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Abstract. Frieze patterns are numerical arrangements that satisfy a local arithmetic
rule. These arrangements are actively studied in connection to the theory of cluster
algebras. In the setting of cluster algebras, the notion of a frieze pattern can be gen-
eralized, in particular to a frieze associated with a bordered marked surface endowed
with a decorated hyperbolic metric. We study friezes associated with a pair of pants,
interpreting entries of the frieze as λ-lengths of arcs connecting the marked points. We
prove that all positive integral friezes over such surfaces are unitary, i.e. they arise from
triangulations with all edges having unit λ-lengths.
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1 Friezes from marked surfaces

Frieze patterns were introduced by Coxeter in [4], and studied by Conway–Coxeter in [2,
3]. In these works the authors connect the notion of frieze patterns with formulas for
the pentagramma mirificum, continued fractions and triangulations of polygons. Cox-
eter’s invention reinvigorated in the early 2000’s with the appearance of triangulations
of polygons in relation to the cluster algebras introduced by Fomin–Zelevinsky [7].

Definition 1.1. A frieze pattern (or simply frieze) of type An (or Conway–Coxeter frieze) is
a grid of integers consisting of n + 2 infinite rows where successive rows are displayed
with a shift and where the first and the last rows consist entirely of 1’s and the remaining
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entries are positive integers. In addition, the entries in the grid satisfy the diamond rule
which asserts that every diamond formed by the neighboring entries of the form

a
b c

d
satisfies the identity bc − ad = 1. The first nontrivial row is called the quiddity row of the
frieze.
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Figure 1: Conway–Coxeter frieze and triangulation on the hexagon that defines the
frieze of type A3.

It was shown by Coxeter that type An frieze patterns are periodic with period divid-
ing n + 3 and they have a glide symmetry; hence we may consider their fundamental
domain and simply refer to them as friezes. Furthermore, it was proven by Conway
and Coxeter that type An friezes are in bijection with triangulations of convex (n + 3)-
gons. Given such a triangulation (see Figure 1 for an example), consider the sequence
of vertices counterclockwise and count the number of triangles incident to each vertex.
This gives the quiddity sequence; that is, the quiddity row modulo the period of the frieze
which determines the type An frieze by applying the diamond rule recursively.

Inspired by Conway and Coxeter’s approach using triangulations of the polygon, one
can consider friezes on marked surfaces with a hyperbolic metric, following [5, 11] in
relation to cluster algebras associated with such surfaces.

Let S denote an oriented Riemann surface, with a non-empty boundary that we de-
note ∂S, and let M ⊂ ∂S be a finite subset. Furthermore, we require that each boundary
component has at least one point in M. The elements of M are called marked points, and
the pair (S, M) is a marked surface.

An arc in (S, M) is a curve γ in S such that its endpoints are marked points, and it
is disjoint from M and ∂S otherwise. An arc is considered up to isotopy relative to its
endpoints. We require that arcs do not self-cross, except possibly at the endpoints and
that they are not contractible. For each arc (i.e. each isotopy class), we will consider the
geodesic representative.

Two arcs γ1 and γ2 in S are non-crossing if there exist curves in their relative isotopy
classes that are non-intersecting except possibly at their endpoints. A triangulation T of
(S, M) is defined as a maximal collection of pairwise non-crossing arcs.

The marked surface (S, M) can be endowed with a hyperbolic metric having a cusp
at each marked point. After choosing a horocycle at every marked point, each arc γ can
be assigned a finite number called λ-length and denoted by λγ, see [11] (it is defined as
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Figure 2: Ptolemy relation: λαλβ = λγλδ + λϵλθ .

λγ = el/2, where l is the signed hyperbolic distance between the horocycles centred at
the endpoints of γ).

The most important property that will be used throughout the article is the following.

Remark 1.2. For each quadrilateral as in Figure 2 the λ-lengths satisfy the Ptolemy relation.

Entries in a Conway–Coxeter frieze can be interpreted as λ-lengths on the disk in
such a way that the 1’s on the trivial rows correspond to boundary edge λ-lengths. In
this interpretation, the diamond rule is a particular case of the Ptolemy relation. More
explicitly, with the notation of Figure 2, if the arcs ϵ and θ or δ and γ are boundary edges
then we recover the diamond rule.

Question 1.3. Let (S, M) be a marked surface with a hyperbolic structure having a cusp
at each marked point. Suppose that we associate a horocycle to every marked point in
such a way that for each arc the λ-length is a positive integer, and all boundary segments
have unit λ-lengths. Does there exist a triangulation T of the surface in which λα = 1
for each α ∈ T?

Remark 1.4. Conway and Coxeter [2, 3] give an affirmative answer to Question 1.3 for the
case when (S, M) is a disk with boundary marked points. Also, it was proven by Gunawan and
Schiffler [9] that the answer is positive when S is an annulus with boundary marked points.

In Section 2, we explain how Question 1.3 is related to recent developments in cluster
theory. In Section 3, we show that the answer to Question 1.3 is affirmative for a family
of marked surfaces arising from a pair of pants.

2 Friezes from cluster theory

In this section we discuss the relation of Question 1.3 to the theory of cluster algebras.
One can find a good overview on friezes and their interplay with cluster theory written
by Morier–Genoud [10], and a nice introduction to cluster algebras and cluster algebras
of surface type in [1, Chapter 3].
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Let Q be a cluster quiver, i.e. Q is without loops and 2-cycles. We may consider frieze
patterns as homomorphisms from the cluster algebra associated with Q to the integers
as appeared in [9] and [8].

Definition 2.1. Let Q be a cluster quiver and A(Q) is the associated cluster algebra with
trivial coefficients.

1. A frieze or cluster frieze associated to A(Q) is a ring homomorphism λ : A(Q) → Z.

2. A frieze λ is positive if for any cluster variable x ∈ A(Q), its image λ(x) is in Z+.

3. A positive frieze λ is unitary if there exists a cluster X in A(Q) such that every
cluster variable xi ∈ X is mapped to 1 by λ.

Consider the repetition quiver of Dynkin type A, D or E, or affine type (see [10,
Section 2.1]). Set positive entries in this quiver in such a way that the diamond rule now
is now adapted to the mesh rules. In Figure 3 we can see an example of cluster frieze of
type A3 by the evaluation xi → 1 for each i.
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Figure 3: Cluster variables displayed in the repetition quiver of type A3. The frieze in
Figure 1 is obtained via evaluation xi → 1, and adding the first and last rows with all
1’s.

The mesh rule in type D is interpreted as follows: whenever there is a configuration
a

b c
d e

of neighboring entries in the mesh quiver then bc − a = de − a = 1, and whenever

there is
a

b c
d
e

then bc − ade = 1, see Figure 4.
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Figure 4: Frieze of type D4.



Friezes for a Pair of Pants 5

Remark 2.2. The results of Conway and Coxeter [3] and of Gunawan and Schiffler [9, Theorem
4.2] mentioned in Remark 1.4 can be now reformulated as follows: all positive friezes of type A
and Ã, respectively, are unitary.

Remark 2.3. Not all friezes of type D, E, D̃ and Ẽ are unitary, see [8] and [9, Section 4.2.1].
For instance, the frieze in Figure 4 is an example of a non-unitary frieze of type D.

Fomin, Shapiro and Thurston defined cluster algebras of surface type in [5]. Fomin
and Thurston continued this development in [6]. In these articles, the authors find a
correspondence between λ-lengths of arcs and cluster variables, so that a triangulation
represents a cluster and mutations of the cluster can be interpreted as flips of arcs in the
triangulation of the surface [6, Proposition 7.6]. Fixing a triangulation T of (S, M), the
collection of λ-lengths corresponding to the arcs in the triangulation (including those
for boundary segments) forms a system of coordinates for the decorated Teichmüller
space. Choosing another triangulation results in a different coordinate chart, but all the
triangulations for (S, M) are related by sequences of flips, and the cluster variables in
the adjacent clusters are related by Ptolemy relations.

We can think that a (positive) frieze λ over a cluster algebra of surface type is defined
by assigning to each cluster variable, i.e. each arc, a λ-length in Z+, see Definition 3.1.

The question of a frieze being unitary has been studied for cluster algebras of acyclic
types A, D, E, Ã, D̃ and Ẽ, see Remarks 2.2 and 2.3. However, most cluster algebras of
surface type are non-acyclic. In the next section we propose a new approach to answer
Question 1.3 in a non-acyclic setting.

3 Friezes for a pair of pants

Let S be a topological surface known as a pair of pants, i.e., S is a sphere with three open
disks removed. Let M be a set of marked points on the boundary of S such that each
boundary component contains at least one marked point. Consider the marked surface
(S, M).

We have defined (cluster) friezes in terms of corresponding cluster algebras. Restrict-
ing the definition to the case of cluster algebras from surfaces and using results of [5]
and [6] we obtain the following reformulation.

Definition 3.1. By a positive frieze λ(S, M) from the marked surface (S, M) we will un-
derstand a map λ : γ → λγ from the set of arcs on S to positive integers Z+ such that
the Ptolemy relation is satisfied for each quadrilateral on S.

We denote the map above λ (and call λγ a λ-length of γ) as every such map can be
understood as taking λ-lengths of arcs for a decorated hyperbolic structure on (S, M).
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At the same time, one can understand this map formally, without remembering about
the hyperbolic structure.

The following notions will be used in the statement and the proof of our main result.

Definition 3.2. Let (S, M) be a marked surface and λ = λ(S, M) be a frieze.

1. A triangulation T of (S, M) is unitary for λ if λγ = 1 for each γ ∈ T.

2. The frieze λ is unitary if there exists a unitary triangulation T of (S, M).

3. A non-boundary arc γ on S is peripheral if it can be isotopically deformed to the
boundary of S, otherwise γ is bridging.

4. A short diagonal is a peripheral arc that can be isotopically deformed to a union of
two consecutive boundary segments.

5. A surface together with a frieze λ is reduced if there is no peripheral arc γ ∈ (S, M)
such that λγ = 1.

Theorem 3.3. Let (S, M) be a pair of pants with a set of marked points M, and let λ(S, M) be
a positive frieze such that λδ = 1 for every boundary arc δ. Then

(a) the frieze λ(S, M) is unitary;

(b) the unitary triangulation T of (S, M) is unique;

(c) for any short diagonal α in (S, M), its image λα is equal to the number of triangles of T
crossed by α, where T is the unitary triangulation from part (b).

Proof. First, we will prove part (a).

Reducing S. First, we reduce S as follows: if S has a peripheral arc ψ such that λψ = 1,
then we cut S along ψ and separate a polygon Pψ from S (in this polygon all boundary
arcs are of unit λ-length). After cutting Pψ from S, the number of boundary marked
points will decrease. Then we repeat the process: if there is a peripheral arc of λ-length
1 in the resulting surface S \ Pψ, we cut along it. If the number of marked points on
some boundary component equals 1 then there are no peripheral arcs on that boundary
anymore. So, after cutting finitely many times we will get a reduced surface S̃. Notice
that if we know that S̃ has a unitary triangulation then we can obtain a unitary trian-
gulation for S by applying the Conway–Coxeter result to each of the polygons cut out
in the process of reducing S. So, it is sufficient to show the statement for the reduced
surface S̃. From now on we will assume that S is reduced.

Cutting S. Let γ be a shortest bridging arc whose endpoints do not lie on the same
boundary component on S, i.e. λγ = k where k is minimal over all such bridging arcs γ.
We will cut S along γ and denote by S′ the obtained annulus, see Figure 5.
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Figure 5: After cutting S along the arc γ with λγ = k we obtain the surface S′ (right).

Suppose that k = 1. Then S′ together with the restriction of λ to S′ is a positive
frieze from an annulus such that λδ = 1 for each boundary arc δ. Every such frieze is
unitary [9]. Gluing the surface back along γ we obtain a unitary triangulation on S.

From now on we assume k > 1, i.e. no bridging arc on S′ is of unit λ-length. Our aim
now is to obtain a contradiction.

Constructing a triangulation on S′. Choose γ0 to be one of the shortest bridging arcs
on S′ (whose endpoints necessarily lie in the two different boundaries of S′ since S′ is an
annulus). Next, choose γ1 to be a shortest bridging arc on S′ not intersecting γ0. Choose
inductively γi to be a shortest bridging arc on S′ not intersecting any of the previously
chosen arcs γ0, γ1 . . . , γi−1. After repeating this finitely many times we will arrive to a
triangulation of S′ consisting only of bridging arcs. Observe that by this construction
we have an annulus with λδ = 1 for each boundary arc δ, except for two arcs of λ-
length k > 1 lying in the same boundary component and not following one another
consecutively, see Figure 5, right.

Lift the triangulation to the universal cover, so that we obtain a triangulation T of an
infinite strip Σ by bridging arcs, see Figure 6 (left).

We will label the arcs on Σ as follows. Let α0 be a lift of γ0. Let l be the line
obtained as the lift of the non-contractible simple closed curve which is disjoint from the
boundary (see [11, Section 3]). It will cross all lifts of all non-peripheral arcs. Choose an
orientation of l. We label the arc αi if the crossing of l with the arc is the i-th crossing of
l with the triangulation when following l from α0 in the positive direction, see Figure 6
(left). Denote ai = λαi for i ∈ Z.

Claim 1. Let β be a short diagonal enclosing two boundary segments, one of unit λ-length and
the other one of λ-length k, as in Figure 6 (right) (notice that β /∈ T). Then λβ > k.

Claim proof: Let v1v2v3v4 be a quadrilateral in Σ such that all vertices are consecutive
marked points on the same boundary component, so that β = v1v3. We have λv1v2 =
λv3v4 = 1 and λv2v3 = k by construction. The Ptolemy relation on the quadrilateral
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Figure 6: Left: triangulation of Σ by bridging arcs. Right: a quadrilateral in Σ

v1v2v3v4 gives
λv1v3λv2v4 = kλv1v4 + 1.

Notice that both v1v3 and v2v4 were bridging arcs in S′ since they cross over the bound-
ary segment of λ-length k, so we have λv1v3 ≥ k. Suppose that λv1v3 = k. Then the left
hand side of the equation above is divisible by k, while the right hand side is not, which
is impossible. So, we conclude λv1v3 > k. ■

Claim 2. ai+1 ≥ ai for all i ≥ 0.

Claim proof: For i = 0 the claim follows from the construction of the triangulation as α0
is the shortest bridging arc on S′. Fix some i > 0 and suppose that the claim holds for
all i′ < i.

ai−1

ai ai+1
ai−1

ai

ai+1

Figure 7: Quadrilaterals in T.

Denote by tn the triangle of T with sides αn, αn+1 and a boundary side. Consider
the quadrilateral qi formed by triangles ti−1 and ti. Up to swapping top boundary of
the strip with the bottom, the quadrilateral qi looks like one of the two possibilities in
Figure 7. We will consider the Ptolemy relation for each of these possibilities.

Notice that k ≤ ai since k is the length of the shortest bridging arc on S and all αi
are bridging arcs. Moreover, at most one of any two adjacent boundary arcs on Σ can
have length k while the other is of length 1. And only one boundary component for Σ
contains arcs of length k. This implies that we are left to consider the five cases I-V listed
in Figure 8. We will denote by α′i the diagonal crossing αi in the quadrilateral qi.

(I) By the Ptolemy relation we have

aia′i = ai−1ai+1 + 1.
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Figure 8: Cases I - V.

Here, we know that ai−1 ≤ ai by inductive assumption and ai ≤ a′i by the construc-
tion of the triangulation. Moreover, we also know aj ≥ k > 1 for any j. Suppose
that ai+1 < ai, i.e. ai+1 = ai − s, for s ≥ 1. Then

aia′i = ai−1(ai − s) + 1 = ai−1ai + (1 − s · ai−1) ≤ aia′i + (1 − s · ai−1) < aia′i,

which is a contradiction.

(II) In this case the Ptolemy relation gives

aia′i = ai−1ai+1 + k,

and similarly to the above we assume ai+1 = ai − s, s ≥ 1, and compute

aia′i = ai−1(ai − s) + k = ai−1ai + (k − s · ai−1) ≤ aia′i + (k − s · ai−1) ≤ aia′i.

Notice that the only way to avoid the contradiction is when both inequalities are
identities, that is when s = 1, ai−1 = k, and ai−1 = ai and ai = a′i, i.e. when
ai−1 = ai = a′i = k. However, in that case ai+1 = ai − s = k − 1 < k which is
impossible by the assumption that k is the shortest λ-length of a bridging arc.

(III) By the Ptolemy relation we have

aia′i = ai−1 + ai+1,

assuming ai+1 = ai − s, s ≥ 1, we get

aia′i = ai−1 + ai+1 = ai−1 + ai − s ≤ 2ai − s.

Notice that α′i is not a bridging arc in this case (and was not bridging in S), so, we
cannot assume a′i ≥ ai. However, we know a′i ≥ 2 as the surface S is reduced. So,
we have 2ai ≤ aia′i ≤ 2ai − s which is clearly impossible for s ≥ 1.
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(IV) By the Ptolemy relation we have

aia′i = kai−1 + ai+1.

Notice that in this case the arc α′i is a lift of a bridging arc, and hence we have
a′i ≥ k. Assuming ai+1 = ai − s, s ≥ 1, we get

aia′i = kai−1 + ai+1 = kai−1 + ai − s ≤ (k + 1)ai − s.

If a′i ≥ k + 1, this is impossible. The case a′i = k is also impossible in view of
Claim 3 (applied to a′i is in the role of β).

(V) By the Ptolemy relation we have

aia′i = ai−1 + kai+1.

Again, the arc α′i is a lift of a bridging arc hence we have a′i ≥ k. Assuming
ai+1 = ai − s, s ≥ 1, we get

aia′i = ai−1 + kai+1 = ai−1 + k(ai − s) ≤ ai + kai − ks = (k + 1)ai − ks,

which is impossible when a′i ≥ k+ 1. Since a′i ≥ ai ≥ k, this implies that a′i = ai = k,
but then ai+1 ≤ k − 1 and this is impossible by construction.

We conclude that assuming ai+1 < ai in any of the five cases leads to a contradiction.
■

We see from the Claim 4 that the sequence of λ-lengths (ai) is monotone increasing.
Since the arcs are lifts of a finite number of arcs from the annulus, this is only possible if
all these arcs have the same λ-length, denote it by a. Then we have a ≥ k.

Let ti and ti+1 be two adjacent triangles in the triangulation T of Σ, and let qi =
ti ∪ ti+1 be the quadrilateral composed of them. We will say that qi is a good quadrilateral
if the boundary arcs of both triangles ti and ti+1 are of unit λ-length, and these boundary
arcs lie on different components of the boundary of Σ (as in Case I in Figure 8).

Claim 3. If qi is a good quadrilateral, then ai+1 > ai.

Claim proof: We use the Ptolemy relation as in the proof of Case (I) of Claim 4, but this
time we assume s = 0 (i.e. ai+1 = ai). Then we get aia′i = ai−1ai + 1, which is impossible
since the left hand side is divisible by ai > 1, and the right hand side is not. ■

The following statement completes the proof of part (a).

Claim 4. T contains at least one good quadrilateral qi.
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Claim proof: Suppose that T is a triangulation by bridging arcs containing no good
quadrilaterals.

Let u1, . . . , um be the marked points on one boundary of the annulus S′, and v1, . . . , vn
the points on the other boundary. Without loss of generality we assume that the bound-
ary arcs u1u2 and ulul+1, are of λ-length k (here l ≥ 3 and l + 1 ≤ m), while all other
boundary arcs are of λ-length 1.

v1 v2 v3 vn−1 vn v1

u1 u2 ul um u1ul+1

t0 t1 ... tl−1

C

k k

Figure 9: Triangulation of S′.

Consider the triangle t1 with boundary side u2u3 and suppose that v1 is the third
vertex of t1 (we can assume this without loss of generality after shifting the numeration
of the vi’s). Since T contains no good quadrilateral, v1u1 and v1u4 are arcs of T, oth-
erwise, there is a good quadrilateral v1v2u3u2 or v1u3u2vn. Similarly, we see that all of
v1u4, v1u5, . . . , v1ul should be arcs in T, and moreover, v1ul+1 ∈ T. We obtain that all
triangles t0, . . . , tl−1 lie in one fan with vertex v1.

Consider the l triangles described above, and let C be the complement of that region
on S′: C is a polygon with sides v1u1 and v1ul+1, and all other edges are boundary arcs
of λ-length 1 (see Figure 9). Notice that the restriction of T to the polygon C consists of
bridging arcs, connecting the top boundary to the bottom. It is easy to see that such a
triangulation contains a good quadrilateral since l ≥ 3 and l + 1 ≤ m so, as a minimum,
the polygon C is a square v1ul+1u1v1. Hence it has a bridging arc and it contains a good
quadrilateral. ■

Now, we will prove (b). Suppose that T and T′ are two unitary triangulations for the
same frieze λ(S, M). Let α ∈ T′ be an arc, α /∈ T. Since α /∈ T, there is an arc γ ∈ T
crossed by α. Consider the Ptolemy relation for the quadrilateral with diagonals α and
γ: it writes as 1 · 1 = a · c + b · d where a, b, c, d ∈ Z+, which is impossible. This implies
that T and T′ cannot be both unitary, and thus the unitary triangulation is unique.

Part (c) can be easily shown by induction on the number of triangles in one fan
crossed by α (by applying Ptolemy relation to prove each step of the induction).

Remark 3.4. Note that for surfaces that have more than three boundary components or handles,
there will be at least one additional case to those in Claim 4. At this point, we are not able to treat
those cases.
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