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Abstract

We describe a new automated technique for active region emergence in coronal magnetic field models, based on
the inversion of the electric field locally from a single line-of-sight magnetogram for each region. The technique
preserves the arbitrary shapes of magnetic field distribution associated with individual active regions and
incorporates emerging magnetic helicity (twist) in a parametrized manner through a noninductive electric field
component. We test the technique with global magnetofrictional simulations of the coronal magnetic field during
Solar Cycle 24 Maximum from 2011 June 1 to 2011 December 31. The active regions are determined in a fully
automated and objective way using Spaceweather HMI Active Region Patch (SHARP) data. Our primary aim is to
constrain two free parameters in the emergence algorithm: the duration of emergence and the twist parameter for
each individual active region. While the duration has a limited effect on the resulting coronal magnetic field,
changing the sign and amplitude of the twist parameters profoundly influences the amount of nonpotentiality
generated in the global coronal magnetic field. We explore the possibility of constraining both the magnitude and
sign of the twist parameter using estimates of the current helicity derived from vector magnetograms and supplied
in the SHARP metadata for each region. Using the observed sign of twist for each region reduces the overall
nonpotentiality in the corona, highlighting the importance of scatter in the emerging active region helicities.

Unified Astronomy Thesaurus concepts: Solar magnetic fields (1503); Solar surface (1527); Solar atmosphere
(1477); Active solar corona (1988)

1. Introduction

In this paper we propose a technique for emerging active
regions in data-driven simulations of the Sun’s coronal
magnetic field. The technique is designed for global-scale
simulations of the coronal evolution over months to years,
where multiple active regions are emerging and practical
considerations prevent the detailed evolution within each
individual active region from being followed. Our implementa-
tion is fully automated based on the Spaceweather HMI Active
Region Patch (SHARP) data from the Helioseismic and
Magnetic Imager (HMI) on Solar Dynamics Observatory
(SDO; Bobra et al. 2014). However, the basic emergence
technique could equally be applied to other data sources as it
can also be used when only line-of-sight and not vector
magnetograms are available.

Limiting the reliance on vector magnetograms is useful,
partly so that the technique can be used to simulate periods
when vector data are unavailable (either in the past or future),
but also because of uncertainty in the horizontal/transverse
magnetic field components in vector magnetograms (Metcalf
et al. 2006; Wiegelmann & Sakurai 2021). Particularly in the
time-dependent simulations that we consider, errors in these
components could lead to substantial spurious electric currents
being generated in the corona (Metcalf et al. 2008; Wiegel-
mann & Sakurai 2021). It should be emphasized that significant
progress has been made in recent years in processing vector
magnetograms to drive coronal simulations directly (for an
example of the state-of-the-art, see Lumme et al. 2022).
Nevertheless, such simulations require significant preproces-
sing at high resolution, and we opt for a simpler approach by

fitting only the line-of-sight magnetic field. In particular, this
means that the quality of the resulting coronal magnetic field
can be more easily controlled. This being said, we do explore
how to utilize vector magnetic field data indirectly through the
SHARP metadata, using the observed mean twist parameter to
parameterize the magnetic helicity content of individual
regions.
Our approach is to ingest magnetogram data only within

active regions. Paradoxically, this is because active region
emergence is only one driver of coronal magnetic evolution.
Significant energy and magnetic helicity are also injected into
the corona by surface motions on both small and large scales.
In principle, full-disk observations of the magnetic field and/or
plasma velocity in the solar photosphere could be used to drive
simulations more or less directly (some efforts include Yang
et al. 2012; Hayashi 2013; Weinzierl et al. 2016; Hayashi et al.
2021). However, the limitations of available observations
restrict the accuracy of this approach at present. Not only are
there no observations of the far side of the Sun, but the
horizontal magnetic field components in vector magnetograms
have significant uncertainties in weak magnetic field regions
(Virtanen et al. 2019). Even static extrapolations from vector
magnetograms in these regions are unable to recover large-
scale coronal current structures such as filament channels. Yet
these are observed indirectly to have significantly nonpotential
magnetic fields (Mackay et al. 2010). Therefore, our approach
is to use magnetogram observations only within active regions,
with evolution over the rest of the solar surface envisaged to be
simulated by imposing flows on either large or small scales.
The new emergence technique improves on previous global

simulations by our group and collaborators because it allows
the active regions to have more realistic shapes, matching the
observed patterns of radial magnetic field on the photosphere.
Previous simulations used idealized, symmetric magnetic
bipoles with a fixed functional form (Mackay & van
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Ballegooijen 2001), with only overall properties such as
magnetic flux, size, and tilt angle constrained to observations
(Yeates et al. 2008). This had the advantage that the regions
could easily be inserted in three dimensions, and given an
arbitrary amount of magnetic helicity (e.g., Mackay & van
Ballegooijen 2005; Yeates et al. 2008). However, there were
limitations to this approach. For example, the fitting of bipoles
to complex active regions had to be done manually, so it was
not fully objective. And recent work with surface flux transport
models has found that the assumption of symmetric and bipolar
shapes can lead to inaccurate estimates of the net end-of-cycle
polar field remaining from the decay of many active regions
over the 11 yr solar cycle (Iijima et al. 2019; Jiang et al. 2019;
Yeates 2020a). Thus for simulations over periods of years,
allowing arbitrary shapes is a desirable improvement.

In order to allow for arbitrary active region shapes, we
emerge the regions not by suddenly inserting three-dimensional
magnetic fields as before, but rather by imposing an electric
field on the solar surface over a finite time interval. For coronal
simulations, it is consistent to impose only the horizontal
electric field components (e.g., Cheung & DeRosa 2012). The
approach of emerging flux by imposing an electric field was
used by Fan & Gibson (2004) to emerge a twisted magnetic
flux tube into a pre-existing coronal arcade. Those authors
imposed a time-dependent electric field so as to control the
three-dimensional magnetic field structure that was emerging.
Here, we instead impose a steady electric field to build a final
radial magnetic field distribution in the photosphere that
matches observations. Since we determine this electric field
from the magnetic field by inverting Faraday’s Law, it is not
unique (Fisher et al. 2020), but is determined only up to an
unknown gradient term, known as the “noninductive” electric
field (Fisher et al. 2010). Studies comparing reconstructed
electric fields to ground truth from magnetohydrodynamic
(MHD) simulations find that the noninductive contribution is
typically significant in active regions (Fisher et al. 2012;
Kazachenko et al. 2014). Indeed, Pomoell et al. (2019) found
that a significant noninductive contribution was required to
reproduce an observed flux rope eruption in a data-driven
simulation. And even systematic flows such as differential
rotation can lead to a significant noninductive component
(Weinzierl et al. 2016). Since we do not follow the detailed
evolution during the emergence process itself, we do not
attempt to infer the noninductive electric field directly from
observations (see Fisher et al. 2020), but rather incorporate it in
an ad-hoc parametrized way (Cheung & DeRosa 2012; Lumme
et al. 2017; Yardley et al. 2018). This allows us to control the
amount of magnetic helicity in each emerging region. The most
conservative approach, with minimal nonpotential energy
injection, would be to neglect the noninductive contribution
altogether (e.g., Mackay et al. 2011; Yang et al. 2012; Hayashi
et al. 2018; Yardley et al. 2021). We will illustrate the effect of
this emerging helicity on the resulting global coronal field.

This paper is organized as follows. Section 2 describes our
emergence technique using the “local inductive” electric field,
along with the additional noninductive contribution that injects
magnetic helicity in the emerging region. To test the global
impact of key parameters in the new technique, we use
magnetofrictional simulations, as described in Section 3. An
important parameter controls the amount of helicity injection in
each region, and the choice of this parameter is discussed in

Section 4. Results of the tests with different parameters are
given in Section 5 and the conclusions are in Section 6.

2. Emergence Algorithm

The purpose of our emergence algorithm is to take a single
radial-component magnetogram for an active region, Br(θ, f),
and determine a suitable horizontal electric field E⊥(θ, f, t) that
can be applied to emerge the region in a three-dimensional
coronal simulation. In our implementation, we assume that this
magnetogram Br(θ, f) is (i) defined on a uniform grid in
s cos qº (sine latitude) and f (longitude) and (ii) flux
balanced in the sense that B , sin d d 0

S r ( )ò q f q q f = , where
S is the solar surface, and (iii) has localized support, in the
sense that Br= 0 outside some region D⊂ S. Thus we also
have local flux balance, B , sin d d 0

D r ( )ò q f q q f = . In our
simulations described in Sections 3 and 5, this Br(θ, f) with
compact support will emerge on top of a pre-existing magnetic
field distribution that fills the whole solar surface. Moreover,
the local emergence electric field will be superimposed on the
global electric field that describes ongoing large-scale and
small-scale surface flows.

2.1. Test Data

To illustrate the electric field computation we will use an
active region from the automatically generated HMI/SHARP
database (Bobra et al. 2014), shown in Figure 1. A single line-
of-sight magnetogram was selected when the region was close
to Central Meridian. Following the methodology of Yeates
(2020a), this has been (i) downsampled to the 180× 360 grid
in (s, f) used throughout this paper, and (ii) corrected for flux
balance. As discussed in the introduction, we use only line-of-
sight magnetograms and hence choose a magnetogram near
Central Meridian so as to reduce projection effects. This does
have the consequence that any flux emergence after the region
has passed Central Meridian will be missed, but this is a
limitation of the input data rather than the emergence algorithm
described in this section.

2.2. Time Dependence

Since our data comprise a single magnetogram for each
active region, we assume that every region emerges over a
fixed time interval Tem, typically chosen as 24 hr, although the
effect of this parameter will be considered in Section 5.1.
During this interval we impose a steady electric field E⊥(s, f)
satisfying

r E s
B s

T
,

,
, 1r

em

ˆ · ( ) ( ) ( )f
f

-  ´ =^

so that the required Br(s, f) distribution is superimposed at the
end of this emergence on any pre-existing Br distribution
(which is usually weak in our simulations). The assumption of
a steady emergence rate is reasonable for global simulations
that focus on the postemergence evolution over longer
timescales. In fact, piecewise-steady electric fields were also
used to interpolate between subsequent magnetograms in the
active region simulations of Mackay et al. (2011) and Cheung
& DeRosa (2012).
Although any E⊥ satisfying (1) will generate the same Br on

the surface, different choices could lead to different coronal
magnetic fields when used as boundary conditions for three-
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dimensional simulations. Our approach is to decompose E⊥
into two contributions:

E Es s
s

T
, ,

,
. 20

em
( ) ( ) ( ) ( )f f

f
= - 

Y
^ ^

The first term E0
^ is the inductive component of the emergence

electric field, and as such will generate a coronal magnetic field
of minimum possible complexity. Our method for computing
this term is described in Section 2.3. The other term is the
noninductive component that does not change the corresp-
onding magnetogram Br but allows us to vary the free energy of
the emerging regions. This twisting potential Ψ is discussed in
Section 2.4.

2.3. Local Inductive Electric Field

From the original local region D—which may consist of
several disconnected pieces—we first identify a simply
connected region, D , containing the newly emerging flux.
Our aim is to compute an electric field that vanishes outside
this region. As an illustration, consider the region shown in
Figure 1. The black shading in Figure 1(b) shows the original
region, D (chosen as |Br|> 10−3 G). This is not simply
connected, having several disconnected components containing
holes. However, our algorithm for calculating E0

^ requires a
single simply connected region. From D, we apply successive

steps of Gaussian smoothing to |Br| until such a region D is
reached, shown by the wider gray area in Figure 1(b).
The electric field is computed only on D , with the boundary

condition E⊥× n= 0 on the boundary D¶ , consistent with
magnetic flux balance in D . A staggered grid is used where Br

i j,

is defined at the cell centers, Es
i j, 1 2+ is defined on the s-edges

and Ei j1 2,
f
+ is defined on the f-edges (e.g., Figure 2). Here i

and j denote the latitudinal (s) and azimuthal (f) indices of the
cell. Thus with Stokes’ Theorem applied to Equation (1),
Es

i j, 1 2+ and Ei j1 2,
f
+ must satisfy

ℓ E ℓ E ℓ E

ℓ E
R s B

T
, 3

s s
i j

s s
i j i j

i j r
i j

, 1 2 , 1 2 1 2,

1 2,
2 ,

em



( ) ( ) ( )

( ) ( )
f

- +

- =
D D

f f

f f

- + +

-

where R s2
 fD D is the area of a grid cell—uniform in these

coordinates. The cell edge lengths are given by
ℓ R s sarcsin arcsins

i j i i, 1 2 1 2 1 2
[ ( ) ( )]= -+ + - and

ℓ R s1i j i1 2, 1 2 2
 ( )f= D -f

+ + . The boundary condition is

enforced by setting tangential components of Es
i j, 1 2+ or

Ei j1 2,
f
+ to zero on the boundary edges of D , shown by dashed

lines in Figure 2.
When applied to each grid cell in D , Equation (3) gives a

system of linear equations for Es
i j, 1 2+ and Ei j1 2,

f
+ . The system

is underdetermined, reflecting the freedom to add an arbitrary
gradient term to E⊥ without affecting r Eˆ ·  ´ ^. Our
implementation solves for ℓ Es s

i j, 1 2( ) + and ℓ E i j1 2,( )f f
+ , since

these weighted values are most useful in the magnetofrictional
code used for our tests (Section 5). We choose the least-squares
solution, E0

^, to this system, i.e., the solution that minimizes the
L2-norm. This is implemented with a sparse matrix and a sparse
least-squares solver (in Python). This is mathematically
equivalent to finding an electric field of the form
E r0 ( ˆ)= - ´ F^ , which is an inductive electric field
(Yeates 2017). However, unlike the inductive electric fields
computed by Weinzierl et al. (2016) or Yeates (2017), who
solved Equation (3) over the full solar surface, here we have
allowed nonzero electric field only within the region D . Hence,
we call this a “local inductive” electric field solution. The
resulting Es

0 and E 0
f are shown in Figures 3(a) and (e).

Although this solution E0
^ satisfies E⊥× n= 0 on D¶ ,

Figures 3(a) and (e) show that the normal component E n0 ·^
can be discontinuous at the edge of D . While this does not
affect r Eˆ ·  ´ ^, it could lead to the generation of spurious
currents in coronal simulations. We remove the sharp
discontinuity by smoothing E0

^ with an evolution of the form

E
E

t
. 4

0
0( · ) ( )¶

¶
=  ^

^

This leaves r E0ˆ ·  ´ ^ unaffected provided the gradient is
discretized consistently, which we ensure by using the
staggered form

ℓ E ℓ E

t D D , 5

s s k
i j

s s k
i j

k
i j

k
i j

1
, 1 2 , 1 2

1 2, 1 2 1 2, 1 2

( ) ( )

( ) ( )

=

+ D -
+
+ +

+ + - +

ℓ E ℓ E

t D D , 6

k
i j

k
i j

k
i j

k
i j

1
1 2, 1 2,

1 2, 1 2 1 2, 1 2

( ) ( )

( ) ( )

=

+ D -

f f f f+
+ +

+ + + -

Figure 1. Magnetogram for an example SHARP (a) and the corresponding
emergence region (b). Black pixels show the region D before smoothing, which
had four separate components and eight holes. Gray pixels show the simply
connected region D resulting from smoothing, having only a single component
and no holes. In (a), red denotes positive Br and blue negative, saturated
at ±50 G.
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where Dk
i j1 2, 1 2+ + is a finite-difference approximation to

E0· ^ at time step k. The step size Δt is chosen for numerical
stability and we integrate for a total time ≈7× 10−5 T, where T
is the time that would be taken to diffuse a distance Re. We
choose this short integration time to minimize the amount of
smoothing, which is a balance between reducing currents at the
edge of D and maintaining localization of E0

^. If the amount of

smoothing were increased, E0
^ would eventually tend toward

the global inductive solution. The result with our chosen
amount of smoothing is illustrated in Figures 3(b) and (f). We
denote this smoothed local inductive electric field by E0

^ , and
use it in practice for the E0

^ component in Equation (2).
It is worth noting that E0

^ differs significantly from electric
fields that have previously been used to drive magnetofrictional

Figure 2. Example of the local staggered grid for a newly emerging region (where for clarity we choose a smaller region than Figures 1 and 3). Red/blue background
shading shows Br (saturated at ±50 G), located at the cell centers (black dots). Unknown values of Es and Ef are located on the vertical and horizontal edges,
respectively magenta and blue. Boundary edges where Es = 0 or Ef = 0 are shown dashed.

Figure 3. Computed electric field E⊥ for the region shown in Figure 1. Columns show Es and Ef components for different solutions: the local inductive solution
before (a/e) and after (b/f) smoothing, the global inductive solution (c/g), and the global sparse solution (d/h). Units are V m−1, and all plots are saturated at the same
maximum value. All four electric fields generate the same Br distribution.
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simulations. For example, Figures 3(c) and (g) show the
components of the global inductive solution, which satisfies
E r( ˆ)= - ´ F^ on the whole spherical surface. By defini-
tion, this minimizes the L2-norm of E⊥ (70 Vm−1 compared to
111 Vm−1 for the local inductive solution), but at the expense
of spreading nonzero E⊥ far outside of D , decaying only as the
inverse of the distance from D (Yeates 2017). Although no
additional Br(Re, s, f) is generated by this nonzero E⊥ outside
D , additional electric fields are generated and these can change
the evolution of the coronal magnetic field outside of the
emergence region (illustrated in Section 5.3 below). Thus our
local inductive E0

^ is more appropriate for incorporating newly
emerging regions in global simulations.

As a further comparison, Figures 3(d) and (h) show a sparse
E⊥ computed over the whole solar surface for this region, using
the L1-minimization method of Yeates (2017). Because it is
essentially a compromise between sparsity (localization) and
smoothness, the E⊥ generated by the sparse algorithm is less
smooth than our L2-based electric fields. For a fairer
comparison, the solution shown in Figures 3(d) and (h) has
had the same smoothing applied via Equation (4). It is clear that
the global sparse E⊥ shares some of the broad features of the
local inductive solution, with |Es|> |Ef| overall and localiza-
tion around D . However, there are two disadvantages of the
sparse solution. First, although it is localized, it is not
necessarily localized specifically to the region D , as in this
example. Second, the sparse solution is more expensive to
compute because it requires multiple least-squares solutions
over the whole solar surface, in an iterative loop, rather than a
single solution over only the local region D . Thus we find that
the local inductive E0

^ is an improvement. Note that, although
it does not concern us here, the sparse solution is also found to
lead to significant spurious coronal currents when applied with
higher-cadence sequences of observational magnetograms
(Mackay & Yeates 2021). Since minimizing the L1 norm is
equivalent to finding the sparsest solution, we can compare the
relative sparseness of the different E⊥ by their L1 norms, which
for this example are 2256 Vm−1 for the local inductive
solution, 6115 Vm−1 for the global inductive solution, and
1978 Vm−1 for the global sparse solution. Thus—as is seen in
Figure 3—the local inductive solution does not have a
significantly larger footprint than the sparse solution itself,
even after the smoothing step.

2.4. Helicity Injection

The noninductive electric field, resulting from −∇(Ψ/Tem)
in Equation (2), typically increases both the Poynting flux of
magnetic energy and the flux of magnetic helicity into the
corona (Kazachenko et al. 2014; Pomoell et al. 2019). Indeed,
the existence of nonzero free magnetic energy is an important
feature of many real active regions. While we do not follow the
detailed injection of this free energy during the emergence
process, it is nevertheless important to account for the net
emergence of any nonpotential structure. Thus we include a
nonzero “twisting” component −∇(Ψ/Tem). In line with
observations and the theory of helicity condensation, we
choose to concentrate this twisting near polarity inversion lines,
similar to Mikić et al. (2018; see also Mackay et al. 2018;
Yeates et al. 2018). The choice of twisting potential Ψ(s, f) will
not affect r Eˆ ·  ´ ^, but it will lead to the generation of
additional Bs and Bf components in the corona since it is
imposed only at r= Re. Note that Mackay et al. (2018) instead
modified E by adding an Er component (in their case, through
modifying A), but the effect on B is the same, the difference
being only in choice of noninductive component.
The potential Ψ(s, f) for a given region is constructed as

follows, illustrated in Figure 4:

1. Polarity inversion lines are identified using the function

f s B B, , 7r rpil
2( ) (∣ ∣ ∣ ∣ ∣∣) ( )f =  - 

where Br is a smoothed Br distribution, computed by
mild Gaussian smoothing with a standard deviation of
less than one grid cell (Figure 4(a)). The function fpil is
nonzero near polarity inversion lines and zero away from
them. It is strongest where the gradient of Br is strongest
(Figure 4(b)).

2. A somewhat broader twisting region is defined by
Gaussian smoothing of fpil with a standard deviation of
two grid cells to give 〈fpil〉. This is chosen approximately
so as to localize the twisting within the interior of D
(Figure 4(c)).

3. The potential is then

s b f B, , 8r0 pil( ) ( )f tY = á ñ

as shown in Figure 4(d). Here b0 is a constant
normalization factor, chosen so that

Figure 4. Construction of the twisting potential Ψ(s, f) for an example region (the same shown in Figures 1 and 3), with τ = 1. Units are G for Br , G
2 cm−2 for fpil,

and G cm2 for Ψ.
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L Bmax max r∣ ∣ ∣ ∣tY = . The dimensionless “twist” para-
meter τ is signed such that τ> 0 leads to positive helicity
(sinistral chirality) and τ< 0 to negative helicity (dextral
chirality). We set L= 0.015Re, which is the height of the
first coronal grid cell in our magnetofrictional calcula-
tions. With this normalization, the horizontal field
strength generated by the twisting should be roughly of
the order |τBr|.

3. Magnetofrictional Simulations

To test our emergence algorithm, we use a global
magnetofrictional model. The electric fields from our emer-
gence algorithm could equally be applied to any other evolving
MHD model of the coronal magnetic field, but at present the
magnetofrictional approach is the most practical for simulating
the large-scale coronal evolution over long timescales. This
allows us to determine the likely wider consequences of
choosing different parameters Tem and τ in our emergence
model.

3.1. Global Magnetofrictional Model

The coupled surface flux transport and magnetofrictional
approach were first introduced by van Ballegooijen et al.
(2000), and later Yeates et al. (2008) extended it to cover the
global corona. The basic idea is that the coronal magnetic field
B evolves continuously through a sequence of nonpotential
states in response to the changing surface boundary. Large-
scale plasma motions and magnetic diffusion on the surface
drive the coronal field evolution in a quasi-static manner. In the
corona, we solve for the magnetic vector potential B=∇× A,

A
E

t
, 9( )¶

¶
= -

where E=− v× B+N. Here, E and N represent the electric
field, and the nonideal part of Ohm’s law, respectively.
Although the corona is highly conducting, the nonideal term
reflects the fact that we are modeling the large-scale, mean
magnetic field; thus N describes the effect of unresolved
smaller-scale turbulent motions (van Ballegooijen et al. 2000).
The velocity v in the corona—discussed in the next paragraph
—is a combination of frictional relaxation and a solar wind
outflow. On the lower boundary, we apply a different electric
field which is a superposition of (i) the emergence electric
fields E⊥ for individual active regions, as per Section 2, and (ii)
a global electric field E v r rB Bs r r0( ˆ) ( ˆ)h= - ´ +  ´^ . Here
the large-scale velocity vs(θ) on the lower surface mimics two
large-scale plasma flows: meridional circulation and differential
rotation (for more details, see Section 2.2 of Yeates 2014). The
surface diffusivity η0= 455 km2 s−1 represents the net effect of
small-scale (supergranular) flows. The computational domain
extends radially within Re� r� 2.5 Re and includes the full
extent of colatitude 0°–180° and longitude 0°–360°. We solve
Equation (9) using a finite-difference method on an equally
spaced grid of 60× 180× 360 cells in r Rlog ( ), sine latitude,
and longitude.

This nonpotential coronal model is a simplified version of
full-scale MHD models. We do not solve the full momentum
equation to simulate the velocity evolution, but rather employ a
“frictional” velocity v proportional to the Lorentz force. Such

an artificial velocity field drives the coronal magnetic field
toward a force-free equilibrium, J× B= 0 where J=∇× B.
The velocity field within the corona is modeled accordingly as

v
J B

rv r 10out ( ) ˆ ( )
n

=
´

+

where B r sin0
2 2 2∣ ∣ ( )n n q= , is the friction coefficient, with

ν0= 2.8× 105 s. On the photosphere, the frictional velocity is
set to zero. The second term in Equation (10), with
v r v r Rout 0

11.5
( ) ( )= and v0= 100 km s−1, models (crudely)

the effect of the solar wind in the upper corona (see Rice &
Yeates 2021). It ensures that magnetic field lines become
essentially radial by 2.5 Re, except temporarily during
eruptions. All components of B are periodic in f. At the inner
(1.0 Re) and outer (2.5 Re) boundaries the transverse current
density, J× r̂, is set to zero, such that the Lorentz force is
always tangential to the boundaries. The nonideal term N is
modeled using fourth-order hyperdiffusion, which preserves
magnetic helicity density A ·B in the volume (van Ballegooijen
& Cranmer 2008). We use, N=− (B/|B|2)∇ (ηh|B|

2∇α),
where α= J ·B/|B|2 and ηh= 1031 cm4 s−1.

3.2. Simulation Duration and Input Data

We perform three-dimensional magnetofriction simulations
for 213 days, covering 2011 June 1 to 31 2011 December 31,
around the Solar Cycle 24 Maximum. A three-dimensional
magnetic field distribution is required to initialize the
simulation, which we obtain from a potential field source
surface extrapolation (Yeates 2018) from the HMI radial-
component pole-filled Carrington map 2210 (Sun 2018).
The emerging regions during this period are extracted

automatically from the HMI/SHARP database, using the
methodology of Yeates (2020a), which is fully automated
and repeatable (the code is freely available at Yeates 2022). In
summary, a single line-of-sight magnetogram is selected at the
time when the region was closest to Central Meridian. The
extraction code discards those SHARPs that are either too small
to resolve at the chosen 180× 360 resolution, have highly
imbalanced flux (near unipolar), or represent a repeat
observation of an earlier region surviving on the solar surface
for more than one Carrington rotation. This leaves 102 active
regions with realistic shapes to emerge in the magnetofrictional
simulations, using our new emergence technique described in
Section 2.

3.3. Diagnostic Tools

Since our simulations model solar maximum with a hundred
active regions emerging, the coronal magnetic field evolution is
quite dynamic, with numerous nonpotential structures forming
and erupting. Thus, unlike the solar minimum study by
Bhowmik & Yeates (2021), where individual nonpotential
structures were tracked and analyzed over a few days, here we
primarily focus on global measures of nonpotentiality in the
three-dimensional coronal magnetic field. The temporal evol-
ution of these measures is depicted in Figure 5 for a particular
magnetofrictional simulation where active regions have
emergence duration Tem= 24 hr and all have the same twist
τ=±0.1 (positive in the southern hemisphere, negative in the
northern hemisphere).
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Figure 5(a) shows the evolution of the photospheric
magnetic flux calculated by integrating |Br| over the surface
r= Re. The sudden rises in photospheric flux denote the
epochs of active region emergence. Besides the newly emerged
active regions, any significant changes in the coronal magnetic
field distribution, especially at the outer boundary (2.5 Re), are
caused by eruptions of coronal structures. These need not be
directly caused by active region emergence, as seen in

Figure 5(b), which shows the open magnetic flux (integral of
|Br| over the surface r= 2.5 Re). Figure 5(c) shows the total
magnetic energy in the corona, calculated by integrating
|B|2/(8π) over the whole simulation volume. Another impor-
tant measure is the mean current density |J| per unit volume
within the corona, shown in Figure 5(d). The current density is
directly linked with the nonpotential part of the magnetic field.

Figure 5. Temporal evolution of global quantities, in the run with Tem = 24 hr and τ = 0.1 (with sign given by the majority hemispheric rule). From top to bottom: (a)
unsigned photospheric magnetic flux, (b) unsigned open magnetic flux, (c) total magnetic energy, (d) mean current density, (e) horizontal components of the magnetic
field at the outer boundary in separate hemispheres, and (f) helicity flux through the outer boundary.
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We also study the evolution of the average horizontal
magnetic field, B B B2 2 1 2( )= +q f^ , at r= 2.5 Re. The coronal
magnetic field at the outer boundary is primarily radial due to
the solar wind. However, B⊥ becomes significantly enhanced
when any nonpotential coronal magnetic structure erupts and
passes through the outer boundary (Yeates & Hornig 2016;
Lowder & Yeates 2017; Bhowmik & Yeates 2021). The
temporal evolution of the average 〈B⊥〉 over the surface
r= 2.5 Re is depicted in Figure 5(e), where we separate the
averages in the northern and southern hemispheres.

The bottom row, Figure 5(f), shows the evolution of
(relative) helicity flux through the outer boundary. Helicity is
injected into the coronal magnetic field through large-scale
shearing by differential rotation as well as the emergence of
twisted active regions. With hyperdiffusion, the volume
dissipation of helicity is negligible, with only an extremely
small amount from numerical diffusion (e.g., Figure 1 of
Bhowmik & Yeates 2021). Thus the ejection of unstable
nonpotential structures with high helicity content through the
outer boundary is the prime means by which the coronal model
sheds helicity. The total (signed) flux of relative helicity
through the outer boundary is gauge independent and computed
by integrating A E A t2˜ ( ˜ )´ + ¶ ¶ over the surface
r= 2.5 Re, where Ã is an appropriately chosen vector potential
that must be computed from B (for details, see Yeates &
Hornig 2016).

As discussed already, B⊥ is a useful indicator for eruptions
of nonpotential coronal structures, as well as the amount of
magnetic flux involved. We calculate 〈B⊥〉 at 2.5 Re at a
cadence of 20 s; thus, individual peaks with significant
amplitudes can be considered to be associated with separate
eruptions. As an indicator of the number of eruptions, we count
the number of peaks in 〈B⊥〉 (for each hemisphere separately).
The total number of peaks will depend on the particular
threshold of B⊥ imposed for selecting the peaks. Figures 6(a)–
(c) show the selected peaks with asterisks for a reasonable
choice of the threshold. Figure 6(d) depicts how the number of
peaks (in the northern hemisphere) varies with an increasing
threshold value, and for simulations with different active region
twists τ (to be discussed in the following section). The

simulation that is shown in Figures 5 and 6(a)–(c) is the dark
blue curve in Figure 6(d) (labeled τ= 0.1).

4. Choice of Twist Parameter

For the parameter space study in this paper, we consider
different combinations of the amplitude and sign of the twist
parameter τ introduced in Section 2.4. Our focus is to
determine the global effect of different choices, rather than to
optimize this choice against observational data. The latter is a
significant challenge that is beyond the scope of this paper. In
summary, the choices of τ considered in our test simulations
are as follows:

1. Constant magnitude and all regions follow the majority
hemispheric sign rule (negative in the northern hemi-
sphere, positive in the southern hemisphere). These runs
are denoted τ= 0.0, 0.05, 0.1, 0.2.

2. Constant magnitude, but each region has its observed
sign. These runs are denoted τ= 0.05 s, 0.1 s, 0.2 s.

3. Both magnitude and sign for each region are derived from
observations. These runs are denoted τ= 2α, 2.5α, 3α,
3.5α, 4α, 10α.

The following subsections describe these cases in more detail.

4.1. Constant Magnitude and Hemispheric Sign Rule

In the first set of simulations, we fix |τ| to the same
magnitude for all emerging regions. As an illustration of the
effect of this parameter, Figure 7 shows the magnetic field
structure after the emergence of an individual region in the
magnetofrictional code, for four different values τ= 0, −0.1,
−0.4, 0.1. Each magnetic field line L is colored by its helicity
contribution  Br∣ ∣, where


A B

B
ld 11

L

˜ ·
∣ ∣

( )ò=

is the field line helicity of the field line (Yeates & Hornig 2016),
and |Br| is averaged between the two endpoints of L. We use
the vector potential Ã (as in Section 3.3), in order that

Figure 6. Selection of peaks in B⊥, for the simulation shown in Figure 5. Panels (a–c) show averages 〈B⊥〉 over respectively the full outer boundary, the northern
hemisphere only, and the southern hemisphere only. Identified peaks with the threshold 3 × 10−4 G are shown by blue and red asterisks. Panel (d) shows how the
number of identified peaks varies with this threshold.
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integrating  Br∣ ∣ over both boundaries r= Re and r= 2.5Re

would give (twice) the relative helicity (Yeates 2020b). The
quantity  Br∣ ∣ is a robust measure of the distribution of
magnetic helicity within the corona, as both  and |Br| would
be invariant during an ideal evolution in which the field line
endpoints remained fixed. From Figure 7, we see that the
amount and sign of helicity generated within the core of the
active region are clearly controlled by the τ parameter.
Moreover, Figure 7(c) suggests that τ=−0.4 generates
unphysically high twisting in the corona. We therefore consider
four full test simulations with |τ|= 0.0, 0.05, 0.1, 0.2.

Depending on the sign of the associated τ, an emerging
region will have either positive or negative helicity. Observa-
tional works (e.g., Pevtsov et al. 1995; Wang 2013; Park et al.
2020) have found that helicity of active regions, on average,
follows the hemispheric rule, such that active regions in the
northern and southern hemispheres are more likely to have
negative and positive helicity, respectively. This is known as
the hemispheric sign rule and is observed in other coronal
features, too (Pevtsov et al. 2014). Thus, for this simplest set of
simulations, we impose that all emerging regions strictly follow
the hemispheric rule. Note that this does not preclude the
formation of structures of the opposite sign of helicity as active
regions spread out and interact. For example, in simulations
with simplified bipolar active regions, Yeates & Mackay
(2009) looked at the chirality of filament channels as active
regions decay and interact. This chirality is a proxy for the sign
of magnetic helicity and is observed to follow an even stronger
hemispheric rule than active region helicity (Martin 1998;
Mackay et al. 2010). It was found that reversing the sign of
helicity in the emerging regions caused only 32% of the

simulated filament channels to reverse their chirality, high-
lighting how active region emergence is only one source of
magnetic helicity in the corona.

4.2. Constant Magnitude but Observed Sign

As mentioned above, observations show clearly that there
are deviations from the hemispheric helicity sign rule in active
regions (Wang 2013; Park et al. 2020). To explore the effect of
such variations, we try a second set of simulations where |τ| is
still the same for all regions, but the sign of τ is chosen for each
individual region according to vector magnetogram observa-
tions. These vector data are not used in determining E0

^ in
Equation (2), but they can, in principle, give us physical
information to constrain Ψ. In particular, the HMI/SHARP
metadata provide the parameter J B Bz z zob

2(a = å å ) (in
Mm−1) for each region (Table 3 of Bobra et al. 2014). This
does not correspond directly to the magnetic helicity of the
region (which cannot be computed without further data) but is a
proxy for the current helicity (integral of J ·B), which
represents the net local twisting of the magnetic field. The
current helicity often, though not always, has the same sign as
the magnetic helicity itself (Russell et al. 2019). The
distributions of αob in each hemisphere are depicted in
Figure 8 for our test simulation period. We can see that among
the 102 active regions during the simulation period, the
majority follow the hemispheric sign rule (negative/positive in
the North/South). However, we notice a significant number
that deviate from the sign rule. Thus, in our second set of
magnetofrictional simulations, we consider constant values of |
τ|, but with the sign chosen according to the observed sign of
αob for that region.

Figure 7. Effect of τ parameter with Tem = 12 hr. Field lines are colored red/blue to show  Br∣ ∣, clipped at ±1024 G2 cm2, while black/white shading shows Br,
clipped at ±50 G.
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4.3. Observed Magnitude and Sign

In a more realistic simulation, emerging regions would not
all have the same amplitude of twist. From the distribution of
observed αob (Figure 8), it is clear that active regions have
diverse values of αob, suggesting that diverse values of τ are
likely appropriate. This is also supported by computations of
photospheric helicity flux in the literature (Georgoulis et al.
2009). As a first attempt to take this variation into account, we
perform a third set of simulations where the τ for each region is
proportional to its observed value of αob from the HMI/
SHARPs metadata. We set τ= cαob, where the proportionality
constant c has units of length.

To determine the best choice of c, we compare αob for each
of the 102 regions with the equivalent quantity αsm computed
in the simulated region after emergence. Specifically, we define

J B Br r rsm
2( )a = å å (in Mm−1) where Jr and Br are

calculated at r= 1.0154 Re. To minimize the effect on αsm

of any nonpotentiality in the surrounding (pre-existing)
magnetic field, this computation is done not during the full
simulation but independently for each region, emerging it into a
potential field initialized on the day before emergence. The
average quantity αsm is then computed at the end time of the
emergence.

To compare αob and αsm for each region, we check two
factors: first, whether they have the same sign, and second,
whether the ratio rob

sm
sm oba a= is close to unity. Table 1

shows the results of evaluating the ratio when we use three
alternative values of c: 2, 3, and 4Mm. The first row shows the

number of regions where αsm and αob have opposite signs.
Note that this number decreases from 19 to 15 with increasing
c. The remaining rows depict the statistics where αsm and αob

have the same sign—true for more than 80% of regions. Those
with ratios r0.5 1.5ob

sm < best match observation, and we
call them “good-fit” regions. Note that the maximum number of
good-fit regions are obtained for c= 3Mm. Also, the number
of regions with a very large ratio (r 6.0ob

sm  ) is minimized
when c= 3.0 Mm. This suggests c= 3.0 Mm is the optimum
choice for the proportionality constant.
Even for the optimum choice of c, there are a considerable

number of SHARP regions with a mismatch between αsm and
αob. We have investigated all of the regions where rob

sm deviated
significantly from unity (either wrong sign or r 1.5ob

sm  ), and

Figure 8. Distribution of αob for the 102 observed HMI/SHARP regions, in 0.005 Mm−1 bins.

Table 1
Ratio between αsm and αob

rob
sm

sm oba a= c = 2.0 c = 3.0 c = 4.0

r 0.0ob
sm < 19 15 15

r0.0 0.5ob
sm < 18 15 12

r0.5 1.5ob
sm < 31 33 31

r1.5 2.5ob
sm < 12 12 12

r2.5 3.5ob
sm < 7 11 12

r3.5 4.5ob
sm < 3 3 5

r4.5 6.0ob
sm < 1 3 3

r6.0 ob
sm 11 10 12
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find that they fall into several classes. For example, 16 were
tiny active regions where the value and sign of the simulated
and observed α will be heavily biased by a few grid points.
Seven regions emerged very near to pre-existing active regions.
A total of 11 regions had complex, mixed-polarity Br

distributions rather than simple bipoles, and six had two
separate active regions within the same SHARP. The remaining
29 active regions were influenced by the current in the
surrounding field. In particular, 15 among those 29 regions had
the correct sign within the core of the region, but the overall
measured αsm had either negative rob

sm or r 0.5ob
sm < . For these

regions, increasing the value of c reduced the discrepancy. The
effect of “wrongly” imposed twist in the complex regions and
SHARPs with two spots (total 17 regions) on the global
scenario will be discussed later (in Section 5.2).

5. Results

The primary objective of these tests is to determine the effect
of the free parameters in our magnetofrictional model, namely
the emergence duration Tem and the twist τ. Thus we perform
multiple magnetofrictional simulations with the same model
parameters and the same catalog of emerging regions, but with
variations in Tem and τ.

5.1. Effect of Emergence Duration

As prescribed in Section 2.2, each active region emerges
over a time interval of duration Tem, during which a steady
electric field E⊥(s, f) is imposed. Note that, in any given
simulation, our code uses the same value of Tem for all 102
active regions. While keeping the twist parameter fixed at
τ=±0.1 (negative for all regions in the northern hemisphere,
positive for all regions in the southern hemisphere), we
considered three different values of Tem: 6, 12, 24 hr. The
effect is illustrated for an individual emerging region in
Figure 9. We see that there is no qualitative difference in the
magnetic field structure, the field line helicities (the colors of
the field lines in the plot), or the current density distribution.
However, we do see an increase in the peak current density
when the emergence is carried out more rapidly, due to the
reduced time for relaxation available. Another reason for the
difference in current is the fact that supergranular diffusion
continues to smooth out the photospheric field during the
emergence process, at a rate independent of Tem.

The effect of choosing different Tem on the global
diagnostics is shown in Figure 10, where we focus on a
subinterval (September 2011) for clarity. In Figures 10(a) and
(b), we find that decreasing the emergence duration, in general,
corresponds to a little more magnetic energy and current
density in the corona at the epochs of emergence (marked by
the asterisks). However, these short-lived increments decay
quickly, and the overall variation in energy and current density
show significant similarities even with different Tem. Evolution
of the other quantities, like open magnetic flux, helicity flux,
and B⊥ in the northern and southern hemispheres
(Figures 10(c)–(f)) do exhibit relatively higher differences. In
particular, predictions of specific eruption timings from the
model must be viewed as uncertain and likely require a more
detailed assimilation of input data. Still, we notice no
systematic overall effect of Tem on the global evolution when
we consider the total time-integrated amplitude of open flux,
helicity flux, the total B⊥ (in each hemisphere), and the total

number of peaks at the end of each simulation. The differences
remain <2.5% for all of the time-integrated quantities when
comparing the three simulations. Thus in the remainder of the
paper, we fix the standard value Tem= 24 hr, which is
consistent with typical observations of sunspot emergence
(van Driel-Gesztelyi & Green 2015).

5.2. Effect of Twist Parameter

We have performed 13 global magnetofrictional simulations
with the same 102 emerging regions but different τ, as
described in Section 4. For each of these simulations, Tem was
set at 24 hr. These comprise three sets of simulations with
constant |τ|: 0.0, 0.05, 0.1, 0.2 (sign according to the
hemispheric rule), constant |τ|: 0.05 s, 0.1 s, 0.2 s (sign
according to observed sign of αob), and τ= c αob: 2α, 2.5α,
3α, 3.5α, 4α, 10α. (The coefficients denote the proportionality
constant c in Mm.) As stated previously, we primarily focus on
the evolution of the global coronal magnetic field. Thus we
compute the total time-integrated amplitude of open flux, total
energy, average current density, helicity flux, average B⊥ (in
each hemisphere), and the number of peaks in B⊥ (in each
hemisphere). A detailed comparison of those quantities for
individual simulations is depicted in Figure 11 where the
horizontal axis represents different choices of τ.
We can see that all of the measures have minimum amplitude

when τ= 0.0, which corresponds to E E0=^ ^. Comparing the
pair of simulations [0.05 & 0.05s], [0.1 & 0.1s], and [0.2 &
0.2s], we find that the simulations with signs of τ according to
observed αob result in lower amplitudes of the total open flux,
magnetic energy, current density, number of peaks, etc. (for
example, see the pairs of data points highlighted by gray boxes
Figure 11). The interpretation is that emerging regions with
both signs of helicity tend to reduce the net coronal helicity in
each hemisphere, allowing the coronal field to relax to a state
with less free energy and current, leading to fewer and/or
weaker eruptions.
The simulations where τ= cαob have increasing current,

magnetic energy, and helicity flux with increasing c, and
generally increasing numbers of eruptions. This increasing
trend is visible in the data points encircled in Figure 11.
Comparing the cases with constant |τ| and τ= c αobs, we can
say that the case with c= 3.0 Mm is globally similar to |
τ|= 0.05 (with observed sign). On the other hand, the
simulation with c= 10.0 Mm is comparable with the |
τ|= 0.1 simulation, although in this case the match between
αsm and αob is poorer (Section 4.3).
Not shown in Figure 11, we have performed additional

global simulations with a higher constant twist amplitude, |
τ|= 0.4 (with both uniform and observed signs). With such
strong twists, most of the active regions erupt immediately after
emergence, and we feel that the observed twisting of magnetic
field lines is unrealistically high compared to typical observa-
tions of coronal loops. This excessive twist is illustrated in
Figure 7(c). As such, we feel that the simulations with |τ|= 0.1
or τ= 10αob provide a rough upper limit to the reasonable
amount of helicity that should be injected into the emerging
regions.
As we noted in Section 4.3, the ratios rob

sm for a number of
regions with complex Br distributions differed substantially
from the ideal value of unity. Of these regions, 17 were either
complex multipolar regions or SHARPs containing two
separate active regions. Hence to evaluate the effect of the
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Figure 9. Effect of the Tem parameter on an emerged region (SHARP 824), with τ = 0.1. Columns from left to right show the active region at the end of the emergence
process, for Tem = 6, 12, 24 hr, respectively. Panels (a)–(c) show Br on the solar surface (grayscale) and magnetic field lines colored by Br∣ ∣ (in G2 cm2). Panels (d)–

(f) show the line-of-sight integrated current density, BF rd
R

R1.5 2



 ∣ ∣ò=  ´ , where the color bar is capped at F = 350 G in order to show weaker structures. Actual

maximum values of F are given in the figures.

Figure 10. Effect of the Tem parameter on the temporal evolution of the global quantities during 2011 September. In every plot, red, cyan, and black curves correspond
to Tem = 6, 12, 24 hr, respectively, with fixed τ = 0.1 for all SHARPs. The asterisks denote the emergence epoch of the SHARPs during that period. Different
columns represent the temporal evolution of (a) total magnetic energy, (b) mean current density, (c) unsigned open magnetic flux, (d) helicity flux through the outer
boundary, (e) and (f) horizontal components of the magnetic field at the outer boundary in the northern and southern hemispheres, respectively.

12

The Astrophysical Journal, 935:13 (15pp), 2022 August 10 Yeates & Bhowmik



“wrong” twist of these regions on the global scenario, we ran a
further global simulation with the twist of these regions set to
zero and the remaining 85 regions left as τ= 3.0 αob. This
modification causes slight decreases in the total open flux (2%),
magnetic energy (1%), and current density (2.7%). Interest-
ingly, quantities closely associated with eruptions through the
upper boundary showed somewhat more significant effects:
total helicity flux was reduced by 4.2%, and the number of
peaks in B⊥ decreased by 5.2% and 12.3% in the northern and
southern hemispheres, respectively (see the data points within
individual rectangles and corresponding to τ: 3αm in
Figure 11). This gives an indication of the importance of
choosing τ carefully.

5.3. Comparison to Global Inductive Solution

Lastly, we performed two more simulations with constant |
τ|= 0.0 and 0.1 (with signs according to the hemispheric rule)
but used the global inductive solution to compute E⊥ for each
of the active regions (see Figures 3(c) and (g)). Even for the run
with τ= 0.0, the global inductive simulation generated higher
amounts of total open flux (5.3%), magnetic energy (1.6%),
current density (5.4%), and helicity flux (4.9%), as well as
more peaks in B⊥ (North: 6.9% and South: 5.5%) as compared
to the local solution (see the data points corresponding to
τ= 0.0 G, which are encircled separately in Figure 11).
Running another such simulation with τ= 0.1 (hemispheric
signs) only for 2011 June revealed that the differences
increased further when the chosen twist amplitude was higher.

6. Conclusion

In this paper we have presented a technique for emerging
active regions in solar coronal simulations using electric fields
on the lower boundary. Our “local inductive” electric field
solution avoids the disadvantages of existing electric field
inversion methods when applied in the global solar corona. On

the one hand, it avoids spurious nonlocalization that would
occur in an inductive electric field computed over the full
sphere, but on the other hand it is more robust and
computationally efficient than a sparse (L1-minimizing) electric
field (Yeates 2017). As such, spurious coronal electric currents
are minimized when this new electric field is used to drive
continuously evolving coronal simulations. Compared to
previous such simulations where active regions were approxi-
mated with idealized magnetic bipoles, the new technique
allows for arbitrary patterns of Br on the solar surface, without
the need for manual fitting.
Although our basic “local inductive” electric field has the

advantage of requiring only line-of-sight magnetogram data,
we have also explored the (indirect) use of vector magnetogram
observations for choosing the helicity of individual active
regions. This we control through a parametrized noninductive
component of the electric field. Previously, global simulations
have either neglected active region helicity or chosen it at
random for each magnetic bipole. Our test simulations include
runs with and without the use of vector data. In the latter case,
we simply use the same twist parameter for all regions
(accounting only for the hemispheric helicity sign). We have
determined the parameter values needed for the two techniques
to give comparable global properties.
Our focus has been on describing the new emergence

method and determining a reasonable choice of parameters,
especially the helicity/twist parameter. In particular, it is
beyond the scope of this paper to compare the resulting
nonpotential coronal magnetic field with the real Sun. This is a
challenging task that will need to be addressed in the future; it
will almost certainly rely on indirect means such as the chirality
of solar filaments (Yeates & Mackay 2009), the morphology of
extreme-ultraviolet structures (Meyer et al. 2020), or possibly
the open magnetic flux and heliospheric sector structure
inferred from solar wind measurements (Gonzi et al. 2021).

Figure 11. Global diagnostics for the simulations with different τ. For the number of peaks, we choose the threshold B⊥ = 1 × 10−4 G. The run labeled 0.0 G uses the
global inductive E⊥ (Section 5.3), and 3α m has a twist set to zero for 17 selected regions (see text).

13

The Astrophysical Journal, 935:13 (15pp), 2022 August 10 Yeates & Bhowmik



This challenge applies, of course, to any other model of the
coronal magnetic field.

Although the new emergence technique has been tested
using magnetofrictional simulations where the coronal magn-
etic field responds in a quasi-static fashion to photospheric
driving, the application of the technique is not limited to this
method. In particular, it could be used to drive dynamical MHD
simulations with appropriate boundary conditions for the
additional variables. Thanks to the limited magnetogram input
required, it will be useful also for simulations where fewer data
are available—for example, hypothetical models of future
activity, past activity (e.g., the Maunder minimum, Riley et al.
2015), or of other stars (e.g., Gibb et al. 2016).

Because the emergence process remains highly parame-
trized, based on a single magnetogram per region, it is not
suited to studies of coronal dynamics in young active regions.
Such studies require higher resolution data in both space and
time and are typically restricted to individual active regions for
computational reasons, although models are being developed
that couple such models into global-scale simulations (e.g.,
Hoeksema et al. 2020). Thus the technique is better suited for
probing the nature of the global corona on longer timescales,
rather than focusing on specific events. We have seen that the
emergence parameters (duration and twisting) can and do affect
the evolution of the coronal magnetic field. While the
emergence duration changes only local details and not the
overall level of nonpotentiality, we find that the choice of
twisting parameter for each active region has a significant effect
on all of the global measures of the coronal magnetic field that
we considered.

Although we have explored how to account for observed
vector magnetogram information in choosing the twisting
parameter, it must be acknowledged that the observational
constraint here, coming from the αob parameter in the HMI/
SHARP metadata, could be strengthened. For many active
regions, the provided uncertainty in this parameter from HMI is
similar in magnitude to, or larger than, the parameter itself. A
further issue is that αob does not correlate directly to the
magnetic helicity, which is the physical property that we would
ultimately like to constrain. Nevertheless, we do hope that
accounting for αob does give improved fidelity to the model, at
least in active regions where the pattern of electric current is
reasonably coherent. In future applications it may be worth-
while to develop automated criteria for whether or not to make
the twist parameter proportional to αob in any given region. In
principle it would be possible to give a better estimate of the
observed helicity using higher-cadence electric field inversion
along with the use of vector magnetogram and Doppler
velocity observations (Fisher et al. 2020), although this may
not be practical in long-duration simulations. There is also the
systematic issue that, with present observations, the helicity
content can be derived in this way only for regions whose full
evolution can be followed on the visible solar disk. In global
simulations, the emergence technique needs to cope with all
active regions, so we feel that there will continue to be a role
for parametrized approaches such as we have described.
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