
The Stata Journal (2022)
22, Number 2, pp. 446–459 DOI: 10.1177/1536867X221106436

Speaking Stata: The largest five—A tale of tail
values

Nicholas J. Cox
Department of Geography

Durham University
Durham, U.K.

n.j.cox@durham.ac.uk

Abstract. How do you work with the largest five, or smallest five, or any other
fixed number of values in a tail of a distribution? In this column, I give examples of
problems and code for basic calculations as a prelude to graphics, tables, and more
detailed analysis. The main illustration is analysis of concentration among firms
or companies, with wider discussion mentioning hydrology, climatology, cryptog-
raphy, and ecology. The examples allow a tutorial covering sorting and ranking
and using if and in to select observations, by: as a framework for groupwise cal-
culations, indicator variables as a mode of selection, and egen as a Swiss Army
knife with many handy functions.

Keywords: dm0108, by:, egen, if, in, ranking, sorting, tails, concentration, diver-
sity, inequality

1 Introduction
Faced with a distribution, researchers may want to look systematically at (say) the 5
largest or the 5 smallest values. Here 5 is evidently just an example: the same principles
apply if the number chosen is 3, 10, 30, or whatever else. Further, 1 is a notable special
case.

In economics or finance, we may want to look at the 5 firms with the largest number
of employees or sales volume or market value or the 5 best- or 5 worst-performing
stocks. In hydrology and climatology, we might want to look at the 5 largest floods
(river discharges) or the 5 driest years in terms of rainfalls. Extremes can be interesting
and important, to say the least. Think of the Amazon, the world’s largest river on most
criteria, or Amazon, a rather large firm.

Stata practice here starts with some very simple devices but necessarily gets more
complicated as we face up to common difficulties, including wanting to do this system-
atically for subsets of the data; coping with missing values; desiring to go beyond simple
summaries in further work; and wanting to work efficiently with large datasets.

The idea of “the largest 5” or any variation on that theme is easy to explain to
lay people or beginning students. The idea may still be helpful at other levels. If 5
seems arbitrary, there are easy answers: try some other choice instead or as well, or do
something else entirely if your problem needs a different solution.

© 2022 StataCorp LLC dm0108

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X221106436&domain=pdf&date_stamp=2022-06-30

N. J. Cox 447

In what follows, it is assumed that ties are not a problem. If the 5 largest values
are all 42, that is what it is. For ideas on how to handle distinct values, often called
unique values, you could start with Cox and Longton (2008). In practice, when people
want to do this, the 5 largest or smallest values commonly are distinct and come from
a straggly tail of a skewed distribution.

We will stop a long way short of the statistics of extremes. On that, Gumbel (1958)
is the classic account. More recent books include Embrechts, Klüppelberg, and Mikosch
(1997), Coles (2001), Beirlant et al. (2004), Reiss and Thomas (2007), and Resnick
(2007). Davison and Huser (2015) gave a recent review.

2 Easy commands
Starting with easy commands, let us see how far we can get with summarize, collapse,
sort, list, and keep (see [R] summarize, [D] collapse, [D] sort, [D] list, and [D] drop)
in particular.

summarize always reports the minimum and maximum. With its detail option, it
lists the 4 highest and 4 lowest values, without saving any of those results except the
minimum and maximum. summarize can be more useful once observations have been
identified as satisfying a particular criterion, as we will see shortly.

collapse lets you collapse to a reduced dataset that could include minimum and
maximum values, and whatever else you want, but collapse lacks handles for other
values in each tail of a distribution. It can still be helpful after other calculations.

sort on a variable sorts the dataset from lowest to highest values on that variable.
For example, with auto.dta, we could go

. sysuse auto

. summarize price

. sort price

auto.dta is a small and generally well-behaved dataset. There are no missing values
on price, so everything is as simple as it could be. We can now look at the tails of
the distribution of price using list. Here are some basic possibilities, starting with a
device you should know already and ending with one you may not have seen before.

. list price in 1/5

. list price in -5/L

. list price if inrange(_n, 1, 5) | inrange(_n, _N-4, _N)

The in qualifier specifies observation numbers and allows one range of observation
numbers. The observation numbers depend on the current sort order, which for this
problem is precisely the point. So after sort price, the qualifier in 1/5 identifies the
observations with the 5 lowest values of price, and the qualifier in -5/L identifies those
with the 5 highest values.

448 Speaking Stata

Note especially the use of negative integers to specify observations counting from the
bottom of the dataset upward. Stata allows -1 and indeed the letter l to indicate the
last observation, but I recommend L (also meaning last). L means one fewer keystroke
than -1. Lower case l is all too easily misread as the numeral 1. Using negative numbers
surely beats calculations on the fly, such as this: I have 74 observations, so I want to
see the last 5, which means in 70/74.

Note that the answer is not in 69/74. A little thought or experiment underlines
that such code identifies six observations. My experience is that one never stops making
such off-by-one or fencepost errors and thus needing to fix them. If the term is new to
you, a quick Google on “fencepost errors” leads to informative sources.

The last code example just given using inrange() is more complicated than you may
need, but the idea is sometimes useful. Here _n is the observation number (running from
1 to 74 in auto.dta), and _N is the total number of observations (so 74 in auto.dta).
We need _N - 4 at the bottom of the dataset to specify where observations in the
top 5 start. In short, if used like this is a way to work around restrictions on the
in syntax. We can specify multiple observation number ranges using the | operator,
meaning logical or: this | that is true if either this or that is true. See help operators
for more detail on logical and other operators.

Sorting has many benefits. We could now use list to look at other variables too
on the observations with extreme values, including name, place, or time identifiers
and other categorical or measured variables. We could now use summarize with an in
qualifier. A detail often overlooked is that summarize calculates the sum as well as other
results: although not displayed in results, the sum is available immediately afterward
as the saved result r(sum).

You could also use keep to produce a reduced dataset consisting only of observations
in either or both tails. This idea too is more useful in more challenging contexts.

3 Comparing subsets
People wanting this usually seek much more. The context is often wanting to look
systematically at how “the largest 5” vary in some way, say, how some results vary from
year to year. In economics or finance, we might have companies in different economic
sectors for a period of years and want to consider variations in some measures between
sectors and between years. In environmental science, we might have monitoring stations
in different regions over a period of years. And so on.

One more step in technique yields many useful results. The step is to use generate
and egen (see [D] generate and [D] egen) as workhorses within a framework provided
by the by (see [D] by) prefix. The perspective is now that new variables are needed, so
that we can graph, table, and further analyze our results most easily.

Let’s dive into a more challenging example and then explain the new tricks being
used. Suppose we want to look at concentration of economic activity as it varies over

N. J. Cox 449

time. The Grunfeld data are a good sandbox. Let’s use market value mvalue as a size
variable and look at the total mvalue for the largest 5 companies, and that as a fraction
of the total mvalue for all companies, as they vary from year to year. The latter is often
called a “concentration ratio”. The Grunfeld data include 10 companies, which is not a
problem: nowhere will we wire in 10 as part of the code.

. webuse grunfeld, clear

. bysort year (mvalue): generate byte highest = (_N - _n) < 5

. by year: egen double total5 = total(highest * mvalue)

. by year: egen double total = total(mvalue)

. by year: egen count5 = total(highest)

. by year: egen count = count(mvalue)

. by year: generate conc5 = total5 / total

. format mvalue total5 total %3.2f

. format conc5 %4.3f

. tabdisp year, cellvar(count count5 total5 total conc5)

The results for our dataset will be shown toward the end of this section.

First off, let me flag that this code capitalizes on there being no missing values in
the variables concerned. We will hold until a later section a discussion of how to deal
with any missing values.

Next, note that 5 is wired into the code at just one place, although if you used a
different integer, it would also be prudent to change some new variable names accord-
ingly. This is not an attempt at very general code. It includes specific details arising
from a particular dataset, but we are slowly working our way toward respectable code
for a do-file.

To understand the code as a whole, let us work backward from what we want, which
is the total market value of the largest 5 companies; the total market value; the ratio of
those two totals, which we know will lie between 0 and 1. Preferring that concentration
ratio to be a percentage between 0 and 100 is an alternative.

The easiest of these to get at is the total market value for each year, which goes in
the new variable total.

For that and the partial total for the largest 5, the code uses double variables.
Totals can become very big, so we decide to worry a little about holding total values to
maximum precision.

After we sort first by year and then by mvalue, the largest 5 values are in the last
5 observations. The detail used here is to create an indicator or dummy variable that is
1 if the observation is one of the largest 5 and 0 otherwise. It is hard to overstate how
useful such variables can be (Cox 2016; Cox and Schechter 2019).

The precise criterion compares the observation number _n with the total number
of observations _N. It is crucial that—under the aegis of the by: prefix—these are
calculated within each group of observations specified, in this case a distinct year (Cox
2002). Spelling it out, we want the observations with numbers equal to _N, _N − 1,
_N− 2, _N− 3, and _N− 4.

450 Speaking Stata

Consider this statement:

. by year: egen double total5 = total(highest * mvalue)

Multiplying by highest means that we are adding terms that are 1×mvalue when in the
largest 5 together with terms that are 0× mvalue when not in the largest 5. That boils
down easily to the total of mvalue for the observations that make up the largest 5 in
any subset. Getting a clean expression for selection of observations and multiplication
is a nice possibility when an indicator variable is to hand.

The code could have been

. by year: egen double total5 = total(mvalue) if highest == 1

or even

. by year: egen double total5 = total(mvalue) if highest

In either case, the result for observations with highest == 0 would be missing. The
indicator variable approach appeals, I suggest, as yielding less clumsy code. It reduces
the need to keep track of which observations have nonmissing values of total5 and
which have missing values.

The variable count5, which is in egen terms total(highest), will similarly be the
sum of 1 for each value in the largest 5 and 0 otherwise, which is precisely a count of
values in the largest 5, as desired. I have two reasons for calculating this variable.

First, to check on the counting. The result in our dataset should always be 5. But
always be on the lookout for off-by-one errors, in which our code could yield 4 or 6.
Indeed, worse errors might occur. While working toward this column, I made a careless
slip of this kind but caught it quickly because I was counting too.

Second, to look ahead toward the possibility of unbalanced panels with unequal
numbers of observations for each year (or time generally). Suppose that there were
only 1, 2, 3, or 4 nonmissing values of mvalue in each year. Then total5 would still
contain their total; it would also equal total; and the concentration ratio total5 /
total would be identically 1. Keeping a count in the variable count5 of the number of
values in the “largest 5” lets us watch out for such instances.

A further possibility is that there are only 5 nonmissing values in each year, which
would also imply a ratio of 1. For that and other reasons, we also have a variable count,
which is the number of nonmissing values available in each subset. See the help for egen
on its function count() if you want more detail.

Note on Stata terminology. egen is a framework for running its own routines, called
“functions”. Several are bundled with official Stata, and many more have been written
by users. Such functions are not the same as functions in Stata proper or in Mata (Cox
2011b). Sorry if this is confusing or irritating, but three different names for varieties of
the same idea might well have been just as confusing or irritating.

N. J. Cox 451

The results for our new variable are identical for each observation in the same subset,
so in this example for each year. That smacks of redundancy but is otherwise convenient.
Readers familiar with frames (introduced in Stata 16) will be aware of another approach,
and indeed the problem could also be recast using Mata. Identical results for each
observation in each year, however, do mean that we want to see each distinct line of
results only once. It is one of many small virtues of tabdisp (see [P] tabdisp) used for
tabular display that this behavior can be automatic.

Repeating the tabdisp command from earlier in this section, we can now think more
about how to show the results.

. tabdisp year, cellvar(count count5 total5 total conc5)

Year count count5 total5 total conc5

1935 10 5 6319.60 7074.71 0.893
1936 10 5 9838.40 10795.74 0.911
1937 10 5 12479.60 13522.90 0.923
1938 10 5 7632.10 8471.42 0.901
1939 10 5 9726.30 10802.54 0.900
1940 10 5 10335.30 11340.17 0.911
1941 10 5 9946.50 10879.48 0.914
1942 10 5 7972.80 8808.46 0.905
1943 10 5 8993.80 9951.64 0.904
1944 10 5 9205.50 10277.72 0.896
1945 10 5 10282.40 11401.05 0.902
1946 10 5 10831.20 12039.64 0.900
1947 10 5 8140.30 9272.97 0.878
1948 10 5 7841.80 8969.80 0.874
1949 10 5 7973.10 9175.54 0.869
1950 10 5 8410.80 9770.55 0.861
1951 10 5 10474.70 12080.84 0.867
1952 10 5 10755.10 12543.82 0.857
1953 10 5 12839.60 14777.81 0.869
1954 10 5 12585.20 14379.42 0.875

Before the tabdisp command, we assigned display formats to the variables here with
noninteger values. Specifying two decimal places for the totals just echoed the resolution
of the original data. For any purpose other than checking results, more rounding would
be fine. Other way round, three decimal places for the ratio is, I guess, about what
people often want to show.

I wanted to show the counts explicitly because some people with messier datasets
really need to display them. For this kind of dataset, we should check that counts are as
they should be but then suppress the display in a presentation or publication. It would
also be a good idea to have checks in the code using assert (see [D] assert) such as

. assert count == 10

. assert count5 == 5

whenever constancy is expected: it is expected here because we think we have balanced
panels and no missing values. If either of those commands failed, you would need to find
out why. If the explanation made sense, you would then remove the assert commands

452 Speaking Stata

from the code but ensure that the counts are available to readers of your research.
Either way, it pays to be assertive (Gould 2003).

tabdisp remains a neglected command (Cox 2003, 2012). It can be just what you
need for quick and not so dirty display of variables, including results variables. It is
billed as a programmer’s command, but it is easy to use interactively and in do-files.

A serious project would not stop here. You should first fire up a line graph and then
think what next to do. Because each result is repeated for observations in the same
year, it would be good practice to go

. egen tag = tag(year)

. line conc5 year if tag, sort

4 Which measures?
This section is a digression on the statistical content and context of the example.

People interested in measuring concentration should be concerned with the strengths
and limitations of fraction of total composed by the 5 largest values as one of several
possible measures. It is enough for the present purpose that some researchers find it
simple and useful, but is it too simple, and is it as useful as other measures? A great
deal has been written in this territory, and there is much scope for yet more.

Let us sketch one larger context and give a few simple examples of other possibil-
ities. We have in market value a variable quantifying size or frequency or abundance
that must be zero or positive. The distribution of such a variable, say y, can be reex-
pressed as proportions y/

∑
y =: p. Such a framework fits many applications, such as

letter frequencies in elementary cryptography (Holden 2017; Dooley 2018; Dunin and
Schmeh 2020) or abundance of species or taxa generally in ecology (several references
in Cox [2005]). In this framework, our measure is just

∑5
j=1 pj , where ranks j follow a

convention that 1 means largest and there is no correction for ties.

Again, the choice 5 is arbitrary here and a matter of judgment. We can see this
measure as one of a family, given choice of J in

∑J
j=1 pj . In ecology, J = 1—so simply

p1—has often been used, typically named the Berger–Parker index (Berger and Parker
1970).1

Two of several other approaches may be singled out. First comes
∑
p2 =: R or

its complement 1 − R, which is usually named for someone who did not first discover
or invent it. Repeat rate, named by Alan M. Turing (Good 1953, 1982), and match
probability (MacKay 2003, 267) are good evocative names for R.

1. Naming ideas after people is a generous way to honor the predecessors on whose shoulders we stand
and at whose feet we sit. Unfortunately, the implied history is often wrong: the names used may
name neither the first inventors nor those who deserve most credit. Beyond that, such names can
impede communications, particularly between disciplines.

N. J. Cox 453

Then there is
∑
p ln(1/p) =: H, usually named entropy, “a quantity which occurs

in many contexts, is invoked in many more, and is given justifications ranging from the
axiomatic to the metaphysical” (Whittle 1992, 272).

R and H are not directly comparable, but 1/R and exp(H) have an attractive
interpretation as an equivalent number of equally common categories. To see that, note
that with k identical proportions, so that each proportion is 1/k, R reduces to 1/k and
H reduces to ln k.

There are large and sometimes repetitive literatures in several disciplines on how
best to measure and analyze concentration (or diversity, or inequality, to mention only
two related terms) for a ranked distribution pj . There are many examples of how quite
simple ideas can be helpful. There are also futile debates about which measure is best (in
the absence of criteria for “best”) and naive exercises trusting that all the information
in a distribution can be captured by a single scalar. Comments within Cox (2005),
although in several senses utterly standard, seem to retain their force. New ideas and
frameworks continue to emerge (for example, Leinster [2021]).

None of the above is to deny that direct analysis of a size variable y, through, say,
moment- or quantile-based summaries, may not be a better idea. As Jeffreys (1961, x)2

remarked, “It is sometimes considered a paradox that the answer depends not only on
the observations but on the question; it should be a platitude.”

5 Missing values
We postponed discussion of missing values.

Missing values have to be sorted to somewhere in the data. The only systematic
choices could be that numeric missing values are regarded as 1) lower than the largest
negative value possible or 2) higher than the largest positive value possible. Stata
developers made the second choice. It follows that, after sorting, any numeric missing
values will compose some of if not all the “largest five”—in the sense that they will be
listed last, or shown last in the Data Editor.

A solution to this problem is just to segregate missing values so that they do not
enter the calculation. That is easier than might be feared once you have created an
indicator variable for being missing, which then allows a different sort order.

2. Completists may be happy to know that the remark occurs on page vii of the 1948 edition and on
page vi of the 1939 edition.

454 Speaking Stata

We do not need this refinement for the Grunfeld data, but it does no harm. Here—
once we have been more careful about creating an indicator variable highest—most of
the code is unchanged.

. webuse grunfeld, clear

. generate byte OK = !missing(mvalue)

. bysort OK year (mvalue): generate byte highest = OK & ((_N - _n) < 5)

. bysort year: egen double total5 = total(highest * mvalue)

. by year: egen double total = total(mvalue)

. by year: egen count5 = total(highest)

. by year: egen count = count(mvalue)

. by year: generate conc5 = total5 / total

. format mvalue total5 total %3.2f

. format conc5 %4.3f

. tabdisp year, cellvar(count count5 total5 total conc5)

Note the use of the logical operator and (&). To be regarded as one of the highest,
a value must not be missing and in the top 5. this & that is true only if both this and
that are true.

6 Ranking instead
Another idea—which may have already occurred to you—is that for our main example
of measuring concentration using the largest 5, what we seek are just values with ranks
1 to 5, so long as we can rank in a way that matches the calculation. We can do that
directly in Stata.

Here is revised code.

. webuse grunfeld, clear

. bysort year: egen rank = rank(-mvalue), unique

. by year: egen double total5 = total((rank <= 5) * mvalue)

. by year: egen double total = total(mvalue)

. by year: egen count5 = total(rank <= 5)

. by year: egen count = count(mvalue)

. by year: generate conc5 = total5 / total

. format mvalue total5 total %3.2f

. format conc5 %4.3f

. tabdisp year, cellvar(count count5 total5 total conc5)

We need to negate the argument to rank()—note the negative sign before mvalue—
to ensure that the values are ranked from 1 for largest onward. We also need the unique
option to disable the default treatment of ties, which is to assign to tied values the
average of ranks that would otherwise have been assigned. These are details to take
care of. See the help for the rank() function of egen for details of various flavors of
rank.

A positive feature of the rank() function in egen is that missing values are ignored
automatically. That is welcome.

You may like this approach more than any so far.

N. J. Cox 455

7 Other measures
Naturally, we may want other measures too, whether standard or not. Mean, median,
and geometric mean are three attractive summaries for many size measures. The geo-
metric mean applies only to values that are all positive, which is obvious enough here
but which may bite for your own application.

Let’s build on the last section and show code for those three. The output is sup-
pressed here but easily reproducible. Again, a line graph is ready to hand. Recall the
advice from Section 3 about tagging just one observation for each year.

. webuse grunfeld, clear

. bysort year: egen rank = rank(-mvalue), unique

. by year: egen double mean5 = mean(cond(rank <= 5, mvalue, .))

. by year: egen double median5 = median(cond(rank <= 5, mvalue, .))

. by year: egen double gmean5 = mean(cond(rank <= 5, log(mvalue), .))

. replace gmean5 = exp(gmean5)

. format *n5 %4.0f

. tabdisp year, cellvar(*n5)

egen already has functions for mean and median, as you would hope and expect.
The trick needed is to limit calculations to observations with ranks 1 to 5. We could
use an if qualifier here, which would have few real disadvantages, but choose instead
to show off a favorite device, using cond() within a function call to ignore whatever
you want to ignore (Cox 2011a). See Kantor and Cox (2005) if you remain puzzled by
cond().

Two wider principles about egen calls deserve a flag. Many of its functions feed on
expressions, which can be more complicated than a bare variable name. We can use
any Stata functions here (although, perhaps surprisingly, not other egen functions).
Further, egen functions tend to ignore missing values to the extent appropriate. Both
principles are being used in the code above for mean and median. First, we instruct
egen to treat data assigned ranks 6 upward as if they were missing. Then, we take a
mean or median over values, which calculation will ignore missings.

Official Stata lacks an egen function for geometric means, although one has long
been available in the egenmore package on the SSC Archive. A good excuse for any lack
is how easy it is to get geometric means in two steps: first, take the mean of logged
values, and then, exponentiate that mean. A similar trick would yield harmonic means
in two steps.

Wainer (2005, 107) makes a neat point arising out of an analysis of Olympic perfor-
mances. “The bronze medal time is the median of the top five finishers. The winning
time can sometimes not be representative, whereas taking a median of the top five yields
a more statistically stable measure.” The point has further applications not only within
the wide, wide world of sports but also beyond. See also Wainer, Njue, and Palmer
(2000).

456 Speaking Stata

8 The smallest five
What about the smallest five? Adapting what has been said already should be simple
or can be regarded as an exercise.

The convention in egen, rank() that lowest values rank 1 up is convenient in this
case. Note that missing values can still bite, just not as often.

9 Efficiency matters?
With really large datasets, we might need to think more about getting results speedily.
Here the main caution is that egen code includes extra bells and whistles that you can
avoid if you know what you are doing. So, for example, a total can be obtained using
the Stata function sum(), which yields cumulative or running sums. Here we revisit the
last such line:

. by year: egen double total5 = total((rank <= 5) * mvalue)

A non-egen solution could be

. by year: generate double total5 = sum((rank <= 5) * mvalue)

. by year: replace total5 = total5[_N]

That’s two lines of code. How could it be faster? If you look inside the previous
code with

. viewsource egen.ado

. viewsource _gtotal.ado

you will see that the two-step is at the heart of the total() function any way, but if we
avoid egen, we avoid many lines that parse user input and cope with yet other details
that can be omitted in a direct solution.

10 Conclusion
This column will naturally be most interesting and useful if the examples are close to
what you want to do. Beyond that, I have a larger tale to tell.

A serious subject need not entail a solemn or stuffy style. But banter about coding
tricks should not distract from a positive theme. Again and again, problems that are
simple to understand can be coded up with fairly simple Stata code using a small set
of devices and methods, such as

• sorting and ranking

• if and in to select observations

• by: as a framework for groupwise calculations

N. J. Cox 457

• indicator variables as a mode of selection

• egen as a Swiss Army knife with many handy functions

Pólya (1957, 208) quipped, on behalf of the “traditional mathematics professor”,
“What is the difference between method and device? A method is a device you use
twice.” In Stata, as elsewhere, expertise grows as you learn whichever tricks are devices,
or even better methods, that you can use again and again in different problems.

11 Acknowledgments
The original seeds of this column were various threads on Statalist asking related ques-
tions. Statalist remains the best source of public information on what researchers using
Stata want to do.

12 References
Beirlant, J., Y. Goegebeur, J. Segers, and J. Teugels. 2004. Statistics of Extremes:

Theory and Applications. New York: Wiley.

Berger, W. H., and F. L. Parker. 1970. Diversity of planktonic foraminifera in deep-sea
sediments. Science 168: 1345–1347. https://doi.org/10.1126/science.168.3937.1345.

Coles, S. 2001. An Introduction to Statistical Modeling of Extreme Values. London:
Springer.

Cox, N. J. 2002. Speaking Stata: How to move step by: step. Stata Journal 2: 86–102.
https://doi.org/10.1177/1536867X0200200106.

. 2003. Speaking Stata: Problems with tables, Part I. Stata Journal 3: 309–324.
https://doi.org/10.1177/1536867X0300300308.

. 2005. Speaking Stata: The protean quantile plot. Stata Journal 5: 442–460.
https://doi.org/10.1177/1536867X0500500312.

. 2011a. Speaking Stata: Compared with Stata Journal 11: 305–314. https:
//doi.org/10.1177/1536867X1101100210.

. 2011b. Speaking Stata: Fun and fluency with functions. Stata Journal 11:
460–471. https://doi.org/10.1177/1536867X1101100308.

. 2012. Speaking Stata: Output to order. Stata Journal 12: 147–158. https:
//doi.org/10.1177/1536867X1201200109.

. 2016. Speaking Stata: Truth, falsity, indication, and negation. Stata Journal
16: 229–236. https://doi.org/10.1177/1536867X1601600117.

https://doi.org/10.1126/science.168.3937.1345
https://doi.org/10.1177/1536867X0200200106
https://doi.org/10.1177/1536867X0300300308
https://doi.org/10.1177/1536867X0500500312
https://doi.org/10.1177/1536867X1101100210
https://doi.org/10.1177/1536867X1101100210
https://doi.org/10.1177/1536867X1101100308
https://doi.org/10.1177/1536867X1201200109
https://doi.org/10.1177/1536867X1201200109
https://doi.org/10.1177/1536867X1601600117

458 Speaking Stata

Cox, N. J., and G. M. Longton. 2008. Speaking Stata: Distinct observations. Stata
Journal 8: 557–568. https://doi.org/10.1177/1536867X0800800408.

Cox, N. J., and C. B. Schechter. 2019. Speaking Stata: How best to generate indi-
cator or dummy variables. Stata Journal 19: 246–259. https: // doi.org / 10.1177 /
1536867X19830921.

Davison, A. C., and R. Huser. 2015. Statistics of extremes. Annual Review of Statistics
and Its Application 2: 203–235. https://doi.org/10.1146/annurev-statistics-010814-
020133.

Dooley, J. F. 2018. History of Cryptography and Cryptanalysis: Codes, Ciphers, and
Their Algorithms. Cham, Switzerland: Springer.

Dunin, E., and K. Schmeh. 2020. Codebreaking: A Practical Guide. London: Robinson.

Embrechts, P., C. Klüppelberg, and T. Mikosch. 1997. Modelling Extremal Events for
Insurance and Finance. Berlin: Springer.

Good, I. J. 1953. The population frequencies of species and the estimation of population
parameters. Biometrika 40: 237–264. https://doi.org/10.2307/2333344.

. 1982. Diversity as a concept and its measurement: Comment. Journal of the
American Statistical Association 77: 561–563. https://doi.org/10.2307/2287710.

Gould, W. 2003. Stata tip 3: How to be assertive. Stata Journal 3: 448. https:
//doi.org/10.1177/1536867X0400300414.

Gumbel, E. J. 1958. Statistics of Extremes. New York: Columbia University Press.

Holden, J. 2017. The Mathematics of Secrets: Cryptography from Caesar Cyphers to
Digital Encryption. Princeton, NJ: Princeton University Press.

Jeffreys, H. 1961. Theory of Probability. 3rd ed. London: Oxford University Press.

Kantor, D., and N. J. Cox. 2005. Depending on conditions: A tutorial on the cond()
function. Stata Journal 5: 413–420. https://doi.org/10.1177/1536867X0500500310.

Leinster, T. 2021. Entropy and Diversity: The Axiomatic Approach. Cambridge: Cam-
bridge University Press.

MacKay, D. J. C. 2003. Information Theory, Inference, and Learning Algorithms. Cam-
bridge: Cambridge University Press.

Pólya, G. 1957. How to Solve It: A New Aspect of Mathematical Method. 2nd ed.
Princeton, NJ: Princeton University Press.

Reiss, R.-D., and M. Thomas. 2007. Statistical Analysis of Extreme Values with Applica-
tions to Insurance, Finance, Hydrology, and Other Fields. 3rd ed. Basel: Birkhäuser.

Resnick, S. I. 2007. Heavy-Tail Phenomena: Probabilistic and Statistical Modeling.
New York: Springer.

https://doi.org/10.1177/1536867X0800800408
https://doi.org/10.1177/1536867X19830921
https://doi.org/10.1177/1536867X19830921
https://doi.org/10.1146/annurev-statistics-010814-020133
https://doi.org/10.1146/annurev-statistics-010814-020133
https://doi.org/10.2307/2333344
https://doi.org/10.2307/2287710
https://doi.org/10.1177/1536867X0400300414
https://doi.org/10.1177/1536867X0400300414
https://doi.org/10.1177/1536867X0500500310

N. J. Cox 459

Wainer, H. 2005. Graphic Discovery: A Trout in the Milk and Other Visual Adventures.
Princeton, NJ: Princeton University Press.

Wainer, H., C. Njue, and S. Palmer. 2000. Assessing time trends in sex differences in
swimming & running. Chance 13(1): 10–15. https://doi.org/10.1080/09332480.2000.
10542184.

Whittle, P. 1992. Probability via Expectation. 3rd ed. New York: Springer.

About the author

Nicholas Cox is a statistically minded geographer at Durham University. He contributes talks,
postings, FAQs, and programs to the Stata user community. He has also coauthored 16 com-
mands in official Stata. He was an author of several inserts in the Stata Technical Bulletin and
is Editor-at-Large of the Stata Journal. His “Speaking Stata” articles on graphics from 2004 to
2013 have been collected as Speaking Stata Graphics (2014, College Station, TX: Stata Press).

https://doi.org/10.1080/09332480.2000.10542184
https://doi.org/10.1080/09332480.2000.10542184

