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Abstract. We classify mutation-finite cluster algebras with arbitrary coefficients of
geometric type. This completes the classification of all mutation-finite cluster algebras
started in [FeSTu1].
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1. Introduction and main results

Cluster algebras with coefficients were introduced in [FZ4], the fourth paper in the
series founding the theory of cluster algebras. Cluster algebras of geometric type are
defined as those having their coefficients in tropical semifields. In particular, this includes
the important case of cluster algebras with principal coefficients.

A cluster algebra of geometric type is completely defined by an integer (m+n)×n ex-
change matrix with skew-symmetrizable top n×n part (called principal or mutable part).
Exchange matrices undergo involutive transformations called mutations, all exchange ma-
trices which can be obtained by iterative mutations form a mutation class. We say that
a cluster algebra is mutation-finite if its mutation class is finite.

Coefficient-free mutation-finite cluster algebras were classified in [FeSTu1, FeSTu2].
These algebras found various applications, including ones in quantum field theories (see
e.g. [ACCERV, CV]).

Research of P.T. was supported in part by the Leverhulme Trust research grant RPG-2019-153.
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In this paper, we classify all mutation-finite exchange matrices with arbitrary coeffi-
cients. We first restrict ourselves to matrices with skew-symmetric mutable part (this
assumption will be dropped later). In this case the matrix can be represented by a quiver
with vertices of two types: mutable (corresponding to the mutable part of the matrix)
and frozen (such quivers are also called ice quivers). The quiver also undergoes mutations
compatible with mutations of the matrix, we say that a quiver is mutation-finite if the
corresponding exchange matrix is.

The first easy observation is that the mutable part of a mutation-finite quiver should be
mutation-finite. Mutation-finite quivers without frozen vertices were classified in [FeSTu1],
the list consists of the following (overlapping) classes of quivers: rank 2 quivers, quivers
originating from surfaces (see Section 2), quivers of finite type (i.e., with an orientation of
a finite type Dynkin diagram in the mutation class), quivers of affine type (ones with an
orientation of an affine type Dynkin diagram in the mutation class), quivers of extended

affine types E
(1,1)
6 , E

(1,1)
7 and E

(1,1)
8 (see Fig. 2.2), exceptional quivers of types X6 and X7

(see also Fig. 2.2).
Another easy observation is that it is enough to consider just one frozen vertex. Indeed,

as there are no arrows between frozen vertices, the frozen vertices do not affect each other
in the process of mutations.

Definition 1.1. Let Q be a quiver of finite mutation type (with vertices v1, . . . , vn all
being mutable). Let q be an additional (frozen) vertex, denote by bi the number of
arrows connecting a vertex vi of Q to q. We will say that the integer coefficient vector
b = (b1, . . . , bn) is admissible if b 6= 0 and the quiver spanned by Q and q with the unique
frozen vertex q is of finite mutation type.

Therefore, the question of classification of mutation-finite exchange matrices is equiv-
alent to finding all admissible vectors for every mutation-finite quiver without frozen
vertices.

A distinguished class of cluster algebras consists of algebras of finite type: these were
classified by Fomin and Zelevinsky in [FZ2] by establishing a connection with Cartan-
Killing classification of simple Lie algebras. They also proved in [FZ4] that adding any
coefficients to a cluster algebra of finite type results in a mutation-finite cluster algebra.
Moreover, this characterizes cluster algebras of finite type: if every exchange matrix with
given principal part is mutation-finite, then the principal part defines an algebra of finite
type. A stronger conjecture was made in [FZ4] stating that it is sufficient to check the
mutation-finiteness of the algebra with principal coefficients only, this was proved by
Seven [Se].

In particular, this provides the answer for the finite type.

Proposition 1.2 ([FZ4]). If Q is of finite type then any vector b is admissible.

The next large class of quivers consists of quivers from surfaces [FST]. We first prove
the following statement.

Proposition 1.3 (Theorem 3.2). If Q is arising from a surface then b is admissible if
and only if it corresponds to a peripheral lamination.
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Due to results of Gu [Gu1], Proposition 1.3 provides an algorithm which determines
whether a given quiver from a surface with a frozen vertex is mutation-finite: using [Gu1],
one can reconstruct a triangulation, then one can reconstruct a lamination using a pro-
cedure from [FT], and then it is straightforward to check whether a given lamination is
peripheral. We will give a more explicit characterization of coefficient vectors correspond-
ing to peripheral laminations in Section 8.

Next, we consider affine and exceptional mutation-finite classes. Every mutation class of
quivers of affine type contains a representative with a double arrow, so the main tool in the
considerations is the following necessary condition (which we call the annulus property).

Proposition 1.4 (Corollary 3.5). Let Q be a quiver containing a double arrow from v1
to v2. Then a vector b is admissible only if b1 = −b2 ≤ 0.

In the affine case Ã we use Proposition 1.3 to show that the annulus property is also
sufficient (see Lemma 4.1 and Remark 4.2).

The same result applies to other affine quivers, but here their treatment is based on
their cluster modular groups studied in [KG].

Proposition 1.5 (Theorem 4.3). For the representatives of the mutation classes of affine

types D̃ and Ẽ shown in Fig. 4.3, a vector is admissible if and only if it satisfies the
annulus property.

This result is then generalized to all quivers of affine type containing a double arrow.

Proposition 1.6 (Theorem 4.4). If Q is a quiver of affine type containing a double arrow,
then a vector b is admissible if and only if b satisfies the annulus property.

For the extended affine quivers and quivers of type X6 and X7 we take a specific
representative Q from the mutation class (see Figs. 5.1–6.1) and an element of the cluster
modular group ϕ to show that the annulus property for Q is not compatible with the
annulus property for ϕ(Q), which results in the following statement.

Proposition 1.7 (Theorems 5.1–6.2). Let Q be of type E1,1
6 , E1,1

7 , E1,1
8 , X6 or X7. Then

there is no admissible vector b.

In the next proposition we consider the quivers of rank 2 (note that the first two parts
have been already considered previously).

Proposition 1.8 (Theorem 7.1). Let Q be a rank two quiver with the arrow from v1 to
v2 of weight a > 0. Let b = (b1, b2) be an integer vector. Then

(1) if a = 1 then b is admissible for any b1, b2;
(2) if a = 2 then b is admissible if and only if b1 = −b2 ≤ 0;
(3) if a > 2 then there are no admissible vectors.

Finally, we specify a particular triangulation for every surface and give the admissibility
criterion for the corresponding quiver, see Theorem 8.2. The criterion is also based on
the annulus property.
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The results are extended to the general skew-symmetrizable case in Section 9 by using
diagrams in place of quivers and orbifolds in place of surfaces. The modified annulus
property for arrows of weight (1, 4) is defined in Theorem 9.6.

We now combine the results in one theorem.

Theorem 1.9. Let Q be a quiver/diagram and b = (b1, . . . , bn) be an integer vector.

(1) if Q is of finite type then any vector b is admissible;
(2) if Q is of affine type and Q contains a double arrow or an arrow of weight (1, 4),

then a vector b is admissible if and only if b satisfies the annulus property;
(3) if Q is arising from a surface/orbifold then b is admissible if and only if it corre-

sponds to some peripheral lamination; the criterion for admissibility is given for
a specific representative of the mutation class in Theorems 8.2 and 9.8;

(4) otherwise, there is no admissible vector.

A criterion for being mutation-finite can be also reformulated in terms of the annulus
property applied to the whole mutation class, this was proposed by Sergey Fomin. The
statement is similar to the analogous criterion for quivers/diagrams without frozen vertices
(see e.g. [DO, Corollary 8]).

Theorem 1.10 (Theorem 10.1). Let Q be a quiver/diagram with a frozen vertex v. Sup-
pose that the subquiver Q \ v is mutation-finite. Then Q is mutation-finite if and only if
the annulus property holds in every quiver/diagram Q′ mutation-equivalent to Q for every
double arrow contained in Q′ \ v.

From this one can conclude the following.

Corollary 1.11 (Corollary 10.2). Let Q be a quiver/diagram with a frozen vertex. Then
Q is mutation-finite if and only if for every quiver Q′ in the mutation class of Q every
rank 3 subquiver/subdiagram of Q′ is mutation-finite.

The paper is organized as follows. In Section 2 we recall necessary background concerning
triangulated surfaces and laminations on them. Section 3 is devoted to quivers from
surfaces and the connection between admissible vectors and peripheral laminations. In
Section 4 we consider quivers of affine types, in Sections 5 and 6 we treat extended affine
quivers and quivers of types X6 and X7. In the short Section 7 we consider quivers of rank
2. Section 8 characterizes admissible vectors for a particular triangulation of a surface. In
Section 9 all results are extended to the general context of skew-symmetrizable mutation
classes. Finally, in Section 10 we discuss the criterion of mutation-finiteness in terms of
the annulus property.

Acknowledgements. We would like to thank Sergey Fomin for the question inspiring the
current project and for helpful suggestions, Michael Shapiro for stimulating discussions,
and Dani Kaufman for sharing then unpublished results of [KG] with us. We are grateful
to the anonymous referee for useful remarks. A substantial part of the paper was written
at the Isaac Newton Institute for Mathematical Sciences, Cambridge; we are grateful to
the organizers of the program “Cluster algebras and representation theory”, and to the
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Institute for support and hospitality during the program; this work was supported by
EPSRC grant no EP/R014604/1.

2. Background

2.1. Matrix mutation. We start by reminding the definition of matrix mutation (we
adopt the notation from [FZ4]).

Given an integer skew-symmetric n × n matrix B = (bij), the mutation µk of B for
k ∈ {1, . . . , n} is defined by µk(B) = B′ = (b′ij) where

b′ij =

{
−bij if i = k or j = k

bij + sgn(bik)[bikbkj]+ otherwise,

where sgn(x) denotes the sign function and [x]+ = max{x, 0}.
For an extended m×n matrix B with m > n and skew-symmetric principal part given

by first n rows, the mutation is provided by the same formula.

Remark 2.1. A skew-symmetric n × n matrix B = (bij) can be represented by a quiver
with n vertices v1, . . . , vn and bij arrows from vi to vj. Matrix mutation then can be
reformulated in the quiver language, see Fig. 2.1.

p pq q

pq − rr

µk
k k

Figure 2.1. Quiver mutation. Here p, q are positive, and the sign of r
and pq − r can be negative (which corresponds to opposite direction of the
respective arrows).

2.2. Construction of quivers from triangulations. We briefly recall the construction
of quivers from triangulated surfaces [FST].

Let S be a connected orientable surface with boundary and with a finite setM of marked
points (such that every boundary component contains at least one marked point). Let
T be a triangulation of S by the arcs having their endpoints in M . Suppose that T
has no self-folded triangles (i.e. every triangle in T is bounded by three distinct arcs or
boundary segments). We construct a quiver Q whose vertices v1, . . . , vn correspond to the
arcs e1, . . . , en of T . The number of arrows in Q from vi to vj is defined as

(2.1) bij = #{triangles with sides ei and ej , with ej following ei in clockwise order}−
#{triangles with sides ei and ej , with ej following ei in counterclockwise order}.
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For more subtle rules for treating self-folded triangles see [FST].
It is shown in [FST] that mutations of the quiver Q correspond to flips of the triangula-

tion T . It is easy to see from the definition above that combinatorially equivalent triangu-
lations of S give rise to isomorphic quivers (we say that triangulations are combinatorially
equivalent if one can be taken to the other by an orientation-preserving homeomorphism
of the surface). As it is shown in [Gu1], a triangulation of a surface can be uniquely
reconstructed from the corresponding quiver (up to finitely many low rank examples).

2.3. Classification of mutation-finite quivers. We will heavily use the following.

Theorem 2.2 ([FeSTu1]). A connected mutation-finite quiver is either of rank 2, or a
quiver arising from a triangulation of a surface, or a quiver mutation-equivalent to one of

the eleven quivers E6, E7, E8, Ẽ6, Ẽ7, Ẽ8, E
(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 , X6, X7 shown on Fig. 2.2.

E6

E7

E8

Ẽ6

Ẽ7

Ẽ8

Ẽ
(1,1)
6

Ẽ
(1,1)
7

Ẽ
(1,1)
8

X6

X7

Figure 2.2. Eleven exceptional finite mutation classes

2.4. Laminations as coefficients for surface case. It is shown in [FT] that in the
case of a quiver from triangulated surface S, the coefficient vectors can be represented
by laminations on the same surface S, and that the coefficient vectors can be computed
from the triangulation and lamination using shear coordinates.

Definition 2.3 ([FT], Def. 12.1). An integral unbounded measured lamination, or just
a lamination for short, on a marked surface (S,M) is a finite collection of non-self-
intersecting and pairwise non-intersecting curves in S, modulo isotopy relative to M ,
subject to the restrictions specified below. Each curve must be one of the following:

- a closed curve (an embedded circle);
- a curve connecting two unmarked points on the boundary of S;
- a curve starting at an unmarked point on the boundary and, at its other end,

spiralling into a puncture (either clockwise or counterclockwise);
- a curve both of whose ends spiral into punctures (not necessarily distinct);

where the following types of curves are not allowed:

- a curve that bounds an unpunctured or once-punctured disk;



CLUSTER ALGEBRAS OF FINITE MUTATION TYPE WITH COEFFICIENTS 7

- a curve with two endpoints on the boundary of S which is isotopic to a piece of
boundary containing no marked points, or a single marked point;

- a curve with two ends spiralling into the same puncture in the same direction
without enclosing anything else.

When speaking about two curves γ1 and γ2 (for example an arc of triangulation and
a curve from a lamination) we always assume that the number of crossings is minimal
possible for the curves in the homotopy classes of γ1 and γ2 respectively.

Definition 2.4 ([FT], Def. 12.2). Let L be a lamination and let T be a triangulation
without self-folded triangles of the same surface. For each arc γ in T , the corresponding
shear coordinate of L with respect to the triangulation T , denoted by bγ(T, L), is defined
as a sum of contributions from all intersections of curves in L with the arc γ. Specifically,
such an intersection contributes +1 (resp., −1) to bγ(T, L) if the corresponding segment of
a curve in L cuts through the quadrilateral surrounding γ cutting through edges as shown
in Fig. 2.3 on the left (resp., on the right). Note that at most one of these two types of
intersection can occur. Note also that even though a spiralling curve can intersect an arc
infinitely many times, the number of intersections that contribute to the computation of
bγ(T, L) is always finite.

Shear coordinates can also be defined for arcs involved in self-folded triangles, see [FT,
Section 13].

Note that the vector b = (b1, . . . , bn) from Definition 1.1 consists of negative shear
coordinates of the corresponding lamination.

+1

−1

γ

γ

Figure 2.3. Shear coordinates.

It is known (see [FT, Theorem 13.6], see also [FG, Section 3]) that for a given tri-
angulation T , the map L 7→ (bγ(T, L))γ∈T provides a bijection between laminations and
Zn.

In particular, for every triangulation T and every arc γ0 ∈ T there exists an elementary
lamination L such that bγ0(T, L) = 1 and bγi(T, L) = 0 for all γi ∈ T , i 6= 0. This ele-
mentary lamination consists of one curve which follows γ0 but has its endpoints changed:
for endpoints of γ0 at a boundary marked point, the end of the elementary lamination
is shifted to the left along the boundary, for endpoints of γ0 at a puncture, the end of
the elementary lamination is spiralling into the puncture anti-clockwise if the end is un-
tagged and clockwise otherwise. We will also use negative elementary lamination defined
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by bγ0(T, L) = −1 and bγi(T, L) = 0 for all γi ∈ T , i 6= 0. The negative elementary
lamination also consists of one curve tracing the arc γ0, but having boundary endpoints
shifted to the right and the puncture end points spiralling to the puncture in the clockwise
direction.

3. Quivers from surfaces and peripheral laminations

Let Q be a quiver constructed by a triangulation T of a surface S. As it was mentioned
in Section 2.4, choosing a coefficient vector b is equivalent to a choice of a lamination
L on S. Since mutations correspond to flips of triangulations (and we can reach every
triangulation by a sequence of flips), the vector b is admissible if and only if the shear
coordinates of the lamination L on all triangulations of S take finitely many values only.

Definition 3.1. A curve on a marked surface S will be called peripheral if it belongs
to some lamination on S and can be isotopically deformed to (a part of) a boundary
component of S. By a peripheral lamination we understand a lamination consisting of
peripheral curves.

In this section, we show that admissible vectors are in bijection with peripheral lami-
nations (see Theorem 3.2). In Section 8 we will reformulate the result in terms of quivers.

Theorem 3.2. Let Q be a quiver from a triangulated surface S. Then admissible vectors
for Q are in bijection with peripheral laminations on S.

Proof. We need to show that the vector of shear coordinates of a lamination L takes
finitely many values if and only if L is peripheral.

First, consider a peripheral lamination L. It is preserved by any Dehn twist along any
closed curve on the surface, and hence, it is preserved by the whole mapping class group
of the surface (as the latter is generated by twists).

Observe that for a given surface S there is only a finite number of combinatorial types
of triangulations (in particular, this is precisely the reason why quivers originating from
surfaces are mutation-finite), and combinatorially equivalent triangulations can be taken
to each other by elements of the mapping class group of S. This implies that given
an initial triangulation T and the corresponding quiver Q, there is a finite number of
mutation sequences applying which together with elements of the mapping class group
we can reach any triangulation of S. Since shear coordinates of L are invariant under the
action of the mapping class group, this implies that the vector of shear coordinates of L
takes one of finitely many values.

Now, consider a lamination L which is not peripheral. Then there exists a closed curve
C crossing L. Let T be a triangulation and Dk

C(T ), k ∈ Z be the images of T under
iterative applications of Dehn twist DC along C. We claim that shear coordinates of
L with respect to Dk

C(T ) take infinitely many different values. Indeed, to apply DC to
T with keeping L intact is the same as applying D−1C to L and preserving T . As C
intersects L, the Dehn twists D−kC (L) will produce infinitely many different laminations.
Due to the bijection between laminations and their shear coordinates, this implies that
the shear coordinates of laminations D−kC (L) with respect to triangulation T are different.



CLUSTER ALGEBRAS OF FINITE MUTATION TYPE WITH COEFFICIENTS 9

Hence, the shear coordinates of L with respect to triangulations Dk
C(T ) are different, and

thus take infinitely many values. This implies that non-peripheral laminations do not
correspond to admissible vectors. �

Notice that if a surface has no boundary, then it contains no peripheral curves. This
gives rise to the following corollary of Theorem 3.2.

Corollary 3.3. If a surface has no boundary, then the quiver of any of its triangulations
has no admissible vectors.

Example 3.4. Let Q be the affine quiver Ã1 (two vertices v1 and v2 connected by a
double arrow from v1 to v2). It corresponds to an annulus with one marked point on each
boundary component, see Fig. 3.1. The only peripheral curve on the annulus coincides
with the unique closed curve inside this annulus (here we use the fact that every boundary
component contains only one marked point). So, every peripheral lamination consists of
an integer number of copies of this closed curve. As one can see from Fig. 3.1, the
corresponding coefficient vector satisfies

b1 = −b2 ≤ 0

(recall that bi denotes negative shear coordinate, i.e. the number of arrows from a vertex
vi to the frozen vertex).

The result of Example 3.4 can be reformulated as follows.

Corollary 3.5 (Annulus property). Let Q be the rank 2 quiver with a double arrow from
v1 to v2 and b = (b1, b2) be an admissible vector. Then b1 = −b2 ≤ 0. This will be called
the annulus property for v1 =>v2.

Corollary 3.5 leads to the following necessary condition for a coefficient vector b to be
admissible, which we will heavily use throughout the paper.

Definition 3.6 (Annulus property). For an arbitrary quiver Q, a coefficient vector b =
(b1, . . . , bn) satisfies the annulus property if for every double arrow vi =>vj in Q we have
bi = −bj ≤ 0.

1 2

1
2

1 2

Figure 3.1. Quiver Ã1, annulus and admissible coefficients.
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4. Quivers of affine type

Let L be a lamination on an annulus. A curve C ∈ L is called bridging if it has
endpoints on both boundary components of the annulus (in other words, if and only if it
is not peripheral).

Lemma 4.1. Let Sp,q be the annulus with p and q boundary marked points triangulated as
in Fig. 4.1. Then a vector (b1, . . . , bn) is admissible if and only if it satisfies the annulus
property.

4 3

2 1

3

4

1 2

︸ ︷︷ ︸
p− 1

q − 1︷ ︸︸ ︷

Figure 4.1. Triangulated annulus Sp,q with the corresponding quiver of

type Ãp,q.

Proof. The annulus property b1 = −b2 ≤ 0 is necessary by Corollary 3.5. We need to
prove that it is also sufficient for admissibility of (b1, . . . , bn). In view of Theorem 3.2, this
is equivalent to proving that for every vector (b1, . . . , bn) satisfying b1 = −b2 ≤ 0 there
exists a peripheral lamination resulting in this vector. Since every vector is realisable
by some lamination, we see that it is sufficient to show that a lamination satisfying the
condition b1 = −b2 ≤ 0 cannot contain bridging curves.

Suppose that L is a lamination on Sp,q with b1 = −b2 ≤ 0 and containing a bridging
curve l. Consider the restriction L of the lamination L to the shaded annulus S1,1 with
one marked point at each boundary component (see Fig. 4.1). The restriction l̄ of the
curve l to S1,1 is a bridging curve for S1,1. In Fig. 4.2 we show a triangulated annulus (left)
and its universal cover (right). For every bridging curve, we draw its lift (we normalize it
by drawing the “lower” end in the same square of the universal cover) and compute its
(negative) shear coordinates. Notice that every peripheral curve satisfies either b1 = b2 = 0
(if it is not the closed curve) of b1 = −b2 = −1 otherwise. The latter is not contained
in L in presence of a bridging curve. Hence, peripheral curves in L do not affect b1 and
b2, and it is sufficient to check coordinates of all collections of mutually non-intersecting
bridging curves.
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Any bridging curve on S1,1 can be obtained from any other bridging curve by application
of a power of the Dehn twist along the unique closed curve, and if two curves differ by more
than one twist then they intersect each other. One can easily see that no bridging curve on
S1,1 satisfies |b1| = |b2|, and coordinates (b1, b2) of a pair of bridging curves differing by one
twist can take values (−2k−1, 2k+3), (1, 1), (1,−1), (−1,−1), (−2k−2, 2k+1) for k ≥ 0
(see Fig. 4.2). Noone of these satisfies b1 = −b2 ≤ 0, so we obtain a contradiction. �

2 2

1 1

2 2

1

2 2

(−2, 3) (−1, 2) (0, 1) (1, 0) (0,−1) (−1, 0) (−2,1)

Figure 4.2. Triangulated annulus S1,1, its universal cover, and bridging
curves with corresponding values of (b1, b2) (recall that we define bi as neg-
ative shear coordinates).

Remark 4.2. Notice that the proof of Lemma 4.1 does not use any properties of the
triangulation of Sp,q outside of the shaded annulus. In other words, the same proof works
for any triangulation of Sp,q with the associated quiver containing a double arrow.

We will now use Lemma 4.1 to classify all admissible vectors for the remaining quivers
of affine type.

Take the representatives of the mutation classes D̃n, Ẽ6, Ẽ7, Ẽ8 shown in Fig. 4.3.
A necessary condition on an admissible vector follows from the annulus property. The
following theorem shows that every coefficient not breaking the annulus property is ad-
missible.

Ẽ6
0

1

2
34 5 6

Ẽ7 0

1

2
34 5 6 7

Ẽ8 0

1

2
34 5 6 7 8

Ãp,q

︸ ︷︷ ︸
q − 1

︸ ︷︷ ︸
p− 1

D̃n 0

1

2n
3 4 5 n−1

Figure 4.3. Representatives of affine mutation classes Ãp,q, D̃n, Ẽn.
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Theorem 4.3. Let Q be the quiver of type D̃n, Ẽ6, Ẽ7 or Ẽ8 shown in Fig. 4.3. A
coefficient vector b is admissible if and only if it satisfies b0 = −b1 ≤ 0.

Before proving the theorem, we recall the notion of the cluster modular group as the
group generated by sequences of mutations (followed by permutations of the vertices of a
quiver if needed) preserving the initial quiver (see e.g. [FeSTTu] for a detailed definition,
where the term “mapping class group of a cluster algebra” is used instead, and [Fr, KG] for
detailed descriptions of the cluster modular groups for affine and extended affine algebras).

Proof. The necessity of the assumption of the theorem follows from the annulus property.
We now prove the sufficiency.

It is shown in [KG] that the cluster modular group for Q is an abelian group generated
by three mutation sequences (followed by certain permutations) described below. Define
the sets of indices

Iodd =

{
{i ∈ [5, k], i odd} for type Ẽk
{i ∈ [3, n−1], i odd} for type D̃n

Ieven =

{
{i ∈ [5, k], i even} for type Ẽk
{i ∈ [3, n−1], i even} for type D̃n

and define the composite mutations µodd and µeven as compositions of commuting muta-
tions in Iodd and Ieven respectively.

In these terms the generators of the cluster modular group can be written as follows:

µ(1) = µ2 ◦ µ1 ◦ µ0 with cyclic permutation (v2v1v0)

µ(2) =

{
µ4 ◦ µ3 ◦ µ1 ◦ µ0 with permutation (v3v1v0) for type Ẽk
µn ◦ µ1 ◦ µ0 with permutation (vnv1v0) for type D̃n

µ(3) = µeven ◦ µodd ◦ µ1 ◦ µ0 with permutation (v5v1v0) or (v3v1v0) for Ẽk and D̃n

resp.

Inside Q consider the following subquivers which we will call wings (we list the vertices
of the subquivers in the brackets):

Q1 = 〈v2〉, Q2 = 〈v3, v4〉 or 〈vn〉 for Ẽk and D̃n resp., Q3 = 〈vIodd , vIeven〉.

We claim that each of µ(k), k = 1, 2, 3, only changes the value of bi if i ∈ Qk and
does not affect others. To see this, consider the subquivers Q \ Qi = 〈v0, v1, Qj, Qk〉,
i, j, k distinct. Each of these corresponds to a triangulated annulus, with an annulus S1,1

inside (which corresponds to the subquiver 〈v0, v1〉) and polygons attached to each of its
boundaries (which correspond to the wings). By Lemma 4.1, the assumption b0 = −b1 ≤ 0
implies that the restriction of vector b on Q \Qi is defined by some peripheral lamination
on the corresponding annulus. The mutation µ(k) acts as a cyclic permutation of the
boundary marked vertices of the triangulation corresponding to the k-th wing. Therefore,
this element acts trivially on the wing Qj and on the values of b0 and b1, while the order
of the action on Qk is equal to the number of vertices in Qk plus one. Since we could
choose the quiver Q \Qj instead, µ(k) acts trivially on Qi as well. Thus, the action of the
whole cluster modular group on the vector b has a finite orbit.
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The rest of the proof is similar to the proof of Theorem 3.2. As Q is mutation-finite, the
number of distinct mutation sequences modulo the action of the cluster modular group
is finite. Together with the finiteness of the orbit of b under the action of the cluster
modular group this results in the admissibility of b. �

We now generalize the result of Theorem 4.3 to all quivers of affine type containing a
double arrow.

Theorem 4.4. If Q is of affine type and Q contains a double arrow, then a vector b is
admissible if and only if b satisfies the annulus property.

Proof. For the quivers of types Ã the statement follows from Remark 4.2. All quivers of

type D̃ are classified in [He], and it follows from the classification that any quiver with a

double arrow can be obtained from the quiver Q of type D̃n shown in Fig. 4.3 by mutations
in vertices vi for 4 ≤ i ≤ n. Therefore, we can mutate our quiver to Q preserving the
annulus property, so Theorem 4.3 implies that the vector b is admissible.

The proof for types Ẽ6, Ẽ7, Ẽ8 is similar: the inspection of the mutation classes shows
that all quivers with double arrows are obtained from the quivers in Fig. 4.3 by a sequence
of mutations at vertices v6, v7, v8. As none of these vertices is connected to v0 and v1,
such a sequence of mutations cannot break the annulus property. �

5. Extended affine quivers

In this section, we prove that there are no admissible vectors for extended affine types

E
(1,1)
6,7,8 . For every mutation class we choose a specific representative containing a double

arrow and find an element µ from the cluster modular group such that the application of
µ breaks the annulus property.

5.1. Mutation class of E
(1,1)
6 .

Theorem 5.1. There is no admissible vector for a quiver in the mutation class of E
(1,1)
6 .

Proof. It is sufficient to prove the statement for one quiver from the mutation class. We
consider the quiver Q shown in Fig. 5.1, left. Suppose that b = (b1, . . . , b8) is an admissible
vector.

Plan of the proof and notation. The subquiver 〈v7, v8〉 is of type Ã1, so from the
annulus property for v8 => v7 we have

(5.1) b8 = −b7 ≤ 0.

We will find a sequence of mutations µ taking Q to the opposite quiver Qop (where Qop

is obtained from Q by reversing all arrows) and check that after the application of the
mutation sequence µ to b the annulus property does not hold.

More precisely, let

µ∗ = µ3 ◦ µ2 ◦ µ1 and µ� = µ7 ◦ µ6 ◦ µ5 ◦ µ4
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(notice that the components of each of these composite mutations commute) and consider
the following sequence of three composite mutations:

µ = µ∗ ◦ µ� ◦ µ∗.
Observe that Q1 := µ∗(Q) is the quiver shown in Fig. 5.1, right, Q2 := µ� ◦ µ∗(Q) = Qop

1

is the quiver opposite to Q1, and Q3 := µ(Q) = Qop is the quiver opposite to Q.

4 1 2 5 3 6

7

8

4 1 2 5 3 6

7

8

Figure 5.1. Q = E1,1
6 (left) and µ∗(Q) (right).

We now compute how the vector b changes under the sequence of mutations. Denote its

components by b
(1)
i , b

(2)
i and b

(3)
i after applying µ∗, µ�◦µ∗ and µ = µ∗◦µ�◦µ∗ respectively.

If b is an admissible vector, then (b
(3)
1 , . . . , b

(3)
8 ) satisfies the annulus property for v7 =>v8

in Q3 (as Q3 = Qop), i.e. one must have

(5.2) b
(3)
7 = −b(3)8 ≤ 0,

but the computation will show this implies b = 0.

Computation of b
(3)
8 . We start by computing b

(1)
8 , b

(2)
8 and b

(3)
8 :

b
(1)
8 = b8 − [−b1]+ − [−b2]+ − [−b3]+ ≤ b8 ≤ 0;

b
(2)
8 = b

(1)
8 − [−b(1)4 ]+ − [−b(1)5 ]+ − [−b(1)6 ]+ − [−b(1)7 ]+ ≤ b

(1)
8 ≤ 0;

b
(3)
8 = b

(2)
8 − [−b(2)1 ]+ − [−b(2)2 ]+ − [−b(2)3 ]+ ≤ b

(2)
8 ≤ 0.

If b
(3)
8 6= 0 then we obtained b

(3)
8 < 0 which contradicts (5.2). Therefore b

(3)
8 = 0.

Furthermore, since b8 ≤ 0 and all summands above are also non-positive, the condition

b
(3)
8 = 0 is satisfied if and only if b8 = 0 and all entries in the computation above vanish.

This results in the following constrains:

(5.3) b7 = b8 = 0, b1, b2, b3 ≥ 0, b
(1)
4 , b

(1)
5 , b

(1)
6 , b

(1)
7 ≥ 0, b

(2)
1 , b

(2)
2 , b

(2)
3 ≥ 0.

Computation of b
(3)
7 . Since b

(3)
8 = 0, (5.2) implies that b

(3)
7 = 0. Our goal is to express

b
(3)
7 via the components of b to find further constrains on bi. We do this by first expressing

b
(3)
7 via b

(2)
i , then computing required b

(2)
i in terms of b

(1)
j , etc. While computing we will

use the inequalities (5.3).

b
(1)
7 = b7 + [b1]+ + [b2]+ + [b3]+ = b1 + b2 + b3;

b
(2)
7 = −b(1)7 = −b1 − b2 − b3;
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b
(3)
7 = b

(2)
7 + [b

(2)
1 ]+ + [b

(2)
2 ]+ + [b

(2)
3 ]+ = b

(2)
7 + b

(2)
1 + b

(2)
2 + b

(2)
3 .

b
(1)
i = −bi ≤ 0 for i = 1, 2, 3;

b
(1)
4 = b4 + b1 ≥ 0; b

(1)
5 = b5 + b2 ≥ 0; b

(1)
6 = b6 + b3 ≥ 0;

b
(1)
7 = b1 + b2 + b3 ≥ 0;

b
(2)
1 = b

(1)
1 + b

(1)
4 + b

(1)
7 = (−b1) + (b4 + b1) + (b1 + b2 + b3 = b4 + b1 + b2 + b3) ≥ 0;

b
(2)
2 = b

(1)
2 + b

(1)
5 + b

(1)
7 = b5 + b1 + b2 + b3 ≥ 0;

b
(2)
3 = b

(1)
3 + b

(1)
6 + b

(1)
7 = b3 + b1 + b2 + b3 ≥ 0.

Finally, we obtain

b
(3)
7 = b

(2)
7 + b

(2)
1 + b

(2)
2 + b

(2)
3 = (b4 + b1) + (b5 + b2) + (b6 + b3) + b1 + b2 + b3 = 0.

Notice that every summand in the sum is non-negative. Therefore, every summand is
zero, in particular, b1 = b2 = b3 = 0, from which we have b4 = b5 = b6 = 0. Since we also
know b7 = b8 = 0, we conclude that b = 0, which implies there are no non-zero admissible
vectors. �

5.2. Mutation class of E
(1,1)
7 .

Theorem 5.2. There is no admissible vector for a quiver in the mutation class of E
(1,1)
7 .

Proof. The proof follows the same scheme as the one for the case of E
(1,1)
6 , we omit explicit

computations as they are very similar to the previous case but much longer.
We consider the quiver Q shown in Fig. 5.2. Denote

µ∗ = µ5 ◦ µ4 ◦ µ3 ◦ µ2 ◦ µ1 µ� = µ8 ◦ µ7 ◦ µ6

and consider

µ = µ∗ ◦ µ� ◦ µ∗ ◦ µ� ◦ µ∗.
Let b = (b1, . . . , b9) be an admissible vector. Denote by b′ = (b′1, . . . , b

′
9) the result of

mutation µ. One can check that µ(Q) = Qop. Then by the annulus property for Q we
have

b9 = −b8 <= 0,

and by the annulus property for µ(Q) = Qop we need

b′8 = −b′9 <= 0.

A computation similar to the one for E
(1,1)
6 shows that b′9 ≤ b9 ≤ 0, which implies

b′9 = 0 = b′8 and similar constrains on the summands. Computing then b′8 in exactly the

same way as for E
(1,1)
6 we conclude that all bi = 0 for i = 1, . . . , 9.

�
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1 6 2 3 4 7 5

8

9

Figure 5.2. Q = E1,1
7 .

5.3. Mutation class of E
(1,1)
8 .

Theorem 5.3. There is no admissible vector for a quiver in the mutation class of E
(1,1)
8 .

Proof. The proof is very similar to the one for E
(1,1)
6 and E

(1,1)
7 . We consider the quiver

Q shown in Fig. 5.3. Denote

µ∗ = µ8 ◦ µ6 ◦ µ4 ◦ µ3 ◦ µ2 µ� = µ9 ◦ µ7 ◦ µ5 ◦ µ1

and consider

µ = µ∗ ◦ µ� ◦ µ∗ ◦ µ� ◦ µ∗ ◦ µ� ◦ µ∗ ◦ µ� ◦ µ∗.
As before, µ(Q) = Qop, and an explicit computation shows that the annulus property
does not hold for µ(Q) unless b = 0.

1 2 3 4 5 6 7 8

9

10

Figure 5.3. Q = E1,1
8 .

�

6. Mutation classes of X6 and X7

In this section, we show that there are no admissible vectors for mutation classes X6

and X7. The proof is similar to the one for extended affine quivers.

Theorem 6.1. There is no admissible vector for a quiver in the mutation class of X7.

Proof. The idea is similar to the one we used for the case of E
(1,1)
6 .

Consider the quiver Q of type X7 shown in Fig. 6.1. From the annulus property for
three double arrows we get

b1 = −b2 ≤ 0 b3 = −b4 ≤ 0 b5 = −b6 ≤ 0.

The composition of mutations

µ012 = µ2 ◦ µ1 ◦ µ0
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takes Q to an isomorphic quiver with different location of double arrows (after µ012 the
double arrows will be v0v2, v3v6 and v4v5). The annulus property for the mutated quiver
µ012(Q) after computing all entries would result in the following equations:

b3 + b6 + 2b0 = 0 b4 + b5 + 2b0 = 0

(the third equation will be b1 + b2 = 0 which is satisfied automatically).
By symmetry, an application of another composition of mutations µ034 leads to the

equations

b1 + b6 + 2b0 = 0 b2 + b5 + 2b0 = 0,

and, similarly, one obtains from µ056 that

b3 + b2 + 2b0 = 0 b4 + b1 + 2b0 = 0.

Adding all six equations together we get

2(b1 + b2) + 2(b3 + b4) + 2(b5 + b6) + 12b0 = 0

which implies b0 = 0, and thus the six equations above result in b1 = b3 = b5 = −b2 =
−b4 = −b6 ≤ 0.

So far, we have only used equalities arising from the annulus property but not the
inequalities. Computing the value of b3 after mutation µ012 (call it b′3), one can find that
if all assumptions from above hold then b′3 ≤ 0, while from the annulus property for
µ012(Q) one gets b′3 ≥ 0. This implies b′3 = 0, which can hold in the only case of b3 = 0
(similarly to E case), and hence bi = 0 for all i ∈ {0, 1, 2, . . . , 6}. �

0
1

2 3

4

56

0
1

2 3

4

5

Figure 6.1. Quivers X7 (left) and X6 (right).

Theorem 6.2. There is no admissible vector for a quiver in the mutation class of X6.

Proof. Let Q be as in Fig. 6.1, right. From the annulus property we have

b1 = −b2 ≤ 0 b3 = −b4 ≤ 0.

Two equations from µ012 and µ034. Consider the sequences of mutations µ012 and µ034.
By the annulus properties in the resulting quivers we get the following conditions:

(6.1) b4 + b5 + 2b0 = 0 and b2 + b5 + 2b0 = 0.
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Notice that we do not need to compute anything here: the equations follow from the
computation for X7 restricted to X6. From this we conclude that b2 = b4, i.e. −b1 =
−b3 = b2 = b4 = β for some β ≥ 0.

More equations from µ5. To obtain more equations, we will first apply mutation µ5 to
X6, then v5 will be a source instead of a sink, so the resulting quiver will be isomorphic
to the subquiver of X7 where the vertex v5 is removed.

More precisely, denote by b′i the result of the application of µ5 to b, and call the image
of b5 by b′6 (to use the restriction of X7). Then the mutations µ012 and µ034 will lead to
the following two equations:

(6.2) b′3 + b′6 + 2b′0 = 0 and b′1 + b′6 + 2b′0 = 0.

The entries here are computed from mutation µ5 as follows:

b′1 = b′3 = −β b′2 = b′4 = β b′6 = −b5 b′0 = b0 + [b5]+,

and each of the equations in (6.2) leads to the following:

−β − b5 + 2b0 + 2[b5]+ = 0.

Since we also have β+b5+2b0 = 0 from equation (6.1), we obtain the following equations:

4b0 + 2[b5]+ = 0 and 2β + 2b5 − 2[b5]+ = 0,

which can be simplified to 2b0 + [b5]+ = 0 and β = [−b5]+.

Conditions from signs. To the moment we have only used the equalities from the
annulus property. Now we can compute the result of one of the composite mutations, say
µ012 on b3 and find that its sign is opposite to the one needed. More precisely, denoting

the components by b
(1)
i , b

(2)
i , b

(3)
i after µ0, µ01 = µ1 ◦ µ0 and µ012 respectively, we obtain:

b
(3)
3 = b

(2)
3 − [−b22]+ = b

(1)
3 − [−b(2)2 ]+ = b3 − [−b0]+ − [−b(2)2 ]+ ≤ 0,

where the last inequality holds since b3 ≤ 0. At the same time, the annulus property for

µ012(Q) implies b
(3)
3 ≥ 0. Hence, b

(3)
3 = 0, and in particular b3 = 0 and b0 ≥ 0. This

implies 0 = b3 = β = b1 = −b2 = −b4. From β = [−b5]+, we see that b5 ≥ 0. So, the
equation (6.1) rewrites as 2b0 + b5 = 0, which is only possible if b0 = b5 = 0 since both b0
and b5 are non-negative. �

7. Rank 2 quivers

Theorem 7.1. Let Q be a rank two quiver with the arrow from v1 to v2 of weight a > 0.
Let b = (b1, b2) be an integer vector. Then

(1) if a = 1 then b is admissible for any b1, b2;
(2) if a = 2 then b is admissible if and only if b1 = −b2 ≤ 0;
(3) if a > 2 then there are no admissible vectors.

Proof. The first and second parts concern finite and affine types.
To prove the third part, notice that after at most two mutations (and swapping the

labels of v1 and v2 if needed) we may assume that Q = v1
a→ v2, and b2 ≥ 0 ≥ b1. We may
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also assume that |b1| ≥ |b2| (otherwise replace µ1 with µ2 in the consideration below).
Then after mutation µ1 we will get

b′2 = b2 − a(−b1) = b2 + ab1 < b2 + 2b1 = (b2 + b1) + b1 ≤ b1,

so, the absolute value of b2 increases. Moreover, after swapping the labels of v1 and v2
the assumption above holds again, so we can mutate again to increase the components of
the coefficient vector indefinitely. �

8. Quivers from surfaces

In Section 3 we gave a general characterization of admissible vectors via peripheral
laminations. We now want to make this more explicit by describing admissible vectors
for a special triangulation from every mutation class. We exclude from our consideration
disks with at most two punctures and unpunctured annuli as these correspond to quivers
of finite or affine type and thus were considered either in [FZ4] or in Section 4.

If a surface has no boundary, then, by Corollary 3.3, its quivers cannot have any
admissible vector. Therefore, from now on we assume that a surface S has at least one
boundary component.

Sout

p

Figure 8.1. Standard triangulation of a surface with at least one boundary component

A surface S contains the following features: boundary components (each with a number
of boundary marked points), punctures and handles. To construct the triangulation we
do the following:

– Choose any boundary component (we call it the outer boundary component) and
a marked point p on it. All other boundary components will be called inner and
the corresponding features will be called holes.
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– Place all features along a line from left to right, first all holes, then all handles,
then all punctures, as in Fig. 8.1, and enclose them by nested loops based at p
so that every feature (except for the leftmost one in Fig. 8.1) lies inside a digon
with both vertices at p (recall that we excluded the case where S is a disc with
one puncture).

– Triangulate the digons with features as follows:
- each hole is enclosed by a loop xi and the domain inside xi triangulated as in

Fig. 8.2, left;
- each handle is enclosed by a loop yi and the domain inside yi triangulated as

in Fig. 8.2, middle left;
- each puncture inside a digon is connected by two arcs to two ends of the

digon, see Fig. 8.2, middle right;
- if there are no holes and handles, then the innermost monogon with two

punctures is triangulated as in Fig. 8.2, right;
- if the outer boundary contains other marked points than p, then the outermost

loop at p separates a polygon (denote it Sout). Sout is triangulated as shown
in Fig. 8.1.

.
The quiver Q corresponding to the standard triangulation is shown in Fig. 8.3. It

consists of the following elements built into a chain (from the right to the left):

- quiver Qout of triangulated outer polygon Sout;
- quivers of digons with punctures;
- quivers of digons with handles;
- quivers of digons with holes;
- in case of absence of holes and handles, the leftmost element will be the quiver of

a monogon with two punctures.

Notation 8.1. We will highlight the following subquivers of Q, as in Fig. 8.4:

- Qout: the subquiver of the outer polygon Sout (if the outer component contains
other marked points than p);

- two vertices, v1 and v2, connected to Qout (see Fig. 8.5 showing v1 and v2 depending
on whether Sout is empty and whether the first feature from the right is a hole, a
handle or a puncture), the arcs corresponding to v1 and v2 will be denoted by γ1
and γ2;

- Qin: the subquiver corresponding to the inner boundary components, i.e. Qin is
spanned by all vertices corresponding to arcs of the triangulation with at least one
endpoint on any of inner boundary components;

- the subquiver QI spanned by all other vertices of Q, where I is the index set of
vertices not lying in Qout, Qin and different from v1 and v2.

Theorem 8.2. Let S be a surface with at least one boundary component distinct from
a disk with at most two punctures and from an unpunctured annulus. Suppose that S is
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xi
ai bi

yi
ci di

ei fi

h

xi

ai bi

yi ei fi

h

ci
di

xi

ai bi

yi ei fi
h

ci di

Figure 8.2. Features (top row), their standard triangulations (middle
row) and corresponding quivers (bottom). Columns from left to right: a
digon with a hole, a digon with a handle, a digon with a puncture, a mono-
gon with two punctures.

︸ ︷︷ ︸
outer boundary︸ ︷︷ ︸

punctures︸ ︷︷ ︸
handles︸ ︷︷ ︸

holes

Figure 8.3. Quiver from standard triangulation

triangulated in the standard way. Then a coefficient vector b = (b1, . . . , bn) is admissible
if and only if it satisfies the following conditions:
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Qoutv1

v2

QIQin

Figure 8.4. Notation: subquivers of the quiver for standard triangulation.

(a) (b) (c)

QoutQoutQout

v2

v1

v2

v1

v2

v1

v2

v1

v2

v1

v2

v1

Figure 8.5. Vertices v1 and v2 for the cases when the rightmost feature is
a hole (a), a handle (b), or a puncture (c), drawn for the case with Sout 6= ∅
(above) and for Sout = ∅ (below).

(a1) bi = 0 for i ∈ I;
(a2) the annulus property is satisfied;
(a3) for the vertices v1 and v2 one has b1 = −b2 ≤ 0.

To prove the theorem we will use the following terminology.

Definition 8.3. Let L be a lamination and C ∈ L be a curve. Let T be a triangulation.
Then crossings of arcs of T with C cut C into subsegments, and by a segment we mean any
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connected union of subsegments of C (with respect to T ). Two consecutive subsegments
form a crossing with T . A crossing is non-trivial if its input into shear coordinates
of L is non-zero, otherwise it is trivial. In the latter case, both subsegments can be
isotopically deformed to be contained in a small neighborhood of the same vertex q of the
corresponding quadrilateral, and will be called q-local. The crossing formed by two q-local
subsegments will be called q-local, as well as any segment formed of q-local subsegments.

We make the following elementary observation:

Proposition 8.4. Let T be a triangulation of a marked surface and L be a lamination.
Choose γi ∈ T , and suppose that there exists a non-trivial crossing of γi with a curve
C ∈ L. Then bi(L) 6= 0 and sgn(bi(C)) = sgn(bi(L)).

The proof immediately follows from the definition of shear coordinates: segments in-
ducing crossings of different signs inside a quadrilateral with diagonal γi intersect each
other. The case of self-folded triangles is treated similarly.

Proof of Theorem 8.2. In view of Theorem 3.2, we need to show that the conditions in
the theorem hold if and only if the lamination is peripheral. The plan of the proof will
be similar to the one of Lemma 4.1.

We will consider the arcs γ1 and γ2 corresponding to vertices v1 and v2 defined as shown
in Fig. 8.5. These arcs look as in Fig. 8.6 depending on the presence of punctures in S.

γ0

γ1

γ2

γ0

γ1

γ2

Figure 8.6. Arcs γ1 and γ2 in case of no punctures in S (right) and oth-
erwise (left). The grey circles indicate features (distinct from punctures
on the right). If the outer boundary component contains a unique marked
point, the arc γ0 coincides with the outer boundary. Arcs γ0, γ1 and γ2 form
one triangle of the triangulation.

Conditions (a1)–(a3) are necessary. We need to show that if L is peripheral then
(a1)–(a3) hold.

We start by proving (a3). Let L be a peripheral lamination. Notice that any peripheral
curve homotopic to an inner boundary does not cross γ1 and γ2. Consider peripheral
curves homotopic to the outer boundary.
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First, consider the closed curve C homotopic to the outer boundary, see Fig. 8.7. It is
easy to see that for this curve b1 = −b2 = −1. Furthermore, any non-closed peripheral
curve has b1 = b2 = 0 (it either does not cross γ1 and γ2 at all, or consequently crosses
p-locally all curves incident to p). So, no peripheral curve except for C can affect b1 and
b2, and hence condition (a3) is necessary.

Condition (a2) is necessary in view of Corollary 3.5. Condition (a1) is necessary since
no peripheral curve crosses non-trivially any arc of the triangulation corresponding to any
vertex of QI . Hence, conditions (a1)–(a3) are necessary.

Sout

C

p

γ2

γ1

γ′
2

γ′
1

Figure 8.7. The closed curve C isotopic to the outer boundary compo-
nent. The curves γ′i play the role of γi in case of absence of punctures.

Conditions (a1)–(a3) are sufficient. Next, we will prove that every lamination which
is not peripheral contradicts some of conditions (a1)–(a3).

Suppose that L is a non-peripheral lamination and suppose that all conditions (a1)–(a3)
are satisfied by L. Let us make several observations:

(O1) • No curve from L has any end on any inner boundary component except for the
peripheral curves. No curve from L can spiral into a puncture. In particular, every
curve l ∈ L consists of finitely many subsegments.

The first statement follows from condition (a2), the argument goes along the
same lines as the part of the proof of Lemma 4.1 concerning bridging arcs. The
second statement follows from the fact that a spiralling curve produces a non-zero
shear coordinate on one of the two arcs incident to the puncture (see [FT, Fig.
36] and [FeSTu3, Fig. 6.3]) and from Proposition 8.4.

(O2) • Let xi be an arc of T with both ends at p and enclosing exactly one inner boundary
component, see Fig. 8.2. Then for any curve c ∈ L intersecting xi the restriction
of c onto the annulus cut out by xi is a p-local segment of c.
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The statement follows immediately from (O1).

(O3) • Let l ∈ L, and let γ ∈ T be incident to p and encircled by γ1, γ2, or γ1 ∪ γ2. Then
every intersection of l with γ is p-local.

For arcs inside xi this follows from (O2); all other arcs incident to p and encircled
by γ1, γ2, or γ1 ∪ γ2 correspond to vertices of Q belonging to QI , therefore the
statement follows from Proposition 8.4 together with (O2).

(O4) • Let l ∈ L. Then every intersection of l with γi belongs to a p-local segment of l
with two endpoints either on γi (if γi is a loop), or on γ1 ∪ γ2 (otherwise).

According to (O3), all subsegments of l inside a monogon bounded by γi (or the
digon bounded by γ1 ∪ γ2) are p-local, so they compose a p-local segment. Due
to (O1), l is either closed or have both ends on the outer boundary component.
Therefore, every maximal segment of l contained in γi (or in γ1 ∪ γ2) has both
ends on γi (or on γ1 ∪ γ2, respectively).

(O5) • Suppose that γ1 and γ2 are arcs with one endpoint in a puncture, as in Fig. 8.6,
left. Let l ∈ L and suppose that b1(l) 6= 0 or b2(l) 6= 0. Then l coincides with the
closed curve C (see Fig. 8.7).

Suppose that b1(l) 6= 0 (the case of b2(l) 6= 0 can be treated similarly). Let t0 be
an intersection point of l and γ1 producing a non-trivial crossing. By (O4) there
is a p-local segment t0t1 in l with t1 ∈ γ1 ∪ γ2, more precisely, t1 ∈ γ2, see Fig. 8.8.
Since the crossing at t0 is non-trivial, the subsegment t−1t0 of l not lying on t0t1
should have its end t−1 on γ2. If t−1 = t1 then l is the closed curve C.

Suppose that t1 lies on γ2 further from p than t−1. Extending the segment
t−1t1 ∈ l past t1 we will obtain a point t2 on γ1 lying further away from p than t0.
By (O4), there is a p−local segment t2t3 of l with t3 ∈ γ2. Notice that we will get
t3 further away from p then t1. Continuing in the same way we will get infinitely
many subsegments of l in contradiction to (O1). The case when t1 lies on γ2 closer
to p than t−1 can be treated similarly (by extending the curve past t−1).

t0

t1
t−1

γ1

γ2

Figure 8.8. To the proof of (O5).
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(O6) • Suppose that γ1 and γ2 are loops with both endpoints in p, as in Fig. 8.6, right.
Denote by l±1 and l±2 the positive and negative elementary laminations for γ1 and
γ2 respectively, and by Dr

C(l±i ) twists along C applied to the curves above, i = 1, 2,
r ∈ Z. Denote by M the set of curves consisting of the closed curve C and the
curves whose restriction onto S \ Sout coincides with the restrictions of curves l+1 ,
l−2 , Dr

C(l+i ), D−rC (l−i ), where r > 0, i = 1, 2. Then if l ∈ L and l /∈ M , then
b1(l) = b2(l) = 0.

Let l ∈ L be a curve, and suppose that at least one of b1(l) and b2(l) is not
zero. This implies that l intersects at least one of γ1 and γ2. Notice that S \ Sout
consists of one triangle bounded by γ0, γ1, γ2 and two surfaces encircled by γ1 and
γ2 respectively (here γ0 may coincide with the outer boundary). In view of (O4),
the segments of l contained inside the arcs γ1 and γ2 are p-local, and thus uniquely
determined, see Fig. 8.9, left. We now want to list all possible subsegments of l
inside the remaining triangle with two ends on γ1 and γ2.

12

3

γ0γ0γ0

γ2 γ1γ2 γ1γ2 γ1

Figure 8.9. To the proof of (O5): behaviour of curves on S \ Sout

We say that a subsegment in the triangle joining γ1 and γ2 approaches γi from the
right (left) if it is followed by a p-local segment whose other end can be reached
by going around p counterclockwise (resp., clockwise). Since every subsegment
joining γ1 and γ2 approaches them from one of the two sides, there are precisely
four types of subsegments, they all are shown on Fig. 8.9, left.

Notice that two of the four subsegments intersect, which means that at most
one of them can be a part of l; we assume first that the one approaching both
curves from the left does not appear. Gluing the p-local segments located inside
γ1 and γ2 to all three remaining subsegments, we conclude that l can be assembled
from the copies of the three curves shown in Fig. 8.9, middle; we will refer to these
as to segments of types 1, 2, 3 respectively. These segments are attached to each
other in l along p-local segments with both ends on the same curve γi.

Suppose that l does not contain any segment of type 3. It is easy to see that in
this case none of the segments can be extended to an intersection with γ0 (except
for a p-local extension of a type 1 segment which has b1 = b2 = 0 and thus is
excluded), which means that l is a closed curve. The only non-self-intersecting
closed curve that can be composed out of segments of types 1 and 2 is the closed
curve C.
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Suppose now that l contains a segment of type 3. It can only be extended past
its intersection with γ1 by a type 1 segment, see Fig. 8.9, right. We obtain a
segment with both ends on γ2. As it contains two p-local segments located inside
γ2, we can determine which of the ends is closer to p along γ2, call it the lower
end and the other one the upper end. Now, the upper end can be either joined
to γ0 or extended by a type 2 segment. Notice that if it is joined to γ0, then the
lower end should also be joined to γ0, and thus we obtain a restriction of l+1 onto
S \Sout. If the upper end is extended using a segment of type 2, then we obtain a
new curve with both ends on γ1 and well defined upper and lower ends, so we can
repeat the reasoning for the new upper end. We will need to connect the upper
end to the boundary after finitely many steps (as l consists of finitely many of
these segments). This will result in a restriction of Dr

C(l+i ), i = 1, 2, r > 0.
Finally, if while considering the four subsegments in the triangle we avoid the one

approaching both curves from the right, then using precisely the same arguments
we would obtain restrictions of curves l−2 , Dr

C(l−i ) with i = 1, 2, r < 0.

(O7) • Let l ∈ L and b1(l) 6= 0 or b2(l) 6= 0. Then l coincides with the closed curve C.

If γ1 and γ2 are arcs incident to a puncture as in Fig. 8.6, left, then the statement
follows immediately from (O5), so we may assume that γ1 and γ2 are loops as in
Fig. 8.6, right.

Due to (O6), we need to consider the curves belonging to the set M only. Notice
that any twist Dk

C(l+i ), i = 1, 2, k ≥ 0 is not compatible with any twist Dm
C (l−j ),

j = 1, 2, m < 0, since they contain intersecting subsegments (see Fig. 8.9, left).
Now, the negative shear coordinates (b1, b2) for Dk1

C (l+1 ) and Dk2
C (l+2 ) are equal to

(−(2k1+1), 2k1) and (−2k2, 2k2−1) respectively. According to (a3) and Prop. 8.4,
k1 ≥ 0 and k2 ≥ 1. It is easy to see that for any such curve the modulus of b1 is
strictly greater than the modulus of b2. For Dm

C (l−j ) the considerations are similar.
For C, |b1(C)| = |b2(C)|. Therefore, if L contains any curve from M except for C,
then |b1(L)| 6= |b2(L)| in contradiction to (a3).

Recall that L is a non-peripheral lamination. Let Cnp ∈ L be a non-peripheral curve and
consider a lamination consisting of the single curve Cnp (we will use the same notation for
this lamination). We now show that there exists a non-peripheral curve which coincides
with Cnp inside S \ Sout and has all shear coordinates equal to 0 in contradiction to [FT].

Recall from Notation 8.1 that Qin, Qout and QI are subquivers of Q corresponding to
inner boundary, outer boundary and the set defined in Fig. 8.4. Denote by Iin and Iout
the corresponding index sets. Denote also Q12 = 〈v1, v2〉.

Observe:

• bi(Cnp) = 0 for i ∈ I (by Proposition 8.4 and (a1));
• bi(Cnp) = 0 for i = 1, 2.

This follows immediately from Observation (O7) since Cnp is non-peripheral and
hence does not coincide with C.
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• bi(Cnp) = 0 for i ∈ Iin.
This follows from applying observation (O2) to each inner boundary component.

Therefore, we obtain that

• bi(Cnp) = 0 for i /∈ Iout.
We are left to consider bi(Cnp) for i ∈ Iout (notice that this only makes sense when

Sout is non-empty). If ends of the curve Cnp do not lie on the outer boundary component
(i.e., Cnp is closed), then Cnp does not cross any arc corresponding to vertices of Iout and
we have bi(Cnp) = 0 for i ∈ Iout. In this case all shear coordinates of Cnp vanish, which
contradicts [FT]. Thus, we can assume that Cnp has both ends on the outer boundary.

We will now modify the curve Cnp by amending its intersection with the subsurface
Sout only. The new curve C ′np is defined by shifting each endpoint of Cnp to one of the
boundary intervals containing the marked point p according to the following rules: the
ends of segments crossing consequently γ1 and γ0 will be shifted clockwise along the
outer boundary, and the ends of segments crossing consequently γ2 and γ0 will be shifted
counterclockwise, see Fig. 8.10. As a result, all crossings of C ′np with arcs in Sout are
p-local (including the crossings with γ0), and hence we get bi(C

′
np) = 0 for i ∈ Iout. As we

also have bi(C
′
np) = 0 for i /∈ Iout, we conclude that all shear coordinates of C ′np vanish,

which leads to a contradiction.
This shows that non-peripheral lamination L satisfying (a1)–(a3) does not exist, which

proves that the conditions (a1)–(a3) are sufficient.

Sout

p

γ0

γ1
γ2

Figure 8.10. Shifting endpoints of the curve Cnp on the outer boundary
(to the segment on the left of p if the curve come to γ0 from γ2, and to the
segment on the right of p is it comes from γ1

�
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9. Skew-symmetrizable mutation classes

In this section we consider the skew-symmetrizable case.
Let B be a skew-symmetrizable n × n matrix, i.e. there is an integer diagonal n × n

matrix D = (di) with positive entries such that BD is skew-symmetric. We suppose that
B is mutation-finite and want to determine whether B can be complemented by one more

row (bn+1,1, . . . , bn+1,n) so that the obtained (n + 1)× n matrix B̃ will be still mutation-

finite. As before, we call a vector b = (b1, . . . , bn) admissible if the matrix B̃ composed of
B and row −b is mutation-finite.

9.1. Diagrams and unfoldings. We recall basics on diagrams of skew-symmetrizable
matrices.

Diagrams. According to [FZ2], skew-symmetrizable matrices (bij) can be represented by
diagrams with arrows from vi to vj of weight −sgn(bij) bijbji, which undergo mutations
compatible with matrix mutations. A skew-symmetrizable matrix (bij) can be recon-
structed by its diagram and the diagonal skew-symmetrizing matrix D = (di). We will
use a double arrow i=>j to denote an arrow of weight 4 when di = dj.

Notice that if B is skew-symmetrizable with the skew-symmetrizer D = (di) then the

(n+ 1)× n matrix B̃ can always be extended to a skew-symmetrizable (n+ 1)× (n+ 1)
matrix by adding (n+1)st column satisfying bi,n+1 = −dibn+1,i and setting dn+1 = 1. This

means that the matrix B̃ can also be represented by a diagram (with arrows of weight
sgn(bi)dib

2
i from vi to the frozen vertex vn+1).

One diagram with a frozen vertex may correspond to several skew-symmetrizable ex-
tended matrices, however, for any k = 1, . . . , n mutations µk of such matrices always lead
to the same extended diagram. We will call a diagram with a frozen vertex mutation-finite
if it represents mutation-finite matrices (with respect to mutations in the first n vertices).

Mutation-finite diagrams without frozen vertices.
It was shown in [FeSTu2, FeSTu3] that mutation-finite diagrams either are skew-

symmetric, or arise from triangulated orbifolds, or are of rank 2, or are mutation-equivalent

to one of the seven types F4, G̃2, F̃4, G
(∗,+)
2 , G

(∗,∗)
2 , F

(∗,+)
4 , F

(∗,∗)
4 shown in Fig. 9.1.

We will consider the orbifolds, rank 2 diagrams, and each of the seven exceptional
mutation-finite types separately, mostly based on the notion of unfolding.

Unfoldings. We briefly recall the definition of an unfolding of a skew-symmetrizable
matrix introduced by A. Zelevinsky. For more details see [FeSTu2].

Let B be a skew-symmetrizable matrix with a skew-symmetrizer D = (di). Suppose

that we have chosen disjoint index sets E1, . . . , Ek with |Ei| = di. Denote m =
k∑
i=1

di.

Suppose also that we choose a skew-symmetric integer matrix C of size m×m with rows
and columns indexed by the union of all Ei, such that

(1) the sum of entries in each column of each Ei × Ej block of C equals bij;
(2) if bij ≥ 0 then the Ei × Ej block of C has all entries non-negative.
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F4

2

G̃2

3

F̃4

2

G
(∗,∗)
2

G
(∗,+)
2

3

3

3

3

F
(∗,∗)
4

F
(∗,+)
4

2

2

2

2

Figure 9.1. Diagrams of exceptional skew-symmetrizable mutation-finite types.

Define a composite mutation µ̂i =
∏

ı̂∈Ei
µı̂ on C. This mutation is well-defined, since

all the mutations µı̂, ı̂ ∈ Ei, for given i commute.
We say that C is an unfolding of B if C satisfies assertions (1) and (2) above, and for

any sequence of iterated mutations µk1 . . . µkm(B) the matrix C ′ = µ̂k1 . . . µ̂km(C) satisfies
assertions (1) and (2) with respect to B′ = µk1 . . . µkm(B).

If C is an unfolding of a skew-symmetrizable integer matrix B, it is natural to define
an unfolding of a diagram of B as a quiver of C. In general, we say that a quiver Q is an
unfolding of a diagram Σ if there exist matrices B and C with diagram Σ and quiver Q
respectively, and C is an unfolding of B. Note that a diagram may have many essentially
different unfoldings.

We can also define an unfolding C̃ of an extended skew-symmetrizable matrix B̃ con-
sisting of B and a row (bn+1,1, . . . , bn+1,n) = −b = −(b1, . . . , bn) in the following way: it

will consist of an unfolding C of B and a row vector −b̂ such that the block En+1 × Ej
consists of dj equal entries −bn+1,j. If we extend both matrices B̃ and C̃ with one addi-
tional column each to make them skew-symmetrizable and skew-symmetric respectively,
then they will satisfy assertions (1) and (2) with respect to any sequence of mutations
not including index n+ 1.

This leads to a definition of an unfolding of a diagram with an additional frozen vertex.

Such a diagram corresponds to an extended skew-symmetrizable matrix B̃, so we take an
unfolding of it as defined above, add an additional column to make the obtained matrix
skew-symmetric, and then take the corresponding quiver. Again, such a unfolding may
not be unique.

Example 9.1. Consider the skew-symmetrizable exchange matrix B shown below and
its diagram

B =

(
0 1
−4 0

)
4

We now can write the extended exchange matrix B̃ with a coefficient vector (b1, b2),
add a column to make it skew-symmetrizable, and draw the corresponding diagram with
a frozen vertex.
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B̃ =

 0 1
−4 0
−b1 −b2

  

 0 1 b1
−4 0 4b2
−b1 −b2 0

  

4

sgn(b1)b
2
1 4sgn(b2)b

2
2

The results of unfoldings of both the matrix and the diagram are shown below.

C̃ =


0 1 1 1 1
−1 0 0 0 0
−1 0 0 0 0
−1 0 0 0 0
−1 0 0 0 0
−b1 −b2 −b2 −b2 −b2

  


0 1 1 1 1 b1
−1 0 0 0 0 b2
−1 0 0 0 0 b2
−1 0 0 0 0 b2
−1 0 0 0 0 b2
−b1 −b2 −b2 −b2 −b2 0

  
b1

b2

b2

b2

b2

In general, not every skew-symmetrizable matrix admits an unfolding. However, it
is shown in [FeSTu2] that every mutation-finite diagram without frozen vertices has a
mutation-finite unfolding. This result provides us with a sufficient condition for a given
coefficient vector to be admissible: we can always unfold a diagram with a frozen vertex
to a quiver with a frozen vertex, and if the obtained quiver together with the unfolded
coefficient vector is mutation-finite, then we immediately get the admissibility. Apriori,
this condition is not necessary for the admissibility: mutations of a diagram correspond
to a very limited collection of mutations of the unfolded quiver, so the unfolded coefficient
vector might not be admissible even when the initial vector is.

9.2. Diagrams from orbifolds and peripheral laminations. It is shown in [FeSTu3]
that the majority of skew-symmetrizable finite mutation classes originate from triangu-
lated orbifolds. As in the surface case, coefficient vectors are in bijective correspondence
with laminations, see [FeSTu3] for details. Defining peripheral laminations in exactly the
same way as for surfaces, and reasoning precisely as in Section 3, we obtain a similar
result.

Theorem 9.2. Let Σ be a diagram from a triangulated orbifold S. Then admissible
vectors for Σ are in bijection with peripheral laminations on S.

Similarly to the surface case, given a diagram from an orbifold, results of [Gu2] allow
one to reconstruct a triangulation, and results of [FT, FeSTu3] allow one to reconstruct
a lamination by a coefficient vector.

9.3. Rank 2 diagrams.

Theorem 9.3. Let Σ be a rank two diagram with the arrow from v1 to v2 of weight a > 0.
Let b = (b1, b2) be an integer vector. Then

(1) if a < 4 then b is admissible for any b1, b2;
(2) if a = 4 then b is admissible if and only if b1 ≤ 0 ≤ b2 and d1b

2
1 = d2b

2
2;

(3) if a > 4 then there are no admissible vectors.

Proof. Part (1) concerns finite types, so it follows from [FZ2].
For part (2) there are two cases: either d1 = d2, or we may assume that d1 = 1, d2 = 4.

The former case is skew-symmetric and thus follows from Section 4. Let us now consider
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the latter case, the corresponding diagram with coefficient vector b = (b1, b2) is shown in
Example 9.1. To prove the sufficiency, notice that in the assumptions (2) of the theorem
the square roots of the weights of the diagram change under mutations in the same way
as the weights of arrows of the quiver v1 => v2 with coefficient vector (−2b, b) with
b = b2 ≥ 0, so the statement follows from Lemma 4.1 (alternatively, one can compute
directly that both mutations act on the extended exchange matrix by multiplication by
the negative identity matrix).

The proof of part (3) is similar to the skew-symmetric case. After at most two mutations
(and swapping the labels of v1 and v2 if needed) we may assume that the diagram is

v1
a→ v2, and b1 ≤ 0 ≤ b2. We may also assume that d2b

2
2 ≤ d1b

2
1 (otherwise replace µ1

with µ2 in the consideration below). Then after mutation µ1 and swapping the labels
of v1 and v2 we will obtain a diagram with coefficient vector (b′1, b

′
2) satisfying the same

conditions and |b′i| > |bi|, i = 1, 2. Applying iterative mutations we can increase the
components of the coefficient vector indefinitely. �

9.4. Affine mutation classes. Every exceptional mutation class of diagrams of affine
type contains a representative shown in Fig. 9.2. Every mutation class of diagrams of
affine type originating from an orbifold either contains a representative with a double
arrow (we show one for every mutation class in Fig. 9.2), or contains a representative
with a subdiagram considered in Example 9.1 (see [FeSTu3]). We treat these two cases
separately, see Theorems 9.4 and 9.6.

Theorem 9.4. Let Σ be a diagram of type G̃2, F̃4, B̃n or C̃n shown in Fig. 9.2. A
coefficient vector b is admissible if and only if it satisfies the annulus property.

Proof. The annulus property is obviously a necessary condition for admissibility of a
coefficient vector for given diagrams. To see that it is also sufficient, notice that these

diagrams can be unfolded to quivers of type D̃4, Ẽ6, D̃n and Ãn,n shown in Fig. 4.3. The
unfolded coefficient vectors still satisfy the annulus property, so every unfolded quiver with
frozen vertex is mutation-finite by Theorem 4.3. This implies that the initial diagrams
are mutation-finite as well, so the initial coefficient vectors are admissible. �

Remark 9.5. By using unfoldings, we can extend the result of Theorem 4.4 to a general
skew-symmetrizable case, i.e. for any diagram Σ of affine type containing a double arrow,
a vector b is admissible if and only if b satisfies the annulus property.

In the case of a diagram containing a subdiagram from Example 9.1 we cannot use
unfolding: the unfolded diagram is simply-laced, so the annulus property does not lead
to any restrictions.

Theorem 9.6. Let Σ be a diagram of affine type containing a subdiagram of type v1
4−→ v2

with d1 = 1, d2 = 4. A coefficient vector b is admissible if and only if b1 = −2b2 ≤ 0.

We will abuse notation by calling the condition in Theorem 9.6 the annulus property
as well.
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.

G̃2 3

3

F̃4 2

2

B̃n
2

2

C̃n
2

2 ︸ ︷︷ ︸
n− 1

︸ ︷︷ ︸
n− 2

Figure 9.2. Special representatives from non-skew-symmetric mutation
classes of affine types.

Proof of Theorem 9.6. The necessity follows from Theorem 9.3, part (2).
To prove the sufficiency, notice that all diagrams in question correspond to an un-

punctured disk with two orbifold points and several marked points at the boundary
(see [FeSTu3]). In particular, any triangulation corresponding to such a diagram con-
sists of a monogon shown in Fig. 9.3(d) and a polygon Sout.

Now the proof is similar to the part (2) of the rank 2 case. In the assumptions of
the theorem, the square roots of the weights of the diagram change under mutations

in the same way as the weights of arrows of the diagram of type C̃n shown in Fig. 9.2
with coefficient vector satisfying the annulus property, so the statement follows from
Theorem 9.4. �

9.5. Extended affine mutation classes. The result here is similar to the skew-sym-
metric case.

Theorem 9.7. There are no admissible vectors for diagrams of any extended affine mu-
tation class.

Proof. Assume that Σ is one of the four diagrams of extended affine type (see Fig. 9.1),
and let b be an admissible coefficient vector. It is clear that b must satisfy the annulus
property.

The diagrams of types F
(∗,∗)
4 and G

(∗,+)
2 have unfoldings to quivers of type E

(1,1)
6 , the

diagram of type F
(∗,+)
4 has an unfolding to a quiver of type E

(1,1)
7 , and the diagram of

type G
(∗,∗)
2 has an unfolding to a quiver of type E

(1,1)
8 , where all the unfolded quivers are

precisely those shown in Figs. 5.1, 5.2, and 5.3, see [FeSTu2]. Moreover, it is easy to see
that the mutation sequences used in the proof of Theorems 5.1 and 5.3 are sequences
of composite mutations (with respect to the unfoldings above) for certain sequences of
mutations for the diagrams.

Therefore, if we take an unfolding Q of Σ with the unfolded coefficient vector b̂ and

apply a mutation sequence µ̂ constructed in Section 5 such that µ̂(b̂) does not satisfy the
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annulus property, then there exists a mutation sequence µ of Σ such that µ(b) does not
satisfy the annulus property either, which shows that b cannot be admissible. �

9.6. Diagrams from orbifolds. We now want to extend Theorem 8.2 to the orbifolds
case. As in the surface case, we exclude finite and affine types, i.e. unpunctured disks
with at most two orbifold points and once punctured disks with at most one orbifold
point.

First, we can define a standard triangulation of an orbifold in a similar way. We add
orbifold points to the list of features, and place them to the left of all other features. We
then place the two leftmost orbifold points in a monogon (see Fig. 9.3(d)), and all the
others in digons (Fig. 9.3(a)), the subdiagram corresponding to the digon is shown in
Fig. 9.3(b).

Vertices v1 and v2 are defined in the same way as in the surface case. In the case of
orbifold points being the only features (note that there should be at least three of them
and thus there is at least one digon, otherwise the diagram is of finite or affine type), v1
and v2 are defined as in Fig. 9.3(c). The set I is also defined in the same way.

(a)

s t

(b)

s t

2 2

(c)

2 2

v1

v2
Qout

(d)

Figure 9.3. Standard triangulations of orbifolds: (a) a triangulated digon
with an orbifold point, (b) corresponding quiver, (c) vertices v1 and v2, (d)
triangulated monogon with two orbifold points.

Theorem 9.8. Let O be an orbifold with at least one boundary component distinct from
an unpunctured disk with at most two orbifold points and from once punctured disk with
at most one orbifold point. Suppose that O is triangulated in the standard way. Then
a coefficient vector b = (b1, . . . , bn) is admissible if and only if it satisfies the following
conditions:

(a1) bi = 0 for i ∈ I;
(a2) the annulus property is satisfied;
(a3) for the vertices v1 and v2 one has b1 = −b2 ≤ 0 if d1 ≥ d2, and b1 = −2b2 ≤ 0 if

d1 < d2.

The proof is exactly the same as in the surface case. The only extra case is when
the only features are orbifold points (otherwise, all the arcs incident to orbifold points
belong to the set I), and, as in the surface case, the admissibility condition is prescribed
by the shear coordinates −b1 and −b2 of the closed curve C. If d1 = 2d2, then one has
b1 = −1 = −b2, and if d2 = 2d1, then one has b1 = −2 and b2 = 1, which gives precisely
(a3).
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10. Annulus property as criterion of mutation finiteness

We now prove a criterion of mutation finiteness in terms of the annulus property applied
to the whole mutation class, this was proposed by Sergey Fomin. For simplicity, we
consider the skew-symmetric case (i.e., quivers), which then can be easily generalized to
the skew-symmmetrizable case (see Remark 10.3).

Theorem 10.1. Let Q be a quiver with a frozen vertex v. Suppose that the subquiver Q\v
is mutation-finite. Then Q is mutation-finite if and only if the the annulus property holds
in every quiver Q′ mutation-equivalent to Q for every double arrow contained in Q′ \ v.

Proof. The necessity follows from Corollary 3.5. Below we prove that the condition is also
sufficient. As before, we denote by b the coefficient vector associated with the vertex v.

Assume that the annulus property holds in any quiver of the mutation class. Let
Q∗ = 〈Q \ v〉 be the subquiver spanned by all mutable vertices. We will consider the
following cases:

– if Q∗ is of finite type, then every vector b is admissible by [FZ4];
– if Q∗ is affine, then the statement follows from Theorem 4.4;
– if Q∗ is mutation-equivalent to X6, X7 or E1,1

6 , E1,1
7 , E1,1

8 , then the proofs of The-
orems 5.1–6.2 show that the annulus property cannot be satisfied in every quiver
of the mutation class, and thus there are no admissible vectors;

– if Q∗ is of rank 2, the statement follows immediately from Theorem 7.1;
– otherwise, Q∗ is a quiver arising from a surface; the rest of the proof below is

aimed at settling the question for this case.

From now on we will assume that Q∗ is of surface type, and will assume that b is
not admissible. Our aim is to find a quiver in the mutation class for which the annulus
property does not hold.

By Theorem 3.2, as b is not admissible, it corresponds to a non-peripheral lamination
L. Hence, there exists a closed curve intersecting the lamination L in a non-trivial way.
We will pick such an intersecting curve in a particular way and will use it to construct
a special triangulation, which will provide us with a quiver where annulus property does
not hold.

Let g be the genus of the surface S corresponding to the quiver Q∗. We will consider
separately the cases of g ≥ 2, g = 1 and g = 0.

g ≥ 2. For a surface S of genus g ≥ 2, the pure mapping class group PMod(S) is generated
by finitely many Dehn twists with respect to non-separating curves (see e.g. [FaM, Corol-
lary 4.16]). One can choose these curves as in Fig. 10.3, left (these are called Humphries
generators, see e.g. [FaM, Section 4.4.4]). Denote these curves C1, . . . , Cm. As the lami-
nation L is not peripheral, at least one of the curves C1, . . . , Cm intersects L (otherwise,
the pure mapping class group will act on L trivially). We will assume that C1 intersects
L.

Let M be a marked point (either a boundary marked point of a puncture). Let α1 and
α2 be non-intersecting non-self-intersecting paths connecting M to each of the sides of C1,
such paths exist since C1 is a non-separating curve. Let γ1 and γ2 be loops based at M
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α1

α2

γ1

γ2

M

M

Figure 10.1. Left: Humphries generators of PMod in case of g ≥ 2 (small
circles stay for punctures and boundary components). Right: construction
of the annulus.

and constructed by γ1 = α1βα
−1
1 and by γ2 = α2βα

−1
2 , where β is the closed path along

C1, see Fig. 10.3, right. Let T be any triangulation containing arcs γ1 and γ2. We will
show that in the triangulation T the annulus property breaks.

Indeed, as L crosses C1 non-trivially, the restriction of L to the annulus bounded by γ1
and γ2 is a non-empty non-peripheral curve. Hence, the annulus property for this annulus
does not hold in view of Lemma 4.1.

g = 1. In this case, one cannot always find the generators of the mapping class group
by twists along non-separating curves only, however there exists a set of generators by
twists along finitely many non-separating curves and k − 1 boundary curves, where k is
the number of boundary components on S (here, by a boundary curve we mean a closed
peripheral curve along one of the boundary components), see [FaM].

If k ≤ 1, then there still exists a set of generators by twists in non-separating curves,
and we can use the same reasoning as before.

If k > 1, then for every generator we can find at least one marked point on each side
with respect to the corresponding curve (i.e. for non-separating curves we proceed as
before, and for a boundary curve we choose a marked point lying on the corresponding
boundary component and a marked point lying on a different boundary component). So,
we still are able to construct the annulus as in Fig. 10.3, right, but possibly using different
marked points on different sides.

g = 0. In this case, any generator of the pure mapping class group is a twist along a
separating curve, but for any such curve one can find at least one marked point on each
of its sides, and thus one can apply the same construction of an annulus as before.

�

Corollary 10.2. Let Q be a quiver with a frozen vertex. Then Q is mutation-finite if
and only for every quiver Q′ in the mutation class of Q every rank 3 subquiver of Q′ is
mutation-finite.
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Proof. The “only if” direction is evident. Suppose that Q is mutation-infinite. If the
subquiver Q∗ = Q \ v (where v is the frozen vertex) is also mutation-infinite, then the
mutation class of Q∗ contains a quiver with an arrow of multiplicity higher than 2 and
hence any connected rank 3 subquiver containing that arrow is mutation-infinite. If Q∗
is mutation-finite, then, by Theorem 10.1, there is a quiver Q′ in the mutation class of Q
where the annulus property does not hold (for some vertices v1, v2 connected by a double
arrow). Then the rank 3 subquiver of Q′ spanned by 〈v1, v2, v〉 is mutation-infinite.

�

Remark 10.3. Both Theorem 10.1 and Corollary 10.2 can be easily generalized to the
skew-symmetrizable case, where the annulus property is understood as in Theorem 9.6.
The proofs are the same as in the skew-symmetric case.
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