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Abstract. We prove that eigenfunctions of the Laplacian on a compact hyperbolic surface
delocalise in terms of a geometric parameter dependent upon the number of short closed
geodesics on the surface. In particular, we show that an L2 normalised eigenfunction
restricted to a measurable subset of the surface has squared L2-norm ε > 0, only if the set
has a relatively large size – exponential in the geometric parameter. For random surfaces
with respect to the Weil-Petersson probability measure, we then show, with high probability
as g → ∞, that the size of the set must be at least the genus of the surface to some power
dependent upon the eigenvalue and ε.

1. Introduction

1.1. Background. The study of the Laplacian operator ∆ = −div grad has been undertaken
from a multitude of different perspectives. When considered as an operator on function
spaces of Riemannian manifolds, a commonplace theme has been to study the connection
of properties of the eigenfunctions with respect to their eigenvalue. For example, in a
quantum chaotic setting, that is, where the underlying dynamics of the geodesic flow are
chaotic, there is great interest in the behaviour of the probability measures |ψ|2dVolM . Here,
ψ is an L2-normalised eigenfunction of the Laplacian and dVolM is the standard volume
measure on M . In particular, if the manifold M is compact, then one can consider an
orthonormal basis of L2(M) consisting of Laplacian eigenfunctions {ψλj

}j≥0 with eigenvalues

0 = λ0 < λ1 ≤ . . .→ ∞. One may then consider weak-* limits of the measures |ψλj
|2dVolM

as j → ∞. An overarching conjecture by Rudnick and Sarnak [26], called the Quantum
Unique Ergodicity conjecture, states that when the manifold has negative sectional curvature,
these measures converge to the volume measure on the space. Essentially, this is asking
whether the eigenfunctions become fully delocalised in the eigenvalue aspect. In this limit,
there have been several angles of approach to demonstrating delocalisation; for example
through computing L∞-norm bounds of eigenfunctions, and studying the entropy of the
eigenfunction measures (see [3, 5, 9, 16]).

Rather than the eigenvalue aspect, in this article we shall consider a delocalisation result
of the eigenfunctions in the large spatial aspect on compact hyperbolic surfaces. This
allows one to understand how the eigenfunctions are affected by a large volume geometry
(or equivalently, a large genus by the Gauss-Bonnet Theorem). Such a perspective is
commonplace in the regular graph literature, since the spectrum of the Laplacian is bounded.
Moreover, the spatial aspect has been the subject of several recent results on surfaces in
part due to their spectral and geometric similarities to regular graphs. In the arithmetic
surface setting, it is a natural limit to study due to its connection with the level aspect. In
this setting, some delocalisation results have been obtained by Saha [27] and Hu and Saha
[13] in terms of the sup norms of the eigenfunctions of the form

∥ψλ∥∞ ≲λ g
−α∥ψλ∥2,
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for some exponent α > 0, and g the genus of the surface. The notion of delocalisation that
we shall explore here will seek to understand if eigenfunctions can have partial, or conversely,
near full concentration, on certain subsets of a compact hyperbolic surface.

Before stating our results precisely, it will be insightful to discuss some recent work that
has connected Laplacian eigenfunctions to the surface geometry, as a way to highlight the
different geometric influences that have so far been explored. In the work of Le Masson
and Sahlsten [18], a spatial analogue of quantum ergodicity for compact hyperbolic surfaces
was developed via a Benjamini-Schramm type of convergence. This result is analogous to
similar work on regular graphs by Anantharaman and Le Masson [4]. A sequence of compact
hyperbolic surfaces (Xn)n≥0 Benjamini-Schramm converges to the hyperbolic plane if for all
R > 0,

Vol(z ∈ Xn : InjRadXn
(z) < R)

Vol(Xn)
→ 0,

as n→ ∞ (here InjRadXn
(z) is the injectivity radius of the surface Xn at the point z ∈ Xn).

Geometrically, this means that the proportion of points on the surface with small injectivity
radius, or equivalently at least one short geodesic loop based at that point, is small in the
limit. For a more general notion of Benjamini-Schramm convergence, see the articles [1, 2].
Benjamini-Schramm convergence can be seen as an assumption on the global geometry of
the surfaces as it requires that the geometry of the surface around most points is ‘well-
behaved’. It turns out that this global geometric assumption is typical for a fixed surface at
appropriately chosen scales of R, dependent upon the surface volume/genus. More precisely,
Monk [24] shows that for each g ≥ 2, there exists a subset M′

g of the moduli space of
compact genus g hyperbolic surfaces such that, for any surface X ∈ M′

g one has

Vol(z ∈ X : InjRadX(z) < 1
6 log(g))

Vol(X)
= O

(
g−

1
3

)
.

When one considers the Weil-Petersson probability measure on the moduli space of fixed
genus (we will discuss this random model in more detail later), the probability of M′

g tends
to one as g → ∞. Thus, selecting a sequence of surfaces (Xg)g where g is the genus of Xg,
and Xg ∈ M′

g for each g, one obtains Benjamini-Schramm convergence of this sequence,
and the measure of M′

g approaches one as g → ∞. Using this condition, Monk is able to
obtain information about the structure of the Laplacian spectrum for random surfaces of
large genus.

This Benjamini-Schramm assumption on surfaces can be contrasted with a local geometric
assumption upon the surface geometry, that has been exploited by Gilmore, Le Masson,
Sahlsten and Thomas in [12]. The focus of their work was on the Lp norms of the eigenfunc-
tions of the Laplacian, rather than the spectrum, and how they are influenced by a large
surface genus. There the authors require a strong control over the local topology around
every point on the surface, not just control around a large proportion of points as is offered
by the Benjamini-Schramm condition. Specifically, they require that every point on the
surface is the base of only a small number of ‘short’ primitive geodesic loops. By comparison,
the Benjamini-Schramm condition roughly states that the proportion of points that are the
base of at least one ‘short’ geodesic loop is small compared to the surface volume.

The reason why this control over all points on the surface is beneficial, is highlighted
when using the Selberg pre-trace formula to infer properties about Laplacian eigenfunctions.
Indeed, understanding the behaviour of an eigenfunction at a certain point with this formula
requires one to look at all the geodesic loops on the surface based at that point. On the
other hand, being a global property, the Benjamini-Schramm condition seems more suited
to understanding properties of the spectrum of the Laplacian. This is because one can
use the Selberg trace formula (the integral of the pre-trace formula) to link the spectrum
to an integral over the surface of a function evaluated at lengths of geodesic loops on the
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surface. Due to the presence of the integral, one only requires that the geodesic loops are
well-behaved at most points on the surface.

In this article, we are dealing with properties of the eigenfunctions of the Laplacian, and
again require strong control over the local topology of all points on the surface. For this
reason, we will utilise the geometric condition for surfaces that was introduced by Gilmore,
Le Masson, Sahlsten and Thomas, and this is written precisely in the statement of equation
(1.1) below. It turns out that the length scale at which one can understand this local
topology of points corresponds greatly to the strength of the results for the eigenfunctions.
Indeed, this scale corresponds to the parameter R(X) in equation (1.1) below, and from
Theorem 1.3, the larger that this can be taken, the more we can infer about eigenfunction
concentration. Here, we will consider estimates for this scale for both deterministic surfaces,
and those chosen with high probability as the genus of the surface tends to infinity, with
respect to the Weil-Petersson random model. To aid in the understanding of how large
the length scale can be, it is beneficial for us to utilise another geometric property, from
which, one can directly infer the geometric loop properties at every point. Indeed, this is the
perspective taken by Monk and Thomas in [25] where the tangle-free parameter of a surface
is introduced, leading to more precise length scales. We introduce this parameter now.

Definition 1.1. Given L > 0, a compact hyperbolic surface X is said to L-tangle-free if
every embedded pair of pants and one-holed torus in X has total boundary length at least
2L.

Recall that a pair of pants is a hyperbolic surface of genus zero with three simple closed
geodesic boundaries, and a one-holed torus is a genus 1 hyperbolic surface with a single
simple closed geodesic boundary. When we consider total boundary length, we will mean
the lengths of these geodesic boundaries on the subsurfaces.

Although stated in terms of pants and one-holed tori (the fundamental building blocks
of a hyperbolic surface), the tangle-free parameter L of a surface provides understanding
on the local topology of the surface around all points, as is required here. Indeed, this is
highlighted in the following theorem.

Theorem 1.2 ([25, Theorem 9]). Suppose that X is an L-tangle-free surface, and let z ∈ X
with δz a geodesic loop based at z of shortest length, ℓ(δz). Then, any (not necessarily
geodesic) loop β based at z, whose length ℓ(β) satisfies

ℓ(β) + ℓ(δz) < L,

is homotopic with fixed endpoints to a power of δz.

In other words, if the injectivity radius of an L-tangle-free surface at a point is less than
L
2 , then the shortest geodesic loop δz based at that point is unique. Furthermore, any other

geodesic loop based at that point with length less than L
2 , is homotopic with endpoints fixed

at z to a power of δz. This means that the topology of the L
2 -neighbourhood of any point

on such a surface is well understood.
In the next subsection, we will state precisely how this length scale corresponds to

the required local geometric condition for this article. Of course, understanding this
correspondence is only useful if one can obtain estimates on how large the parameter L can
be. Deterministically, notice that every surface is L-tangle-free for L at least InjRad(X),
the injectivity radius of the surface. This is because the total boundary length of any pair of
pants and one-holed tori embedded in the surface is at least 6InjRad(X), and 2InjRad(X)
respectively. For a surface chosen at random from the moduli space of genus g with respect
to the Weil-Petersson model, one may take L = c log(g) for any 0 < c < 1, with probability
tending to 1 as g → ∞. Further details of this will be discussed in Subsection 1.3.
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1.2. Deterministic Delocalisation. Let us now state precisely the delocalisation result
that we prove in this article. The type of delocalisation that we will examine here answers
the following: suppose an eigenfunction carries some L2 mass on a subset of the surface, what
information can be deduced about such a subset? Inspired by analogous results obtained
for regular graphs in [8, 9, 11], we address how large such a subset can be in terms of the
genus of the surface. Recall that, in this setting, the genus is an equivalent parameter to
the volume by the Gauss-Bonnet Theorem.

In a near fully delocalised case, an eigenfunction would assign a mass of the order 1√
g

across the whole manifold X (due to the L2 normalisation), where g is the genus of X. Thus,
on a measurable subset E ⊆ X, one should expect to see the L2 norm of the eigenfunction
restricted to this set, to be of an order proportional to the size of the set itself. In other
words, if E were a subset such that ∥ψλ1E∥22 = ε, then one would expect a bound of the
form

Vol(E) ≥ Cεg,

for some constant C, independent of the genus g and the mass ε (when g is considered large
enough).

What is obtained in this article, is a drop in the exponent of the genus, dependent upon
the eigenvalue of the eigenfunction, and the mass ε. This result is obtained for surfaces
chosen with respect to the Weil-Petersson model with probability tending to one as g → ∞.
To achieve a result of this form, we begin with a lower bound on the volume of E holding for
all surfaces. This lower bound can be understood in terms of the L-tangle-free parameter
above, or more generally, the parameter R(X) associated with equation (1.1) below. Then,
we use probabilistic estimates for these parameters to obtain bounds in terms of the genus.
We will discuss the parameter R(X) now, and contrast it to a similar parameter used for
regular graphs.

Geometric Parameter. For regular graphs, Brooks and Lindenstrauss [8] prove that if a
graph Laplacian eigenfunction has some L2 mass on a subset of the vertices, then this subset
is bounded below in terms of the size of the graph and the mass on the subset. The starting
point for this result is the introduction of a geometric parameter that provides a length
scale at which there are few distinct, non-backtracking walks between any two vertices in
the graph shorter than this length. In particular, this can be deduced from bounds on the
number of cycles based at a point in the graph, whose length are controlled by a similar
length scale. This is analogous to the control offered by the tangle-free parameter discussed
above on the geodesic loops based at any point on the surface. In fact, the exact formulation
of the geometric property that we require here is a combinatorial bound on the number of
geodesic paths between points on the surface. And, as is the case with graphs, this can be
inferred from similar combinatorial bounds on the number of geodesic loops based at points.

More precisely, we require that for a compact hyperbolic surface X = Γ\H, there exist
constants R(X) > 0 and C(X) > 0 such that for all δ > 0, there exists C0(δ) > 0 such that
for any z, w ∈ H one has

|{γ ∈ Γ : d(z, γw) ≤ r}| ≤ C(X)C0(δ)e
δr, for all r ≤ R(X). (1.1)

Of course, one can always find such parameters for any surface X: take R(X) = cInjRad(X)
for any c < 1, C(X) = 2 and C0(δ) = 1. Indeed, for r ≤ R(X) there can be at most two
elements in the set on the left-hand side otherwise one would obtain a geodesic loop on
the surface of length shorter than InjRad(X). The crucial point is that the constant R(X)
represents the length scale up to which we can understand the local geometry about every
point on the surface (this is highlighted in Lemma 3.1). This means, it will be the controlling
parameter for the lower bound on the volume of a set E (see the statement of Theorem 1.3
for the precise relation). The strength of the theorem thus relies on one being able to take
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R(X) as large as possible. In fact, we will wish for the parameter R(X) to grow in terms of
genus of the surface. In the Weil-Petersson model, surfaces can have very small injectivity
radius with positive probability (see Theorem 1.5), and so the idea is to ensure that we can
go past the injectivity radius scale for typical surfaces.

Pushing past the injectivity radius scale can possibly require the combinatorial bound of
equation (1.1) to have some dependence upon the surface itself, which is why we allow the
parameter C(X) to appear there. If one is not so careful, this can cause some problems when
observing how the constant C(X) manifests itself in the lower bound on the volume of the
set E in Theorem 1.3. Thus, one must ensure that C(X) is well understood, so that it will
not ruin the obtained bounds. Using the tangle-free parameter allows us to find constants
R(X) and C(X) that can be studied probabilistically, and that result in lower bounds on
the volume of the set E in terms of the genus. Indeed, we shall show in Lemma 3.1 that
for an L-tangle-free surface, one may take R(X) = L

4 and C(X) = 1
min{1,InjRad(X)} , both of

which can be understood probabilistically as in Subsection 1.3. For these parameters, the
constant C0(δ) can be stated explicitly as in Lemma 3.1, but its precise value is unimportant
to our discussion here.

The deterministic result that we obtain is split into two components. First, there is the
case of tempered eigenfunctions that have eigenvalue in [14 ,∞). These are dealth with by
using a similar approach to Brooks and Lindenstrauss [8] and Ganguly and Srivastava [11] on
regular graphs, through what can be seen as a smoothed cosine wave propagation operator.
The untempered eigenfunctions, whose eigenvalues are in (0, 14), are analysed through a
rescaled ball averaging operator, and we can actually obtain a stronger delocalisation result
in this case.

Theorem 1.3. Let ε > 0 be given, and suppose that X is a compact hyperbolic surface with
constants R(X) and C(X) satisfying condition (1.1). Suppose that ψλ is an L2-normalised
eigenfunction of the Laplacian on X with eigenvalue λ, and suppose that E ⊆ X is a
measurable set for which

∥ψλ1E∥22 = ε.

For R(X) sufficiently large, if λ ≥ 1
4 , there exists a universal constant C > 0, and a constant

d(λ) > 0 for which

Vol(E) ≥ Cε

C(X)
ed(λ)εR(X),

Moreover, if λ ∈ (0, 14 − σ), then there exists a universal constant C > 0 such that for R(X)
sufficiently large,

Vol(E) ≥ Cε

C(X)
e(

1
4
+ 1

2

√
σ)R(X).

The constant d(λ) above is made explicit later (see Theorem 3.5). This result in particular
shows that the eigenfunctions can not be large on a small set if (for instance) the L-tangle-free
parameter of the surface is large compared to the eigenvalue (taking R(X) = L

4 ).

1.3. Random Surface Delocalisation. Let us now discuss how one can use Theorem
1.3 to obtain a probabilistic result in terms of the genus/volume of the surface as desired.
For this, we shall firstly describe the construction of the Weil-Petersson random surface
model that we shall employ; a more detailed account can be found in [14, 21, 22]. Note
that other distinct random surface constructions could also be considered, such as a random
triangulations model by Brooks and Makover [7], and a random cover model by Magee,
Naud and Puder [19]. It would be interesting to see if similar results to those presented
here could be realised in these models.
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Fix a genus g ≥ 2 and let Tg denote the Teichmüller space of marked genus g closed
Riemann surfaces up to marking equivalence. Then, there is a (6g − 6)-dimensional real-
analytic structure on Tg which carries a symplectic form ωWP called the Weil-Petersson
form. One obtains a volume form on Tg by taking a (3g − 3)-fold wedge product of ωWP

and normalising by (3g − 3)!. In addition to this volume structure, there is a natural group
acting on Tg called the mapping class group, denoted by MCGg, which acts by changing the
marking on a point in Tg. The moduli space of genus g is then defined as the quotient by
this action:

Mg = Tg/MCGg.

This space can be thought of as the collection of hyperbolic metrics that can be endowed on
a genus g surface, identified up to isometry. An important feature of the Weil-Petersson
volume form defined on Tg is that it is invariant under the action of MCGg, and so it
descends naturally to the moduli space. With respect to this measure, the moduli space has
finite volume (see [10] for an upper bound, and [23] for more specific asymptotics of this
volume for large genus). This allows one to define a probability measure on Mg called the
Weil-Petersson probability measure, and calculate probabilities in the natural way:

PWP
g (A) =

1

Vol(Mg)

∫
Mg

1A(X)dX,

where dX is used to denote the volume form. Commonly, one takes A to be a collection of
surfaces satisfying some desired geometric property. By using integration tools and volume
estimates obtained by Mirzakhani [20, 21, 22], one is able to obtain upper bounds for these
probabilities as functions of the genus, and determine events that hold with high probability
as g → ∞.

Recall that the probabilistic result that we require is an estimate for the surface dependent
parameters R(X) and C(X) pertaining to the condition in equation (1.1). We will use
Lemma 3.1 to take R(X) = L

4 , where L is the tangle-free parameter of a surface, and

C(X) = 1
min{1,InjRad(X)} . We then have the following probabilistic estimate for L from Monk

and Thomas in [25].

Theorem 1.4 ([25, Theorem 4]). For any 0 < c < 1, one has

PWP
g (X ∈ Mg : X is c log(g)-tangle-free) = 1−O

(
log(g)2

g1−c

)
,

as g → ∞.

For the parameter C(X), it suffices to estimate the injectivity radius. The following result
of Mirzakhani is sufficient for our purposes.

Theorem 1.5 ([22, Theorem 4.20]). For any a > 0,

PWP
g (X : InjRad(X) ≥ g−a) = 1−O(g−2a),

as g → ∞.

Thus with probability tending to 1 as g → ∞, C(X) ≥ g−a for any a > 0. By combining
these probabilistic results with Theorem 1.3, we obtain the following for large genus surfaces.

Theorem 1.6. Let ε > 0 be given, and suppose that X is a compact hyperbolic surface with
genus g chosen reandomly according to the Weil-Petersson probability model. Suppose further
that λ is an eigenvalue of the Laplacian on X, and ψλ is an L2-normalised eigenfunction of
the Laplacian with eigenvalue λ. Let E ⊆ X be a measurable set for which

∥ψλ1E∥22 = ε.
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Then, if λ ≥ 1
4 , there exists a universal constant C > 0 such that for any 0 < c < 1

4 , and
a > 0, one obtains

Vol(E) ≥ Cεgcεd(λ)−a,

with d(λ) as in Theorem 1.3. If λ ∈ (0, 14 − σ), there exists a universal constant C > 0 such

that for any 0 < c < 1
4 and a > 0, one obtains

Vol(E) ≥ Cεgc(
1
4
+ 1

2

√
σ)−a.

Both bounds hold with the rate

1−O

(
log(g)2

g1−4c
+ g−2a

)
,

as g → ∞.

Remark. As noted, the exponent of the genus in the above result is governed exclusively by
probabilistic estimates for R(X). For our result, these followed from probabilistic estimates
of the tangle-free parameter L. To improve the exponent using this method, one would
need to show that typical surfaces can have a tangle-free parameter of the size A log(g)
for A large. However, in Monk and Thomas [25], it is shown that no surface is more than
(4 log(g) +O(1))-tangle-free, which would not be sufficient for this. Thus, any significant
improvement to the exponent would require a new approach to estimating R(X) for a typical
surface.

2. Harmonic Analysis for Hyperbolic Surfaces

We begin by defining our main object of study, hyperbolic surfaces, as well as outlining
necessary tools from harmonic analysis that are used to obtain our results. One can find
further details on these topics in Katok [17], Bergeron [6] and Iwaniec [15].

The hyperbolic upper half-plane will be a sufficient model of hyperbolic space for our
purposes. This is defined by

H = {z = x+ iy ∈ C : y > 0},
and is equipped with the Riemannian metric

ds2 =
dx2 + dy2

y2
,

which induces the standard Riemannian volume form

dµ =
dx ∧ dy

y2
.

The set of orientation preserving isometries of H with this metric are the Möbius transfor-
mations given by

z 7→ az + b

cz + d
,

for some a, b, c, d ∈ R with ad− bc = 1. They can be identified with the group PSL(2,R)
with the natural associated group action. Using this, one can make the identification
H = PSL(2,R)/SO(2).

A convenient definition for a hyperbolic surface is then obtained through this group
action. Indeed, consider a discrete subgroup Γ < PSL(2,R) that acts freely upon H. A
hyperbolic surface is a manifold quotient X = Γ\H. That is, the surface consists of points
on H identified up to orbits of isometries in Γ. The Riemannian metric and volume measure
are induced upon the surface in a natural manner. To each such subgroup Γ (and hence to
each surface), one may determine (non-uniquely) a fundamental domain in H. Functions
defined on the surface can be identified with Γ-invariant functions upon H, or functions on
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such a fundamental domain. We will deal in this article exclusively with the case when X is
compact.

The harmonic analysis tools that are required to show our result are given by invariant
integral operators and the Selberg transform. Such operators are constructed from radial
functions. These are bounded, even and measurable functions k : (−∞,∞) → C. They give
rise to a function, which we also denote by the same symbol k : H×H → C, through the
correspondence

k(z, w) = k(d(z, w)),

where d(z, w) is the hyperbolic distance between z, w ∈ H. This function has the important
property that it is invariant under the diagonal action of PSL(2,R). That is, for any
γ ∈ PSL(2,R) and z, w ∈ H one has

k(γz, γw) = k(z, w).

From this, one then formally defines a function kΓ : X ×X → C called an automorphic
kernel by

kΓ(z, w) =
∑
γ∈Γ

k(z, γw),

where we have defined kΓ as a Γ-periodic function on H. For this sum to converge, one
requires an appropriate decay condition on k; for instance

|k(ϱ)| = O(e−ϱ(1+δ)),

for some δ > 0 would suffice, and we assume such a condition from now on. We can then
define an invariant integral operator Tk on functions on X through the formula

(Tkf)(z) =

∫
D
kΓ(z, w)f(w)dµ(w),

where D is a fundamental domain for X. The importance of operators defined in this manner
are their connection to the Laplacian operator which we recall is defined in coordinates on
H as

∆ = −div grad = −y2
(
∂2

∂x2
+

∂2

∂y2

)
.

This operator commutes with isometries on H and so naturally passes to an operator on the
hyperbolic surface X. Since X is compact, the Laplacian has a discrete spectrum contained
in [0,∞) with the 0-eigenspace being simple, and consisting of the constant functions. In
addition, there exists an orthonormal basis {ψλj

}∞j=0 of Laplacian eigenfunctions for L2(X)
with eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ . . .→ ∞.

An important observation is that any eigenfunction of the Laplacian is also an eigenfunction
of an invariant integral operator Tk on the surface. The eigenvalue of such an eigenfunction
for Tk can be determined by taking a Selberg transform of the initial radial kernel. This is
defined to be the Fourier transform

S(k)(r) = h(r) =

∫ +∞

−∞
eirug(u)du,

of the function

g(u) =
√
2

∫ +∞

|u|

k(ϱ) sinh ϱ√
cosh ϱ− coshu

dϱ.

The spectrum is then provided from the following result.
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Theorem 2.1 ([6, Theorem 3.8]). Let X = Γ\H be a hyperbolic surface and k : [0,∞) → C a
radial kernel. Suppose that ψλ is an eigenfunction of the Laplacian with eigenvalue λ = s2λ+

1
4

for sλ ∈ C. Then ψλ is an eigenfunction of the convolution operator Tk with invariant
kernel k and

(Tkψλ)(z) =

∫
X
kΓ(d(z, w))ψλ(w) dµ(w) = h(sλ)ψλ(z),

where h(sλ) = S(k)(sλ).

One refers to sλ in the above result as the spectral parameter associated to λ. Through
this result, and the Selberg transform, one can also reconstruct an invariant kernel operator
with a specified spectrum. Indeed, given a suitable function h one can take an inverse
Selberg transform to obtain a radial kernel k through the formulae

g(u) =
1

2π

∫ +∞

−∞
e−isuh(s)ds,

and then

k(ϱ) = − 1√
2π

∫ +∞

ϱ

g′(u)√
coshu− cosh ϱ

du.

3. Delocalisation of Tempered Eigenfunctions on Large Genus Surfaces

We start with the deterministic version of our result, and thus consider a fixed compact
hyperbolic surface X = Γ\H. Let D ⊆ H be a fundamental domain of X, and E ⊆ X a
measurable set. Recall that X satisfies the geometric assumption (1.1) with some constants
R(X) ≥ InjRad(X) > 0, C(X) > 0 and C0(δ) > 0. Suppose that {ψλj

}∞j=0 is an orthonormal

basis for L2(X) of Laplacian eigenfunctions with corresponding eigenvalues 0 = λ0 < λ1 ≤
. . .→ ∞. It is clear that in the case of the constant eigenfunctions corresponding to λ0 that
the delocalisation result holds, and so we will fix an eigenvalue λ = λj for some j ≥ 1. In
particular, in this section we will further assume that the eigenfunction is tempered so that
λ ≥ 1

4 . Let sλ ∈ [0,∞) be the spectral parameter associated with λ through the equation

s2λ + 1
4 = λ.

3.1. Outline of the proof. The connection between the eigenfunction, the geodesic loop
parameter R(X) and the volume of the set E is unified in the construction of a propagation
operator. To exhibit this we utilise the following methodology:

(1) We consider a family of operators that are to be seen as a smoothed cosine wave
kernel, and recall how these operators act upon Laplacian eigenfunctions using
results of [12]. [Lemma 3.2]

(2) By selecting certain members of this family of operators and weighting them appro-
priately, we construct another family of operators now specialised to a certain fixed
eigenvalue λ, as well as some secondary parameters that will later depend on the
parameter ε. We then determine the operator norm of these operators. [Lemma 3.3]

(3) The eigenfunctions of the Laplacian are also eigenfunctions of the constructed family
of operators, and so we study their eigenvalues under this operator family. This
is done by showing that they can be written in terms of Fejér kernels of certain
orders, and so we obtain bounds on the eigenvalues using properties of these kernels.
[Lemma 3.4]

(4) Through studying the spectral decomposition of the restricted eigenfunction ψλ1E
over an orthonormal basis, we can relate a lower bound on the volume of E to the
previously obtained bounds on the eigenvalues and operator norms of the constructed
family of operators. [Theorem 3.5]



10 JOE THOMAS

To begin, let us explain how one may take R(X) = L
4 and C(X) = 1

min{1,InjRad(X)} for an

L-tangle-free surface X. This will allow one to contextualise the results in terms of L, and
allow for Theorem 1.6 to be deduced immediately from Theorems 1.3, 1.4 and 1.5 .

Lemma 3.1. Suppose that X is an L-tangle-free compact hyperbolic surface. Then, for any
δ > 0, there exists a constant C0(δ) > 0 such that for all z, w ∈ H, one has

|{γ ∈ Γ : d(z, γw) ≤ r}| ≤ C0(δ)

min{1, InjRad(X)}
eδr, for all r ≤ L

4
.

Proof. It is clear from Theorem 1.2 that for any r ≤ L
2 , and any z ∈ H, there is at most one

non-identity primitive γ ∈ Γ that is in the set

{γ ∈ Γ : d(z, γz) ≤ r}.

Any element in Γ is the power of a primitive element as X is compact. Moreover, if γ1 ∈ Γ
is equal to γn0 for some primitive element γ0 ∈ Γ, then

d(z, γ0z) ≤ d(z, γ1z).

This means that if γ1 is in this set, then the primitive element γ0 is also. Combining these
observations, the only elements in this set are γn for some powers n ∈ Z, and γ ∈ Γ a single
primitive element.

To determine an upper bound on the number of elements, we use the fact that the distance
d(z, γnz) is at least n times the translation distance of γ (it would be precisely equal if z
were on the axis of γ). By definition, the translation distance is bounded below by twice
the injectivity radius of the surface. Considering the identity and both the positive and
negative powers of γ, we see the maximal number of elements in this set is

1 +

⌊
r

InjRad(X)

⌋
,

for any z ∈ H. A bound on this set provides a bound on the cardinality of the set{
γ ∈ Γ : d(z, γw) ≤ r

2

}
, (3.1)

for z, w ∈ H. Indeed, suppose there were at least

m = 2 +

⌊
r

InjRad(X)

⌋
non-identity elements in the set, labelled γi for 1 ≤ i ≤ m. For each 2 ≤ i ≤ m we have

d(γ1w, (γiγ
−1
1 )(γ1w)) ≤ d(γ1w, z) + d(z, γiw) ≤ r,

by the triangle inequality, and the fact that the γi are in the set. As the γi are distinct,
γiγ

−1
1 is not the identity for any i = 2, . . . ,m. This means that there are at least m − 1

non-identity elements in the set

{γ ∈ Γ : d(γ1w, γγ1w) ≤ r},

contradicting the previous bound. When including the identity, this means there are at
most m elements in the set stated in equation (3.1). Notice that

m ≤ 2 +

⌊
r

min{1, InjRad(X)}

⌋
.

We wish to find a constant C0(δ) > 0 so that

m ≤ C0(δ)

min{1, InjRad(X)}
eδr,
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for all δ > 0. We first bound 2 + r. If r < 1, then trivially, this is bounded by 3 ≤ 3eδr. If
r ≥ 1 then we can observe that

2 + r ≤ 3r ≤ 3e
1
δ eδr.

Indeed,

3e
1
δ eδr ≥ 3

(
1 +

1

δ

)
(1 + δr) ≥ 3r.

Hence given δ > 0, we set C0(δ) = 3e
1
δ . Then,

m ≤ 2 +

⌊
r

min{1, InjRad(X)}

⌋
≤ 2 + r

min{1, InjRad(X)}

≤ C0(δ)

min{1, InjRad(X)}
eδr.

□

3.2. Construction of a Family of Propagation Operators. In this subsection we take
the first step of defining an appropriate family of operators. These are largely based on
their similarity to wave propagation operators, and are defined through the inverse Selberg
transform. Indeed, define

ht(r) =
cos(rt)

cosh(πr2 )
,

for appropriate values of r ∈ C and t ≥ 0. Denote by kt(ϱ) the radial kernel obtained via
the inverse Selberg transform of ht. This defines an integral operator Pt on functions of the
hyperbolic plane via

Ptf(z) =

∫
H
kt(d(z, w))f(w)dµ(w).

The construction of this operator is similar to that used in Iwaniec and Sarnak [16] when
computing sup norm bounds for Laplacian eigenfunctions on arithmetic surfaces. Indeed,
in their article they construct a propagation operator whose kernel is based on the Fourier
transform of ht. The exact kernel kt defined above has been studied by Brooks and
Lindenstrauss in [9], and also by Gilmore, Le Masson, Sahlsten and Thomas in [12], and
several important facts about the associated operator Pt will be utilised here.

Through use of the automorphic kernel one may consider Pt as an operator on functions
of the surface X. That is, we consider Pt on such functions acting by

Ptf(z) =

∫
D

∑
γ∈Γ

kt(d(z, γw))f(w)dµ(w),

with D a fundamental domain of X as before. Let Π denote the projection operator to the
subspace orthogonal from constants defined by

Πf(z) = f(z)− 1√
Vol(X)

∫
D
f(w)dµ(w).

Then [12] shows that the operators PtΠ are bounded linear operators from Lq(X) → Lp(X)
for 1 ≤ q ≤ 2 ≤ p ≤ ∞ conjugate indices, when t is not too large. In fact, an explicit
upper bound is obtained on the operator norm. Here it will suffice only to consider the
L1(X) → L∞(X) norm estimates, and we replicate the statement of these bounds for the
readers convenience.
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Lemma 3.2 ([12, Lemma 3.3, Theorem 4.3]). Suppose that X is a compact hyperbolic
surface with R(X) the parameter of condition (1.1), and with associated constants C(X)

and C0(δ). Then for t ≤ R(X)
4 and any δ > 0,

∥PtΠ∥L1(X)→L∞(X) ≤ C(X)C0(δ)e
−( 1

2
−δ)t,

The proof of this result relies on estimating the expression∑
γ∈Γ

|kt(d(z, γw))|,

for z, w ∈ D, which arises from the automorphic kernel of PtΠ. Outside of a ball of radius
4t, Brooks and Lindenstrauss show that the kernel kt satisfies some strong exponential decay.
Inside the ball of radius 4t, we are considering points z, w ∈ D for which d(z, γw) ≤ R(X).
The number of these terms is bounded by a sub-exponential growth from condition (1.1)
which is off-set by a slight exponential decay of the kernel. Crucially, this is where control
over the geodesics between all points on the surface with lengths up to the scale R is utilised,
and results in an exponential decay for the operator norm of PtΠ.

Armed with this upper bound for the operator norm of PtΠ, we wish to construct a new
operator that is specialised to the eigenvalue λ, and two auxiliary parameters that will later
depend upon ε. This is done by taking a certain linear combination of members of the PtΠ
family for select values of t at which the above bounds hold. The choice of t is delicate. On
one hand, we need to take enough operators in the linear combination so that the operator
has an appropriate spectral action on Laplacian eigenfunctions. On the other hand, taking
too many operators in the linear combination will inflate the operator norm too much. To
this end, we follow the approach of [11] used for regular graphs which refines and improves
upon the original techniques and bounds obtained in [8, 9].

Recall that the Fejér kernel of order N is defined by

FN (s) =
1

N

sin2(Ns/2)

sin2 s/2
= 1 +

N∑
j=1

N − j

N/2
cos(js).

By dividing the summation in the right hand side by certain hyperbolic cosines, one recovers
a summation of functions similar to the ht defined above. We will exploit this observation
to understand the spectral action of a certain linear combination of PtΠ as a function of the
Fejér kernel. To this end, for positive integers N and r, define

Wλ,r,N =
N∑
j=1

N − j

N
(cos(rsλj) + 1)PjrΠ.

With control over the values of N and r, we can utilise the upper bound on the operator
norm of PtΠ to see that this is a bounded operator from L1(X) → L∞(X), and obtain
explicit bounds on the operator norm.

Lemma 3.3. Suppose that λ ≥ 1
4 is an eigenvalue of the Laplacian on a compact hyperbolic

surface X with parameter R = R(X) from condition (1.1), and associated constants C(X)
and C0(δ). Given positive integers N and r satisfying Nr ≤ 1

4R, there exists a universal

constant δ0 > 0 such that for all δ < δ0, the operator Wλ,r,N : L1(X) → L∞(X) is a bounded
linear operator with norm

∥Wλ,r,N∥L1(X)→L∞(X) ≤ C(X)A(δ)e−( 1
2
−δ)r,

for some constant A(δ) > 0 dependent only upon δ.
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Proof. From the conditions on N and r, we have jr ≤ 1
4R for each j = 1, . . . , N . Utilising

Lemma 3.2 we obtain

∥Wλ,r,N∥L1(X)→L∞(X) ≤
N∑
j=1

∣∣∣∣N − j

N
(cos(rsλj) + 1)

∣∣∣∣ ∥PjrΠ∥L1(X)→L∞(X)

≤ 2C(X)C0(δ)
N∑
j=1

e−( 1
2
−δ)jr

≤ 2C(X)C0(δ)

e−( 1
2
−δ)r +

∞∑
j=2

e−( 1
2
−δ)jr


= 2C(X)C0(δ)

(
e−( 1

2
−δ)r +

e−( 1
2
−δ)r

e(
1
2
−δ)r − 1

)
.

Set δ0 = 0.01 so that if δ < δ0, then 2 sinh
(
1
2 − δ

)
= e(

1
2
−δ) − e−(

1
2
−δ) ≥ 1. Under this

condition, since r ≥ 1, we obtain

e−(
1
2
−δ)r

(
1 + e(

1
2
−δ)
)
≤ e−(

1
2
−δ)
(
1 + e(

1
2
−δ)
)
≤ e(

1
2
−δ).

This is equivalent to

e−(
1
2
−δ)r ≤ e(

1
2
−δ)e−(

1
2
−δ)r

(
e(

1
2
−δ)r − 1

)
.

Plugging this estimate into the bounds for the operator norm above then gives

∥Wλ,r,N∥L1(X)→L∞(X) ≤ 2C(X)C0(δ)
(
1 + e(

1
2
−δ)
)
e−(

1
2
−δ)r.

Setting A(δ) = 2C0(δ)
(
1 + e(

1
2
−δ)
)
then gives the result. □

3.3. Determining the Spectral Action and Proof of Theorem 1.3 for Tempered
Eigenfunctions. We now analyse the spectrum of the operator Wλ,r,N defined above. We
do this by testing it against the orthonormal basis of Laplacian eigenfunctions considered at
the start of this section.

Lemma 3.4. Suppose that λ ≥ 1
4 and µ ∈ [0,∞) are eigenvalues of the Laplacian on a

compact hyperbolic surface X with geodesic loops parameter R = R(X) given by (1.1). Fix
positive integers N and r satisfying Nr ≤ 1

4R. If ψµ is an eigenfunction of the Laplacian on
X with eigenvalue µ, then ψµ is an eigenfunction of the operator Wλ,r,N , and the following
bounds on its eigenvalue hold.

(1) If µ ≥ 1
4 , then the eigenvalue of ψµ under the action of Wλ,r,N is at least −1.

(2) If µ ∈ [0, 14), then the eigenvalue of ψµ under the action of Wλ,r,N is at least 0.

(3) The eigenvalue of ψλ under Wλ,r,N is at least N−4
4 cosh(sλπ/2)

.

Proof. The fact that ψµ is an eigenfunction of Wλ,r,N is immediate from the construction of
the operator as a linear combination of PtΠ for various values of t. To analyse the eigenvalue
of ψµ, we will rewrite it as a function of Fejér kernels. If µ = 0, then it is obvious from the
definition of Π that the eigenvalue is zero, so assume that µ > 0. Then,

Wλ,r,Nψµ =
N∑
j=1

N − j

N
(cos(rsλj) + 1)

cos(rsµj)

cosh
( sµπ

2

)ψµ.

For small eigenvalues µ ∈ (0, 14), it is easy to see that the summation is non-negative. Indeed,

sµ will be purely imaginary and lie in (0, 12)i, so that
sµπ
2 ∈ (0, π4 )i and each term in the
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summation is non-negative. To deal with values of µ at least 1
4 , we rewrite the above

eigenvalue by splitting the summation. Notice that

1

cosh
( sµπ

2

) N∑
j=1

N − j

N
cos(rsλj) cos(rsµj)

=
1

2 cosh
( sµπ

2

) N∑
j=1

N − j

N
(cos(jr(sλ + sµ)) + cos(jr(sλ − sµ)))

=
1

4 cosh
( sµπ

2

)
1 + 2

N∑
j=1

N − j

N
cos(jr(sλ + sµ)) + 1 + 2

N∑
j=1

N − j

N
cos(jr(sλ − sµ))− 2


=

1

4 cosh
( sµπ

2

)(FN (r(sλ + sµ)) + FN (r(sλ − sµ))− 2).

Similarly, we have

1

cosh
( sµπ

2

) N∑
j=1

N − j

N
cos(rsµj) =

1

2 cosh
( sµπ

2

)(FN (rsµ)− 1).

The eigenvalue can then be analysed by using properties of the Fejér kernel. Indeed, we
have that FN (s) ≥ 0 from the sine representation of the Fejér kernel for all s ∈ R. Thus,
the eigenvalue is bounded below by

1

4 cosh
( sµπ

2

)(0 + 0− 2) +
1

2 cosh
( sµπ

2

)(0− 1) = − 1

cosh
( sµπ

2

) ≥ −1.

For µ = λ we note that FN (0) = N so that a lower bound is given by

1

4 cosh
(
sλπ
2

)(N + 0− 2) +
1

2 cosh
(
sλπ
2

)(0− 1) =
N − 4

4 cosh
(
sλπ
2

) ,
as required. □

Understanding the bounds on the spectrum of Wλ,r,N allows one to obtain inequalities
involving the matrix coefficients of certain functions under the operator. This is crucial since
we will examine the action of Wλ,r,N upon ψλ1E via a decomposition over an orthonormal
basis of eigenfunctions for L2(X). In fact, by manipulation of norms, we will see that the
lower bounds on eigenvalues from Lemma 3.4, along with the upper bound for the operator
norm in Lemma 3.3, will be sufficient to obtain a lower bound on the set volume.

Theorem 3.5. Fix ε > 0 and suppose that X is a compact hyperbolic surface. Let ψλ be an
L2-normalised eigenfunction of the Laplacian on X with eigenvalue λ ≥ 1

4 , and suppose that
E ⊆ X is a measurable set for which

∥ψλ1E∥22 = ε.

Suppose that R = R(X) and C(X) are parameters for the surface X from (1.1) with R
sufficiently large. Then, there exists some universal constant C > 0 for which

Vol(E) ≥ Cε

C(X)
ed(λ)εR,

where d(λ) can be taken to be

d(λ) =
1

256 cosh
(
sλπ
2

) .
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Proof. Set the parameters r and N as follows:

N =
⌊
8ε−1 cosh

(sλπ
2

)⌋
,

r =

⌈
1

8
N−1R

⌉
.

Since ψλ is L2-normalised, the parameter ε is bounded above by 1. Thus N ≥ 1, and both
N and r are positive integers. Additionally,

rN ≤ 1

8
R+N ≤ 1

4
R,

when R ≥ 64ε−1 cosh
(
sλπ
2

)
. Thus, for sufficiently large R, the parameters N and r satisfy

the hypotheses of Lemmas 3.3 and 3.4. Fix δ > 0 less than the universal constant δ0 from
Lemma 3.3.

By use of the Hölder and Cauchy-Schwarz inequalities,

|⟨Wλ,r,N (ψλ1E), ψλ1E⟩| ≤ ∥Wλ,r,N (ψλ1E)ψλ1E∥1
≤ ∥Wλ,r,N (ψλ1E)∥∞∥ψλ1E∥1
≤ ∥Wλ,r,N∥L1→L∞∥ψλ1E∥21
≤ ∥Wλ,r,N∥L1→L∞ Vol(E)∥ψλ1E∥22
= ∥Wλ,r,N∥L1→L∞ Vol(E)ε.

Applying the operator norm bound of Lemma 3.3 then gives

|⟨Wλ,r,N (ψλ1E), ψλ1E⟩| ≤ C(X)A(δ)e−( 1
2
−δ)r Vol(E)ε.

We now seek a lower bound on this same inner product. We do this by considering the
action of the operator Wλ,r,N on the spectral decomposition of ψλ1E over the orthonormal
basis. Indeed, write

ψλ1E = ⟨ψλ1E , ψλ⟩ψλ + ftemp + funtemp,

where ftemp corresponds to the tempered part of the spectrum with the term corresponding
to ψλ removed, and funtemp corresponds to the untempered part of the spectrum. From
Lemma 3.4, we known the action of Wλ,r,N on each of these pieces of the decomposition
and thus,

⟨Wλ,r,N (⟨ψλ1E , ψλ⟩ψλ), ⟨ψλ1E , ψλ⟩ψλ⟩ ≥ ε−1∥ψλ∥22|⟨ψλ1E , ψλ⟩|2 = ε−1|⟨ψλ1E , ψλ⟩|2,
⟨Wλ,r,N (ftemp), ftemp⟩ ≥ −∥ftemp∥22,

⟨Wλ,r,N (funtemp), funtemp⟩ ≥ 0.

By using orthogonality and these inequalities, we see that

⟨Wλ,r,N (ψλ1E), ψλ1E⟩ ≥ ε−1|⟨ψλ1E , ψλ⟩|2 − ∥ftemp∥22. (3.2)

Now, notice that

|⟨ψλ1E , ψλ⟩| = ∥ψλ1E∥22 > ε,

and also by an application of Pythagoras’ theorem that

∥ftemp∥22 ≤ ∥ψλ1E∥22 − |⟨ψλ1E , ψλ⟩|2

= ∥ψλ1E∥22(1− ∥ψλ1E∥22)
≤ ∥ψλ1E∥22(1− ε).

Putting these into the lower bound of equation (3.2) gives

⟨Wλ,r,N (ψλ1E), ψλ1E⟩ ≥ ∥ψλ1E∥22(1− (1− ε)) ≥ ε2.
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Combining the upper and lower bounds on the inner product then provides

Vol(E) ≥ Cε

C(X)
e(

1
2
−δ)r,

where C = 1
A(δ) , and the δ dependence is suppressed since it is fixed. We now compute

using the assigned values of δ, r and N that(
1

2
− δ

)
r ≥ 1

32
N−1R ≥ εR

256 cosh
(
sλπ
2

) .
This concludes the proof with

d(λ) =
1

256 cosh
(
sλπ
2

) .
□

4. Delocalisation of Untempered Eigenfunctions on Large Surfaces

We now turn to studying the eigenfunctions corresponding to small eigenvalues. As
before, let X = Γ\H be a compact hyperbolic surface with associated fundamental domain
D ⊆ H, and let E ⊆ X be a measurable subset. We will suppose this time that ψλ is an
eigenfunction of the Laplacian with eigenvalue λ contained in the interval (0, 14 − σ) for
some σ > 0. This in particular means that the spectral parameter sλ for the eigenvalue is
contained in the set (

√
σ, 12)i.

The methodology for bounding the volume of E will follow the same steps as in the
tempered case. In fact, one can obtain an identical lower bound on the volume by using the
work of the previous section, along with the operator

Wλ,r,N :=W 1
4
,r,N ,

for λ ∈ (0, 14). We instead opt here to use a different operator which allows us to obtain
a stronger delocalisation result, by removing the ε dependence from the exponent of the
volume lower bound.

The operator we use will be a rescaled ball-averaging operator on the surface. The kernel
of this operator is given by

kt,λ(ϱ) =
1{ϱ≤t}(ϱ)

cosh(t)
1
2
(1+

√
σ)
.

In the usual way, we obtain an operator acting on functions on the surface through the
following formula:

Bt,λf(z) =
1

cosh(t)
1
2
(1+

√
σ)

∫
D

∑
γ∈Γ

1{d(z,γw)≤t}(w)f(w)dµ(w).

The L1(X) → L∞(X) operator norm of Bt,λ is then bounded by

sup
z,w∈D

1

cosh(t)
1
2
(1+

√
σ)

∑
γ∈Γ

|1{d(z,γw)≤t}(w)|.

Suppose that R(X), C(X) and C0(δ) are parameters associated to the surface X through
condition (1.1). For t ≤ R(X), and fixed z, w ∈ D, the number of terms in the summand is
bounded by C(X)C0(δ)e

δt. The L1(X) → L∞(X) operator norm of Bt,λ for t ≤ R(X) is
thus bounded by

∥Bt,λ∥L1(X)→L∞(X) ≤ C(X)C0(δ)e
1
2
(2δ−1−

√
σ)t, (4.1)

for any δ > 0. This bound serves the same function as Lemma 3.3 from the previous section.
The second key ingredient required is an analogue of Lemma 3.4 to understand the spectral
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action of Bt,λ. Recall that the spectral action of operators defined through a kernel in this
way, is obtained from the Selberg transform of the kernel. This can be computed as follows.

Lemma 4.1. The Selberg transform of the function kt,λ(ϱ) is given by

ht,λ(r) =
4
√
2

cosh(t)
1
2

√
σ

∫ t

0
cos(ru)

√
1− cosh(u)

cosh(t)
du.

Proof. We use the formulae quoted in Section 2 to determine the Selberg transform. Firstly
notice that

g(u) =

√
2

cosh(t)
1
2
(1+

√
σ)

∫ t

|u|

sinh(ϱ)√
cosh(ϱ)− cosh(u)

dϱ1{|u|≤t}(u)

=
2
√
2

cosh(t)
1
2
(1+

√
σ)

√
cosh(t)− cosh(u)1{|u|≤t}(u).

Thus, one obtains

ht,λ(r) =
2
√
2

cosh(t)
1
2

√
σ

∫ t

−t
eiru

√
1− cosh(u)

cosh(t)
du

=
4
√
2

cosh(t)
1
2

√
σ

∫ t

0
cos(ru)

√
1− cosh(u)

cosh(t)
du.

□

From now on, we will work with the operator Bt,λ for t = R(X). To obtain the desired
bounds on the spectral action, we will require the following lemma that we isolate for
readability. The result is a purely technical calculation, and so the reader who wishes to
follow the main line of argument for the volume bounds will be at no loss by skipping over
the proof.

Lemma 4.2. Suppose that a ∈ (
√
σ, 12) for some σ > 0, then for all R ≥ 2,∫ R

0
cosh(au)

√
1− cosh(u)

cosh(R)
du ≥ 1

3
sinh(

√
σR).

Proof. Since cosh(au) is an increasing function in u, the integrand is non-negative and the
expression under the square root is contained in [0, 1], we may bound the integral as follows:∫ R

0
cosh(au)

√
1− cosh(u)

cosh(R)
du ≥

∫ R

0
cosh(

√
σu)

(
1− cosh(u)

cosh(R)

)
du

=
sinh(R

√
σ)√

σ
− 1

2

(
sinh((

√
σ + 1)R)

(
√
σ + 1) cosh(R)

+
sinh((1−

√
σ)R)

(1−
√
σ) cosh(R)

)
.

This expression is then equal to

2 sinh(R
√
σ) cosh(R)(1− σ)− sinh((

√
σ + 1)R)(

√
σ − σ)− sinh((1−

√
σ)R)(σ +

√
σ)

2
√
σ(
√
σ + 1)(1−

√
σ) cosh(R)

.

(4.2)

Since
√
σ ≤ 1

2 , the denominator is bounded above by 3
2 cosh(R), and so we seek a lower

bound on the numerator. Using angle sum formulae for the hyperbolic functions we see that

−
√
σ(sinh((

√
σ + 1)R) + sinh((1−

√
σ)R)) = −2

√
σ sinh(R) cosh(R

√
σ)

σ(sinh((
√
σ + 1)R)− sinh((1−

√
σ)R)) = 2σ sinh(R

√
σ) cosh(R).
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The numerator of equation (4.2) is thus equal to

2 sinh(R
√
σ) cosh(R)− 2

√
σ sinh(R) cosh(R

√
σ).

Which again, using angle sum formulae for the hyperbolic functions, reduces to

(2− 2
√
σ) sinh(R

√
σ) cosh(R)− 2

√
σ sinh((1−

√
σ)R).

Using this lower bound on the numerator, and the upper bound on the denominator shown
above, we see that (4.2) is bounded below by

2

3
(2− 2

√
σ) sinh(R

√
σ)− 4

√
σ

3

sinh((1−
√
σ)R)

cosh(R)
.

Claim. For R ≥ 2,

4
√
σ

3

sinh((1−
√
σ)R)

cosh(R)
≤ 1

3
(2− 2

√
σ) sinh(R

√
σ).

If true, this shows that the integral is bounded below by

1

3
(2− 2

√
σ) sinh(R

√
σ) ≥ 1

3
sinh(R

√
σ),

whenever R > 2, and thus the result follows.
Proof of Claim. By using an angle sum formula expansion of sinh((1−

√
σ)R), and rearranging

the inequality, we see that it suffices to show that

1 ≤
(
2 + 2

√
σ

4
√
σ

)
tanh(R

√
σ) coth(R).

For fixed R > 0, the function

x 7→
(
2 + 2x

4x

)
tanh(Rx),

defined for x > 0 is a decreasing function. On this domain, it is bounded below by the
limiting value as x→ 0+ which is R

2 . Thus,(
2 + 2

√
σ

4
√
σ

)
tanh(R

√
σ) coth(R) ≥ R

2
coth(R) ≥ 1,

where R ≥ 2, as required. □

Lemma 4.3. Suppose that λ ∈ (0, 14 − σ) and µ ∈ [0,∞) are eigenvalues of the Laplacian
on a compact hyperbolic surface X. Suppose that R = R(X) is the parameter for the surface
X from condition (1.1). If ψµ is an eigenfunction of the Laplacian on X with eigenvalue µ
then the following bounds hold for R sufficiently large (dependent only upon σ and ε).

(1) If µ ≥ 1
4 , then the eigenvalue of ψµ under the action of BR,λ is at least −1.

(2) If µ ∈ [0, 14), then the eigenvalue of ψµ under the action of BR,λ is at least 0.

(3) The eigenvalue of ψλ under BR,λ is at least ε−1.

Proof. First, suppose that µ ≥ 1
4 . Then,

hR,λ(sµ) ≥ − 4
√
2

cosh(R)
1
2

√
σ

∫ R

0

√
1− cosh(u)

cosh(R)
du

≥ − 4
√
2R

cosh(R)
1
2

√
σ
,

For R sufficiently large, this is bounded below by −1. The case when µ ∈ [0, 14) is trivial
since the integrand is non-negative from the spectral parameter sµ being purely imaginary.
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For the spectral action on ψλ, write λ = 1
4 − a2λ, so that the spectral parameter of λ is

sλ = aλi. Then by defintion,

hR,λ(sλ) =
4
√
2

cosh(R)
1
2

√
σ

∫ R

0
cosh(aλu)

√
1− cosh(u)

cosh(R)
du.

By assumption on λ, it follows that aλ ∈ (
√
σ, 12). Lemma 4.2 then shows that

hR,λ(sλ) ≥
4
√
2

3

sinh(R
√
σ)

cosh(R)
1
2

√
σ
,

whenever R ≥ 2. This expression is subsequently bounded below by 1
2e

1
2

√
σR − 1 which is at

least ε−1 whenever R ≥ 2√
σ
log(2 + 2ε−1). □

We now combine the upper bound (4.1) with Lemma 4.3 to obtain the desired delocalisation
result for small eigenvalues.

Theorem 4.4. Fix ε > 0, and suppose that X is a compact hyperbolic surface with R = R(X)
given by condition (1.1). Suppose that λ ∈ (0, 14 − σ) is an eigenvalue of the Laplacian on

X, and ψλ is an L2-normalised eigenfunction with eigenvalue λ. If E ⊆ X is a measurable
set for which

∥ψλ1E∥22 = ε,

then there exists a universal constant C > 0, such that for R sufficiently large (dependent
only upon σ and ε),

Vol(E) ≥ Cε

C(X)
e(

1
4
+ 1

2

√
σ)R.

Proof. Suppose that R is sufficiently large, as required by Lemma 4.3, so that the spectral
action bounds for BR,λ hold. As in the proof of Theorem 3.5, we can use Lemma 4.3 to see
that

ε2 ≤ ∥BR,λ∥L1(X)→L∞(X)εVol(E).

The operator norm of BR,λ is controlled as in equation (4.1) by

∥BR,λ∥L1(X)→L∞(X) ≤ C(X)C0(δ)e
1
2
(2δ−1−

√
σ)R,

for any δ > 0. Set δ = 1
4 , then we obtain the lower bound

Vol(E) ≥ Cε

C(X)
e(

1
4
+ 1

2

√
σ)R,

where C = 1
C0(

1
4
)
. □

Combining Theorems 3.5 and 4.4 then gives the deterministic result Theorem 1.3. Theorem
1.6 is then obtained by using Theorem 1.4 to probabilistically set R(X) = c log(g) and
C(X) = 1

min{1,InjRad(X)} in Theorem 4.4.
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