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1 Introduction

The most simple models of a Quantum Field Theory (QFT) are built of scalar degrees of
freedom. While their simplicity renders them an ideal laboratory for studying the dynamics
of quantum fields at arbitrary energies, scalar QFTs typically suffer from fundamental
shortcomings. Perhaps, the most prominent examples of the latter are hierarchy as well as
triviality problems (for reviews, see, e.g., [1, 2]). In addition, scalar QFTs are afflicted by
evidence of rapidly increasing rates of high-energy processes involving the production of a
large number of particles. Perturbative as well as semiclassical1 calculations of scattering
amplitudes at the multiparticle threshold, in particular the n-particle decay of a highly
virtual state 1→ n, suggest a rapid growth for large n [4–14], in line with recent numerical
studies [15, 16]. As this is, naively, in contradiction to the unitarity requirement of any
consistent quantum theory, these results hint at the termination of the perturbative regime
or perhaps the need for novel degrees of freedom at high energies.2 A prominent example of
the latter is the “Higgsplosion” mechanism advocated in [19] (see also [14]), which removes
physical contributions of highly off-shell states thanks to their exponentially growing n-
particle decay rates. This, in turn, leads to a non-trivial modification of the ultraviolet
QFT dynamics [20–25].

1For a comprehensive review of semiclassical techniques for multiparticle production, see [3].
2Phenomenologically, applied to the Higgs sector of the Standard Model, this even provides for an

estimate of the energy scale of new physics [17, 18].
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In multiparticle scattering processes, one may naively expect that adding higher-order
vertices, ϕp (with large integer p), to a simple renormalizable model, would drastically
enhance the production rate of particles. After all, more and more quanta will be pro-
duced increasingly rapidly from each such multiparticle vertex. On the other hand, there
is another key factor contributing to the large-n growth, which is the sheer number of
Feynman diagrams and the effects of their interference, as pointed out in [20]. These effec-
tively prefer Feynman diagrams with lower-point vertices, such as ϕ3 or ϕ4. It is thus not
a priori obvious if the presence of the higher-point interactions should dramatically alter
the large-n behavior of amplitudes and decay rates of the original theory. This is what we
address in this work.

The higher-point vertices naturally appear in the Effective Field Theory (EFT) ap-
proach, which we will pursue. In order to examine the high-energy behavior of multiparticle
threshold amplitudes in this setting, we derive an all-orders perturbative expansion of the
leading quantum corrections to the amplitude. This series will be resummed in closed form
for large n. We will find that, in the EFT, multiparticle production at high energies is
governed by a non-trivial combination of exponential functions. In particular, in a model
with gϕ4 and (λ/Λ2)ϕ6 interactions, the resummed n-point amplitudes on mass threshold
(
√
s = nm) are of the form

A(n) ' Atree(n) eAgn2 cosh
(
B
m

Λ
√
λn2

)
. (1.1)

We will also explain how this result is extended to the generic EFT case.
The expression (1.1) is an immediate generalization of the purely quartic [11, 26] and

the purely sextic cases [27].3 Here, the sign of the exponent A is crucial. If it is positive,
the multiparticle threshold amplitudes grow exponentially for large n. In contrast, if it is
negative, they may be exponentially suppressed, if the quartic interaction is parametrically
large compared to the sextic self-coupling. That is, phenomenologically, their intricate
interplay will lead to either an exponential suppression or exponential enhancement of the
amplitude in the large-n regime, depending on the relative sizes of all coupling constants
considered in the EFT. This provides a novel perspective on the perturbative description
of scattering processes in scalar EFTs with respect to their self-interactions or even their
high-energy cut-off scale.

It is important to note that there are perturbative corrections that are not captured by
the large-n resummation of loop diagrams, that we employ to derive (1.1). These higher-
order corrections are governed by higher powers of the effective expansion parameters gn
and (

√
λn)2. In the large-n regime where these parameters are small, these corrections

are negligible and (1.1) holds. At the same time, gn2 and
√
λn2 are large, thus justifying

the presence of the exponential and hyperbolic factors in (1.1). There is also a fully non-
perturbative regime at asymptotically large n, where gn and (

√
λn)2 are no longer small

and one can argue that multiparticle production at high energies should be treated as

3Both results have also been established more generally in a quantummechanical analogue, corresponding
to transition amplitudes in the anharmonic oscillator [28–30].
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intrinsically non-perturbative [3, 13, 14, 31–33]. However, this is beyond the scope of this
paper where we concentrate on the regime where the perturbative expression (1.1) is valid.

This work is structured as follows. In section 2, we start by reviewing the generating-
field technique in order to examine multiparticle production on mass threshold in scalar
QFTs to arbitrary orders in perturbation theory. We apply these methods to a simple
scalar EFT model in section 3. In particular, we derive a consistency condition on the
field’s self-interactions with respect to the perturbative approach within the EFT. Next
we go beyond the kinematic threshold and account for the effects of final state momenta
in the n-particle phase space to estimate the corresponding multiparticle rates in the non-
relativistic limit. In section 4, we construct a simple ultraviolet (UV) completion of our
EFT model setup and justify the validity of our results. Finally, we briefly summarize our
findings and conclude in section 5.

2 Threshold amplitudes from leading singularities

There are various ways to study multiparticle amplitudes associated to the production
of a large number of quanta from only a few initial states. For the purpose of our work,
perhaps the most suitable technique is to make use of a generating functional. As was shown
in [6], in the case of multiparticle amplitudes at the kinematic threshold, the generating
functional of tree-level amplitudes is given by a classical field solution. In addition to being
mathematically elegant, this method allows us to go beyond a tree-level computation and
systematically study loop corrections to the process4 (see, e.g., [9]). Let us briefly review
this formalism and consider a quantum theory of a real scalar field,

S =
∫

ddx
(1

2 (∂µϕ)2 − V (ϕ)
)
, (2.1)

where V (ϕ) is some bounded potential of polynomial form, containing at least a mass term,
m2ϕ2. We will discuss specific examples later, but let us keep the potential as general as
possible for the moment. Similarly, we will work in an arbitrary number of spacetime
dimensions.

In this QFT, we aim to study multiparticle production processes of the form 1 → n

at the kinematic threshold. Physically, this can be understood as the decay of a highly
virtual state into n particles at rest. Indeed, the amplitude associated to this process is
generated by the matrix element 〈0|ϕ|0〉 in the presence of a source term [6],

A(n) = ∂n

∂zn
〈0|ϕ|0〉

∣∣∣∣
z=0

. (2.2)

Here, the auxiliary parameter z is remnant from the field’s response to a source, Jϕ, which
can be defined as follows. At the kinematic threshold, the source can be expanded into
plane waves of a given frequency, J(t) = J0 exp(iωt). The auxiliary parameter is then
given by zω(t) = J(t)/(m2−ω2). Crucially, we can now take the simultaneous limit of the
on-shell regime of the final state particles, ω → m, with vanishing source, J0 → 0, such

4One can also consider couplings to other, potentially heavy, fields [34].
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that the auxiliary parameter remains finite, zω → z(t) = z0 exp(imt) [6]. Derivatives with
respect to the latter will ultimately generate the multiparticle threshold amplitudes. For
more details, we refer the reader to, e.g., [6, 12].

The expression for the multiparticle amplitude encapsulates the power of the
generating-field technique. In principle, the matrix element 〈0|ϕ|0〉 can be obtained sys-
tematically to arbitrary order in perturbation theory [9] by evaluating tadpole Feynman
diagrams in the background of the classical solution. Clearly, the tree-level contribution is
given by the classical field solution to the equations of motion,

∂2
µϕ0 + V ′(ϕ0) = 0 . (2.3)

Here, importantly, in order for the classical field ϕ0 to generate the multiparticle threshold
tree-graphs according to (2.2), it has to approach the oscillatory solution z(t) = z0 exp(imt)
when all self-interactions of the field are absent [6]. The latter also reflects the requirement
that, at the kinematic threshold where all final-state particles are at rest, the classical
field is spatially homogeneous. In turn, this drastically simplifies the computation of the
vacuum expectation value of the field operator in the presence of a source at any order
in perturbation theory. In fact, the perturbative expansion of the multiparticle amplitude
can be systematically assessed and features an intriguing structure in the large-n regime,
as we will discuss in the following.

2.1 Leading quantum corrections to all orders in perturbation theory

In order to examine the inherent structure of the generating matrix element (2.2) (and
similarly for the associated multiparticle amplitude) to all orders in perturbation theory, let
us closely follow the formalism outlined in [35]. For simplicity, we normalize all quantities
to the mass of the scalar particles, by setting m = 1.

In general, one can start by arguing that the classical field will exhibit a singularity at
a certain time ts. Naively, this is because the associated 1→ n process, strictly speaking,
does not conserve energy. The initial state has to be highly virtual and therefore of suffi-
cient energy in order to produce a large number of quanta from the vacuum. Formally, this
energy is provided by the insertion of the field operator at some spacetime point, as the
amplitude corresponds to the object 〈n|ϕ|0〉 (see, e.g., [11, 13]). In turn, the singularity
structure of the field is responsible for the well-known factorial growth of multiparticle
amplitudes. This can, for instance, be seen as follows. We can consider the generating
matrix element as a function of the source, which we expect to be endowed with a per-
turbative expansion in the complex z-plane. In this scenario, the Cauchy-Abel theorem
relates the finite radius of convergence of this expansion to the large-order asymptotics of
its coefficients. In particular, the large-n behavior of the multiparticle amplitude (2.2) is
determined by the position of the singularity zs nearest to z = 0 in the complex z-plane
of the vacuum expectation value of the field operator. More precisely, this means that, for
large n, the amplitude is of the form [7, 36]

|A(n)| ∼ n! 1
|zs|n

. (2.4)
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As the source itself is a function of time, this implies that the asymptotic behavior of the
amplitude at large n is determined by its leading singularity in the time variable, ts. Hence,
the singularity structure, induces the growth of A(n) at large orders in perturbation theory.
This observation will be key in our following argument.

In the analysis of the leading singularity, it is useful to Wick-rotate the field’s domain
to real (Euclidean) time,

τ = it+ ln z0 + c , (2.5)

where, in general, c involves all coupling constants of the theory. In addition, because of
time-translation invariance, c can always be chosen such that the field is singular at the
origin, τs = 0. Consequently, in the vicinity of this singularity, the classical field can be
expanded as

ϕ0 (τ) ' ϕs (τ) + . . . . (2.6)

Here, ϕs denotes the most singular term of the expansion as τ → τs, while the dots
represent less singular terms. In fact, as we will demonstrate next, the leading singularity
of the classical field will allow us to determine all leading quantum corrections to the
generating matrix element.

In general, in order to obtain the quantum corrections to the generating function of the
multiparticle threshold amplitudes, we can decompose the field into a classical background
and its quantum fluctuations, ϕ = ϕ0 + ϕ̃. Similarly, the matrix element takes the form

〈0|ϕ|0〉 = ϕ0 + 〈0|ϕ̃|0〉 . (2.7)

The quantum fluctuations can then be evaluated perturbatively via tadpole diagrams of
the quantum field ϕ̃ propagating in the classical background ϕ0. For instance, the first
quantum correction to the vacuum expectation value is illustrated in figure 1. In practice,
for a computational evaluation, we have to know the propagator associated to ϕ̃, given by(

∂2
µ + V ′′(ϕ0)

)
D(x, y) = δd(x− y) . (2.8)

In order to obtain D(x, y), in principle, we need to invert the differential operator on the
left hand side of this equation. Fortunately, the background field is spatially homogeneous,
thereby drastically simplifying this operation. For instance, it is useful to consider the
mixed time-momentum representation of the propagator [9, 11],

D
(
x, x′

)
=
∫ dd−1p

(2π)d−1 eip(x−x′)Dp
(
t, t′
)
. (2.9)

Using this representation and performing the Wick rotation to Euclidean time, the propa-
gator equation can be written as(

−∂2
τ + p2 + V ′′(ϕ0)

)
Dp

(
τ, τ ′

)
= δ

(
τ − τ ′

)
, (2.10)

which, as a standard result of ordinary differential equations, is solved by

Dp
(
τ, τ ′

)
= 1
Wp

[
fω1 (τ) fω2

(
τ ′
)
θ
(
τ ′ − τ

)
+ fω1

(
τ ′
)
fω2 (τ) θ

(
τ − τ ′

)]
. (2.11)
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Here, the functions fω1 and fω2 are solutions to the homogeneous equation and Wp is their
Wronskian. Furthermore, ω denotes the energy of each mode, ω2 = p2 + 1. Unfortunately,
an analytic solution of the homogeneous equation does not exist for an arbitrary potential
term. Nevertheless, we can still determine the properties of the propagator in different
regimes of τ . For instance, in the vicinity of the singularity (the most important regime
for the remaining part of this work), we first note that V ′′ (ϕ0) = ϕ′′′s /ϕ

′
s as we approach

the singular point, τ → τs = 0 [35]. This is an immediate consequence of the equations of
motion of the field. Up to some normalization, this implies that in terms of the leading
singularity, the homogeneous solution in the vicinity of τs can be written as

f (τ) ' ϕ′s (τ) + . . . , (2.12)

where the dots represent less singular terms. Therefore, the propagator in the mixed time-
momentum representation schematically reads [35]

Dp
(
τ, τ ′

)
' 1
Wp

ϕ′s (τ)ϕ′s
(
τ ′
)
. (2.13)

We again remark that this equality only holds in the vicinity of the leading singularity of
the background field. Further note that, as the homogeneous propagator equation does not
contain a friction term, ∂τf(τ), the Wronskian does not depend on time. It solely captures
information on the couplings as well as the momenta of the process.

This simple expression for the propagator, in terms of the leading singularity of the
background field, is what enables us to obtain all leading quantum corrections to the gen-
erating matrix element (2.2). In particular, as we will point out momentarily, the leading
singularity of the field is in one-to-one correspondence with the leading-n quantum correc-
tions to the amplitude at multiparticle threshold. Therefore, if we are interested in the
large-n behavior of the latter, we only have to consider the field equations in the vicinity
of the leading singularity. This property can be used to simplify the calculation of quan-
tum corrections tremendously, because we can now consider an analogue of the quantum
effective action as follows. At each quantum-loop order, any tadpole diagram can be con-
verted into a tree graph through appropriately cutting all internal propagators [11] (see
also [27, 35]). Any additional “external leg” obtained through this procedure can then be
assigned half a power of the propagator and evaluated at tree-level, while carefully account-
ing for the different symmetry factors. Importantly, the momentum integrals, present in
the expression for each quantum loop, factorize, i.e. at the k-th loop level the amplitude
will be proportional to Bk, where

B ∝
∫ dd−1p

(2π)d−1
b (ω)
Wp

. (2.14)

Here, b (ω) is some arbitrary function of the energy of each mode. Importantly, the coef-
ficient B does depend on the couplings and momenta involved in the process, but not on
the quantum number n. We will make use of this property later and explicitly unravel the
coupling constants and the loop-momenta, e.g. B ∼ B

√
λ in a λϕ6 theory.
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At the same time, cutting all internal lines of the diagrams and evaluating at tree level
is equivalent to solving the equations of motion for a condensate which is shifted by the
cut propagator,

− ∂2
τϕcl + V ′(ϕcl) = 0 . (2.15)

Here, the classical field is appropriately shifted in the vicinity of the leading singularity,

ϕcl(τ) = ϕs(τ) +
√
Bϕ′s(τ) + . . . . (2.16)

That is, finding the solution to this boundary value problem is equivalent to summing
tree graphs in a theory where all internal propagators are appropriately cut. Indeed, the
desired solution is simply given by a Taylor expansion of the leading singularity around
the condensate shift [35],

ϕcl(τ) = ϕs
(
τ +
√
B
)

=
∞∑
k=0

√
Bk

k!
∂kϕs
∂τk

. (2.17)

Identifying both procedures and matching their coefficients (while carefully counting all
tree-level graphs and their associated symmetry factors) will lead to an additional factor
of (2k)!/(2kk!) in the perturbative coefficients of the generating function (for details see,
e.g., [11, 35]). Therefore, we finally arrive at the series expansion for the generating matrix
element [35]

〈0|ϕ|0〉 =
∞∑
k=0

1
k!

(B
2

)k ∂2kϕs
∂τ2k . (2.18)

We again remark that this has to be understood as an expansion in terms of the leading
singularity of the classical background field. Remarkably, the latter has enabled us to write
down full perturbative expansion of the leading quantum corrections to generating matrix
element. This series can then be resummed in order to obtain the leading-n contributions
to the multiparticle threshold amplitudes to all orders in perturbation theory, as we will
discuss next.

2.2 Exponentiation of the multiparticle amplitude

The previous result demonstrates the power of the generating-field technique with respect
to studying multiparticle production beyond tree level. At this point, in order to take full
advantage of the expression for the generating matrix element (2.18), we aim to verify our
earlier claims that the leading singularity determines the leading-n contributions to the
multiparticle threshold amplitude.

While the Cauchy-Abel theorem (2.4) already gives an abstract argument why this is
the case, let us nevertheless add a somewhat more explicit justification, also put forward
in [35]. We first note that, by Cauchy’s differentiation formula, we can write for the
amplitude

A(n) = ∂n

∂zn
〈0|ϕ|0〉

∣∣∣∣
z=0

= n!
2πi

∮ dz
zn+1 〈0|ϕ|0〉 , (2.19)

where the integrand is given by the perturbative expansion (2.18). Let us now assume that
the leading singularity of the background field is schematically of the form ϕs(τ) ∼ 1/τα

– 7 –
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for some positive exponent, α > 0. This assumption is indeed justified, since we can always
shift the singularity of the field to the origin due to time-translation invariance. Under this
assumption, the derivative terms of the perturbative expansion of the generating matrix
element then read ∂2k

τ ϕs ∼ 1/τ2k+α. These can be evaluated in the Cauchy contour
integral (2.19), yielding

n!
2πi

∮ dz
zn+1

∂2kϕs
∂τ2k ∼ n!

∫ 2πi+c

c
dτ e−τn

τ2k+α ∼ n!n2k+α−1Γ(1− 2k − α) . (2.20)

That is, naively, each derivative of the leading singularity will add a power of n. In
addition, we observe that it is indeed the leading singularity, which in our example is
parametrized by the positive constant α, that gives the leading quantum contribution to the
multiparticle threshold amplitude in the large-n regime.5 Most importantly, by evaluating
the full perturbative expression within the contour integral (2.19), this observation finally
implies that the multiparticle threshold amplitude is of exponential form [35],

A(n) ' Atree(n) exp
(
Bn2

)
, (2.21)

where n is large, n � 1. We again remark that the coefficient B depends on the number
of spacetime dimensions, through the loop momentum integrals, and hence contains infor-
mation on the renormalization properties of the theory. Furthermore, it is a function of all
coupling constants. We also note that, physically, we indeed expect an additional factor
of n2 for each quantum correction of a given multiparticle process with n particles in the
final state. Pictorially speaking, for a diagram with n external legs in the final state, we
have approximately n2 possibilities to form a closed loop out of the external quanta.

In summary, if we isolate the leading singularity from the classical background field,
we can compute (and resum) the leading-n contribution to the multiparticle threshold am-
plitude to all orders in perturbation theory. The result is a remarkably simple exponential
expression. While this seems impressive in its own right, there is still some peculiar subtlety
of the generating-field technique as applied above. That is, the exponential function (2.21)
is only formally correct in the large-n limit, where a distinction between different integer
values of n is lost. However, in practice, a distinction between, say, n = 999 and n = 1001
is important, as we will point out momentarily. Without this distinction, the exponen-
tial resummation of the perturbative expansion may induce an overcounting of quantum
corrections at certain loop orders.

2.3 Overcounting quantum corrections

According to our previous discussion, multiparticle amplitudes at the kinematic threshold
have to exponentiate at high energies. We will now argue that a simple exponentiation of
these amplitudes is too naive in order to represent their correct large-n behavior. In fact,
the exponentiation has to be replaced by a more complicated combination of functions,
all of which are generated by separate matrix elements. Evidence for this has already

5Any less singular term, i.e. terms of powers smaller than α, would contribute terms proportional to
powers of n that are similarly smaller than α.
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emerged in [27], where different complex branches of the classical background field were
identified that cancel quantum contributions at certain loop orders in order to account for
the difference in their generating functions.

In order to illustrate the problem, let us consider a toy theory of a real scalar field
with a sextic self-interaction, as has been used in [27],

S =
∫

ddx
(

1
2 (∂µϕ)2 − m2

2 ϕ2 − 1
6

λ

Λ2(d−3)ϕ
6
)
. (2.22)

Here, we have introduced the UV cut-off scale Λ in order to make the coupling constant
λ dimensionless. For simplicity, let us consider a positive mass parameter, m2 > 0, corre-
sponding to an unbroken Z2 symmetry. In addition, we again consider an arbitrary number
of spacetime dimensions, as we are not concerned with the renormalization properties of this
toy theory. According to the result (2.21), the multiparticle amplitude will be of exponential
form in the large-n regime. An explicit computation verifies that this is indeed the case [27],

A(n) ' Atree(n) exp
(
B

(
m

Λ

)d−3√
λn2

)
. (2.23)

Here, the (dimensionless) complex coefficient B depends on the number of spacetime
dimensions (see also appendix A for more details). We again stress that, in this example,
we can identify the exponential coefficient of (2.21) as

B = B

(
m

Λ

)d−3√
λ . (2.24)

Note that B scales with a fractional power of the coupling constant. This is because the
perturbation theory is applied in the background of the classical field solution, which,
itself, comes with a non-trivial power of the coupling, ϕ0 ∼ 1/

√
λ (for details, see [27]).

For simplicity, let us set m = Λ = 1 for the moment, as both can easily be recovered
in the final result. As was already pointed out in [27], the above exponential expression
turns out to be too naive. This can be seen as follows. Let us imagine to go backwards
in our argument and reproduce the perturbative expansion — order by order in terms
of Feynman diagrams — from this exponential function. We quickly realize that all odd
terms of this expansion correspond to a quantum correction with a fractional power of
the coupling constant,

√
λ. These fractional powers of the expansion parameter, however,

we do not expect to be part of a perturbation theory around the global vacuum of the
potential. Instead, the reason for their appearance is that, in such naive exponentiation,
different kinds of processes are confounded, as follows.

In theories with higher-order self-interactions all multiparticle processes have to be
classified according to their number of external legs, n. For instance, in the ϕ6 theory (2.22),
there are two distinct classes of amplitudes. Their distinguishing feature is the number of
quantum-loop corrections that are required to generate them. In our example, obviously,
there are final states that can be reached entirely at tree-level, corresponding to particle
numbers n = 4k+ 1, for some positive integer k. In contrast, some final states can only be
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created via loop-induced processes. Since the six-point coupling produces four additional
particles per interaction vertex, these final states differ from the former class by two quanta,
n = 4k + 3. This implies that, crucially, quantum corrections may change the class of a
certain multiparticle amplitude. For instance, the one-loop correction originating from
a simple 1 → 5 tree-level process is obtained by closing two external legs in order to
form a loop. This, in turn, effectively corresponds to a 1 → 3 process. In fact, in this
scenario, an odd number of loop corrections to a given multiparticle amplitude will change
its classification, while an even number of loop corrections will correspond to a process
within the same subclass. Consequently, a naive exponentiation confounds both classes of
amplitudes by treating all quantum-loop corrections on the same footing.

Applied to the above example, we can immediately conclude that all odd terms of the
perturbative expansion of the multiparticle amplitude correspond to a different subclass of
processes as compared to the even terms. Hence, these have to be treated separately. At the
same time, this implies that the processes representing each subclass have to be generated
by different matrix elements. In this example, the combined perturbative expansion of
the generating matrix element for all multiparticle threshold amplitudes has been derived
in [27]. It is given by

〈0|ϕ|0〉 = ϕ0

∞∑
k=0

dk
(
λ

3
2Bϕ4

0

)k
, (2.25)

where ϕ0 denotes the classical background field solution of the theory and the coefficients of
the expansion read dk = 2kΓ(2k+1/2)/(

√
πk!). Resumming this expression then yields the

generating matrix element for both subclasses of multiparticle amplitudes simultaneously,

〈0|ϕ|0〉 = 2ϕ0√
2π

√
− 1

16xe−
1

16xK1/4

(
− 1

16x

)
. (2.26)

Here, K denotes the modified Bessel function of the second kind and we have defined the
argument x = λ3/2Bϕ4

0. According to the previous paragraph, this generating function
does not distinguish between and hence confounds the two different classes of multiparticle
processes. We can disentangle them by noting that the even part of the matrix element
generates processes with n = 4k + 1, while the odd part generates amplitudes with n =
4k+3. This corresponds to two genuinely different generating functions, each responsible for
a different category of final states. Consequently, we also obtain two different expressions
for the multiparticle threshold amplitudes in the large-n regime. Restoring the dimensionful
quantities, these are given by (see also [27])

A(n) ' Atree(n)

cosh
(
B
(
m
Λ
)d−3√

λn2
)

n = 5, 9, 13, . . .
sinh

(
B
(
m
Λ
)d−3√

λn2
)

n = 3, 7, 11, . . .
. (2.27)

The multiparticle amplitudes corresponding to different subclasses are complementary to
each other in the sense that they exhibit a similar hyperbolic structure, i.e. a non-trivial
linear combination of exponential functions. Nevertheless, at first sight, both collapse into
the naive exponentiation of the amplitude that we have seen earlier. This is due to the
fact that, in the limit n→∞, the distinction between different values of n is lost. In fact,
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hyperbolic functions also appear in a more general analysis of the quantum mechanical
analogue, corresponding to transition amplitudes in the sextic anharmonic oscillator [30].

Let us close this discussion with a few additional remarks on the nature underlying the
appearance of hyperbolic functions instead of a simple exponential in the above example.
In [27] it has been argued that the latter arise due to a residual symmetry with respect
to the complex branches of the classical background field. If the quantum fluctuations
propagate in this background, the complex branches (and therefore the residual symmetry
transformation) appear at each order in the loop expansion of the vacuum expectation value
of the field operator. Since they cannot be physical, they have to be integrated out. For
instance, in this example, there are four different complex branches of the background field,
in turn leading to four different exponential functions in total. These finally combine into
a hyperbolic function, if all are taken into account consistently. Here, we find that these
combinations are indeed necessary, because the quantum corrections clearly distinguish
between physically different multiparticle processes. This gives further evidence that the
complex branches of the classical background field play a crucial role in evaluating the
generating matrix element.

In summary, we conclude that in scalar QFTs with higher-order self-interactions, a sim-
ple exponentiation formula for multiparticle threshold amplitudes does not hold. Instead,
in order to preserve the well-defined ordering of quantum corrections in a perturbative
approach, it is replaced by a non-trivial linear combination of exponential functions. This
appears to be a generic feature of quantum theories involving scalar degrees of freedom.

3 Multiparticle production in a scalar EFT

We now aim to apply our results from the previous section to a more realistic scenario of
a scalar EFT. As a specific example, let us consider the quantum theory of a real scalar
field with quartic and sextic self-interactions in four dimensions,

S =
∫

d4x

(
1
2 (∂µϕ)2 − m2

2 ϕ2 − g

4ϕ
4 − 1

6
λ

Λ2ϕ
6
)
. (3.1)

Here, for concreteness, we choose the mass parameter m2 as well as all coupling constants
to be positive. Later, we will also discuss the model with a negative mass parameter.
Furthermore, we have introduced the UV scale Λ such that the six-point coupling constant
λ is dimensionless. We can interpret this model as an EFT of a real scalar field, including
operators of up to dimension six, while being agnostic about the UV details of the quantum
theory. In this sense, Λ is the high-scale cut-off of the effective theory, which suppresses
all higher-order self-interactions of the field beyond the ϕ6 coupling. Later, we will argue
that, in the limit where the EFT is valid, i.e. at energies not exceeding the UV cut-off, the
effects of all higher-order operators will indeed be negligible.

By carefully repeating the arguments presented in section 2, we now want to derive the
large-n behavior of multiparticle processes of the form 1→ n at the kinematic threshold in
this EFT. In order to do so, we need first to determine the generating functional of tree-
level amplitudes, which is given by the classical solution with the appropriate boundary
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conditions (i.e. it must depend holomorphically on the variable z(t)). The equation of
motion is (

∂2
µ +m2

)
ϕ0 + gϕ3

0 + λ

Λ2ϕ
5
0 = 0 , (3.2)

and one can verify that the desired solution is given by

ϕ0(t) = z(t)√(
1− g

8m2 z2(t)
)2
− λ

12m2Λ2 z4(t)
. (3.3)

Here, the source parameter z(t) is the oscillatory solution of the free theory, z(t) =
z0 exp(imt). Clearly, the latter is approached by the field if all of its self-interactions
are absent, g = λ = 0. We also note that the classical solution consistently simplifies to
well-known results for either vanishing six-point [6] or quartic coupling [27], respectively.

Using the classical field as the generating function for tree-level amplitudes, one can
then verify that the tree-level multiparticle threshold amplitudes suffer from the familiar
factorial growth,

Atree(n) = ∂n

∂zn
ϕ0

∣∣∣∣
z=0

= n!
(

g

8m2

)n−1
2

2F1

(
−n− 1

4 ,−n− 3
4 , 1; 16

3
m2λ

Λ2g2

)
. (3.4)

Here, F denotes a hypergeometric function and, due to the Z2 symmetry of the theory, n is
necessarily odd. Again, this expression drastically simplifies to the well-known expressions
if any of the interactions vanishes (see, e.g., [6, 27]). Starting from the classical field, we
can now proceed and investigate how quantum corrections contribute to the full amplitude
at n-particle threshold by carrying out the perturbative loop expansion in the classical field
background. Using the prescription of section 2, the leading-n quantum effects are com-
puted by expanding around the leading singularity of the classical background field above.

3.1 Resumming the leading quantum corrections

In principle, the classical field is the first term of a perturbative expansion of the vacuum
expectation value of the field operator. While the latter will, in general, be a complicated
function of the source parameter z(t), we can still determine the high-energy behavior of
the associated n-particle amplitudes by some more general arguments.

First of all, we have already seen in section 2 that the quantum corrections (at any
order in perturbation theory) are governed by the singularity structure of the quantum
field propagating in the classical background. More precisely, the leading singularity has
already led us to the conclusion that the leading-n quantum corrections to the multiparticle
process exponentiate,

A(n) ' Atree(n) exp
[
n2G(g, λ)

]
. (3.5)

Here, the sub-exponential tree-level factor is given by (3.4). Furthermore, G is an a priori
unknown function of the coupling constants of the EFT. Since it appears in the exponent,
the high-energy behavior of the process is entirely determined by this function. Although
its precise expression is beyond our computational reach, for the purpose of our work, it is
sufficient to establish the parametric form of G. This can be done as follows. As we have
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Figure 1. One-loop quantum contribution ϕ1 to the vacuum expectation value of the field operator
in the presence of a source, 〈0|ϕ|0〉.

mentioned earlier, the generating matrix element can be systematically obtained through
a quantum-loop expansion in tadpole graphs,

〈0|ϕ|0〉 = ϕ0 + ϕ1 + ϕ2 + . . . , (3.6)

where the indices indicate the corresponding loop order. Importantly, all information on the
function G is necessarily contained in the first quantum correction ϕ1, at least in the large-
n regime. Indeed, this contribution would correspond to the linear term of the exponential
series expansion associated to the multiparticle amplitude. As we are only interested in
the dependence on the EFT coupling constants, we will again set the dimensionful parts
to unity, m = Λ = 1, and drop all irrelevant numerical factors. The former can easily be
recovered in the final result from a dimensional analysis.

The tadpole diagram corresponding to ϕ1 is illustrated in figure 1. Using the Feynman
rules of the quantum field propagating in the classical background ϕ0, it can be schemati-
cally written as (see, e.g., [11, 27])

ϕ1(x) ∼
∫

dx′D
(
x, x′

) [
gϕ0

(
x′
)

+ λϕ3
0
(
x′
)]
D
(
x′, x′

)
, (3.7)

where D denotes the propagator of the quantum field. To extract the parametric structure
of this contribution, we can first make use of the defining equation of the propagator (2.8)
to obtain the differential equation

Ôϕ1(x) ≡
(
∂2
µ + V ′′(ϕ0)

)
ϕ1(x) =

(
gϕ0(x) + λϕ3

0(x)
)
D(x, x) . (3.8)

Our goal will now be to evaluate this expression in terms of the leading singularity of
the background field, ϕs. In section 2, we have already established that the momentum
modes of the propagator can be expressed as Dp (τ, τ ′) ' ϕ′s(τ)ϕ′s (τ ′) /Wp. The leading
singularity ϕs can be easily extracted from the classical field (3.3). Before doing so, we
first define Euclidean time through a Wick rotation and adding a constant shift,

τ = it± ln

z0

√√√√g

8 ±

√
λ

12

 . (3.9)

The shift moves the singularity to the origin in Euclidean time, τs = 0. The expansion of
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the classical background field around the singularity then takes the form6

ϕ0(τ) ' − i√
2

( 3
λ

) 1
4
(

1√
τ

+
√

3
8

g√
λ

√
τ + . . .

)
, (3.10)

where the dots represent more regular terms of the expansion. We can therefore identify
the leading singularity as the most singular part of the above expression,

ϕs(τ) ' − i√
2

( 3
λ

) 1
4 1√

τ
. (3.11)

The derivative of ϕ0 (and its representation in terms of the leading singularity ϕs) is the
key ingredient for the parametric form of the propagator as given in (2.13). Similarly, the
Wronskian contributes certain powers of the coupling constants to the final propagator
result. In particular, expanding its inverse in the couplings, it schematically reads 1/Wp ∼√
λ + g +O(g2/

√
λ). Therefore, combining this result with the expansion in terms of the

leading singularity, the propagator modes at coinciding times parametrically take the form

Dp(τ, τ) ∼ λ
3
2ϕ6

s + gλϕ6
s + g

√
λϕ4

s + g2ϕ4
s + . . . , (3.12)

where the dots again represent less singular terms. We can now plug this parametric form
into the differential equation (3.8). This yields

Ôϕ1 ∼ λ
5
2ϕ9

s + gλ2ϕ9
s + gλ

3
2ϕ7

s + g2λϕ7
s + . . . , (3.13)

where we omitted numerical factors that contain information on the inherent loop mo-
mentum integrals. From this singularity structure of the leading quantum correction, we
can finally determine the first term of the perturbative expansion of the generating matrix
element 〈0|ϕ|0〉. That is, similar to the methods presented in [11, 27], we can invert the
operator on the left hand side by noting that, in the vicinity of the leading singularity,
Ô−1ϕk0 ∼ ϕk−4

0 /λ, such that schematically

ϕ1 ∼ λ
3
2ϕ5

s + gλϕ5
s + g

√
λϕ3

s + g2ϕ3
s + . . . . (3.14)

In a next step, in order to obtain the one-loop quantum correction to the multiparticle
amplitude, A1, we need to take the n-th derivative of ϕ1 with respect to the source param-
eter z(t). Clearly, in the vicinity of the leading singularity, we can identify the classical
background field with its most singular term, ϕ0 ' ϕs. Therefore, using (3.14), we can
equivalently consider the derivatives of a certain power of the background field ϕ0. More
generally, at the k-th loop order, we can schematically identify the contributions to the
multiparticle amplitude as Ak = ∂nz ϕk ' ∂nz ϕ

nk
0 . We note that these are given by

∂n

∂zn
ϕnk

0

∣∣∣∣
z=0

= n!
(

g

8m2

)n−1
2
(

8m2

g

)nk−1
2

2F1

(
nk − n

4 ,
nk − n

4 + 1
2 ,
nk + 1

2 ; 16
3
m2λ

Λ2g2

)
.

(3.15)
6Note that the global complex phase in this expansion depends on the chosen sign of the constant shift in

Euclidean time, after performing the Wick rotation. However, the overall phase does not play an important
role in our argument.
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Here, both n and nk have to be odd integers in order to give a non-vanishing result. Naively,
this is again due to the Z2 symmetry of the model. We remark that the above expression
is an immediate generalization of the tree-level result (3.4), beyond nk = 1. Applied to the
singular expansion of ϕ1, we find that the terms drastically simplify in the large-n regime,

∂n

∂zn
ϕ3

0

∣∣∣∣
z=0
∼ Atree(n) n√

λ
,

∂n

∂zn
ϕ5

0

∣∣∣∣
z=0
∼ Atree(n)n

2

λ
. (3.16)

Combining this result with the schematic form of the one-loop tadpole contribution (3.14),
we finally arrive at the parametric expression for the first quantum correction to the mul-
tiparticle amplitude at the kinematic threshold, which for large n reads

A1 = ∂n

∂zn
ϕ1

∣∣∣∣
z=0
∼ Atree(n)

(
Agn2 +B

√
λn2 + Cgn+D

g2
√
λ
n

)
. (3.17)

Here, we have introduced the complex constants A to D. In the large-n regime, we find
that the terms proportional to C and D are subleading as compared to the first two
contributions. For instance, this is true in the simultaneous double scaling limit, g, λ→ 0
and n→∞, while keeping the combinations η = gn and κ =

√
λn fixed.7 Therefore, we find

that the exponent n2G in (3.5) factorizes into separate contributions from both couplings,
g and λ. In particular, in the large-n regime, we can identify the exponent function as

G(g, λ) ' Ag +B
√
λ . (3.18)

We remark that this form of the exponent is in exact agreement with previous works
on the scenarios g = 0 or λ = 0 [11, 27]. The high-energy behavior of the multiparticle
process is then determined by the exponential function,

A(n) ' Atree(n) exp
[
Agn2 +B

√
λn2

]
. (3.19)

Although we have obtained a fully resummed, remarkably simple expression for the
amplitude, we are still facing the problem that its exponential form is overcounting the
quantum corrections at each loop order, as we have already discussed in section 2. That is,
similar to the purely sextic example (where g = 0), we again have to distinguish between
two different classes of multiparticle processes, i.e. between final states with n = 5, 9, 13, . . .
as well as final states with n = 3, 7, 11, . . . . The fact that the six-point coupling enters the
expansion with a fractional power indicates that the exponential function overcounts the
quantum corrections associated to this interaction (see section 2 for a detailed explanation).
Therefore, depending on the class of multiparticle processes we are considering, we have to
take into account solely the even or odd terms of the perturbative series in λ, respectively.
As the quartic self-interaction does not distinguish between these, the exponentiation with
respect to g remains valid. Therefore, if we consider final states with particle numbers
n = 5, 9, 13, . . . , the leading-n quantum corrections will resum into the expression

A(n) ' Atree(n) eAgn2 cosh
(
B
√
λn2

)
. (3.20)

7In this limit, the contribution can be written as ∼ Aκ2/
√
λ+Bη2/g + Cη2/(gn) +Dη2/κ. Therefore,

the terms proportional to C and D are either suppressed by powers of n or constant, respectively.
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Similarly, if we consider states with n = 3, 7, 11, . . ., the hyperbolic cosine is replaced with
its sine counterpart. Naively, this can be understood as an immediate generalization of ear-
lier results [11, 27]. Finally, for the remaining part of this work, we will be mostly interested
in the consequences of this expression. For this, we can easily recover the mass scales m and
Λ present in the original theory, effectively by rescaling λ→ m2/Λ2λ, and hence we obtain

A(n) ' Atree(n) eAgn2 cosh
(
B
m

Λ
√
λn2

)
. (3.21)

Note that, here, the complex coefficients A and B are dimensionless. The above expression
for the multiparticle threshold amplitude has some interesting consequences at high
energies. Let us investigate some of these in detail in the following.

3.2 The breakdown of resummed perturbation theory in the EFT

The leading-n resummed multiparticle threshold amplitude in (3.21) indicates a breakdown
of perturbation theory at high energies. That is, it does not necessarily decay, but, in
principle, allows for a rapid growth at large n. Crucially, the emergence of exponential
growth or exponential suppression depends on the exponents of the n-particle amplitude.

Clearly, the multiparticle threshold amplitude exhibits a rapid growth, if the coefficient
of the quartic interaction A has a positive real part, <(A) > 0. In fact, there is evidence that
this is realized in scalar QFTs featuring a spontaneously broken symmetry [10, 14, 32]. This
growth, in addition, will then necessarily be enhanced by the hyperbolic cosine originating
from the sextic self-interaction of the field, even independent of the coefficient B. However,
a thorough treatment of this scenario would certainly require the computation of higher-
order terms of the exponent in combinations of g, λ and n. These corrections may change
the overall sign of the exponent. However, this possibility is not supported by a semiclassical
analysis [14, 32].

In contrast, the necessary requirement for an exponential suppression of the amplitude
at high energies is that the coefficient A has a negative real part, <(A) < 0. This enables
a decay of the exponential function proportional to the quartic coupling, Ag, for large
n. However, this still has to overcome the universal exponential growth originating from
the hyperbolic cosine, proportional to B

√
λ. Crucially, this growth is independent of the

precise value of the coefficient B. Therefore, in the large-n regime, the exponential decay
dominates if the coupling constants satisfy

Exponential suppression: g &
∣∣∣∣<(B)
<(A)

∣∣∣∣ mΛ√λ for <(A) < 0 . (3.22)

If this condition is satisfied, at least naively, the EFT is rendered consistent in the sense
that multiparticle amplitudes at the kinematic threshold are exponentially suppressed. Vice
versa, if the condition is violated, multiparticle production processes grow without bounds
at high energies. This, in turn, would signal a breakdown of the perturbative approach. We
illustrate a few examples in figure 2. Here, we have explicitly used estimates for the complex
coefficients A and B, a derivation of which can be found in appendix A. Note that, for
simplicity, we have ignored the tree-level contribution to the multiparticle amplitude. We
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m/Λ
= 10−

6

m/Λ
= 10−

8

m/Λ
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10

Figure 2. Parameter space of the EFT with <(A) < 0, spanned by the quartic, g, and sextic
self-interactions, λ, of the field. Above the solid lines, the multiparticle amplitudes at the kine-
matic threshold are exponentially suppressed. Below the lines, they grow exponentially, thereby
indicating a breakdown of (resummed) perturbation theory. The colors illustrate different ratios of
energy scales of the EFT. For simplicity, here, we have neglected the tree-level contribution to the
multiparticle process (see main text).

expect this to be subdominant in the quantum number n as compared to the contributions
proportional to A and B. For instance, this is typically the case for a purely quartic or
purely sextic theory. Similarly, in the non-perturbative regime where gn or

√
λn is large,

we expect that subleading quantum corrections modify the condition (3.22) accordingly.
Naively, the above condition seems to imply that we can render any EFT description

consistent with respect to multiparticle production by considering an arbitrarily large scale
of new physics phenomena, i.e. by raising the UV cut-off Λ → ∞. Similarly, we can also
argue that the quartic coupling has to be parametrically greater, by a factor 1/n, than the
six-point coupling. To see this, we note that, in general, the EFT description is valid if the
energy of the scattering process is not probing scales beyond the UV cut-off, E ∼ nm . Λ.
Therefore, the particle number in the final state has to satisfy n . Λ/m. Turning the
argument around, this implies that the EFT may feature rapid growth of amplitudes at
the multiparticle threshold for any relation of coupling constants of the form

Exponential growth: g .
∣∣∣∣<(B)
<(A)

∣∣∣∣
√
λ

n
for <(A) < 0 . (3.23)

Our argument guarantees that we do not explore the EFT beyond its regime of validity.
This relation seems to require a certain hierarchy of coupling constants within the EFT
framework. While this may introduce another fine-tuning problem into the realm of viable
scalar field theories, we note that these hierarchies can nevertheless be engineered in very
simple UV completions of the EFT.

Let us close this discussion with a few words of caution. We again emphasize that
there is no possibility for an exponential suppression of the amplitude at the multiparticle
threshold, if the real part of the coefficient A is positive (as is the case for theories with
a broken symmetry in the perturbative regime). Therefore, the sign of A is crucial for
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the phenomenological implications of our result. Such scenario would inevitably feature
rapidly growing multiparticle threshold amplitudes, at least in perturbation theory. If this
behavior also persists beyond the kinematic threshold, this may signal a fundamental non-
perturbative change of the UV dynamics of the theory [14, 19, 20]. Thus, in the next
section, we examine this scenario away from the multiparticle threshold.

3.3 Moving away from the kinematic threshold

In principle, an exponential growth of multiparticle production amplitudes at the kinematic
threshold does not pose any catastrophic problem for the UV dynamics and ultimately the
consistency of the quantum theory, because the associated cross section is zero due to its
vanishing phase space volume. Therefore, physically, a mechanism similar to “Higgsplo-
sion” [19] can only be realized in a scalar QFT, if the drastic phase space suppression is also
overcome by the rapid growth of the matrix element associated to the process. These two
factors are hence in competition, in order to eventually enable or disable “Higgsplosive”
behavior at high energies.

While the computation of the fully phase-space-integrated multiparticle production
cross section is beyond our reach, it is possible to move away from the kinematic thresh-
old into a non-relativistic regime (see, e.g., [11, 14, 32, 37]). The relevant deformation
parameter in this scenario is the average kinetic energy per particle and mass,

ε = E − nm
nm

. (3.24)

In the non-relativistic regime, ε is taken to be small, ε� 1. For instance, using this defor-
mation, the tree-level amplitude away from the kinematic threshold gets an exponentially
small correction in ϕ4 theory in the unbroken phase [11],

Atree(n, ε) ' Atree(n, ε = 0) e−
5
6nε . (3.25)

A similar behavior also holds in the broken phase and in presence of gauge fields [37].
However, this contribution to the multiparticle process is subdominant compared to the
effect of the tiny phase space volume as ε → 0. In a four-dimensional theory, the lat-
ter is proportional to ε3n/2. This can trivially be lifted into the exponent of the naive
exponentiation (3.5), such that [14, 32]

n2G→ n2G+ 3
2n
(

log ε

3π + 1
)

+O (ε) . (3.26)

Here, we have omitted terms proportional to powers of ε, e.g. originating from the tree-
level correction (3.25), as the logarithmic term dominates in the non-relativistic regime,
where ε � 1. The latter term is what needs to be subdominant with respect to the first
part, n2G, in order to avoid an exponential suppression from the phase space factor and
hence, ultimately, enable “Higgsplosive” behavior of the theory. Therefore, plugging in the
expression for G from (3.18) and using the EFT validity condition, m/Λ . 1/n, we arrive
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at the schematic form for the exponent

n2G ' n2
(
Ag +B

m

Λ
√
λ

)
+ 3

2n
(

log ε

3π + 1
)

(3.27)

. Agn2 +B
√
λn+ 3

2n
(

log ε

3π + 1
)
, (3.28)

which is valid for fixed ε� 1 and large n. In this regime, we find that the term proportional
to the six-point coupling λ comes with the same power of n as the phase space factor and
can therefore never be dominant for ε → 0. Consequently, any form of “Higgsplosive”
behavior can indeed only be achieved through the quartic coupling term Ag, which exhibits
an additional power of the quantum number n. This, in principle, provides some chance
for overcoming the drastic phase space suppression. Therefore, we conclude that in a non-
relativistic regime away from the kinematic threshold, “Higgsplosive” behavior of the EFT
can only be triggered by the renormalizable interactions. The six-point coupling would, in
turn, probe energies beyond the cut-off scale of the EFT. If any “Higgsplosive” behavior
is triggered, however, it is always enhanced by the hyperbolic cosine arising from the
dimension-six operator of the field. In this sense, the high-energy behavior of multiparticle
processes away from the kinematic threshold is rather robust against effects of higher-
dimensional operators naturally arising in an EFT setting.

4 A simple UV completion

So far, we have been considering a scalar EFT, while being agnostic about its high-energy
degrees of freedom. In fact, the exponentially growing contribution to the multiparticle
amplitudes from higher-dimensional EFT operators may arise from renormalizable scalar
QFTs in the UV. To illustrate this claim, let us consider a simple UV-complete theory of
two massive real scalar fields with quartic self-interactions, coupled by a mixing term in
four dimensions,

S =
∫

d4x

(
1
2 (∂µϕ)2 + 1

2 (∂µΦ)2 − m2

2 ϕ2 − g

4ϕ
4 − Λ2

2 Φ2 − G

4 Φ4 − λP
2 ϕ2Φ2

)
. (4.1)

Let us assume a hierarchy of scales, where the field Φ is much heavier than ϕ, i.e. m� Λ.
In this sense, ϕ is the low-energy degree of freedom of the EFT description presented in
section 3. In addition, this allows us to identify the mass parameter Λ with the cut-off
scale of the EFT. Clearly, depending on the sign of the mass parameter, m2, this model
features a Z2 symmetry that is either preserved or spontaneously broken. Let us focus on
the theory in the unbroken phase first and comment on the broken regime afterwards.

Due to the hierarchy of scales between the two scalar fields, we can map the UV theory
to the EFT (3.1) by integrating out the heavy degree of freedom Φ. The portal interaction
between both fields, λPϕ2Φ2, will then generate all self-interactions involving arbitrary
powers of ϕ at low energies. In particular, it will give rise to the sextic self-coupling of the
field, as illustrated in figure 3. Here, the propagator of the heavy degree of freedom running
in the loop will suppress the six-point interaction by the high mass scale Λ. Therefore,
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Figure 3. Coupling of six light ϕ-particles with a heavy Φ-excitation running in the loop (left)
and its corresponding six-point vertex in the EFT (right). The EFT vertex will be suppressed by
the mass scale of the heavy degree of freedom.

after integrating out Φ, we can determine the six-point vertex as proportional to a cubic
power of the portal coupling, (λ3

P /16π2)ϕ6/Λ2. Translating this into the action of the EFT
model (3.1), we can identify their six-point self-couplings,

λ ' 3λ3
P

8π2 . (4.2)

Similarly, all higher-order self-interactions will be parametrically suppressed by additional
powers of the portal coupling constant λP as well as the high mass scale Λ.

While this UV theory is a very simple motivation of the EFT presented in the pre-
vious section, it also allows for a hierarchy of couplings associated to the multiparticle
amplitudes. In particular, we can, to good accuracy, neglect any self-interaction terms
of the light field beyond ϕ6 in the EFT. To see this, let us briefly demonstrate that all
higher-dimensional operators arising in the EFT are suppressed by powers of the quantum
number n. The latter is considered to be large, but for the EFT description to be valid it
has to remain below the UV scale. This guarantees that the n-particle processes do not
probe the high-energy degrees of freedom, E ∼ nm . Λ. As an example, let us compare
the contributions to the process from six-point and eight-point interactions. These emerge
in the scalar potential of the EFT as (λ6/Λ2)ϕ6 and (λ8/Λ4)ϕ8, respectively. According to
the arguments outlined in section 3, in the naive exponentiation of multiparticle threshold
amplitudes, both interactions would appear in the exponent as

n2G ∼ n2
(
m

Λ
√
λ6 +

(
m

Λ

) 4
3 3
√
λ8

)
. (4.3)

Here, the third root of the eight-point coupling constant λ8 is essentially due to the presence
of three subclasses of multiparticle processes originating from an eight-point vertex. The
associated overcounting of quantum corrections is then removed by suitably combining
the exponential functions [27]. By describing the EFT couplings in terms of their UV
counterpart, λ6 ∼ λ3

P and λ8 ∼ λ4
P , and using the EFT validity condition, n . Λ/m, we

can then rewrite the exponent as

n2G . n2
( 1
n
λ

3
2
P + 1

n
4
3
λ

4
3
P

)
. (4.4)
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Therefore, we find that, e.g., in the double scaling limit λP → 0 and n → ∞ with λ3/2
P n

fixed,8 the second term corresponding to the eight-point coupling is suppressed by a factor
of approximately ∼ 1/n2 as compared to the six-point interaction. Similarly, all higher-
dimensional operators, such as (λ10/Λ6)ϕ10, can be discarded in this regime. This obser-
vation therefore motivates and justifies our initial EFT model presented in section 3.

Similarly, the same observations hold for a theory featuring a spontaneously broken
Z2 symmetry. For instance, we could imagine to only couple the physical excitations
around the field’s vacuum expectation value, v 6= 0, via the quadratic portal interaction
to the heavy field Φ. In this case, all of the above observations carry over and we would
arrive at an EFT involving the light excitations that, due to the broken symmetry, now
feature additional cubic interactions at low energies. Nevertheless, the phenomenological
implications of a spontaneously broken symmetry with respect to multiparticle production
are drastically different, as mentioned before.

We conclude that, from the high-energy perspective, the interactions between the light
and the heavy degrees of freedom via the portal coupling, λPϕ2Φ2, have important implica-
tions for multiparticle processes in the corresponding EFT setting. While one may naively
expect that one can easily discard these interactions when considering amplitudes at the
multiparticle threshold of the light scalar particles, our results demonstrate that this is not
the case. That is, the portal coupling gives rise to higher-order self-interactions of the light
field which, in turn, will inevitably give an exponentially growing contribution to the thresh-
old amplitude for large n. Even within the validity bounds of the EFT, this indicates a
breakdown of the perturbative approach. As we have argued here, this is the case for QFTs
both with or without a spontaneously broken symmetry. We therefore may not be able to
validate the perturbative behavior of multiparticle production without carefully examining
the special role of a portal coupling between the light and heavy degrees of freedom.

Finally, we note that, for scattering processes of the form 2→ n in this scenario, we do
not expect any “nullification” of threshold amplitudes as in, e.g., ϕ4 theory [38–42]. This
would require a complete destructive interference between different on-shell diagrams with
distinct parameters g, λ, m and Λ (see, e.g., [18] and references therein). It would thus not
resolve the breakdown of resummed perturbation theory in the EFT setting.

5 Conclusions

Calculations of processes involving a large number of particles in weakly-coupled QFTs
suffer (or enjoy) a breakdown of perturbation theory at high energies. In particular, there
is evidence that scalar field amplitudes at the multiparticle threshold rapidly grow with
energy. This strongly suggests the need for novel non-perturbative behavior, or perhaps
even new degrees of freedom.

In this work, we have taken steps towards a more complete picture of this problem
inherent to scalar QFTs at high energies. In particular, we have investigated a simple EFT
model of a real scalar field in four dimensions, featuring quartic and sextic self-interactions,

8This is a somewhat obscured reformulation of the double scaling limit we have already considered in
the previous section.
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gϕ4 and (λ/Λ2)ϕ6. We find that the multiparticle amplitude at the kinematic threshold,
associated to the n-particle decay of a highly virtual state 1 → n, is given by an intricate
combination of exponential functions for large n,

A(n) ' Atree(n) eAgn2 cosh
(
B
m

Λ
√
λn2

)
. (5.1)

In general, this expression either allows for an exponential growth or an exponential sup-
pression of the amplitude as n tends to infinity, n→∞. Remarkably, this solely depends
on the quartic coefficient A, as the hyperbolic cosine inevitably corresponds to an expo-
nentially growing contribution. Clearly, the multiparticle threshold amplitudes exhibit a
rapid exponential growth, if the coefficient A has a positive real part, <(A) > 0, as indi-
cated for scalar QFTs featuring a spontaneously broken symmetry. In contrast, a necessary
condition for an exponential suppression at high energies is that the quartic coefficient is
negative, <(A) < 0. In this scenario, we find a relation between the coupling constants
of the EFT for large n. If the quartic coupling is parametrically small compared to the
six-point interaction,

g .
m

Λ
√
λ .

√
λ

n
, (5.2)

the multiparticle amplitudes at the kinematic threshold grow without bounds for large n,
even within the regime where the EFT is valid. This is illustrated in figure 2. That is,
depending on the self-interactions of the field, the EFT may feature rapidly growing multi-
particle threshold amplitudes at high energies, indicating a breakdown of the perturbative
approach. If this behavior also persists beyond the kinematic threshold, this will ultimately
signal a transition to novel non-perturbative dynamics in the UV.
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A Determining the coefficients of the exponentiation

In this appendix, we aim to derive the complex coefficients A and B that enter the multi-
particle threshold amplitude for large n,

A(n) ' Atree(n) eAgn2 cosh
(
B
√
λn2

)
. (A.1)

Both coefficients contain all information on the loop-momentum integrals of the theory, and
therefore reflect its renormalization properties. In our four-dimensional EFT model (3.1),
they take the schematic form

A ∝
∫ d3p

(2π)3
a(ω)
Wp

, B ∝
∫ d3p

(2π)3
b(ω)
Wp

, (A.2)
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where a and b are functions of the energy of each momentum mode, ω2 = p2 + 1. Note
that, here, we have normalized all mass and energy scales of the EFT to unity, m = Λ = 1.
The dependence on both can be easily recovered later. As explained in the main text, at
least for the coefficient A, it is important to distinguish between a theory with or without
a spontaneously broken Z2 symmetry. Let us focus on the former case first and briefly
comment on a theory in the broken phase later.

As a simple approximation of both A and B, we can make use of existing results.
We note that the above expression for the multiparticle amplitude drastically simplifies
to well-known cases if either the quartic or the sextic coupling vanishes, g = 0 or λ = 0,
respectively. The latter case has for instance been established in [9, 11]. Closely following
these, we can formally write the coefficient A as [11]

A =
∫ d3p

(2π)3
9
8

1
ω (ω2 − 1) (ω2 − 4) = 9

16π2

∫ ∞
1

dω 1√
ω2 − 1 (ω2 − 4)

. (A.3)

Clearly, the integrand is singular at the one-particle as well as the two-particle pole.9 While
the one-particle singularity is integrable, we have to regularize the singularity associated
to the two-particle pole. This can be achieved by shifting the pole to the complex plane,
m2−iε, corresponding to a deformation of the integration contour. After the integration, we
can take the limit ε→ 0 in order to recover the regularized value of the integral. We obtain

A = 9
16π2 lim

ε→0

∫ ∞
1

dω 1√
ω2 − 1− iε (ω2 − 4− 4iε)

= 3
√

3
64π2

[
ln
(
7− 4

√
3
)
− iπ

]
. (A.4)

The imaginary part of the integral depends on how one chooses to deform the integration
contour. Repeating the same procedure also in a theory featuring a spontaneously broken
symmetry, we can summarize [9, 10, 43]

A =


3
√

3
64π2

[
ln
(
7− 4

√
3
)
− iπ

]
(unbroken theory)

√
3

8π (broken theory)
, (A.5)

Similarly, by the same regularization procedure we obtain for the coefficient of the
six-point self-interaction [27]

B = 24
∫ d3p

(2π)3
32i

3
√

3π
1

ω (ω2 − 1) (ω2 − 9) =
√

2
3

2
3π2 . (A.6)

In contrast to the previous case, here, we have regularized the singularity associated to
the three-particle pole.

Finally, after reintroducing the dimensionful parameters of the theory, we obtain for
the ratio of the real parts of both coefficients in a theory with an unbroken symmetry∣∣∣∣<(B)

<(A)

∣∣∣∣ ∼ 60m. (A.7)

This quantity indeed plays an important role for the high-energy behavior of multiparticle
processes at the kinematic threshold in the EFT model (3.1).

9Intriguingly, the two-particle pole is relevant in the nullification of 2 → n scattering amplitudes in ϕ4

theory at the kinematic threshold [38–42].
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