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Interaction-aware Decision-making for Automated
Vehicles using Social Value Orientation

Luca Crosato, Hubert P. H. Shum, Edmond S. L. Ho, and Chongfeng Wei

Abstract—Motion control algorithms in the presence of pedes-
trians are critical for the development of safe and reliable
Autonomous Vehicles (AVs). Traditional motion control algo-
rithms rely on manually designed decision-making policies which
neglect the mutual interactions between AVs and pedestrians.
On the other hand, recent advances in Deep Reinforcement
Learning allow for the automatic learning of policies without
manual designs. To tackle the problem of decision-making in the
presence of pedestrians, the authors introduce a framework based
on Social Value Orientation and Deep Reinforcement Learning
(DRL) that is capable of generating decision-making policies
with different driving styles. The policy is trained using state-
of-the-art DRL algorithms in a simulated environment. A novel
computationally-efficient pedestrian model that is suitable for
DRL training is also introduced. We perform experiments to
validate our framework and we conduct a comparative analysis
of the policies obtained with two different model-free Deep
Reinforcement Learning Algorithms. Simulations results show
how the developed model exhibits natural driving behaviours,
such as short-stopping, to facilitate the pedestrian’s crossing.

Index Terms—Autonomous driving, Deep Reinforcement
Learning, Social Value Orientation, Pedestrian Modelling, Sit-
uational Awareness

I. INTRODUCTION

AUTONOMOUS driving is an emerging technology with
the potential to drastically impact our society. The most

notable benefit that Autonomous Vehicles (AV) can bring
about in our everyday lives is the vast reduction of vehicular
accident risks [1]. Over the past few years, AV research has
attracted the attention of both industry and academics with a
rapid uptake of Advanced Driver-Assistance Systems (ADAS).
Despite the recent advancements, the number of recorded road
deaths worldwide remains extremely high. In 2018, the World
Health Organisation reported 1.35 million deaths arising from
traffic accidents [2], which provides a clear motivation for the
development of Autonomous Vehicles that ensure the safety
of all road users, including pedestrians.

One of the major challenges in autonomous driving is
achieving collision-free navigation in cluttered and interactive
environments in the presence of pedestrians. This challenge
involves finding an optimal path between the vehicle’s current
and target location that minimises journey time and is guaran-
teed to be collision-free, while satisfying constraints imposed
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Fig. 1: Technical framework used. Ot, Rt, At represents reinforce-
ment learning observations, reward, and actions respectively.

by the AV mechanics [3]. While traditional motion control
algorithms offer a solution to this problem, they typically
suffer from two main drawbacks. Firstly, they can be overly
cautious when interacting with pedestrians compared to an
average human driver [4], [5]. This behaviour results in an
unpredictable driving style, potentially leading to accidents.
Secondly, they struggle to adapt to unseen situations, which
represents an obvious problem given the number of possible
road scenarios is countless.

In this paper, we propose to solve the above issues by adopt-
ing a learning-based approach and by utilising the concept
of Social Value Orientation (SVO) from Social Psychology
[6]–[8] into the AV motion controller design. SVO is a value
that quantifies how much a person values the welfare of the
others compared to their own. We employ Deep Reinforce-
ment Learning (DRL), a subfield of machine learning that
combines Reinforcement Learning and Deep Learning. We are
witnessing an increasing number of publications seeking to
utilise DRL to solve Autonomous Driving problems [9], [10].
In DRL, a motion controller is synthesised through a trial-
and-error process in a safe simulated environment without the
need to manually handcraft an AV decision-making policy,
making maintenance and development simple. For a more
comprehensive review on the topic see [11].

Existing DRL methods only focus on the ego-vehicle own
goals, neglecting the fact that its actions may negatively impact
surrounding vehicles. In particular, the reward function design
only takes the ego-vehicle goals into account. Our novelty is
the shaping of the DRL reward function with SVO to take the
surrounding road users’ comfort into account.

We argue that studying the mutual interactions between an
AV and a single pedestrian is the first essential step in the
development of Vulnerable Road User’s friendly policies for
Autonomous Vehicles, therefore we consider a typical straight
road scenario with one pedestrian and train a set of DRL agents
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with different SVO values. Our proposed framework is shown
in Fig. 1. First, we develop a novel interactive pedestrian
model that combines the concepts of situational awareness [12]
and Social-Force [13] to determine the pedestrian trajectory
under the vehicle influence. The vehicle motion affects the
pedestrian decisions by indirectly altering the available time-
gap to complete crossing and the social forces acting on
the pedestrian. In turn, pedestrian motion serves as a cue
for the ego-vehicle controller, thereby mutually influencing
each other. We evaluate our pedestrian model using a set of
typical road scenarios and by comparing pedestrian motion
statistics with real world data and a state-of-the-art pedestrian
model. Then, agents trained with model-free DRL algorithms
learn the interaction patterns with the pedestrian and exploit
them to indirectly affect pedestrian motion. For instance, the
vehicle learns the effect that its own acceleration on pedes-
trian’s decisions, thereby hindering or favouring the pedestrian
crossing. We demonstrate how our reward choice produces
controllers that naturally exhibit human-like behaviour, with a
plethora of different driving styles, ranging across a spectrum
from aggressive to pro-social according to the choice of the
SVO value. We conduct a set of qualitative and quantitative
experiments aimed at evaluating the effect of SVO addition,
and model performances under both nominal and high-risk
scenarios.

Coincisely, this paper presents the following contributions:
1) We demonstrate how the introduction of SVO into the

DRL Reward Function design influences the ego-vehicle
strategies, achieving behaviours that range from egoistic
to pro-social, without affecting pedestrian safety;

2) We introduce a novel pedestrian simulation model that
combines gap-acceptance methods with Social Force
Models to model the pedestrian crossing behaviour;

3) We validate that our RL model is capable of handling
the added complexity introduced by our more realistic
pedestrian model that actively reasons about the AV’s
actions and conduct a comparative analysis of two
model-free DRL algorithms applied to our problem.

II. RELATED WORK

This section is organised as follows. First, we will review
state-of-the-art motion-planning and decision-making tech-
niques. As learning-based techniques are more relevant to this
work, we will mainly focus on them (see [14] for a more
comprehensive review on motion-planning for AVs). Secondly,
we will review pedestrian models in autonomous driving that
can be used in AV-pedestrian interaction simulations. Unlike
behavioural cloning methods [15], DRL allows an autonomous
vehicle to exceed human-level performances by optimisation
of a reward function. One of the first applications of DRL to
the field of autonomous driving can be found in [16]. In this
work, RL was used to train an AV in a recing environment.
RL has also been used to learn an automated lane change
policy in [17]–[19] and to solve complex urban navigation
problems. Chen et al. [20] employed DRL to a roundabout
scenario with multiple vehicles. Their method is trained and
evaluated in the open-source driving simulator CARLA [21].

Fig. 2: Scenario illustration.

Sallab et al. [22] have used Recurrent Neural Networks in the
Reinforcement Learning framework to account for Partially
Observable scenarios and integrated attention models in the
framework, making use of attention networks to reduce com-
putational complexity.

Applications of DRL in human-AV interactive scenarios is
also an emerging field of research, with applications in mobile
robot navigation amongst crowds. Gao et al. [23] trained a
local neural network motion controller with DRL to avoid
moving obstacles such as pedestrians and combined it with
a global path planner. In [24], DRL is used to develop an
algorithm that learns a collision avoidance policy among a va-
riety of heterogeneous, non-communicating, dynamic agents.
The authors demonstrate how a mobile robot trained with this
policy is capable of travelling at walking speed in a crowd.

The applications of DRL to the problem of collision avoid-
ance in structured scenarios with crossing pedestrians is more
limited. Structured scenarios arises when the AV and the
pedestrians navigate in separate areas for most of the time
with temporary areas of conflicts. Deshpande et al. [25] trained
a Deep Q-Network vehicle agent at a typical intersection
crossing scenario. The pedestrian information is represented
in a grid-based approach as a state space input to the learning
agent. In [26] the authors trained a DQN policy to avoid
pedestrians and used it to develop a driving assistance system
to assist human drivers in the event where their behaviour
is dangerous for the pedestrian. One of the main limitations
of DQNs is the discretisation of the action space, which we
overcome in our work with continuous action policies.

Social Psychology has shown each individual has personal
preferences on how to value their utility in relation to that
of the others. SVO can predict negotiation strategies and
cooperation motives in games involving multiple individuals
[6]–[8], [27]. SVO has been used in conjunction with Inverse
Reinforcement Learning [28] to estimate other surrounding
drivers’ behaviour and improve trajectory prediction, while
Sun et al. [29] developed a courteous AV model based on
Inverse Reinforcement Learning for lane merging scenarios. In
our work, we present a DRL training framework with Social
Value Orientation to model courteous AV behaviours. Instead
of using Inverse Reinforcement Learning which would require
to collect a big amount of data, we choose to directly use
Deep Reinforcement Learning. This also allows us to tailor the
reward function to the vehicle-pedestrian interaction scenario.
Since the pedestrian model will be extensively used to train our
DRL agent, we need it to possess three main characteristics:
firstly, we require it to be computationally efficient to avoid
bottlenecks during training; secondly we need it to be realistic;
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and finally we need the pedestrian to actively reason about
the AV’s decision, so as to achieve an interactive behaviour
that can be learnt and exploited by the AV agent. In this
paper we propose a novel pedestrian model that integrates the
concept of situational awareness into the Social Force Model
framework to achieve an interactive behaviour that explicitly
reasons about the AV’s actions.

Several works have studied the vehicle-pedestrian inter-
action in crossing scenarios. A comprehensive review on
pedestrian models in autonomous driving can be found in [30]
and [31]. Gap acceptance is a major factor that influences
pedestrian decision at intersections. Gap acceptance models
have been used to describe the probabilities of pedestrians
crossing in a certain gap between vehicles [32]–[35]. These
models are used to describe the pedestrian crossing probability
but they do not model the trajectories that the pedestrian will
follow. Markkula et al. [12] introduced the concept of situa-
tional awareness in the pedestrian crossing modelling. In their
model, the authors describe pedestrian road crossing decision
as the result of a number of perceptual decisions concerning
the available gap. A limitation in pure gap-acceptance models
is the assumption that once a pedestrian initiates crossing, they
will follow a constant speed velocity profile.

On the other hand, Social Force Models [13] of pedestrian
behaviour describe collective behaviours by modelling how
each individual interacts with other. The idea behind this
model is that the influence of surrounding agents on the
pedestrian motion can be modelled with forces that measure
for the internal motivations of the individuals to perform
certain movements. This model was originally designed for
simulating crowd dynamics but has been extended with the
effect of vehicles on pedestrians [36], [37], which makes
them suitable for mixed scenarios containing both vehicles and
pedestrians. Existing works [38], [39] in pedestrian simulation
combined social force models with a rule based approach for
pedestrian crossing simulation. These models however mainly
focus on situations in which pedestrians are in front of the
vehicle. In our DRL setting, especially when the vehicle policy
is not yet trained, episodes in which the vehicle and the
pedestrian are next to each other will be present, which is why
we extend the pedestrian model to such scenarios. Secondly,
we add a temporal aspect to the decision making process,
by including situational awareness in the pedestrian decision
making.

III. TECHNICAL BACKGROUND

A. Social Force Models

In a Social Force Based model [13], pedestrians are regarded
as point mass particles, with their motion governed by Newton
equations of motion:

d2r⃗

dt2
=
dv⃗

dt
=

F⃗total
m

(1)

where r⃗ and v⃗ represent the pedestrian position and velocity
respectively, and m represents the pedestrian’s mass. The total
force F⃗total influences the pedestrian acceleration and can be
decomposed further in three terms:

F⃗total = F⃗nav + F⃗veh + F⃗soc (2)

The three terms have different effects on the pedestrian
motion and shape the pedestrian’s trajectory, making them
reach their goal position while avoiding obstacles at the
same time. The term F⃗nav has the overall effect of pulling
pedestrians towards their goal position. The term F⃗veh is used
to shape the effect of the vehicle on the pedestrian motion,
whereas the term F⃗soc is the so called social force. The social
force models how pedestrians interact with each other but
since we are mainly concerned on AV decision-making in the
presence of a single pedestrian, we will neglect this term in
the further discussions within this paper.

B. Deep Reinforcement Learning

A reinforcement learning problem is formulated as a
Markov Decision Process (MDP) (S,A, T , R, γ), where S is
the set of possible agent and environment states, A is the set
of actions, T is the state transition probability, and R is the
reward function. Two entities interact with each other at all
times: an agent and the environment. The agent selects an
action at in the set A, which causes a change in the state
st according to the transition probability T (st|st−1, at) under
action at. The agent is also provided with a numerical reward
rt, based on the outcome of the action taken. The goal of
an RL algorithm is to learn an optimal policy π∗(a|s), which
is a mapping from the state space to the action space, that
maximises the expected future total reward:

J(π) = Eπ[
∞∑
k=0

γkrt+k] (3)

where γ is called the discount factor. Gamma is less than 1,
so events in the distant future are weighted less than events in
the immediate future.
C. Soft-Actor Critic Algorithm

The Soft-Actor Critic algorithm (SAC) [40] is an RL
algorithm that combines the RL framework with the principle
of maximum entropy. The policy seeks to maximise a modified
version of the expected future reward which is defined as:

max
π

J(π) =
∑
t=0

Eπ[r(st, at) + αH(π(·|st))] (4)

J(π) maximises both the expected cumulative reward and an
entropy term H(π(·|st)), to encourage exploration at the time
of training and improve training speed. The parameter α is
known as the temperature and it affects the weight of the
entropy term. Precisely, SAC aims to learn three functions:
the policy network with parameter θ, πθ, a soft Q-value
function parametised by w, Qw, and a soft state value function
parametrised by ψ, Vψ . The experience gathered by the agent
is stored in a replay buffer and, similar to DQN and DDPG, the
Q network and the value network are trained using supervised
learning with the data contained in a replay buffer. The targets
for the network update are defined as:

Q̂(st, at) = r(st, at) + γEst+1∼ρpi(s) [Vψ(st+1)] (5)
V̂ (st) = Eat∼πθ

[Qw(st, at)− α log πθ(at|st)] (6)

The policy is parametrised as stochastic neural network at =
fθ(ϵt, st), where ϵt is an input noise vector, sampled from
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a Gaussian distribution. Then objective function for policy
optimization can be rewritten as:

Jπ(θ) = Est,ϵt [α log(πθ(fθ(ϵt, st)|st)−Qθ(st, fθ(ϵt, st))]
(7)

D. Proximal Policy Optimisation Algorithm

Proximal Policy Optimisation (PPO) [41] is a model-free
Deep RL algorithm designed for continuous actions spaces. In
order to improve training stability, PPO imposes a constraint
on the size of the policy update at each iteration, which results
in smoother policies that are appealing when considering our
problem from an ergonomics perspective.

The objective function measures the total advantage over
the state visitation distribution and actions. In a standard off-
policy algorithm it can be expressed as:

J(θ) = Ea∼β [
πθ(a|s)
β(a|s)

Aθold(s, a)]

where β(a|s) is the sampling distribution.
Since PPO uses the old policy θold to generate data and we

update the parameters θ, the objective function becomes:

J(θ) = Ea∼πθold
[
πθ(a|s)
πθold(a|s)

Aθold(s, a)] (8)

PPO updates the policy parameters θ so as to maximise
a slightly modified version of equation 8, which takes into
account the constraint on the policy update, by the addition
of a clipping parameter ϵ. Let r(θ) = πθ(a|s)/πθold(a|s), the
modified objective function for PPO is:

J(θ) = Ea∼πθold
[min(r(θ)Aθold(s, a),

clip(r(θ), 1− ϵ, 1 + ϵ)Aθold(s, a))] (9)

The objective of this modified objective function is to dis-
courage policy updates that would cause big policy parameters
variation even though they would lead to greater rewards.

E. Social Value Orientation

In Social Psychology, Social Value Orientation (SVO) [7],
[8] is a value that describes how much a person values other
people’s welfare in relation to their own. Each individual can
be modelled as an agent that selects actions so as to maximise
their own utility function. We can model each individuals
social preferences by expressing their own utility function as a
combination of two terms, the ego agent’s selfish utility Uself
and a term that captures agents’ utility Uother:

Utotal = cos(φ)Uself + sin(φ)Uother (10)

where φ is the SVO value. It is an angle, whose value affects
the weights of the two utility terms, and therefore the balance
between selfish and altruistic rewards. We can characterise
the personality of each individual with the SVO value. For
example, an SVO value of 90° corresponds to fully altruistic
behaviour, whereas an SVO value of 0° corresponds to an
individualistic agent. In our work, we focused on SVO values
between 0° and 90°, as we want the AV to exhibit pro-social
behaviour and yield to the pedestrian if necessary to avoid
dangerous situations.

SVO has been previously used to design controllers in a
game-theoretic setting [28], but this demands long complex
computations to solve for a Nash equilibrium points. In
our work, we try to mitigate the computational cost of the
optimisation problem by using SVO in the RL framework,
thereby moving the computational cost from execution time
to training time, in a learning-based fashion. We integrate
the SVO concept directly in the MDP model formulation by
constructing a reward function that is composed of two terms,
one that models the AV’s own objective Uself and one that
models the pedestrian’s objective Uother.

IV. SITUATIONAL AWARE PEDESTRIAN MODEL

We modify the traditional social force based model by
mixing it with a gap-acceptance model to simulate pedestrian
crossing behaviours. In this way, we are able to obtain realistic
trajectories due to the social force component while still
maintaining the advantages of gap-acceptance models, i.e. the
accurate description of crossing initiation.

A. Pedestrian’s Motivation

We model the pedestrian situational awareness as a number
that represents the pedestrian’s willingness to cross the road,
which we term motivation. Inspired by the work of [12],
we model the pedestrian’s motivation as a discrete time
variable that quantifies the pedestrian’s crossing willingness.
The motivation takes into account environmental factors such
as the AV’s forward velocity vv , the distance between the
pedestrian and the vehicle Dpv , the lane width and the
vehicle’s acceleration perceived by the pedestrian a.

The motivation at any point in time M(t) is a real value in
the interval [0, 1], with 1 indicating that the pedestrian wants
to cross the road and 0 the opposite. In order to model the
fact that the decision-making process is made over time, we
apply a first order filter and update the motivation according
to the following equation:

M(t+ 1) = αM(t) + (1− α)M̂(t) (11)

where M̂(t) is an innovation term that is computed according
to the vehicle’s position and actions and M(t) is the motivation
at the previous timestep.

The innovation term is computed as a logistic function:

M̂(t) =
1

1 + e−(ψT f−β) (12)

where f is a vector of features, ψ is a vector of weights,
and β is a parameter. The vector of features combines the
advantage time and the acceleration of the vehicle perceived
by the pedestrian:

f = [tadv, a]
T (13)

In particular, We define the advantage time tadv as the
difference between the time to collision and the time that the
pedestrian needs to cross the road, considering their reaction
time:

tadv =
Dpv

vv
− kL

vd
− tr (14)

where L is the lane width, k is a coefficient which is equal to
1.0 if the pedestrian initiates crossing on the same side as the
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vehicle’s lane or 2.0 otherwise, indicating that the pedestrian
has to travel only half the road width or the total road width. tr
is an additional time factor that takes into account pedestrian
reaction time. The terms vv and vd represent the vehicle’s
speed and the pedestrian desired walking speed.

B. Navigational Force

The navigational force is a proportional controller that
drives the pedestrian towards their goal, weighted by the
current pedestrian motivation:

F⃗nav(t) =M(t) · kd (v⃗(t)− v⃗d(t)) (15)

The desired velocity v⃗d(t) points at each timestep in the
direction of the goal g⃗ and has a magnitude equal to the
pedestrian’s preferred walking speed vd:

v⃗d(t) = vd
(g⃗ − p⃗)√
∥g⃗ − p⃗∥2 + σ2

(16)

where p⃗ is the pedestrian’s current position, and σ is a
regularisation factor to avoid the problem of division by zero.

C. Vehicle Interaction

We modelled the vehicle influence on the pedestrian as a
superposition of three different force fields. The first term
affects the pedestrian trajectory so that they avoid collisions
with the vehicle, the second term encourages walking around
the vehicle when it has very low speed, and the last term
pushes the pedestrian away from the front area of the vehicle
if it is approaching with high speed. Since a pedestrian will
avoid walking in the area in front of a vehicle approaching at
high speed and will not initiate walking around it unless the
vehicle speed is sufficiently low, we take this into account by
introducing a velocity coefficient that blends the second and
third term according to the vehicle’s speed. In particular, we
define the overall force field as:

F⃗veh = F⃗shape + k(v)F⃗flow + (1− k(v))F⃗speed (17)

where
k(v) =

1

1 + kvv2
(18)

The parameter k(v) is used to obtain a linear combination of
the fields F⃗flow and F⃗speed, so that at lower velocities the
former prevails, whereas at higher speeds the latter prevails.
Let p⃗ = [x, y]

T be the coordinates of a pedestrian in the
vehicle local frame.

The shape of the fields F⃗shape and F⃗flow is shown in Fig.
4. We approximate the AV shape as an ellipsis for the sake of
the repulsive force modelling, with semi-axes a and b, equal
to half the vehicle length and width respectively.

We use a linear decay function with smoothing to model
the influence of the vehicle shape on the pedestrian based on
the distance d between the vehicle and the pedestrian, which
is defined as:

h(d;A, d0, σ) =
A

2d0

(
d0 − d+

√
(d0 − d)2 + σ

)
(19)

where A, d0, and σ are parameters that determine the shape
of the linear decay function and whose effects are shown in

Fig. 3: Linear decay with smoothing. Values are unitless.

Fig. 3. We use an elliptical distance in accordance to the AV’s
shape approximation:

d =

√(x
a

)2

+
(y
b

)2

(20)

where x and y are the pedestrian’s coordinates relative to the
vehicle.

The repulsive force direction is orthogonal to the vehicle’s
shape approximation and its magnitude depends on a linear
decay with smoothing function of the elliptical distance. The
denominator normalises the equation to get a unit vector in
the desired direction:

F⃗shape =
h(d;As, d0s, σs)√(

2x
a2

)2
+

(
2y
b2

)2
(
2x

a2
ı̂+

2y

b2
ȷ̂

)
(21)

The flow field encourages the pedestrian to walk around
the vehicle. We introduce a coefficient kf (p⃗) which has two
purposes. Its sign determines if the pedestrian walks around
the vehicle clockwise or counterclockwise and it is decided
by estimating the shortest path between the pedestrian current
position and the goal position. The magnitude of the coefficient
kf (p⃗) is one at the beginning of the trajectory and decreases
to zero as the pedestrian is closer to the goal. This choice was
made because the vehicle should not influence the pedestrian
motion once the pedestrian has passed the vehicle and is
moving further away from it. In symbols:

|kf (p⃗)| =


1.0 if P < 0

0 if P > ∥g⃗ − p⃗0∥
∥g⃗−p⃗0∥−P
∥g⃗−p⃗0∥ otherwise

(22)

where P is the pedestrian progress towards their goal:

P =
(p⃗− p⃗0) · (g⃗ − p⃗0)

∥g⃗ − p⃗0∥
(23)

We allow the flow term to have its own linear decay with
smoothing parameters. Compared to the shape field, the flow
field has a different power for the x and y terms in eq. 24

Fig. 4: Shape field (left) and force field (right) representation. The
flow field is shown with two randomly chosen start and goal positions.
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Algorithm 1 Pedestrian model.

Input: Pedestrian’s position p⃗ = [x, y]
T , pedestrian’s goal

position g⃗, vehicle speed v and acceleration a.
Output: Pedestrian acceleration a⃗
Parameters: see Table I
Compute Pedestrian Speed:

Update Motivation:
M̂(t)← 1

1+e−ψT f

M(t)← αM(t− 1) + (1− α)M̂(t)
Update Forces:

if M(t) > θf :
F⃗nav(t)←M(t) · kd (v⃗(t)− v⃗d(t))

else:
F⃗nav(t)← 0

F⃗sh(t), F⃗f (t), F⃗sp(t)← Update Forces
k(v)← 1

1+kvv2

F⃗veh(t)← F⃗sh(t) + k(v)F⃗f (t) + (1− k(v)F⃗sp(t)
F⃗tot(t)← F⃗nav(t) + F⃗veh(t)

Determine acceleration:
a⃗(t)← F⃗tot(t)/m
if ∥a⃗(t)∥ > amax:
a⃗(t)← amax · a⃗(t)/∥a⃗(t)∥

v⃗(t)← v⃗(t− 1) + a⃗(t) · Ts
v⃗(t)← vmax · v⃗(t)/∥v⃗(t)∥

TABLE I: Parameter Set.

Type Parameter name Values
Motivation α, vd, tr,ψ, θf , β (0.8, 2.0, 0.05, [3.0,−0.3],

0.3, 2.2)
Navigation kd, σd (200, 0.09)

Shape Ms, d0s, σs (800, 4.0, 0.1)
Flow Ms, d0f , σf (600, 6.0, 0.1)
Speed A,∆T, σy (400, 1.0, 0.2L)

Constraints amax, vmax,m, kv (3.0, 4.0, 75, 0.1)

to make the pedestrian trajectory follow more realistic paths
around the vehicle. The negative sign in the last term of
equation 24 makes the field rotate around the vehicle. The
pedestrian flow term can then be defined as:

F⃗flow = kf (p⃗)
h(d;Af , d0f , σf )√(

−2y3

b

)2

+
(
2x3

a

)2
(
−2y3

b
ı̂+

2x3

a
ȷ̂

)
(24)

The influence of the vehicle speed on the pedestrian motion
is modelled with the force field F⃗speed, which follows an
exponential decay:

F⃗speed = A · sgn(y) exp
(
−x− a
v∆T

)
exp

(
− y2

2σ2
y

)
ȷ̂ (25)

where A is a scaling coefficient, vv represents the vehicle
speed, ∆T is a time factor, and σy is a constant proportional
to the lane width. The exponential decay is influenced by the
vehicle speed, varying the length of the area that is influenced
in front of the AV.

V. SVO-INFORMED VEHICLE CONTROLLER

We design a Deep Reinforcement Learning environment in
which the Autonomous Vehicle (the RL agent) interacts with

the pedestrian. We let the AV learn its behavioural policy by
experiencing interactions with the pedestrian model we devel-
oped. We use two different DRL algorithms, SAC and PPO,
to train two sets of policies and compare their performances.
We will now describe how we model the pedestrian collision-
avoidance problem as a Markov Decision Process (MDP) that
can be used to train DRL AV agents.

A. MDP Formulation

1) State Space:
In our model, we focused on a scenario consisting of a straight
lane and a single pedestrian (see Fig. 2). We assume the ego-
vehicle is able to locate itself with respect to a reference
path generated by a global routing module. The purpose of
the policy network output is to control the vehicle along
the planned trajectory taking the pedestrian’s behaviour into
account. We also assume that a perception module is available
to locate the pedestrian’s pedestrian position relative to the
vehicle. Therefore, the observation space st available to the
ego-vehicle consists of (1) the vehicle longitudinal velocity
vegot , (2) the pedestrian relative position pt and velocity vpedt :

st = [vegot ,pt,v
ped
t ]T ∈ R5 (26)

2) Action Space: The action space used consists of the
longitudinal acceleration of the vehicle at. The normalised
output of the policy network is then scaled into the interval
[−0.3g, 0.3g].

B. Social Reward Function

The designed reward function consists of two terms:

r(st, at) = cosφ · rcar(st, at) + sinφ · rp(st, at) (27)

where rcar indicates a reward function that takes the vehicle
own performance parameters into account and the rp term is
a term that captures the pedestrian’s intentions and comfort.
φ is the ego-vehicles SVO value, which is used to shape the
car’s altruistic or egoistic behaviour.

The first term rcar in the reward function is also a combi-
nation of multiple terms:

rcar(st, at) = rc + rg + rv (28)

where rc is a penalty in case of collision, rg is the reward for
reaching the goal, and rv is a speed reward that encourages the
AV to complete the task as quickly as possible. Empirically,
we set rc = −100, rg = 40, and rv = −4.

The second term of equation 27 is used to capture the
pedestrian’s intentions and comfort in the AV’s decision-
making process. We assume a pedestrian crossing the road
is attempting to reach their goal in the least amount of time
possible, so we give a positive reward proportional to the
pedestrian crossing speed to the AV when the pedestrian is
crossing. Also, since we want our RL agent to behave pro-
socially, i.e. yielding to the pedestrian if necessary, we give
a positive reward only if the pedestrian is crossing in front
of the vehicle. Since an AV stopping in close proximity of a
pedestrian to let them cross could be potentially dangerous or
could make the pedestrian feel unsafe, we weight the reward
by a factor σ (Dpv), where Dpv is the distance between the
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vehicle and the pedestrian. σ (Dpv) is a sigmoid function that
tends to 0 when Dpv tends to 0. If vp is the pedestrian velocity,
we can then express the pedestrian reward function as:

rp =

{
kpσ(Dpv)v⃗p · ρ̂, if wants to cross and xp > xv

0, otherwise
(29)

where kp is a scaling coefficient for the pedestrian reward, v⃗p
is the pedestrian velocity, and ρ̂ is a unit vector pointing from
the pedestrian to their goal position.

C. Neural Network Implementation

The neural network architecture is the same for both PPO
and SAC and consists of two fully connected layers with
256 hidden neurons each, shared by both the actor and critic
networks. A simple fully-connected multi-layer perceptron
network was used, as the input space is simple enough to allow
us to use a simpler neural network rather than a Convolutional
Neural Network which would be harder to train.

We observed that by directly training the RL agent with
the new pedestrian model resulted in only aggressive policies
for the RL agent, even for SVO values close to 90°. The DRL
algorithm used to get stuck in a local minimum, which caused
limited exploration: since the newly introduced pedestrian
model has a more cautious behaviour compared to our previous
work [42], the AV agent optimised only the first term of eq.
27, neglecting the pedestrian’s reward. We solved this issue by
splitting the training in two parts. For the half of the training,
the model is trained with a reckless pedestrian model that
always crosses the road. For the second half of the training, we
switch the pedestrian model to the more complex one. The idea
behind this is that the RL model is more cautious when the
conservative pedestrian is introduced, which allows to explore
braking actions without falling into a local maximum for the
reward. In this way, agents with higher SVO values learn that
breaking yields to higher altruistic rewards.

VI. EXPERIMENTAL RESULTS

We developed a 2-D driving simulator that was used to
train and subsequently test our RL agent. The simulator was
developed with Python and was wrapped inside an OpenAI
Gym Environment [43], which is a widely used interface for
RL environments. We used the DRL-library Stable-Baselines3
[40] for the RL algorithms, which offers implementation of
many widely used RL algorithms. We used a machine with
one NVidia GeForce GTX 1080 Ti and a Intel(R) Core(TM)
i5-6400 CPU @ 2.70GHz processor to perform the Neural
Network Training.

We divide the experimental results section as follows:
sections VI-A and VI-B present qualitative and quantitative
evaluations of our pedestrian model. Section VI-C introduces
the reinforcement learning scenarios, section VI-D gives de-
tails about the DRL training, and section VI-E presents the
evaluation of the trained agent in the interactive environment.

A. Gap-Acceptance Validation

We use two real-world pedestrian datasets [44], [45] to
evaluate our gap-acceptance model based on motivation. Lee

Fig. 5: Road-crossing probability comparison with [44] (red), [45]
(green).

et al. [44] gathered data as part of a virtual reality experiment
to investigate how the combination of kinematic information
from a vehicle (e.g., Speed and Deceleration), and eHMI
designs, play a role in assisting the crossing decision of
pedestrians. The authors of [45] designed a gap acceptance
task to investigate the relationship between age difference
and accepted gaps. Since age differences is not in focus in
this paper, we only used the data from the age group 20-30,
similar to the age range of participants in [44]. In Fig. 5, we
show the gap acceptance curve generated by our Social Force
Motivation model (SFMM) is in line with the empirical data
and is overall capable of capturing both of this datasets well.

B. Qualitative pedestrian motion analysis

We test the pedestrian behavioural model in the following
scenarios:

• fixed AV position lateral interaction;
• fixed AV position frontal interaction;
• slow-speed AV (1-5 m/s) lateral interaction;
• medium-speed AV (10-15 m/s), with three different ac-

celeration values with lateral interaction;
We focused more on the lateral interactions between the

vehicle and the pedestrian as we are mostly interested in
pedestrian crossing behaviour. For each of the above scenario
classes, we performed an evaluation with the pedestrian cross-
ing from both road sides of the road. In Fig. 6 we report
qualitative comparative analysis of the trajectories generated
by our model (red) and a state-of-the-art social force model
[37] (blue). Trajectories are obtained by changing the pedes-
trian spawn and goal positions, while keeping the same initial
conditions for the AV. Our simulations show that the intro-
duction of the F⃗flow term allows the pedestrian to overcome
situations in which the repulsive force F⃗shape cancels out the
navigational force F⃗nav , allowing the pedestrian to overcome
a static obstacle. This feature was not present in our previous
paper [42]. Fig. 7 shows additional qualitative trajectories
pedestrian trajectories obtained in a frontal interaction (Fig.
7(a)) and with car medium-speed (Fig. 7(b)). Additionally,
we perform a computational analysis of the pedestrian model.
The results show that our model computes the pedestrian
acceleration in 0.36 +- 0.3 ms against 60 +- 2 ms for the
SGSFM model [37]. Good computational performances enable
faster DRL training.
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Fig. 6: Qualitative trajectory comparison between our model (red)
and the model in [37] (blue). We can see how our pedestrian model
is capable of overcoming a static car obstacle whereas the Sub-Goal
Social Force Model (SGSFM) gets stuck on opposite side of the car
with respect to its goal (as indicated by the arrows). The pedestrian
is trying to cross from bottom (negative y values) to the top.

C. Reinforcement Learning Scenario

We trained and subsequently tested our DRL agent on a
straight road scenario with a single pedestrian, (see Fig. 2).

We modelled a straight road with the ego-vehicle and a
pedestrian. We chose a road length of 60 m and width of
6 m, which is the average road width for a two lane urban
road in the UK. The pedestrian can spawn either on the top
pavement or on the bottom pavement, whereas the AV always
spawns in the bottom lane. This choice does not constitute
any loss of generality as we formulate the decision-making
problem in the ego-vehicle reference frame. The AV’s initial
speed is chosen with a uniform distribution in the interval (0
m/s, 15 m/s) as we are interested in studying a low-speed urban
scenario. Selecting random values for the initial conditions
favours exploration in the early stages of the training. The
pedestrian’s initial position along the pavement is sampled
from a uniform distribution. The pedestrian’s goal position
is always on the opposite side of the road from their spawn
point and is sampled from a normal distribution with mean

Fig. 7: Simulation trajectories. (a) Fixed AV frontal interaction
crossing from bottom to top, (b) fixed AV crossing from top to
bottom, (c) lateral interaction, (d) slow-moving AV. For each figure,
a darker colour indicates a later simulation time. The initial position
and goal positions are represented by an orange and a purple circle
respectively.

Fig. 8: Mean episode length in timesteps (top) and mean reward
(bottom) with SAC algorithm (left) and PPO (right).

Fig. 9: (a) Average time to complete task for PPO and SAC algo-
rithms for models with different social value orientation. (b) Average
minimum distance between the vehicle and the pedestrian at testing.

value equal to the pedestrian position to ensure the distance
from the crossing point is not excessive.

D. Network Training

We compare the performances of two different RL algo-
rithmsby training a total of 10 different policies: 5 for the
SAC algorithm and 5 for the PPO algorithm with SVO values
of 0°, 20°, 40°, 60°, and 80° respectively. In general, the
SAC algorithm requires longer than PPO to train a policy
that yields the same cumulative reward, but requires fewer
steps. We compared the two algorithms by keeping the total
computation time constant. We trained each policy for roughly
150 minutes, which resulted in a total of 2.5 × 106 steps for
PPO and 2.5 × 105 steps for SAC. A normally distributed
action noise is also added to the actions taken by the agent
during training time to favour exploration. We set the replay
buffer size for the SAC algorithm equal to the number of
training steps so that the entire experience gathered by the
agent is used during training. We choose a linear decay for
the learning rate, initially set to 3×10−4. The discount factor
γ was set to 0.99.

We show the training curves for both PPO and SAC in Fig.
8. The figures show the mean episode length and the total
reward gathered for different SVO values. We observe how at
the end of the training the two algorithms return comparable
results both in terms of mean episode length and reward
gathered, which shows consistency between training instances.
However, we note that for some of the SAC policies, the re-
ward is not entirely stable at the end of the training, indicating
that the SAC algorithm is much more time consuming than
PPO. Nonetheless, the SAC policies yield acceptable results
in terms of policy behaviour, allowing for comparison of the
two algorithms.
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Fig. 10: Pedestrian and vehicle agent trajectories for two episodes and three SVO values. Fig. (a)-(c) are generated with SAC and (d)-(f)
with PPO. The temporal progression is indicated by coloring the car and pedestrian’s trajectories from lighter to darker colors. In Fig. (b),
(c), (e) and (f) the AV yields to the pedestrian, whereas in (a), (d) the pedestrian crosses after the AV has passed and has not completed
crossing when the episode terminates. We can see that the 80° SVO has a less aggressive behaviour than 0° and 40°.

E. Mutual Interaction Evaluation

We create two test suites of 1000 testing episodes to evaluate
the effect that our SVO reward design has on the agent
behaviour. In half of the episodes, the pedestrian crosses the
road from top to bottom and in the other half from bottom
to top. The first one is used to evaluate the agent with our
pedestrian model. In the second one, we increase scenario
complexity by making the pedestrian unaware of the vehicle’s
presence, i.e. crossing regardless of the vehicle’s position and
speed. In this way, we were able to include hazardous and
unexpected scenarios that will stress the controller robustness
to the pedestrian model. We analyse the smoothness of the
agent trajectory, how its behaviour is affected by SVO, and
the agent’s robustness to the pedestrian model. Agents with
an SVO value of 0° serve as a baseline for State of the Art
DRL methods with traditional reward functions that only take
the ego-vehicle’s goal into account, as an agent with an SVO
value of 0° is exactly equivalent to a standard DRL agent.

1) Qualitative Results: In Fig. 10 we show pedestrians
and AV trajectories with different SVO values with the same
initial conditions. Agents trained with SAC (first row) and
PPO (second row) display similar trajectories. In Fig. 10(a)
and (d) the vehicle accelerates to prevent the pedestrian from
crossing due to a low SVO value. Viceversa, in Fig. 10(c) and
(f) the ego-vehicle displays a behaviour called early-stopping,
in which it slows down to let the pedestrian initiate crossing.
Fig. 10(b) and (e) have intermediate behaviour. The effects of
the SVO with the overall agent behaviour are in line with our
expectations, i.e. pro-social behaviour for high SVO values
and egoistic behaviour with low SVO.

Fig. 11 shows the qualitative effect that unpredictable pedes-
trian behaviour has on an agent with SVO 0°. Fig. 11(a) and
(c) have an aware pedestrian, Fig. 11(b) and (d) an unaware
pedestrian. Despite the fact that the controller SVO is 0°, the
car stops to let the pedestrian cross in order to avoid collision,
thereby favouring safety over its own egoistic behaviour.

2) Quantitative Results: First of all, we evaluate the agents
success rate in completing its task in the first and second test
suites. We consider an episode successful when the ego-vehicle

reaches the end of the road whilst avoiding the pedestrian. All
the agents successfully completed the task without collisions
with the pedestrian in both the first and second test suite, which
demonstrates the fact that our model is capable of handling
the added complexity of risky scenarios.

In principle, two RL algorithms that solve an MDP problem
should both yield optimal policies which achieve the same
cumulative reward Fig. 8. However, actions taken are not nec-
essarily the same. Agents trained with PPO showed smoother
acceleration profiles, as shown in Fig. 12, consistently with
DRL theory. For an AV passenger, the policies generated by
PPO seem to be more comfortable from an ergonomics per-
spective, a fact that we intend to investigate in future research.
However, SAC has better exploration strategies, rendering it
more suitable to solve complex tasks.

Fig. 9 shows the average minimum distance between the
ego-vehicle and the pedestrian. The distance increases as
the SVO increases, which indicates that the AV has a more
altruistic behaviour and yields to the pedestrian. We observed
that the policies trained with the SAC algorithm tend to
stop much earlier to yield to the pedestrian compared to the
PPO algorithm, offering an explanation to why the average
minimum distance are significantly larger for such policies.

Overall, the results are consistent with our previous findings
[42], which confirms that the agents are capable of learning
behavioural strategies with more complex pedestrian behaviour
while still being able to handle risky or unexpected scenarios,
which is promising for real world applications.

VII. CONCLUSIONS

In this paper we presented an Autonomous Vehicles
decision-making strategy for pedestrian collision avoidance
based on DRL. We introduced a novel pedestrian model for
computer simulation that joins gap-acceptance and social-
force models that incorporates a situational awareness risk
evaluation to initiate crossing. We demonstrated how our
model is capable of handling more complex human models,
which is an important prerequisite in order to handle real
pedestrians. We have also conducted a comparative analysis
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Fig. 11: Qualitative trajectories with unaware pedestrian (b), (d) and
aware pedestrian (a), (c). Figures on the same row share the same
initial conditions. The ego-vehicle agent is the same for all scenarios
(SVO 0°) and is capable of distinguishing exploitable pedestrian
behaviours from hazardous ones.

Fig. 12: Acceleration profiles for PPO and SVO policies on the same
testing episode with SVO values of 0°-(a), 40°-(b), and 80°-(c).

of two different model-free DRL algorithms (SAC and PPO)
designed for continuous actions spaces applied to our problem.

We have shown how PPO policies lead to smoother actions
which are more appealing from an ergonomics perspective and
offer improvements with respect to previous papers that ap-
plied DRL to our problem [25], [26]. This work also highlights
how SVO can be an effective tool to design DRL algorithms
in human-machine interaction applications. A limitation of our
current work is that the SVO policies are trained with discrete
SVO values and one would have to switch controllers to alter
the ego-vehicle behaviour. We further intend to investigate
whether SVO can be used as an input parameter for the neural
network, rather than being a fixed parameter at the beginning
of each training. This would allow for continuous changes
in the car behaviour and the usage of a single controller
architecture.

The main assumption within our work is the presence of a
single pedestrian. An immediate extension of this work will
be to tackle the presence of multiple pedestrians and vehicles.

Further, we are looking to improve the state-space-
representation and utilise more advanced neural network ar-
chitectures to validate our model. In this work, we mainly
focused on qualitative results based on simulation to assess
the human-likeness of our methods. Our next step is to build
up a Virtual Reality environment and perform a subjective
human factor analysis with a human-in-the-loop.
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[3] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli,
“A survey of motion planning and control techniques for
self-driving urban vehicles,” IEEE Transactions on intelligent
vehicles, vol. 1, no. 1, pp. 33–55, 2016.

[4] D. Seth and M. L. Cummings, “Traffic efficiency and safety
impacts of autonomous vehicle aggressiveness,” simulation,
vol. 19, p. 20, 2019.

[5] P. Trautman and A. Krause, “Unfreezing the robot: Navigation
in dense, interacting crowds,” in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE, 2010,
pp. 797–803.

[6] R. O. Murphy, K. A. Ackermann, and M. Handgraaf, “Measur-
ing social value orientation,” Judgment and Decision making,
vol. 6, no. 8, pp. 771–781, 2011.

[7] P. A. Van Lange, E. De Bruin, W. Otten, and J. A. Joireman,
“Development of prosocial, individualistic, and competitive
orientations: Theory and preliminary evidence.,” Journal of
personality and social psychology, vol. 73, no. 4, p. 733, 1997.

[8] C. G. McClintock and S. T. Allison, “Social value orientation
and helping behavior 1,” Journal of Applied Social Psychology,
vol. 19, no. 4, pp. 353–362, 1989.

[9] J. Li, L. Sun, J. Chen, M. Tomizuka, and W. Zhan, “A safe
hierarchical planning framework for complex driving scenarios
based on reinforcement learning,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2021.

[10] X. Ma, J. Li, M. J. Kochenderfer, D. Isele, and K. Fujimura,
“Reinforcement learning for autonomous driving with latent
state inference and spatial-temporal relationships,” in 2021
IEEE International Conference on Robotics and Automation
(ICRA), IEEE, 2021, pp. 6064–6071.

[11] S. Aradi, “Survey of deep reinforcement learning for motion
planning of autonomous vehicles,” IEEE Transactions on
Intelligent Transportation Systems, 2020.

[12] G. Markkula, R. Romano, R. Madigan, C. W. Fox, O. T. Giles,
and N. Merat, “Models of human decision-making as tools
for estimating and optimizing impacts of vehicle automation,”
Transportation research record, vol. 2672, no. 37, pp. 153–
163, 2018.

[13] D. Helbing and P. Molnar, “Social force model for pedestrian
dynamics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.

[14] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and
decision-making for autonomous vehicles,” Annual Review of
Control, Robotics, and Autonomous Systems, 2018.

[15] A. O. Ly and M. Akhloufi, “Learning to drive by imitation: An
overview of deep behavior cloning methods,” IEEE Transac-
tions on Intelligent Vehicles, vol. 6, no. 2, pp. 195–209, 2020.

[16] M. Vitelli and A. Nayebi, “Carma: A deep reinforcement
learning approach to autonomous driving,” Tech. rep. Stanford
University, Tech. Rep., 2016.

[17] K. Min, H. Kim, and K. Huh, “Deep distributional reinforce-
ment learning based high-level driving policy determination,”
IEEE Transactions on Intelligent Vehicles, vol. 4, no. 3,
pp. 416–424, 2019.

[18] C.-J. Hoel, K. Driggs-Campbell, K. Wolff, L. Laine, and M. J.
Kochenderfer, “Combining planning and deep reinforcement
learning in tactical decision making for autonomous driv-
ing,” IEEE transactions on intelligent vehicles, vol. 5, no. 2,
pp. 294–305, 2019.

[19] J. Wang, Q. Zhang, D. Zhao, and Y. Chen, “Lane change
decision-making through deep reinforcement learning with
rule-based constraints,” in 2019 International Joint Conference
on Neural Networks (IJCNN), IEEE, 2019, pp. 1–6.

[20] J. Chen, B. Yuan, and M. Tomizuka, “Model-free deep rein-
forcement learning for urban autonomous driving,” in 2019
IEEE Intelligent Transportation Systems Conference (ITSC),
IEEE, 2019, pp. 2765–2771.



11

[21] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“Carla: An open urban driving simulator,” in Conference on
robot learning, PMLR, 2017, pp. 1–16.

[22] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep
reinforcement learning framework for autonomous driving,”
Electronic Imaging, vol. 2017, no. 19, pp. 70–76, 2017.

[23] W. Gao, D. Hsu, W. S. Lee, S. Shen, and K. Subramanian,
“Intention-net: Integrating planning and deep learning for goal-
directed autonomous navigation,” in Conference on Robot
Learning, PMLR, 2017, pp. 185–194.

[24] M. Everett, Y. F. Chen, and J. P. How, “Collision avoidance
in pedestrian-rich environments with deep reinforcement learn-
ing,” IEEE Access, vol. 9, pp. 10 357–10 377, 2021.

[25] N. Deshpande and A. Spalanzani, “Deep reinforcement learn-
ing based vehicle navigation amongst pedestrians using a grid-
based state representation,” in 2019 IEEE Intelligent Trans-
portation Systems Conference (ITSC), IEEE, 2019, pp. 2081–
2086.

[26] J. Li, L. Yao, X. Xu, B. Cheng, and J. Ren, “Deep reinforce-
ment learning for pedestrian collision avoidance and human-
machine cooperative driving,” Information Sciences, vol. 532,
pp. 110–124, 2020.

[27] K. A. Ackermann and R. O. Murphy, “Explaining cooperative
behavior in public goods games: How preferences and beliefs
affect contribution levels,” Games, vol. 10, no. 1, p. 15, 2019.

[28] W. Schwarting, A. Pierson, J. Alonso-Mora, S. Karaman, and
D. Rus, “Social behavior for autonomous vehicles,” Proceed-
ings of the National Academy of Sciences, vol. 116, no. 50,
pp. 24 972–24 978, 2019.

[29] L. Sun, W. Zhan, M. Tomizuka, and A. D. Dragan, “Courteous
autonomous cars,” in 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), IEEE, 2018,
pp. 663–670.

[30] F. Camara, N. Bellotto, S. Cosar, et al., “Pedestrian models
for autonomous driving part i: Low-level models, from sensing
to tracking,” IEEE Transactions on Intelligent Transportation
Systems, 2020.

[31] F. Camara, N. Bellotto, S. Cosar, et al., “Pedestrian models
for autonomous driving part ii: High-level models of human
behavior,” IEEE Transactions on Intelligent Transportation
Systems, 2020.

[32] B. Schroeder, N. Rouphail, K. Salamati, et al., “Empirically-
based performance assessment & simulation of pedestrian be-
havior at unsignalized crossings.,” Southeastern Transportation
Research, Innovation, Development and Education . . ., Tech.
Rep., 2014.

[33] D. Sun, S. Ukkusuri, R. F. Benekohal, and S. T. Waller,
“Modeling of motorist-pedestrian interaction at uncontrolled
mid-block crosswalks,” in Transportation Research Record,
TRB Annual Meeting CD-ROM, Washington, DC, 2003.

[34] K. Tian, G. Markkula, C. Wei, and R. Romano, “Creating
kinematics-dependent pedestrian crossing willingness model
when interacting with approaching vehicle,” in 2020 IEEE
23rd International Conference on Intelligent Transportation
Systems (ITSC), IEEE, 2020, pp. 1–6.

[35] K. Tian, G. Markkula, C. Wei, et al., “Explaining unsafe
pedestrian road crossing behaviours using a psychophysics-
based gap acceptance model,” Safety Science, 2022.

[36] W. Zeng, P. Chen, H. Nakamura, and M. Iryo-Asano, “Appli-
cation of social force model to pedestrian behavior analysis
at signalized crosswalk,” Transportation research part C:
emerging technologies, vol. 40, pp. 143–159, 2014.

[37] D. Yang, F. T. Johora, K. A. Redmill, Ü. Özgüner, and
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