by Kyle

(1985), Glosten and Milgrom (1985) and Admati (1985) these traders are noisy or liquidity traders

who provide aggregate liquidity into the market.6

The NA group comprises algorithmic HFTs who trade off information about order flows. These

traders are presumed to have a technical advantage over institutional traders because they can

track order flow directions and have an unbiased but noisy estimate of the terminal valuation δ̃(T̄ ).

4Recall that the mark to market prices in a futures market are assumed to be set at the end of a day’s trading.
5Recall that the Eurodollar futures market is a 24-hr market with settlement at 20:00 CET.
6These institutional traders are forced to create specific positions in the market.
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Therefore, they all receive a signal such that

δ̃A(T̄ ) = δ̃(T̄ ) + ζ̃ + ξ̃ (2)

where ζ̃ ∈ N (0, Γ̃) and ξ̃ ∈ N (0, Φ̃) are the global-specific and trader-specific noise vectors, respec-

tively.7 For tractability, we do not model traders’ instantaneous profit function; however, we model

their objective in the form of their integrated profit function. Let ãn be the aggregate order flow

of the n ∈ NA trader, then the aggregate order flow is given by:

ã∗n = arg maxãn E[(δ̃(T̄ )− f̃(T̄ ))′ãn] (3)

Finally, let ẽ =
∑NA

n=1 ã
∗
n + d̃ be the aggregate order flow across both futures contracts. Notice that

in a centrally cleared trading platform, such as CME, the clearing house matches and clears all

available trades and then places the remainder in the limit order book. This mechanism can be

considered as a price-matching model to promote efficient information clearing, such that δ̃(t) −

f̃(T̄ ) → 0. Therefore, the pricing rules for market-clearing mechanisms follow the principle that

E0[f̃(T̄ )] = δ̃(t).

The model can be expressed as a simple one-period Kalman filter assuming that the positive

semi-definite matrix Θ̃ ∈ {Σ̃, Γ̃, Φ̃, NBΨ̃}, representing the structural parameters matrices, and the

scalar NA are known a-priori by all participants.8 In this framework, it is possible to derive the

market equilibrium under rational expectations stated on the following Theorem 1.

Theorem 1. A Noisy Linear Rational Expectation Market Equilibrium. Let the observed price of

the futures contracts be f̃(t) = δ̃(t)+Λ̃ẽ, where Λ̃ is the multivariate equivalent of “Kyle’s lambda”,

following the definition in Admati (1985) and Watanabe (2008) and ẽ is the net order flow, with the

algorithmic traders’ linear noisy rational expectations equilibrium given by ã∗n = B̃δ̃(t). The market

clearing equilibrium under noisy linear rational expectations (NLRE) is defined by the following

7Here, we depart from the standard approach by Kyle (1985), Glosten and Milgrom (1985) and Admati (1985).
8Recall that Σ̃ refers to the variance covariance matrix of the true valuation price process, Γ̃ is the covariance

matrix of the global noise across all A traders signals, Φ̃ is the covariance matrix for each A traders signal, and Ψ̃
represents the variance of an individual B traders order flow.

6



equilibrium equations of state:

Λ̃ =
√
NA(NBΨ̃)−1/2M̃−1/2(NBΨ̃)−1/2, B̃ = Λ̃−1J̃−1Σ̃−1 (4)

M̃ =
√
NBΨ̃1/2J̃−1Σ̃ξJ̃

′−1
√
NBΨ̃1/2, Σ̃ξ = Σ̃(Σ̃ + Γ̃ + Φ̃)−1Σ̃′ (5)

J̃ = 2I + (NA − 1)Σ̃(Σ̃ + Γ̃ + Φ̃)−1(Σ̃ + Γ̃)Σ̃−1 (6)

Proof. Is provided in Appendix A.1.

To guide the model calibration, it is useful to rearrange the equilibrium equations of state, the

expected quadratic variation and the expected trading volume across the two assets, which are

expressed in the following propositions:

Proposition 1. Expected Price Variance. Let ∆tH̃ = E[(f(t + ∆t) − f(t))(f(t + ∆t) − f(t))′]

be the observed pricing variance-covariance matrix. From Theorem 1, this is determined from

Θ̃ ∈ {Σ̃, Γ̃, Φ̃, NBΨ̃} using the following expression:

∆tH̃ = Σ̃ + Σ̃Λ, where Σ̃Λ = NAΣ̃((NA + 1)(Σ̃ + Γ̃) + 2Φ̃)−1Σ̃ (7)

Proof. is provided in Appendix A.2.

Proposition 2. Expected Market Volume. Following Admati (1985) and Admati and Pfleiderer

(1988, 1989), let the aggregate volume be defined by Ṽ = 1
2 |
∑NA

n=1 ãn| + |d̃| + |ẽ| in terms of the

equilibrium in Theorem 1, which is given by:

E0[Ṽ ] = 1√
2π
E0[(diag(NAB̃(NA(Σ̃ + Γ̃) + Φ̃)B̃)1/2 +

diag(Ψ))1/2 + (diag(NAB̃(NA(Σ̃ + Γ̃) + Φ̃)B̃′ +NBΨ̃))1/2] (8)

Proof. is provided in Appendix A.3.

We now move to describe the baseline specifications for our simulation and to demonstrate the

existence of a non-linear response in the price impact matrix. Our simulation does not include

specific point estimates for Γ̃, Ψ̃ and Φ̃. However, if we set the first element of Σ̃ as the square of
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the approximate long run daily volatility of the reference LIBOR rate, and H̃ and Ṽ as the observed

price volatility and the volume of the futures, respectively, we generate reasonable domains for Γ̃,

Ψ̃ and Φ̃. The following list summarises the starting points and respective domains used for the

simulation. For the variance-covariance matrix of the true valuation price process, Σ̃, σ1 = 1/4,

σ3 = σ1/5 and σ2 = 7/10σ1σ3. For the covariance matrix of the global noise across all A traders’

signals, Γ̃, γ1 = 1/10, γ3 = 1/10 and γ2 = 5/10γ1γ3. For the covariance matrix for each A-type

traders’ signal, Ψ̃, ψ1 = {1/4, 1/2, 1, 3/2}, ψ3 = ψ1/2 and ψ2 = 0.2ψ1ψ3. Finally for the variance

of an individual B-type trader’s order flow, Φ̃, φ1 = 1, φ3 = φ1/2 and φ2 = 0.

[Insert Figure 1 about here.]

Figure 1 exhibits the level and the partial derivative of the elements of the price impact matrix

Λ̃, which determine the degree of misalignment between the observed futures price and the terminal

valuation as a function of the aggregate order flow, ẽ, with respect to the fraction, NA/Ñ ∈ [0.1, 0.8],

of type A traders in the market. Across a variety of values of ψ1 and ψ2, Figure 1 shows that

the model predicts that a small number of type A traders will increase the magnitude of the

misalignment between the true value and the price in the market. However, as the number of type

A traders increases, this detrimental effect on the market decreases and reverses rapidly. Moreover,

we predict this pattern for both the short and long maturity contracts.

Overall, our model predicts a non-linear relationship between the proportion of advanced traders

and the market depth. Based on our theoretical model and the mixed results in the related litera-

ture, we predict that a non-linear HFQ influence on the quality indicators in the Eurodollar futures

market is mostly likely and our algorithmic trading proxies may exhibit significant endogeneity.

We now provide empirical evidence for this pattern in the Eurodollar futures market.

2. Market Quality Measures and Proxies for HFQ: Data and Methodologies

We begin our empirical analysis by presenting the most salient characteristics of our dataset

and the different methodologies utilised to perform our empirical study. We obtain our data from

the CME tapes via Thomson Reuters, which corresponds to all inside quotes, trades and the
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complete history of the limit order book from 1st July 2008 to 1st January 2014 for all 3-month

Eurodollar futures contracts. These contracts are traded concurrently and extending up to ten

years to maturity. The maturity dates are recorded on March, June, September and December

annually. The dataset includes 40 contracts labelled using Reuters Instrument Codes (RIC), which

comprise three elements, where ED represents the product code, while H, M, U or Z, correspond

to the maturity month (i.e. for March, June, September and December, respectively) and the

number between 0 and 9 represents the maturity year of the contract. Hence, the 40 contracts

in our dataset are labelled EDH0, EDH1, . . . , EDZ9, where EDH0 and EDZ9 represent contracts

maturing in March 2010 and December 2019, respectively.9

For each of the contracts, we can reconstruct the limit order book and its evolution over

time. Therefore, the total number of messages updated to the limit order book, K, together

with the time stamp, tk, are attached to each message k ∈ {1, . . . ,K}, which correspond to

either a quote addition, update or cancellation. We always presume that the time stamp is

measured in fractions of a day, hence tk ∈ (0, 1].10 Both sides of the limit order book are or-

dered by price, such that the level of the book is indexed by j ∈ {1, . . . , J}. Therefore, the

best (highest) bid and best (lowest) ask are at level j = 1. In this framework, the tuples

(Pb,J,K , Vb,J,K , Nb,J,K) and (Pa,J,K , Va,J,K , Na,J,K) describe the scalar prices, volumes, and num-

ber of active trading accounts by side of the order book, where a represents the ask side and

b represents the bid side. The status of the entire limit order book at timescale tk is repre-

sented by the vectors Ptk = {Pb,J,K , Pb,J−1,K , . . . , Pb,1,K , Pa,1,K , Pa,2,K , . . . , Pa,J,K}.11 Following

the price ordering, the volume state and the number of active trading accounts state are given

by: Vtk = {Vb,J,K , Vb,J−1,K , . . . , Vb,1,K , Va,1,K , Va,2,K , . . . , Va,J,K} and Ntk = {Nb,J,K , Nb,J−1,K ,

. . . , Nb,1,K , Na,1,K , Na,2,K , . . . , Na,J,K}.

The following section explains in detail how each market quality measure is constructed. The

first set of measurements collects the volatility ratios based on Hasbrouck (2018)’s wavelet approach.

9All 3-month Eurodollar futures are 10-year maturity contracts; therefore, the labels corresponding to contracts
maturing at the end of our dataset are situated between EDH0 and EDZ9.

10We use midnight Chicago time as the end of the day as the futures are traded continuously over 24 hrs.
11For brevity, we presume that J is the same for the bid and ask sides, but it is possible to add subscripts Jb and

Ja for asymmetric level numbers.
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The second corresponds to the liquidity indicators proposed by Hendershott et al. (2011). Towards

the end of the section, we introduce our proxy for the presence of HFQ in the market, as well as a

semi-parametric approach to quantify the marginal effect of HFQ on market quality.

2.1. Variance and covariance ratios based on Hasbrouck (2018)

These measures capture the effects derived from cases where some traders are faster than others.

In this sense, the ratio between the price variance attributed to faster traders versus the price

variance attributed to fundamentals is a measure of market quality. When the ratio is close to

one, we postulate that the scaling of the variance and covariance represent the variance of the

fundamental price process. Similarly, the ratio between the covariance of bid and ask prices attached

to each trader type (i.e. slow or fast) and the covariance of the fundamentals should be close to

unity if market quality does not depend on the presence of faster traders. The methodological

challenge related to these measures is how to isolate the effects of fast and slow traders.

We use a wavelet multi-resolution analysis (WMRA) based on a maximal overlap discrete

wavelet transform (MODWT) to differentiate traders. The methodology involves applying wavelet

filters associated with different scales, such that {H̃w,m : m = 0, . . . ,Mw−1} is the wth MODWT

wavelet filter associated with scale ηw, where Mw ≡ (2w − 1)(M − 1) + 1 is the width of the filter

and M is the width of the w = 1 base filter. Following Hasbrouck (2018), we utilize a MODWT

Haar wavelet basis with a wavelet filter {1
2 ,−

1
2} to maintain methodological consistency.

Intuitively, a WMRA separates an initial time-series dataset, such as the prices on each of the

limit order book levels, into W equally sized vectors where each vector corresponds to a broader

wavelet scale, ηw = 2w, such that W corresponds to the slowest traders. We decompose the

results into one time-series dataset for each trader type where w = 2 corresponds to slower traders

compared with w = 1, and faster traders are represented by w = 3. To understand the information

given by each scale, consider a simple example that assumes data are sampled every second. In this

case, the first and second scales would be η1 = 2 and η2 = 4, respectively. In this context, η1 would

isolate the effects on prices over 0 to 2 seconds and η2 the ones over 2 to 4 seconds. In turn, the

information corresponding to the η1 and η2 are stored at vectors w = 1 and w = 2, respectively.

In this paper, we calculate the wavelet variance (Vι), covariance (Vab) and correlation (ρab) of
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the vectors for prices resulting from each wavelet scale ηw, which are defined as:

Vι,w ≡ V ar{Hι,w}, ι ∈ {a, b} Wavelet Variance (9)

Vab,w ≡ Cov{Ha,w, Hb,w} Wavelet Covariance (10)

ρab,w ≡
Cov{Ha,w,Hb,w}

(V ar{Ha,w}V ar{Hb,w})1/2 Wavelet Correlation (11)

where Ha,w and Hb,w are the wavelet coefficients corresponding to scale ηw of the ask and bid vectors

of prices, and V ar{.} and Cov{.} are the variance and covariance of the wavelet coefficients.

Analysing the degree of decoupling between each of the wavelet scales ηw allows us to capture

the influence of HFQ on market quality. To do so, this paper estimates the wavelet variance and

covariance ratios by comparing the Vι and Vab at relatively short scales ηw to the longest scale

ηW . We define the wavelet variance and covariance ratio operators as: Rι[w,W ] = 2W−w
Vι,w
Vι,W , for

ι ∈ {a, b} and Rab[w,W ] = 2W−w
Vab,w
Vab,W . If the covariance ratio decreases (i.e. the covariation at

a high frequency is less than the covariation at a lower frequency), then the bid and ask prices

are decoupled.12 If HFQ increases liquidity and decreases latency, then the degree of decoupling

should be less when there are more HFTs in the market. However, if high-frequency order flows are

designed to deliberately obfuscate to enable manipulative market trading strategies, then we might

expect that the degree of decoupling will be higher and Rab[w,W ] will subsequently decrease. In

terms of variance, the ratios Ra[w,W ] and Rb[w,W ] denote the excess volatility at the wavelet scale

ηw relative to ηW . Therefore, higher levels of Ra[w,W ] and Rb[w,W ] represent a higher degree of

risk for buyers and sellers at the point of execution.

2.2. Liquidity Spreads Measurements

Our second empirical approach estimates additional market quality measures based on the

salient study by Hendershott et al. (2011), which provides an overview of the liquidity measures

in the equity literature using inside quotes and trades. The measures in Hendershott et al. (2011)

12Some degree of decoupling is to be expected as order flow updates are discrete at the highest frequency. Therefore,
one price (e.g. bid or ask) will be expected to lead the other at different points. However, over a day this will even
itself out so, as the frequency decreases the degree of coupling will naturally increase.
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do not provide a complete picture of order flows because inside quotes only include the highest bid

prices and lowest ask prices. However, our data include the whole limited order book and trades.

We also extend the depth of our empirical analysis by calculating the liquidity spreads for each

book level.13 In total, we measure eight liquidity spreads, namely, bid–ask spreads (SQ), quoted

half-spreads (SQ
1/2

), quoted depth (SD), effective half-spreads (SE), realised spreads (SR,5 for 5

mins and SR,30 for 30 mins) and price impacts (SAS,5 for 5 mins and SAS,30 for 30 mins). Each

spread is calculated as follows:

SQj,k = 100(pa,j,k − pb,j,k)/(pm,j,k) Bid–ask spreads (12)

SDj,k = pa,j,kva,j,k + pb,j,kvb,j,k Quoted depth (13)

SEj,k = qk(pl − pm,j,k)/pm,j,k Effective spreads (14)

SR,∆tj,k = qk(pl − pm,jk+∆t)/pm,j,k Realised spreads (15)

SAS,∆tj,k = qk(pm,j,k+∆t − pm,j,k)/pm,j,k Adverse selection (16)

where pm,j,k is the quoted mid-price; qk indicates the trade direction, that is, +1 for buyer-initiated

trades, 0 for no trades, and -1 for seller-initiated trades; and ∆t represents how many minutes after

transactions are considered (i.e. either 5 or 30 mins).14

2.3. A Semi-parametric Model for Market Quality and HFQ

After outlining the construction of our market quality measurements, we turn to the primary

objective of this paper, which is to understand the impact of HFQ on market quality. To construct

an HFQ proxy, that is, the fraction of HFQ to the total number of traders acting in the market,

13To construct these liquidity measurements, Hendershott et al. (2011) use the Lee and Ready (1991) algorithm
to calculate trade direction; however, this method is not very accurate for HFQ data. We found that about 85% of
the data can be classified as ‘no trades’. Therefore, we alter the Lee–Ready Algorithm using the volume-weighted
average price within a five-level order book.

14We need to sample the vector of message updates at 5- and 30-min intervals. We denote this sampling by
tk(t0+r∆t=5/1440) and tk(t0+r∆t=30/1440) for 5- and 30-min sampling respectively, for r ∈ {0, . . . , R}, where R ≡ (1
mod ∆t) and t0 is the first available time stamp of the day. Let τ = {t0 + ∆t, t0 + 2∆t, . . . , 1} be the order collection
of time intervals representing the desired sampling grid, with ∆t measured in fractions of a single trading day. We
use the nearest past neighbour rule to match the timestamp of trades and quotes to the sampling grid, that is, the
index k(τ{r}) = min[|t0 + r∆t− tk|; tk ≤ t0 + r∆t] where the indexed vectors are denoted as k(τ). The market orders
(i.e. trades) are similarly indexed by l ∈ {1, . . . , L} and recorded by the tuple (Pl, Vl), with time stamp tl.
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we take the information for each contract per day and consider the time elapsed between two

consecutive quoting messages. Any message separated from the earlier message by less than 25 ms

is classified as having been generated by HFTs. Our HFQ proxies by contract, book level, and day

are denoted by:

Aj,T ,∆t = M∆t
j,T /Mj,T (17)

where Aj,T ,∆t denotes the fraction of HFQ quotes for day T , ∆t denotes the timestamp (e.g. less

than 25 ms) for order book level j, and Mj,T is the total number of messages for order book level

j for the day T .15

We use this information to derive two distinct datasets. We construct the first dataset, which

includes 35,491 contract-day observations, by taking the volume-weighted average of book levels by

contract as follows:

Ai,T ,∆t = (Aj,T ,∆t × Vj,T )/

5∑
j=1

Vj,T (18)

where Ai,T ,∆t denotes the volume-weighted fraction of HFQ over the whole book per contract i and

day T . The second is a time-series dataset that includes 2,339 day observations to study the effects

of HFQ on market quality based on the maturity effect of Samuelson (1965). This dataset results

from averaging the fraction of HFQ, AT ,∆t, for all contracts sharing the same days to maturity as:

AD,∆t =
1

40

40∑
i=1

Ai,D,∆t (19)

where AD,∆t denotes the average fraction of HFQ over all contracts with the same days to maturity

D, while i indexes the contracts.

The empirical characterisation of the influence of HFQ on market quality is not a trivial task.

As discussed earlier, there is no agreement about whether HFQ improves market quality or not.

15The physiology literature estimates that the average human reaction time is greater than 250 ms (Kosinski, 2008).
The 25-ms thresholds in this paper yield a modal fraction of order flow messages close to the average quantity of order
flows computed by CME with access to the algorithmic trading account prefixes. We acknowledge that algorithmic
trading is not 100% related to HFQ. For robustness, we constructed proxies at between 50 ms and 200 ms. The time
evolution of these proxies closely correlates to the 25 ms proxy. On the most active days, 90% of messages are below
200 ms. However, 75% are also below 25 ms, which indicates that the clustering is not caused by the number of
traders.
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Moreover, there is no clarity about the functional form that links HFQ with market quality. When

we analyse the Eurodollar futures market characteristics, we find that changes in HFT quoting

activities are not a simple linear relationship with both the liquidity and volatility in the market.

In this context, a semi-parametric regression is the most suitable methodology to capture the

complexity of this relationship. The flexibility offered by this approach is based on the assumed

linear relationship between some independent variables and the dependent variable, whereas the

functional form between the remaining independent variables and the dependent variable was not

determined. We formally propose a semi-parametric regression:

Yi,T = Xi,T β + G [Zi,T ] + εi,T , E[εi,T |Wi,T ] = 0 (20)

where Yi,T represents each of our market quality measures for the i contract for day T , Xi,T

represents the linear regressors, namely, the lagged dependent variable and a constant Zi,T is our

HFQ order flow proxy and Wi,T is a set of instrumental variables. Flattening the dataset to an

index i ∈ {1, . . . , N}, where N is the total number of contract days and the index i represents the

set of N tuples of (i, T ) contract days. The list of dependent variables in the regression includes

the variance and covariance ratios and the spreads collected in the vector Yi,T = {SQi,T , SQ
1/2

i,T , SDi,T ,

SEi,T , SR,5i,T , SR,30
i,T , SAS,5i,T , SAS,30

i,T , Ra1,i,T , Ra4,i,T , Ra9,i,T , Rb1,i,T , Rb4,i,T , Rb9,i,T , Rab1,i,T , Rab4,i,T ,

Rab9,i,T }. Hence, the non-linear semiparametric nature of the model is reflected in that β is a vector

of unknown linear parameters, and G [.] is a nonparametric function.

This type of semi-parametric estimator has not been used previously in the context outlined

in this paper. Following Robinson (1988), Newey and Powell (2003) and Florens et al. (2012) on

semi-parametric and non-parametric estimation, we briefly review this type of estimator together

with our new approach for addressing the endogeneity issue and generating confidence intervals

and marginal effects. In Appendix B, we briefly summarise our semi-parametric estimator and

implementation.

Before estimating the semi-parametric regression, using an instrumental variable becomes nec-

essary as HFQ proxies may exhibit significant endogeneity; therefore, we need to focus on the

endogeneity problems between independent variables Xi (i.e. the lagged execution risk measure-
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ments) and Zi (i.e. HFQ proxies) with the error terms εi during the semi-parametric regression. For

example, the level of HFQ could be caused by the level of market quality proxied by our dependent

variables in addition to the effect we are trying to identify in the opposite direction. Therefore,

we use the log of days to maturity and the log of total messages as instrumental variables because

they are related to both the quality measure and the degree of HFQ activity, but the possibility of

being caused by them is low to none.

To address the endogeneity issue, we employ the logarithms of time to maturity and total

number of messages per day as instrumental variables, where denoted as Wi. As valid instrumental

variables, Wi should satisfy two conditions. The first is that Wi should be partially correlated with

the endogenous variables Zi, cov(Wi, Zi) 6= 0. In our case, both the log total number of messages

per day and the log time to maturity are correlated with the HFQ proxy. The second condition

requires that cov(Wi, εi) = 0; however, this condition cannot be tested because of the unobservable

error term εi.

For the robustness check, we conduct a number of ancillary treatments. We employ both the

number of traders (i.e. open trading accounts) and the volume-to-message ratio as the instrumental

variables to proxy for high-frequency algorithmic traders. According to the CME technical trading

manual, activating a trading account takes more than a day; therefore, the number of active

accounts could not be caused by a shock to any of the market quality proxies in the dependent

variable. The results are qualitatively and quantitatively similar. To avoid unnecessary replication,

we report these results in an online appendix, including marginal effects plots with algorithmic

trading proxies on market quality indicators with different instrumental variables.16

3. Market Characterisation

With well over 100 quadrillion dollars of depth on both sides of the order book, around a quarter

of it at the best-bid and best-ask prices, the Eurodollar futures market has considerable average

liquidity (see Panels A and B of Table 1). Throughout this section, we demonstrate that this

16The online appendix is available at https://drive.google.com/file/d/1nINGyzDyMyKpAhCCsXQU4gN_sqXqAmmF/
view?usp=sharing
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liquidity is not evenly spread across the year or across the term structure of the Eurodollar futures

and that all liquidity indicators we propose exhibit an acute maturity effect.

[Insert Table 1 about here.]

Figure 2 presents the term structure of the wavelet variance ratios for the best bids and best

asks of the 40 Eurodollar futures contracts. To construct Figure 2, we first perform a nine-scale

wavelet multi-resolution analysis by considering only the days when the number of quotes is at

least 5,000.17 We then compute the sum of the bids and asks in the wavelet variances across all the

contracts based on the time to maturity instead of the actual transaction dates used by Hendershott

et al. (2011) and Hasbrouck (2018). Given that each Eurodollar future has a 10-year tenor, our

procedure implies plotting the term structure from 10 to 0 years to maturity.18 As observed in

Figure 2, the quoting variance ratio is relatively stable at all timescale levels during the first 2

years, indicating that for every contract, the price variability is less vigorous at the beginning of

the life cycle. From 8 years before maturity, the variance and covariance ratios gradually increase

to reach their maximum value around a 2-year tenor. This change is consistent with the maturity

effect, which is characterised by monotone increases in price variability as the contract approaches

maturity (Samuelson, 1965). Interestingly, the quoting variance suddenly drops around 1 week

before maturity. Furthermore, the price volatility of Eurodollar futures increases when contracts

are close to expiring at all wavelet scales.

[Insert Figure 2 and Table 2 about here.]

To offer a more detailed look at the maturity effect, we construct a set of forward rates in

Eurodollar futures that map to the forward curve. We sort Eurodollar futures by the days to

maturity and measure the wavelet variance and covariance ratios of inside quotes for all Eurodollar

17The choice of 5,000 is relatively arbitrary because it is the minimum number of updates for the variation in quotes
needed to perform a nine-scale wavelet decomposition. Eurodollar futures quotes tend to be less frequent than an
actively traded stock; however, they have a far larger volume attached to each individual quote. Therefore, 5,000
updates result in no singularities in our dataset.

18Wavelet variance plots for the first, second, third and fourth quarter maturity contract groups and plots for each
single contract can be found in our online appendix presenting the supplementary data analysis.
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futures over 30 days, 60 days, 3 months, and 1 year before the contracts’ maturity date. We then

separate Eurodollar contracts according to their prices and average the variances and covariances

across price quartiles using each of the four time horizons listed above. The results allow us to

compare the Eurodollar futures market with the US equity market in terms of fundamental and

transient volatility (Table 2) and therefore illustrate the decoupling of bid and ask sides of the limit

order book over time.

Several elements are worth mentioning. First, Table 2 reveals that the bid variances for all

pricing groups at all wavelet scales are relatively similar to the ask variances. Therefore, unlike

Hasbrouck’s findings for the US equity market, both best-bid and best-ask effects are comparable

for Eurodollar futures. Our results also suggest that the Eurodollar futures market differs from the

US equity market in that the higher price quartiles tend to have higher variance and wavelet bid–ask

correlations. For example, at wavelet scale level 1, the average median asks variance ratio in the

30-day tenor increases from 1.5223 in the lowest price group to 2.6613 in the highest price group.

At the same wavelet scale level, the average median bid variance ratio in the 30-day period also

increases from 1.5157 to 2.6380 when moving to higher price groups. Both bid and ask variances

increase with shorter wavelet scales. Second, the results show that the volatilities of both the best

bid and best ask increase before approaching maturity. For the 76%–100% price group at timescale

level 1, the average median ask variance for 1-year tenor Eurodollar contracts is 1.7641, while the

ask variance for 30 days before maturity increases to 2.6613. Third, Table 2 also reveals that

the volatilities of the bids and asks of every maturity-type contract maintain positive covariances

and correlations at all wavelet scales. The average of the best-bid and best-ask covariance ratios

increase from a 1-year tenor to a 30-day tenor. Meanwhile, the average best-bid and best-ask

correlations decrease for four price quartiles and nine wavelet scales. This suggests that best bid

and ask prices are departing from each other as the Eurodollar contracts approach their maturity

date. As expected, the correlation level drops with frequency; therefore, the coupling dynamics of

the bid–ask spread are not constant over wavelet scales.

The degree of decoupling is significant, with the highest frequency (shortest timescale) at around

one third of the daily correlations. However, there are very few comparators in the extant literature
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showing the variation in correlation across time scales for the bid–ask spread. Therefore, a broad

survey of markets is needed. Considering traders, the ability to make market orders in the knowledge

that the dynamics of the order book on the opposite side of the market are only 70% correlated

with their initiation side (i.e. buy or sell) is quite striking given the very large order sizes within

the Eurodollar futures market in general.19

[Insert Figure 3 about here.]

For the remaining Eurodollar futures market quality indicators, Figure 3 summarises the weekly

average of liquidity spreads for all the contracts by book level and time to maturity. The daily

bid–ask spread at each level is quite volatile; therefore, we plot each liquidity spread on a weekly

basis. In general, the patterns of the different liquidity measures are consistent. Both the bid–ask

spreads and quoted half-spreads are quite volatile and slowly become narrower and more consistent

over time among the five levels of the limit order book. Few bid–ask prices decouple at the early

stage of the Eurodollar futures life cycle; therefore, there are few spikes in the liquidity spreads

shown before the 5-year tenor. The quoted spreads become narrower nearly 2 years before maturity,

which indicates greater market liquidity. In addition, the liquidity suddenly drops 1 week before

settlement. In terms of quoted depth, there is a clearly increasing trend from 6 years to maturity,

which is broken only few days before maturity. The findings also suggest that the largest liquidity

in this market is provided in level 2, which exhibits the highest depth during these 6 years, although

it decreases 1 week before maturity.

This maturity effect is also observed in the plots for effective half-spread, realised half-spreads (5

mins and 30 mins) and adverse selection indicators (5 mins and 30 mins) for all levels, which shows

a monotonic decreasing trend during the last 5 years of the contracts’ maturity. The narrowest

effective half-spread, realised half-spreads and adverse selection indicators are observed in level 1.

However, levels 1 and 2 tend to converge, which highlights the importance of level 2 of the limit

order book.

19For robustness, we also consider both the top 10% most active days and only the most active day for each
contract. The results are materially similar although the timescales are generally much smaller. These results are
available in the online appendix.
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Before discussing the final objective of this paper, we explore the behaviour of our proxy for the

fraction of HFQ order flow in the market. In particular, we provide a general idea on how much

HFQ activity is observed in the Eurodollar futures market, such as where in the book this order

flow sits (i.e. are the ask or bid sides more active? Do they trade more on a specific order book

level?) and the accuracy of the proposed proxy. Table 3 presents some descriptive statistics on the

order book updates used to compute our HFQ order flow proxy.20 Table 3 reports that although the

200 ms limit is lower than the average human reaction time reported in the physiology literature,

it is not really a good classification limit because the message updates happen much quicker than

this on average. The majority of quote updates to the order flow under 200 ms are also under 100

ms.

[Insert Table 3 and Figure 4 about here.]

Because physiology does not provide an accurate reaction threshold and the lack of identification

of each trader in the market, we are left with the problem of how to identify HFQ. However, the

25 ms threshold (i.e. ten times shorter than the human reaction time) provides a credible proxy

for HFQ in the Eurodollar futures market based on the Figure 4. Figure 4 (a) and (b) shows that

the distribution of the bid and ask HFQ order flow intensity proxies for both the panel and the

volume-weighted average datasets for the 25 ms threshold match the proportion of HFQ order flow

in the market, that is measured by the CME Group which has access to the actual trading account

number classifications (CME Group, 2010). In particular, the kernel distribution of the proxy for

the volume-weighted average across the whole market is strongly bimodal and potentially trimodal,

with density peaks at around 15% and 30% and the main spike at around 65%. In the whole

cross-section of the market, the sub-peaks at 15% and 30% disappear, leaving only the main peak,

which means that just below 70% of the total order flow is classified as HFQ activity.21

[Insert Figure 5 and Figure 6 about here.]

20These can be compared with the timestamps of the variance ratios from the inside spread in Table 2.
21The small tail in the negative domain is caused by a small trimming error.
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A graphical analysis of the activity of HFTs in each level of the order book portrays that HFQ

activity changes as the contracts approach maturity. Figure 5 exhibits the weekly average of HFQ

order flows at different thresholds (200 ms, 150 ms, 100 ms, 75 ms, 50 ms and 25 ms) for both

ask and bid sides. The fraction of HFQ order flow is quite high for all five levels, even when the

fraction of the HFQ proxy is set to identify messages at or below 25 ms. Furthermore, the variation

in the fraction of HFQ quoting updates follows a definite term structure and a day-of-the-week

effect (Sundays are constantly lower). Considering the 25 ms threshold, the proportion of HFQ

activities is relatively low during the first 2 years of the contracts’ life cycle (i.e. between 8% and

18% for levels 1 and 2 and lower or does not exist for the rest of the levels) at both the bid and

ask sides of the order book.

The proportion of HFQ quoting increases as maturity approaches, reaching a maximum of

around 80% at levels 4 and 5 for the 2-year tenor contracts and 65% at level 2. This maximum

involves all book levels, as HFQ activity gradually appears at different levels of the order book from

8 to 2 years to maturity. Figure 6 shows that level 2 of the order book has the highest number

of total messages per minute (i.e. around 200 when 2 years before maturity remain). However,

although level 2 is the predominant level, the fraction of HFQ is still very high at levels 4 and 5,

which shows that level 2 is not the major driver of the HFQ proxy. Therefore, the total messages

can be used as an instrumental variable to deal with the endogeneity effects of HFQ quoting activity

in the semi-parametric regressions in the next section.

4. Determining the Marginal Effect of the HFQ Order Flow on Market Quality

As discussed earlier, the influence of the HFQ on the futures market quality did not achieve

a uniform agreement in the literature. Moreover, the HFT quoting activities in the Eurodol-

lar futures market do not show a linear relationship with the execution risk variables (e.g. the

variance/covariance ratios and the battery of liquidity measures). Therefore, we conduct a semi-

parametric regression to fit the complexity of the relationship between HFQ and execution risk.

This section analyses the results of our semi-parametric approach, which are separated into

Table 4 showing the coefficients of the linear part of each regression and a collection of graphs
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depicting the marginal effects of HFQ on each of the measures of market quality we propose. Table 4

illustrates that there is a quite large persistence in market quality when quality is measured through

the standard liquidity measurements inspired by Hendershott et al. (2011). The coefficients for each

of these lagged measures is positive, ranging from 0.073 to 0.922 for the ask-side and from 0.069 to

0.921 for the bid-side.

Moreover, these coefficients are all significant at the 1% level and many are larger than 0.3.

However, this persistence is not observed when market quality is measured through variance ratios.

In those cases, most of the coefficients are not significant and virtually zero. The only two significant

coefficients for lagged variance ratios are equal to about 0.12, which implies a much lower persistence

than for the remaining market quality measures. Finally, it is also worth noting that the coefficients

linked to the bid side are slightly higher than the coefficients linked to the ask side in the volume-

weighted time-series dataset. However, this effect is not observed in the contract-day panel dataset

where there is almost no difference between the persistence in market quality between both sides

of the order book.

[Insert Table 4 about here.]

The most important part of our empirical analysis for the objectives of this paper is shown

in the marginal effect graphs (Figures 7 to 9) related to the non-parametric component of our

regressions. Given the large number of graphs derived from these regressions, we do not include

them all in the paper because most of them are qualitatively similar. However, they are available

in our online appendix, which presents our supplementary data analysis.

[Insert Figure 7 about here.]

We start by discussing the marginal effect of HFQ on the bid–ask spread, given that it is

a common market quality measurement. Figure 7 includes four subplots showing this marginal

effect, where subplots (a) and (b) correspond to the regression run over the time-series dataset and

the other two subplots correspond to the contract-day panel dataset. In all of the subplots, the

black line represents the marginal effects of HFT on the bid–ask spreads and the blue dotted line
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represents the bootstrapped confidence bounds.22

All of the subplots in Figure 7 indicate a number of interesting results. First, the marginal

effects of HFQ on the bid–ask spreads are definitely non-linear. Second, even a small number

of HFTs have significant effects on the bid–ask spreads. Third, once the proportion of HFQ has

reached a certain saturation level, its effect on the bid–ask spreads disappears. Considering the

time-series dataset, when the proportion of HFQ is between 20% and 52%, the marginal effects of

both ask and bid HFQ change sign and level several times, which implies that a linear approach

would be a poor approximation of the relationship between market quality and HFQ.

Considering the results of the contract-day panel dataset, the interpretation of the effects of

HFQ on market quality is much more direct, especially for the ask side. Subplot (c) clearly shows

that once the proportion of HFQ reaches 20%, the bid–ask spread increases, which suggests that

market quality decreases sharply. This effect disappears once the proportion of HFQ increases to

25%, implying that market quality increases up to the moment when HFQ represents around 35%

of the traders. Once the proportion of HFQ is higher than about 52%, it has virtually no effect on

market quality. Although the effects on the bid side show higher volatility, their general evolution

is similar to the effects on the ask side.

Overall, the evidence related to the bid–ask spreads suggests that HFQ initially act as informed

traders receiving information before the other traders. The evidence is in line with front-running

HFTs dominating quote-matching strategies to submit and cancel large amounts of orders. As

the amount of HFQ in the market increases, they probably start cancelling each other out, which

narrows the bid–ask spread and reduces transaction costs up to the point where their effect becomes

negligible.

[Insert Figure 8 about here.]

The second market quality indicator that we consider is adverse selection at 5 mins and 30

mins. Subplots (a) and (b) in Figure 8 are related to the former and subplots (c) and (d) to the

22Regression models of this type may suffer from the ‘trimming’ problem (i.e. overfitting outside of the bulk of
the data). The fitted function in several plots shows a substantial level of oscillation; however, the bootstrapped
confidence bounds correctly identify this oscillation as being insignificant, but this result is subject to the usual
caveats regarding confidence bounds versus parametric identification of significance.
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latter. As with the bid–ask spreads, Figure 8 shows that HFQ activity has a non-linear effect on

both 5-min and 30-min adverse selection in the time-series dataset. However, the effect is much less

volatile than that observed for the bid–ask spreads. In this context, subplots (a) and (b) suggest

that HFQ order flow has a more limited effect on adverse selection (5 mins) when the HFQ proxy

is below 40%. However, once the HFQ order flow proxy increases over 40%, the effect on adverse

selection (5 mins) rises dramatically, which indicates that HFQ increases trading costs, decreases

market liquidity and damages the price efficiency, with less informative quotes in the market. At

this stage, the degree of asymmetric information in the market rapidly increases to augment the

transaction costs related to order execution. This marginal effect suddenly drops when both HFQ

proxies on the ask and bid sides increase to about 46%–53%. From that point on until HFQ

proportion reaches about 60% of the market, HFQ seems to provide liquidity to the market and

increases price efficiency, with more informative quotes.

Subplots (c) and (d) in Figure 8 reveal that for the bid side, the marginal effects of HFQ are

markedly more volatile than those computed from the ask side. However, the general results on

the marginal effect of HFQ on market quality also hold when quality is measured through adverse

selection metrics. In particular, in 30-min adverse selection measurement, when the proportion of

HFTs is below around 36%, there is virtually no relevant effect. However, the marginal effects are

positive when the proportion is between 36% and 44%. Once the fraction of algorithmic trading

passes 44%, the impact of the ask side HFQ proxy on adverse selection (30 mins) drops until the

fraction reaches around 55%. These effects appear more volatile in the bid side and for the 30-min

measure than for the 5-min measure. This difference suggests that the effect of HFQ on adverse

selection is better identified using shorter horizons.

Overall, our results suggest that the effect of HFQ is also non-linear in the adverse selection

metrics. In particular, we observe that as the proportion of HFQ order flow increases, the HFTs

act as liquidity demanders and their impacts on adverse selection increase. However, once the HFQ

order flow proportion reaches a certain critical point, HFTs act as liquidity providers, which leads

to the shrinkage of information asymmetry and increasing market liquidity. Moreover, when most

of the traders in the market are HFTs, their marginal impacts effectively drop to zero.
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For the remainder of the liquidity measures considered in this paper, the effects of both ask and

bid HFQ proxies are less interesting to discuss in that they are either virtually non-existent or they

do not appear to depend in an interpretable way on the quantity of HFQ in the market. Although

for the sake of brevity we do not report the corresponding graphs, these results are available in our

online appendix. A comparable situation is observed when market quality is measured through the

variance and covariance ratios. However, the cases where market quality is measured through the

variance and covariance ratios derived from wavelet scales η1 and η4 are two notable exceptions,

which reveal that the variance-covariance measures tell a part of the story that should not be

dismissed. Because these results are very similar, we only discuss the results for wavelet scale η1 in

detail.23

The analysis of our results for these variance and covariance ratios shows that the salient

characteristic of these measures is their capacity to isolate the level of decoupling between both

sides of the order book that solely affect HFQ.24 Figure 9 represents the marginal effects of HFQ

order flow on the variance and covariance ratios at timescale level 1 in the panel dataset, where the

black continuous line depicts the marginal effects of HFQ order flows on the variance and covariance

ratios and the blue dashed lines are their 95% lower and upper confidence bounds. Figure 9 allows

us to describe in more detail how the market quality, namely, the decoupling between both sides

of the order book, depends on the proportion of HFQ order flow that actively places orders in the

market.

[Insert Figure 9 about here.]

As in the earlier cases, subplots (a) and (b) in Figure 9 suggest that the HFQ order flow

marginal effects on ask variance ratio level 1 depend on the proportion of high-frequency order

flow activities in the market. When this proportion is lower than approximately 20%, HFQ seems

to have limited effect on the variance ratio. When the proportion of HFQ order flow is higher,

23This perspective is also supported by Budish et al. (2015), who present materially similar results framed in a
different setting.

24In this paper, we report only the results for HFQ, which are defined as traders placing orders within a threshold
equal to or lower than 25 ms. However, the results would be qualitatively similar for alternative thresholds, such as
50 ms, 100 ms, 150 ms or 200 ms, which are all below human reaction times.
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the marginal effect on the variance ratio increases, which shows that HFQ order flows increase

the high-frequency microstructure noise and volatility in the market. However, higher variance

ratios are simultaneously symptomatic of less informative quotes and therefore a higher execution

risk because the fundamental price of the contracts is more difficult to observe in the market.

As the proportion of HFQ order flows increases further (to around 23%–25%), the effect on the

variance ratio drops dramatically, which is most likely because the high proportion of HFQ order

flows results in their orders cancelling each other out, shrinking liquidity and, in turn, the spread

variance. Subplots (c) and (d) in Figure 9 show that these effects are similar on both sides of

the order book. When the ask-side HFQ order flow proxy is below 20%, the impact of HFQ on

the bid variance ratio is relatively weak. When the proportion of HFQ order flow is around 24%,

its impacts on bid variance suddenly spike to the highest peak. Finally, the marginal effects drop

dramatically when the fraction of HFQ order flow is higher than 24%. The marginal effects on the

bid variance ratio level 1 increase when the ask-side HFQ order flow proxy passes around 27%. The

effect eventually dies out when the proxy is higher than 30%. Although the sequence of events is

the same, the point of inflection is lower for the bid variance ratio than for the ask side at around

10%–20% of messages being ascribed to be algorithmic in origin.

Subplots (e) and (f) in Figure 9 exhibit the decoupling of bids and asks. As in the earlier case,

the marginal effect of HFQ order flow on the covariance ratio are virtually non-existent before

the proportion of HFQ order flow reaches around 28%. Afterwards, it increases to approximately

48%–50%. Within a 28% to 33% proportion, the impact of the HFQ order flow is negative, which

results in a significant decoupling of the bid–ask spreads. Up to a proportion of 42%, the HFQ order

flow then increases the covariance ratio substantially, which reduces the decoupling. A key result

is the shape of the transmission function for the covariance versus the shape of the variance. The

deterioration in market quality (i.e. the reduction in covariation provides evidence for a decoupling)

occurs at lower fractions of high speed messages than for the variance ratios. The reduction in the

covariances for the ask side shows an impact at a substantially lower fraction of high speed messages

than for the bid side. Moreover, the points of inflection for the bids versus the asks differ markedly

from the inflection points for the variances. This separation of the volatility and correlation effects
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is quite fascinating because it indicates that the mix of strategies employed by HFTs have markedly

different impacts. Evidence from a variety of legal actions suggest that HFTs’ strategies fall into

two broad categories: trading across markets, such as spot-future arbitrage, or trading within a

single market. A plausible cause of the excess variance in the spread could be momentum ignition

strategies, where algorithms generate quotes (usually at level 2, so they are no transacted) and uses

this volume impact on the order flow to force the mid-price and inside quotes in a specific direction

(e.g. adding a number of standard deviations worth of bid [ask] volume at or near the level 2 price,

but less than the level 1 price to push the price up [down]). We consider this interpretation is

further supported by the fact discussed some sections above that the volume of messages in the

limit order book at level 2 is by far the highest, which approaches double that of the level 1 messages

at or around 2 years from maturity. We acknowledge that the peaks for the bids and the asks are

not strictly concurrent; however, we suggest that this aesthetic choice about the side of the order

book in which the algorithms operate is a key driver of the asymmetries between the impacts of

the bid and ask HFQ order flow proxies on the various market characteristics.

5. Conclusions

To the best of our knowledge, this paper is one of few studies to combine best-bid, best-ask

and order book dataset and consider a proxy for the influence of HFQ on the Eurodollar futures

market. Our study includes every trade, every inside quote, and every message update in the

order book from 2008 to 2014 for the CME trading venue, where about 80% of the cumulative

order book depth is observed (CME Group, 2011). In this sense, our study provides a relatively

comprehensive empirical analysis of the microstructure of bid–ask volatility and its impact on the

quality of the Eurodollar futures market. To study the effects of HFQ on market quality, we

compute several high-frequency order flow metrics using every quote update across the limit order

book. We then estimate common market quality measurements, such as bid–ask spreads, quoted

half-spreads, quoted depth, effective half-spread, realised spreads, price impacts and a set of less

common measures based on Haar wavelet multi-resolution analysis. Because there is no clarity in

either the empirical or theoretical literature on the impact of HFQ on market quality, we propose
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the use of a semi-parametric regression that does not impose any assumption on the functional form

that this relationship should have. Our results suggest a non-linear impact from high-frequency

order flows on market quality measurements. This pattern reflects that HFQ is detrimental in the

market when overall trading is sparse. Therefore, the HFTs present in the market appear to profit

from their advantageous position, which deteriorates the overall market quality. However, as the

fraction of HFQ order flow increases, the market quality recovers and then improves. This result

is robust as we apply a large number of alternative specifications using different market quality

proxies.

This paper offers several contributions. On the one hand, the Eurodollar futures market is

a highly liquid market that trades trillions of dollars in value. Constructing a unique dataset

comprising the quoting and trading activity within the limit order book in the Eurodollar futures

market allows us to identify the impacts of the realised fraction of HFQ activity on market quality.

Although some readers might think that the liquidity levels of the ED futures market is difficult to

find in other markets, it is worth noting that Section 3 reveals that Eurodollar futures contracts are

highly illiquid for large periods of time, which implies that our results incorporate different liquidity

levels. Moreover, the capacity to work with every message update in the order book allows us to

overcome plausible issues related to small samples, which is a typical limitation of studies on the

effects of HFT in the market. 25 In this sense, our results could easily be extended to other markets.

On the other hand, unlike in an equity market where multiple overlapping exchanges create

bottlenecks, the CME is centrally cleared with microsecond (0.1 ms in practice) time stamps and

latency. Our results show that even when the updating speed approaches 100 ms, our variance

ratios, although greater than one, are not at the levels found in the equity literature. In contrast,

wavelet correlations between the bid and ask prices do drop considerably, which follows the equity

literature. The combination of these two facts seem to indicate that the order books in the Eu-

rodollar futures market have a great deal of noise, very likely from active HFT. Finally, although

25If market microstructure studies ignore higher levels of the order book than level 1 (e.g. best-bid and best-ask
prices in the equity market), they will miss a great deal of activity. Our results show that level 2 prices in Eurodollar
futures across most maturities are the most actively updated by a substantial margin. Besides, market microstructure
studies in the futures market require a relatively long-period high-frequency sample because we must consider the
maturity effects.
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we cannot distinguish between quoting and trading activities, the results of our semi-parametric

regression suggest that HFTs profit from their advantages only up to a point, when their arms

race has saturated the market because each trader is sending out similar signals. Hence, if a linear

model was fitted to these data, the results would be characterised by a very high degree of variation

depending on the locations of the sampling points (based on the particular experiment performed

in the paper).

Overall, the differences between our results and those in the prior literature are driven by the

fact that earlier scholars only had access to short snippets of the order flow, such as 1 month or

only a few days. We acknowledge that our results will not fully satisfy the detractors or backers

of HFT. Nevertheless, we infer that if high-frequency market makers were to prop up trading for

long maturity contracts, the market liquidity would increase very substantially (by up to an order

of magnitude on most of our market quality measures), which may have significant implications for

long maturity futures where the level of ambient liquidity is low, whether HFTs are absent or not.
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Table 1: Sample Characteristics and Descriptive Statistics

Panel A: Size data sample for best bid and best ask and the quote-to-trade volume ratio

Contracts

Best Asks Best Bids Quotes/Trades Ratio

Average Average Average Average Average Average

Volume no. of obs. Volume no. of obs. Ask Volume Bid Volume

($ quadrillion) (million) ($ quadrillion) (million) /Trades Volume /Trades Volume

2010 Delivery 47.38 23.04 46.09 22.92 1,679.14 1,633.37

2011 Delivery 74.23 23.34 74.73 23.39 4,949.24 4,982.33

2012 Delivery 69.64 24.05 68.23 24.20 5,554.05 5,441.72

2013 Delivery 181.74 24.05 183.37 24.17 14,321.50 14,449.80

2014 Delivery 171.92 24.53 166.41 24.60 7,777.39 7,528.03

2005/15 Delivery 83.23 25.65 80.73 25.79 2,134.54 2,070.42

2016/16 Delivery 56.75 25.17 57.18 25.23 1,296.57 1,306.50

2017/17 Delivery 65.88 21.88 66.62 21.98 1,116.90 1,129.53

2008 Delivery 35.92 21.78 36.49 21.92 518.73 527.09

2009 Delivery 19.85 23.31 19.74 23.32 403.19 401.02

Panel B: Size data sample for order book data and the quote-to-trade volume ratio

Contracts Order Book Asks Order Book Bids Quotes/Trades Ratio

2010 Delivery 58.75 20.46 58.58 20.46 2,082.05 2,076.03

2011 Delivery 139.01 32.07 137.53 32.07 9,268.03 9,169.35

2012 Delivery 156.87 42.73 155.26 42.73 12,511.88 12,383.46

2013 Delivery 326.52 39.07 316.77 39.07 25,730.69 24,962.36

2014 Delivery 631.86 47.52 618.16 47.52 28,584.09 27,964.33

2005/15 Delivery 408.38 57.13 409.42 57.13 10,473.62 10,500.29

2016/16 Delivery 149.00 45.21 149.93 45.21 3,404.30 3,425.55

2017/17 Delivery 32.85 22.64 32.88 22.64 556.93 557.44

2008 Delivery 5.51 9.97 5.50 9.97 79.58 79.44

2009 Delivery 7.34 12.56 7.18 12.56 149.11 145.86

Notes: This table depicts data sample size for both best bid and ask, order book data and quote-to-trades
volume ratio. Panel A represents the average volume, the number of observations, and the volume ratios of
quotes to trades for the best bid and ask dataset. The best bid and best ask data are from the Thomson
Reuters Tick History database for from 2008 to 2014. We calculate the average number of observations and
the average quotes volume for ED contracts having their maturity date in the same year. Hence, the 2010
delivery contracts include four 10-year futures contracts from 2000 to 2010 – namely, the March 2010, June
2010, September 2010 and December 2010 contract. The minimum tick size on the exchange is 1/4 of a basis
point for the nearest expiring contract and 1/2 otherwise. Panel B represents the average volume, the average
number of observations, and the quotes to trades volume ratios for the entire limited order book. The order
book data is from July 1, 2008 to January 1, 2014, and this yields 2,339 days times 40 contracts for our final
daily frequency regression analysis.



Table 2: The Wavelet Variance and Covariance Ratio for the Inside Quotes

Time 0% - 26% - 51% - 76% - Time 0% - 26% - 51% - 76% -
scale 25% 50% 75% 100% scale 25% 50% 75% 100%

Asks Variance Bids Variance

w = 1 14.3sec 1.5223 1.6642 1.8574 2.6613 14.1sec 1.5157 1.6654 1.8705 2.6380
30 w = 3 57sec 1.1933 1.3057 1.4947 1.9823 56.3sec 1.1913 1.2876 1.4552 1.8969

days w = 5 3.8min 1.0755 1.1408 1.2482 1.4973 3.8min 1.0723 1.1372 1.2206 1.4300
before w = 7 15.2min 1.0341 1.0664 1.1286 1.3061 15min 1.0324 1.0621 1.1311 1.2730

w = 9 60.8min 1.0248 1.0447 1.0951 1.2243 60.1min 1.0251 1.0548 1.1111 1.2462

w = 1 6.5sec 1.5054 1.6275 1.7590 2.2335 6.5sec 1.4972 1.6197 1.7574 2.2457
60 w = 3 26.2sec 1.1593 1.2737 1.4070 2.2219 26sec 1.1522 1.2675 1.3930 2.1705

days w = 5 1.7min 1.0577 1.1160 1.1921 1.7756 1.7min 1.0559 1.1075 1.1896 1.7243
before w = 7 7min 1.0244 1.0466 1.0871 1.2994 6.9min 1.0237 1.0485 1.0885 1.2854

w = 9 27.9min 1.0155 1.0296 1.0546 1.1944 27.7min 1.0158 1.0331 1.0636 1.2085

w = 1 4sec 1.5102 1.6067 1.7126 2.0749 4sec 1.5008 1.6018 1.7152 2.0695
3 w = 3 15.9sec 1.1660 1.2450 1.3593 1.6802 16sec 1.1617 1.2437 1.3392 1.6584

months w = 5 1.1min 1.0634 1.1054 1.1662 1.3264 1.1min 1.0591 1.1020 1.1572 1.3139
before w = 7 4.2min 1.0244 1.0457 1.0735 1.1632 4.3min 1.0248 1.0452 1.0719 1.1671

w = 9 17min 1.0149 1.0260 1.0437 1.1113 17min 1.0159 1.0286 1.0475 1.1285

w = 1 2.5sec 1.4876 1.5582 1.6287 1.7641 2.5sec 1.4867 1.5557 1.6232 1.7674
1 w = 3 9.9sec 1.1493 1.2022 1.2592 1.3925 10sec 1.1467 1.1989 1.2523 1.3812

Year w = 5 39.8sec 1.0560 1.0871 1.1189 1.1909 39.9sec 1.0547 1.0842 1.1137 1.1797
before w = 7 2.7min 1.0227 1.0379 1.0528 1.0876 2.7min 1.0224 1.0373 1.0517 1.0863

w = 9 10.6min 1.0130 1.0213 1.0303 1.0527 10.6min 1.0138 1.0230 1.0323 1.0581

Bid-Ask Covariance Wavelet Correlation

w = 1 14.2sec 1.5191 1.6601 1.8598 2.6410 14.2sec 0.4274 0.5544 0.6050 0.6628
30 w = 3 56.7sec 1.1899 1.2870 1.4519 1.8888 56.7sec 0.5732 0.7083 0.7868 0.8495

days w = 5 3.8min 1.0676 1.1215 1.1930 1.3660 3.8min 0.7242 0.8312 0.8890 0.9355
before w = 7 15.1min 1.0254 1.0443 1.0813 1.1948 15.1min 0.8089 0.8975 0.9443 0.9700

w = 9 60.4min 1.0128 1.0251 1.0489 1.1089 60.4min 0.8264 0.9110 0.9536 0.9765

w = 1 6.5sec 1.4976 1.6178 1.7494 2.1800 6.5sec 0.4718 0.5733 0.6190 0.6681
60 w = 3 26.1sec 1.1515 1.2612 1.3716 1.7853 26.1sec 0.5834 0.7288 0.7928 0.8686

days w = 5 1.7min 1.0521 1.0983 1.1555 1.3276 1.7min 0.7124 0.8466 0.9045 0.9474
before w = 7 7min 1.0175 1.0338 1.0600 1.1283 7min 0.8108 0.9207 0.9548 0.9769

w = 9 27.8min 1.0078 1.0151 1.0250 1.0695 27.8min 0.8411 0.9416 0.9687 0.9845

w = 1 4sec 1.5013 1.5981 1.7043 2.0467 4sec 0.4976 0.5849 0.6256 0.6668
3 w = 3 15.9sec 1.1579 1.2349 1.3245 1.6043 15.9sec 0.6325 0.7524 0.8065 0.8625

months w = 5 1.1min 1.0558 1.0919 1.1389 1.2673 1.1min 0.7697 0.8663 0.9087 0.9450
before w = 7 4.2min 1.0186 1.0329 1.0512 1.1088 4.2min 0.8621 0.9343 0.9573 0.9760

w = 9 17min 1.0082 1.0142 1.0222 1.0538 17min 0.8930 0.9550 0.9724 0.9844

w = 1 2.5sec 1.4854 1.5521 1.6203 1.7561 2.5sec 0.5677 0.6169 0.6431 0.6728
1 w = 3 10sec 1.1423 1.1911 1.2432 1.3586 10sec 0.7292 0.8001 0.8350 0.8725

Year w = 5 39.8sec 1.0493 1.0746 1.1010 1.1562 39.8sec 0.8495 0.8985 0.9227 0.9483
before w = 7 2.7min 1.0171 1.0282 1.0383 1.0616 2.7min 0.9211 0.9510 0.9642 0.9782

w = 9 10.6min 1.0070 1.0117 1.0164 1.0263 10.6min 0.9454 0.9687 0.9776 0.9864

Notes: This table illustrates the average of median wavelet variance, covariance and correlation ratios for best
bids and best asks across the 40 Eurodollar contracts. Best bids and asks prices are divided into four different
price quartiles: 0-25% prices, 26-50% prices, 51-75% prices and 76-100% prices. This table also reports the
average of median wavelet variance, covariance and correlation ratios within different timezones, including 30
days, 60 days, 3 months and 1 year before Eurodollar contract maturity date.



Table 3: Order Book Update Frequency

Mean Median Mode Percent Mean Median Mode Percent Mean Median Mode Percent

(ms) (ms) (ms) (%) (ms) (ms) (ms) (%) (ms) (ms) (ms) (%)

Order-book Level j = 1 Order-book Level j = 2 Order-book Level j = 3

Asks

HFT 200ms 33.17 10.94 4.00 69.01 37.22 13.67 5.00 66.45 33.57 10.53 5.00 81.21

HFT 150ms 26.85 10.04 4.00 66.11 30.10 12.53 5.00 63.31 27.33 9.73 5.00 78.49

HFT 100ms 20.36 8.94 4.00 62.07 22.70 10.99 5.00 58.87 20.75 8.59 5.00 74.52

HFT 75ms 16.68 8.16 4.00 58.96 18.49 9.94 5.00 55.47 16.97 7.86 5.00 71.37

HFT 50ms 12.69 7.24 4.40 54.54 13.94 8.48 5.00 50.61 12.81 6.99 5.00 66.64

HFT 25ms 8.15 5.77 4.86 46.61 8.73 6.48 5.00 41.98 8.04 5.47 5.00 57.90

Bids

HFT 200ms 33.90 11.78 5.00 68.13 37.30 13.86 5.00 66.50 33.76 10.90 5.00 81.14

HFT 150ms 27.42 10.79 5.00 65.20 30.20 12.76 5.00 63.32 27.48 10.05 5.00 78.42

HFT 100ms 20.83 9.53 5.00 61.14 22.83 11.24 5.00 58.81 20.87 8.90 5.00 74.38

HFT 75ms 17.12 8.66 5.00 58.03 18.63 10.18 5.00 55.37 17.08 8.09 5.00 71.19

HFT 50ms 13.04 7.64 5.00 53.55 14.06 8.66 5.00 50.44 12.90 7.16 5.00 66.44

HFT 25ms 8.37 6.05 5.00 45.49 8.82 6.59 5.00 41.68 8.10 5.59 5.00 57.57

Order-book Level j = 4 Order-book Level j = 5 All Order-book Levels

Asks

HFT 200ms 23.63 5.19 2.69 86.47 20.89 4.66 2.56 86.37 35.49 12.71 5.00 77.90

HFT 150ms 19.33 4.99 2.69 84.71 17.33 4.54 2.56 84.78 28.69 11.75 5.00 75.48

HFT 100ms 14.89 4.69 2.75 82.15 13.55 4.35 2.56 82.47 21.69 10.33 5.00 72.02

HFT 75ms 12.41 4.44 2.75 80.20 11.45 4.21 2.56 80.69 17.70 9.28 5.00 69.34

HFT 50ms 9.57 4.08 2.75 77.23 9.03 4.00 2.56 77.96 13.38 8.03 5.00 65.40

HFT 25ms 6.31 3.55 2.69 71.46 6.17 3.57 3.02 72.56 8.45 6.21 5.00 58.10

Bids

HFT 200ms 24.80 5.38 2.87 84.21 21.86 4.90 2.81 84.85 35.66 13.10 5.00 76.97

HFT 150ms 20.25 5.14 2.87 82.44 18.10 4.73 2.81 83.17 28.86 12.10 5.00 74.51

HFT 100ms 15.52 4.90 2.87 79.84 14.10 4.52 2.81 80.71 21.86 10.66 5.00 70.98

HFT 75ms 12.85 4.62 2.87 77.87 11.89 4.34 2.81 78.81 17.87 9.60 5.00 68.25

HFT 50ms 9.90 4.27 2.87 74.86 9.29 4.11 2.81 75.95 13.53 8.26 5.00 64.25

HFT 25ms 6.48 3.63 2.87 69.15 6.28 3.63 3.21 70.42 8.55 6.37 5.00 56.86

Notes: This table reports the central tendency for both the daily average update frequency across 40 contracts.
Here HFT proxies are computed with different thresholds (200ms, 150ms, 100ms, 75ms, 50ms and 25ms) for
both ask side and bid side. The unit of order book update speed is in milliseconds (ms). For the bid and ask
side of the order book, we take the daily average value of updating speed below thresholds across all 5 order
book levels and across all 40 Eurodollar contracts. See Figure 5 for more details.
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Figure 1: The Effect in Level and Derivative of a Change in the Fraction of Type A
Traders versus Type B Traders

Notes: We do not model explicitly the advantage that speed gives the traders other than we presume that the ability
to rapidly anticipate the direction of the underlying value process from the order flow provides a systematic advantage.
Hence, Type A have a noisy but unbiased expectation of the terminal valuation δ̃(T ). The model postulates four
sources of quadratic variation in the market. Σ̃ is the quadratic variation in the underlying asset. Γ̃ is the global noise
disturbing all type Type A traders forward looking signals. Ψ̃ represents the quadratic variation of the idiosyncratic
noise disturbing each of the NA Type A traders signal over and above the global noise. Finally, Φ̃ is the variance-
covariance matrix describing the quadratic variation of each of the NB traders random submissions. In the four
quadrants we plot the diagonal elements of the resulting Λ̃ matrix from the market clearing equilibrium in Theorem 1
and its derivative with respect to NA/Ñ where Ñ = NA + NB . Recalling that f̃(T ) = δ̃(T ) + Λ̃ẽ, where ẽ is the
aggregate net order flow.
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Figure 3: Liquidity Spreads

Notes: This figure displays the weekly average of liquidity measures at the five levels for all the contracts
including bid-ask spreads, quoted half spreads, quoted depth, effective half spreads, realized spreads (5 mins
and 30 mins) and adverse selection (5 mins and 30 mins). Theses spreads are averaged by time to maturity
across 40 contracts, hence the x axis is the year to maturity.
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Figure 4: Kernel Density Estimation of HFQ Proxies

Notes: Graph (a) shows the kernel density of the bids and asks daily fraction of high-frequency traders with 2,339
observations in the volume weighted average dataset; and graph (b) is the density of daily HFQ proxies with 35,491
observations in the panel dataset. The black dotted line represents the point proportion of computerized algorithmic
traders order flow from the CME Group (2010) with knowledge of the connection type from the account numbers,
which they report that the proportion of algorithmic activities is 64.46% on Eurodollar futures markets.
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Figure 6: Total Messages By Quote Depth Level

Notes: These two graphs capture the weekly average of total messages (per minute) in both ask and bid sides
at five different levels. The total messages per minute, Mj,T ,∆, can be calculated as Mj,T ,∆ = Mj,T /T

∗
T , where

Mj,T is the total number of messages for bid- or ask-side order book level j for the day T ; and trading time,
T ∗T , is the length of the first order to the last order on an individual day T , which is measured in minutes. The
value of x axis is the years to maturity.
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(c) Bid-Ask Spreads - Panel
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(d) Bid-Ask Spreads - Panel

Figure 7: Marginal Effects of Bid-Ask Spreads

Notes: This figure represents the marginal effects of high-frequency trading proxy on bid-ask
spreads. The black continuous line depicts the marginal effects of HFQ on bid-ask spreads in
Subplots (a) to (b) with the volume weighted average dataset and Subplots (c) and (d) with
the panel dataset. The blue dashed lines are the 95% lower and upper confidence bounds of
bid-ask spread marginal effects.



0 10 20 30 40 50 60 70 80 90 100
Ask HFT proxy

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

M
ar

gi
na

l E
ffe

ct
s 

of
 A

dv
er

se
 S

el
ec

tio
n 

(5
 m

in
s)

(a) Adverse Selection (5 mins) - VWA

0 10 20 30 40 50 60 70 80 90 100
Bid HFT proxy

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

M
ar

gi
na

l E
ffe

ct
s 

of
 A

dv
er

se
 S

el
ec

tio
n 

(5
 m

in
s)

(b) Adverse Selection (5 mins) - VWA

0 10 20 30 40 50 60 70 80 90 100
Ask HFT proxy

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

M
ar

gi
na

l E
ffe

ct
s 

of
 A

dv
er

se
 S

el
ec

tio
n 

(3
0 

m
in

s)

(c) Adverse Selection (30 mins) - VWA
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Figure 8: Marginal Effects of Adverse Selection

Notes: This figure represents the marginal effects of high-frequency trading proxy on adverse
selection (5 mins) in Subplots (a) to (b) and, on adverse selection (30 mins) in (c) and (d),
both with the volume weighted average dataset. The blue dashed lines are the 95% lower and
upper confidence bounds of bid-ask spread marginal effects.
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(a) Ask Variance Level 1 - Panel
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(b) Ask Variance Level 1 - Panel
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(c) Bid Variance Level 1 - Panel
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(d) Bid Variance Level 1 - Panel
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(e) Bid Ask Covariance Level 1 - Panel
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(f) Bid Ask Covariance Level 1 - Panel

Figure 9: Marginal Effects of Variance and Covariance at Timescale Level 1

Notes: This figure represents the marginal effects of HFQ on variance and covariance ratio at timescale level
1 with the panel dataset. The black continuous line depicts the marginal effects of HFQ on variance ratio in
Subplots (a) to (d), and on covariance ratio in Subplots (e) and (f). The blue dashed lines are the 95% lower
and upper confidence bounds of marginal effects are by bootstrap resampling.



Appendix A. Extended Theorems and Proofs

Appendix A.1. Proof of Theorem 1

Our proof proceeds in effectively the same manner as the proof in Watanabe (2008), pages 33-

39, however we generalize it to the case where the Ñ = [Ni] is a diagonal matrix of traders within

each futures class and we augment the details of the proof with the linear multivariate rational

expectations form presented in Admati (1985) and Admati and Pfleiderer (1988, 1989).

The initial part of this proof illustrates how our model is essentially the same as that contained

in Watanabe (2008), page 34-39, in turn an adaptation of Admati and Pfleiderer (1989). We

specifically concentrate on the fact that our addition does not lead to the loss of tractability to

the analytic solution. Fortunately, the original linear equilibrium for the situation when Ñ is a

scalar holds under this restrictive assumption, while it would not hold for the case when Ñ is a PD

integer matrix. For this application the restriction is useful and defensible, however future work

will focus on this treatment. First, we set up the general form of the asset price progression,26

which is given by f̃(t) = Λ̃0 + Λ̃1ẽ, following our notation scheme the indexed demand side scheme

is ãn = B̃0 + B̃1ξ̃n where the matrices Λ̃1ẽ and B̃1 and the vectors Λ̃0ẽ and B̃0 are computed from

the model structure. Using the first filtration

ξ̃n ≡ Ẽ[δ̂|Fn] = cov(δ̃, b̃′n)var−1
t (b̃n)b̃n = Σ̃(Σ̃ + Γ̃ + Φ̃)−1b̃n (A.1)

the profit maximization condition for each trader is

max
ãn

Ẽ[(δ̃T − Λ̃0 − Λ̃1(ãn +
∑
i 6=n

ãi + d̃))
′
ãn|Fn]d̃ (A.2)

with system consistent net order flow b̃ = ãn +
∑
i 6=n

ãi + d̃, hence, the asymmetric information in

trading process yields a first order condition27 of 0 = δ̃+ ξ̃n− Λ̃0− Λ̃1(2ãn +
∑

i 6=n [ãi|Fn]) so that

26The interested reader is directed to Watanabe (2008) for a fuller description of the simpler equilibrium conditions
as we concentrate on the adjustments needed with the inclusion of segmented trading restrictions.

27consider that this assumption only works if the market is truly partitioned, i.e. an informed trader is restricted
to the A market; and this will not hold if the traders have free access to alternate assets within the market.



the second order constraint is Ẽ[ãi|Fn] = B̃0 + B̃1Ẽ[ξ̃i|Fn], where Ẽ[ξ̃j |Fn] is the expectation of

another trader j ∈ Ni estimate of δ̃(t). The conditional variance and covariance of the system in

Equation (A.1), for any j /∈ n is therefore

Ξ̃ ≡ var(ξ̃n) = Σ̃(Σ̃ + Γ̃ + Φ̃)−1Σ̃ Covariance (A.3)

Ξ̃c ≡ cov(ξ̃i, ξ̃
′
n) = Σ̃(Σ̃ + Γ̃ + Φ̃)−1(Σ̃ + Γ̃)(Σ̃ + Γ̃ + Φ̃)−1Σ̃ Cross-covariance (A.4)

Then, setting the prior mean Ẽ(ξ̃i) = 0, the conditional update simplifies to Ẽ[ξ̃i|Fn] = Ξ̃cΞ̃
−1ξ̃n.

We now diverge somewhat from Watanabe (2008) as the system consistent first order condition

with informed traders will be

0 = δ̃ + ξ̃n − Λ̃0 − 2Λ̃1(B̃0 + B̃1ξ̃n)− (Ñ − 1)Λ̃1[B̃0 + B̃1Ξ̃cΞ̃
−1ξ̃n] (A.5)

note that the inclusion of (Ñ − 1)Λ̃1[B̃0 + B̃1Ξ̃cΞ̃
−1ξ̃n], holds only if trÑ = Ñ under the Watanabe

(2008) approach. This now solves for our system of equations (4) to (6) of Theorem 1 in the paper,

first set

0 = Ĩ − 2Λ̃1B̃1 − (Ñ − 1)Λ̃1B̃1Ξ̃cΞ̃
−1, or (A.6)

Λ̃1B̃1 = J̃−1, with J̃ ≡ 2Ĩ + (Ñ − 1)Ξ̃cΞ̃
−1 (A.7)

back substitution equations from (A.3) and (A.4), reproduces the expression suggested for J̃ in The-

orem 1 Equation (6). Again we see the Hadamard product enter the system, Λ̃0 = δ̃−(Ñ − 1)Λ̃1B̃0

following from this, the market maker efficiency condition will be

f̃(t) = δ̃ + Ẽ[δ̃|Fθm] = δ̃ + cov(δ̃, ẽ′)var−1(ẽ)(ẽ− ÑB̃0) (A.8)

proceeding in the standard fashion reveals the market maker variance covariance expression

cov(δ̃, ẽ′) =

Ñi∑
i=1

cov(δ̃, δ̃′i)B̃
′
1 = ÑΞ̃B̃′1 (A.9)



by extension28 this gives var(ẽ) = B̃1var(
∑Ñi

i=1 ξ̃n)B̃′1 + Ψ̃ which can then be explicitly determined

by var(ẽ) = ÑB̃1{Ξ̃ + (Ñ − 1)Σ̃c̃}B̃′1 + Ψ̃ ≡ Σ̃ẽ,c̃ this yields the liquidity adjusted pricing formula

to be

f̃(t) = δ̃ + ÑΞ̃B̃′1[ÑB̃1{Ξ̃ + (Ñ − 1)Ξ̃c}B̃′1 + Ψ̃]−1(ẽ− ÑB̃0)

= δ̃ + [B̃1{Ĩ + (Ñ − 1)Ξ̃cΞ̃
−1}+ Ñ−1Ψ̃B̃′1

−1
Ξ̃−1]−1(ẽ− ÑB̃0)

again we proceed along the lines of Watanabe (2008), which, in turn, is generalized from Admati

and Pfleiderer (1988) with the addition of our separated trader condition,

Λ̃1 = [B̃1(Ĩ + (Ñ − 1)Ξ̃cΞ̃
−1) + Ñ−1Ψ̃B̃′1

−1
Ξ̃−1]−1, or (A.10)

Λ̃1B̃1 = [J̃ − Ĩ + Ñ−1B̃−1
1 Ψ̃B̃′1

−1
Ξ̃−1]−1, and Λ̃0 = δ̃ − Ñ Λ̃1B̃0 (A.11)

eliminating (Ñ − 1)Ξ̃cΞ̃
−1 leaves a system of four equations for the four unknowns Λ̃1ẽ and B̃1 and

the vectors Λ̃0ẽ. Cancelling for J̃ yields B̃−1
1 Ψ̃B̃′1

−1
= ÑΞ̃ and then substituting for our standard

functional form of B̃, whereby B̃1 = Λ̃−1
1 J̃−1, we find that Λ̃1Ψ̃Λ̃1 = Ñ J̃−1Ξ̃J̃ ′

−1
as such

(Ψ̃
1
2 Λ̃1Ψ̃

1
2 )2 = ÑΨ̃

1
2 J̃−1Ξ̃J̃ ′

−1
Ψ̃

1
2 ≡ ÑM̃ (A.12)

element by element dividing by Ñ yields an expression for M̃ , which is of the form V UV ′ and

therefore PD. Therefore a Cholesky factor M̃
1
2 exists. The resultant order flow is therefore

ãn = B̃1ξ̃n = Λ̃−1
1 J̃−1Σ̃(Σ̃ + Γ̃ + Φ̃)−1b̃n = Λ̃−1

1 J̃−1Ξ̃Σ̃−1b̃n (A.13)

The matrix Λ̃−1
1 J̃−1Σ̃(Σ̃ + Γ̃ + Φ̃)−1 is the solution to the autoregressive terms of B1, given the

structure of the solution to Λ̃1 = Λ̃, which is PD the multivariate equivalence of Kyle’s lambda is

a PD matrix autoregressive coefficient. �

28Once again from standard matrix commutation rules this holds, only under the condition that trÑ = Ñ .



Appendix A.2. Proof of Proposition 1

From Theorem 1, the variance of the price process is mechanistically specified from the multi-

variate autoregression as

∆tH̃ ≡ var(f̃(t+ ∆t)− f̃(t))) = var(Λ̃ẽ) + var(δ̃ − Λ̃ẽ) (A.14)

by induction the variance follows from the noise of the submission process and the multivariate

extension of Kyle’s lambda, therefore the variance iteration will be

var(Λ̃ẽ) = Ẽ[Λ̃ẽẽ′Λ̃] = Ẽ[Λ̃Ẽ[ẽẽ′]Λ̃] = Ẽ[Λ̃var(ẽ)Λ̃] (A.15)

Simple rearrangement and substitution from the definitions in Theorem 1 yields

var(ẽ) = Λ̃−1cov(δ̃, ẽ′) = Ñ Λ̃−1Ξ̃B̃′1 = Ñ Λ̃−1Ξ̃J̃ ′
−1

Λ̃−1 (A.16)

and therefore the expectation collapses to var(Λ̃ẽ) = Ẽ[ÑΞ̃J̃ ′
−1

]. We now show that the imposition

of Ñ = [Ni] runs through the derivation without loss of generality, therefore

ÑΞ̃J̃ ′
−1

= Ñ(J̃ ′Ξ̃−1)−1 = Ñ [2Ξ̃−1 + (Ñ − 1)Ξ̃−1Σ̃c̃Ξ̃
−1]−1 (A.17)

The diagonal condition imposed on Ñ reduces the noise to the following diagonal matrix

ÑΞ̃J̃ ′
−1

= Ñ [2Ξ̃−1 + (Ñ − 1)Σ̃−1(Σ̃ + Γ̃)Σ̃−1]−1 (A.18)

Substitution from Theorem 1 definitions yields

ÑΞ̃J̃ ′
−1

= Ñ Σ̃[(Ñ + 1)(Σ̃ + Γ̃) + 2Φ̃]−1Σ̃ ≡ Σ̃Λ̃ẽ (A.19)



Add up all of the variances and impose diagonal restrictions on the covariances to derive the variance

condition,

var(δ̃ − Λ̃ẽ) = Σ̃− cov(δ̃, ẽ′)Λ̃− [cov(δ̃, ẽ′)Λ̃]′ + var(Λ̃ẽ) = Σ̃− Σ̃Λ̃ẽ (A.20)

therefore yielding the volatility expectation. �

Appendix A.3. Proof of Proposition 2

We start with Lemma 2 from Watanabe (2008), but replace and re-derive (B̃
∑Ñi

n=1 b̃n) with

(B̃
∑trÑ i

n=1 b̃n). From this the net order flow in our notation will be,

Σ̃ẽ = var(ẽ) = var(B̃

trÑ i∑
n=1

b̃n) + var(d̃) = ÑB̃[Ñ(Σ̃ + Γ̃) + Φ̃]B̃′ + Ψ̃ (A.21)

therefore in expectations the volume will be Ẽ0[Ṽ ] = 1
2 Ẽ0[Ẽ|

∑trÑ i
n=1 ãn|+ Ẽ|d̃|+ Ẽ|ẽ|]. The last part

is actually identical to Lemma 2 of Watanabe (2008), except with the inclusion of the Hadamard

product expression, under our diagonal specification, it is easy to see that this is in effect two

separate Watanabe (2008) models. This is sequentially simplified to

var(ãn) = B̃(Σ̃ + Γ̃ + Φ̃)B̃′ = Λ̃−1J̃−1Ξ̃Σ̃−1(Σ̃ + Γ̃ + Φ̃)Σ̃−1Ξ̃−1Ξ̃J̃ ′
−1

Λ̃−1

= Λ̃−1J̃−1Ξ̃J̃ ′
−1

Λ̃−1 = Ñ−1Ψ̃ (A.22)

recalling the definitions from Proposition 1 and 2 and hence the cross market volume. �

Appendix B. Our Adapted IV Robinson Estimator

We adjust the standard instrumental variable semi-parametric partially linear for our purposes.

The estimator runs over both panel and time series data and we have tested a variety of different

Kernels with similar results. One of the major issues with the standard implementations of the IV

Robinson Estimator is speed, this approach is usually designed for smaller panel datasets than the

one we have deployed here. Furthermore, we need to be able to compare instrumental variables

across a number of equations describing the market quality and execution risk and our approach

to dealing with this problem is below.



The conditional expectation is unknown as such we utilize the Robinson (1988) double resid-

ual methodology by applying a nonparametric conditional mean estimator E[Yi|Zi], E[Xi|Zi] and

E[εi|Zi] on Equation (20) in the paper. We will follow Newey and Powell (2003) and adhere to the

exponential family of kernels and more specifically a Gaussian kernel. Our major departure from

Robinson (1988) and Florens et al. (2012) will be in the bootstrapping procedure we implement to

generate the confidence bounds of the model. To begin with we will outline the family of models,

using an adaptation of notation in Florens et al. (2012) and then introduce our bootstrap procedure.

Let the general instrumented semi-parametric regression be denoted in expectations as:

E[Yi|Zi] = E[Xi|Zi]β + G [Zi] + E[εi|Zi] (B.1)

By subtracting Equation (B.1) from Equation (20), we can build an ordinary least squares (OLS)

estimation of model as follows,

Yi − E[Yi|Zi] = (Xi − E[Xi|Zi])β + (εi − E[εi|Zi]) (B.2)

where we define Ỹi = Yi − E[Yi|Zi], X̃i = Xi − E[Xi|Zi] and ε̃i = εi − E[εi|Zi]. We can recover Ỹi,

X̃i from the nonparametric regressions of Yi and Xi on Ẑi. Then the estimated coefficients vector

β can be estimated by Equation (B.2) in the absence of the nonparametric function G [Zi]. Let β

be the standard OLS estimates:

β = (
∑

i
X̃iX̃

′−1
i )(

∑
i
X̃iỸ

′
i ) (B.3)

we then regress Zi onto the filtered values of Yi to provide an estimate of the non-parametric

function G [Zi],

Yi −Xiβ = G [Zi] (B.4)

However, prior to this estimation stage we need to deal with the problem of the variables Xi and

Zi being endogenous with respect to the disturbance term, as such E[εi|Xi, Zi] 6= 0, E[Yi|Zi] and

E[Xi|Zi] cannot be estimated consistently via the non-parametric approach proposed herein.



Our approach is in the spirit of Florens et al. (2012) in that we estimate specifically a time

series/panel version of the instrumented semi-parametric model with linear covariates. The target

function G (·) and parameter β are the solution of the functional equation

E[Yi|Wi] = E[G [Zi]|Wi] + E[Xiβ|Wi] (B.5)

therefore the optimal non-parametric function should be such that the model disturbances are un-

correlated with the time to maturity and/or the total messages per day. As such, following Florens

et al. (2012) who in turn derived their approach from Robinson (1988) therefore Equation (B.5)

can be rewritten as the following indefinite integrals:

∫
dy y

FY |W (y, ·)
FW (·)

=

∫
dz G [z]

FZ|W (z, ·)
FW (·)

+

∫
dx xβ

FX|W (x, ·)
FW (·)

(B.6)∫
dy y KY |W (y) =

∫
dz G [z] KZ|W (z) +

∫
dx xβ KX|W (x) (B.7)

where FY |W denotes the joint density of Y and W , and similarly for FZ|W and FX|W , and

KY |W , KZ|W and KX|W indicate the conditional densities of Yi, Xi and Zi given Wi respectively.

Computing the instrumental version of the partially linear semi-parametric model is non-trivial as

both the first and second steps much account for the non-parametric element recalling the objective

of othogonalizing the disturbances with respect to the instruments.

We define L2
V (Rf ) and L2

U (Rg) as the Hilbert spaces of square integrable functions with respect

to the two densities V and U . Florens et al. (2012) indicate that V and U are the functions FZ

and FW respectively then the approach is identical to Darolles et al. (2011), or if the functions V

and U are indicator functions then the approach tends to that of Hall et al. (2005). Indeed, these

two cases can be seen as points at the end of a continuum of model choices the econometrician

faces. If V and U are identified in the continuous domain [0, 1] we can also recover the approach

of Newey and Powell (2003), which is a fully non-parametric approach across the model space.

By multiplying with functions of W , integral Equation (B.7) can be formalized as equation of

operators as follows,

R = OZG + OXβ, (B.8)



with

R = E[Y |W ]FW /U (B.9)

OX : Re → L2
U (Rg) : β̃ 7→ E[X ′β̃|W ]FW /U (B.10)

OZ : L2
V (Rf )→ L2

U (Rg) : G̃ 7→ E[G̃ [Z]|W ]FW /U (B.11)

where R ∈ L2
U (Rg), G ∈ L2

V (Rf ), β ∈ Re, and R ∈ R(OX) + R(OZ) where R(O) is the range

or co-domain of the operator O. Let O∗X and O∗Z for OX and OZ , be the following corresponding

adjoint operators

O∗X : L2
U (Rg)→ Re : J 7→ E[XJ (W )] (B.12)

O∗Z : L2
U (Rg)→ L2

V (Rf ) : J 7→ E[J (W )|Z]FZ/V (B.13)

We can identify the operators OX ,O
∗
X ,OZ and O∗Z using the iid vectors (Yi, Xi, Zi,Wi) from the

partially linear model (20) in the first step. Recall from Equation (B.8), the normal equations can

be expressed as below,

O∗ZR = O∗ZOZG + O∗ZOXβ, O∗XR = O∗XOZG + O∗XOXβ (B.14)

Florens et al. (2012) demonstrate that if OX is orthogonal to OZ (namely O∗ZOX = 0 with R(OX) ⊥

R(OZ), where O∗ZOX is a dot product), then we can avoid having to try an iterate estimating G (·)

whilst simultaneously estimating β. So the normal Equation (B.14) is equivalent to

O∗ZR = O∗ZOZG , O∗XR = O∗XOXβ (B.15)



Using kernel estimators to replace the operators O∗X , OXand O∗XR, yields

∑
i,j

YiXj
Kh(Wi −Wj)

U (Wi)
=

∑
i,j

XiX
t
j

Kh(Wi −Wj)

U (Wi)
β (B.16)

β = (
∑
i,j

XiX
t
j

Kh(Wi −Wj)

U (Wi)
)−1(

∑
i,j

YiXj
Kh(Wi −Wj)

U (Wi)
)

where the kernel K is a Gaussian kernel function with bandwidth parameter h (h > 0) and where

the scaled kernel Kh(w) = h−gK (w/h). After identifying the parameter β, estimation of G can

be obtain by purely nonparametric regression (Darolles et al., 2011; Hall et al., 2005).

We can now presume that R(OX) 6⊥ R(OZ) with O∗ZOX 6= 0 , then so the normal Equation

(B.17) can be expressed as

O∗Z(I −PX)R = O∗Z(I −PX)OZG , O∗X(I −PZ)R = O∗X(I −PZ)OXβ (B.17)

where PX and PZ are the orthogonal projections for the OX and OZ , respectively. Hence, PX =

OX(O∗XOX)−1O∗X and PZ = OZ(O∗ZOZ)−1O∗Z . We define the parameter estimators β based on

Equation (B.17),

β =
O∗X(I −PZ)R

O∗X(I −PZ)OX
=

O∗X(I − OZ(αI + O∗ZOZ)−1O∗Z)R

O∗X(I − OZ(αI + O∗ZOZ)−1O∗Z)OX
(B.18)

where α is the positive regularization parameter, which relates to the value of n. We follow the

standard approach and assume that the operator R belongs to L2
U (Rg), functions E(P(Z)|W =

·)FW (·)/U (·) and E(Xi|W = ·)FW (·)/U (·) belong to L2
U (Rg) for all P ∈ L2

V (Rf ), and i ∈

{1, ..., e}. The unknown nonparametric densities estimators (i.e. OX ,O
∗
X ,OZ and O∗Z) can be

identified by kernel estimators from the data vectors (Yi, Xi, Zi,Wi) from the partially linear model



as follows:

OXβ =
1

n

n∑
i=1

Xiβ
KhW (Wi)

U
(B.19)

O∗XW =
1

n

n∑
i=1

Xi

∫
KhW (Wi − w)W (w)dw (B.20)

O∗ZG =
1

n

n∑
i=1

KhW (Wi)

U

∫
KhZ (Zi − z)g(z)dz (B.21)

O∗ZW =
1

n

n∑
i=1

KhZ (Zi)

V

∫
KhW (Wi − w)W (w)dw (B.22)

R =
1

n

n∑
i=1

Yi
KhW (Wi)

U
(B.23)

where W ∈ L2
U (Rg), G ∈ L2

V (Rf ) and the bandwidth parameters hW , hZ are dependent on sample

size N , and the kernel K . The kernels can be any of the standard kernels: Epanechnikov, Gaussian

or fractional polynomials. For the results presented in this paper, we implemented a gaussian kernel

weighted local polynomial fit.

To provide easy to compare results across different models we report the marginal effects of

changes in z on y, hence we set M = dy/dz as a function of the dependent variable. If the

bootstrapped confidence interval straddles the abscissa axis across its domain then the independent

variable has no marginal impact on the dependent variable.

We compute confidence bounds for our partially linear semi-parametric regressions via an iid

bootstrap with 99 resamples. Monte-Carlo studies for this estimator utilizing the function G̃ =

B(Z,V , 2V )× sin(HV Z), where B(z, a, b) is the probability density function of the beta distribution

with shape parameters a, b, the dependent variable is Z ∈ [0, 1] and the frequency scaling parameter

set to H = 10.

The bootstrap consistency theory for these types of models is somewhat sparse; however, most

implementations use bootstrap to determine the confidence intervals, for single index models a

consistency proof for i.i.d. bootstrap is available from Yu and Ruppert (2002).29 Whilst the choice

29For instance the semipar implementation in Stata uses this approach, we have included some models estimated
via a Gaussian Kernel in Stata in the Online Supplement to illustrate that the pattern of the marginal effects is very



that we make is the ‘third best’ approach for providing evidence for the consistency of the bootstrap,

it does provide a useful guide across the sets of choices available for our customized implementation

versus those in other software packages.

We compute the iid bootstrap in the following steps. Step 1 : Estimate the semiparametric

regression using the original sample (Yi, Xi, Zi,Wi), and compute the fitted value Ŷi and the residual

ri for each observation.

Ŷi = Xiβ + G [Zi] + εi, ri = Yi − Ŷi (B.24)

Step 2 : For each fitted value Ŷi, randomly choose a residual rci to build the bootstrapped Y ∗ value,

Y ∗ = [Ŷ1 + rc1, Ŷ2 + rc2, ..., Ŷi + rci, ..., Ŷn + rcn] (B.25)

where random number c ∈ {1, 2, ..., N}. Hence, the bootstrap data sample includes the boot-

strapped Y ∗ value with fitted dependent variables. Refit the model using the bootstrap data

sample, (Y ∗i , Xi, Zi,Wi), and compute the marginal effects M. Repeat the resampling procedure

99 times. The standard deviation of marginal effects σM can be computed as: σM =

√∑
(M−M)2

N−1 .

Several prior studies, see Florens et al. (2012) for overview have indicated that the distribution of

the marginal effects is normal. Therefore, the 95% lower and upper confidence bounds, CL and CH ,

can be calculated by the 2.5 and 97.5 percentiles of the distribution of M. For each plot we overlay

on a second set of abscissa and ordinate axes the variation of our HFT proxy with respect to time

to maturity from 10 to 0 years. Inference via confidence bounds is inherently more difficult than

via a specific test, such as a standard Wald test, Lagrange multiplier or likelihood ratio. However,

our regression framework is relatively simple in construction, with a one contemporaneous non-

parametric and one lagged independent variable. For optimal specification of the non-parametric

function we use the Akiake Information Criteria (this is used within each bootstrap too hence the

variation in the pattern of the confidence bounds).

similar.
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