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Herding then farming in the Nile Delta
Xiaoshuang Zhao1, Yan Liu1✉, Ian Thomas2, Alaa Salem3, Yanna Wang1, Said E. Alassal4, Feng Jiang1, Qianli Sun1,

Jing Chen1, Brian Finlayson2, Penelope Wilson5 & Zhongyuan Chen1✉

The Nile Delta in Egypt represents a valuable location to study the history of human societal

development and agricultural advancement. However, the livelihood patterns of the earliest

settlers – whether they were farmers or herders – remains poorly understood. Here we use

non-pollen palynomorphs and pollen grains from a sediment core taken at Sais, one of the

earliest archaeological sites in the west-central Nile Delta, to investigate the livelihood pat-

terns and transition of early settlers there. We find that animal microfossils (dung and hair)

occur in substantial quantities from around 7,000 years ago in our high-resolution-dated

non-pollen palynomorphs spectrum, while domesticated cereals emerge in the spectrum

around 300 years later. We also identify evidence of fire-enhanced land exploitation after this

time. We interpret our microfossil evidence to indicate that the earliest settlers in the Nile

Delta were herders and that this then developed into a combination of herding and farming.
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The Nile Delta, where the river flow originates from a humid
area in the highlands of eastern Africa, has played a key
role in building the political system and promoting

social development of Egypt1,2 (Fig. 1a, b). This has attracted a
worldwide focus on early human migration and occupation, and
the origins of agricultural and social advancement. This discus-
sion covers not only the river-delta itself, but also includes the
wider Mediterranean and much of SW Asia3–5. Intriguing but
highly contentious arguments persist, related to who were the
earliest settlers, when they moved into the delta, whether they
were farmers or herders, and what dynamics this livelihood
transition underwent. Although substantial effort has been made
by geoarchaeological communities to clarify these questions in
the past decades, the drivers of the processes of cultural transition
remain poorly understood.

In this study, we examine these issues by reporting our geo-
biological observations, made at the type archaeological site of
Sais (Sa el-Hagar, 30° 58′ 05″ N, 30° 45′ 56″ E) (Fig. 1a). The site
is located in the west-central delta, which is defined archae-
ologically as one of the earliest Neolithic sites (ca. 6.5–6.2 ka)6.
An 8.50 m sediment core (SH-1) was taken on the margin of the

Sais site for this study (Figs. 1c, 2). The basal material of the core,
below 8.25 m (Fig. 2), is an Early Holocene flood levee composed
of sandy sediment, known as ‘Gezira’ (Turtleback) in Arabic. A
gray silty clay and yellow fine sand occurs in core depth
8.25–6.70 m, and is considered to be a natural sediment layer.
This is overlain by a thicker muddy sediment (6.70–1.70 m)
containing fragmented pottery and sherds, identified as a cultural
layer (Fig. 2). An agriculturally disturbed layer occurs at
1.70–0 m, which was not analyzed in this study.

We use non-pollen palynomorphs (NPP) and pollen grains in
our examinations. NPP includes microfossil remains of vascular
plants as well as a great variety of degradation-resistant remains
of fungi, algae and invertibrates7,8. NPP studies started in the
1970s and have since advanced significantly7–13, and those
descriptions, identifications, morphotype code numbers and
related ecological information were examined as relevant studies
progressed10–13. However, our search of the literature has shown
that very few NPP studies have been reported from the Nile
Delta in a geoarchaeological context. The findings of this study
are multidisciplinary, being new assessments to complement
knowledge in the geoarchaeological field of the Nile Delta.

Fig. 1 Map of the Nile Delta and the Nile River Basin. In this map shown are the archaeological sites of Sais El-Haggar (Predynastic) and Kom
El-Khilgan (Predynastic) (a), the entire Nile River Basin (b), and coring at Sais (c) (delta images were formed by authors with SRTM open source at:
https://srtm.csi.cgiar.org/).
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Study area. The Nile Delta (ca. 2.4 × 104 km2) of NE Africa is a
significant component of the Egyptian landscape. The delta
formed ca. 7000 years ago, when the sea reached closer to its
present level14. The delta is topographically elevated from 1–2 m
above mean sea level (amsl) along the delta-coast, but quickly
rises to ca. 3–15 m amsl inland, primarily due to catastrophic
flood-related aggradation during the Africa Humid Period
(AHP)15 (Fig. 1a). The site of Sais covers an area of 0.16 km2 and
stands on the floodplain with an elevation ca. 5–6 m amsl. The
site is ca. 1.8 km east of the Rosetta Branch, one of the two main
tributaries of the present delta (Fig. 1a), but many paleo-Nile
branches existed during the Early-Middle Holocene1. The
Nile Delta has an arid climate setting with a precipitation of
ca. 100 mm per year16. This contrasts with its watershed, the
Africa Highlands, and the Ethiopian Plateau, where high rainfall
(>1500 mm per year) is driven by the African monsoon17,18. The
delta surface is sparsely vegetated with a few natural shrubs
and herbs.

Results and discussion
There has been considerable discussion of the origins and
development of the livelihood patterns of the early settlers who
migrated to the lower Nile valley, including the Faiyum basin and
the delta-coast (Fig. 1a), during the Early-Middle Holocene3–5.
Our high-resolution dated NPP zones (I–VII) defined in this
study provide significant insights into this discussion. Clearly,
no intense land use activities occurred in the NPP Zone I, a
natural layer (Figs. 2 and 3), before 7.0 ka, and this is seen in

archaeological studies, in which no archaeological site >7.0 ka has
yet been reported in the Nile Delta4,5.

What we saw in NPP Zone II (the cultural layer) was the
largely emerged and peaked animal dung/hair (Fig. 4_No. 2, 4, 7;
No. 14–18), that begins at ca. 7.0 ka (Figs. 2 and 3). High con-
centrations of animal dung often imply stock animals mostly
associated with systematic pastoral patterns13,19, suggesting herd
animals brought to the site. Sporadically distributed animal dung/
hair in Zone I (Fig. 4_No. 1, 13) indicates wild indigenous ani-
mals existed in the study area before 7.0 ka4, and they seem to
have been at the site in the Neolithic period, based on excavated
rib bones of a wild bull (Bos primigenius)20, perhaps representing
a regime of mixed hunting and husbandry.

It is also noted from the previous study that the Nile Delta was
not included in the human migration circum-Mediterranean
during the period 11.5–7.0 ka1, perhaps due to insufficient dated
geoarchaeological caveats in previous studies. The high-
resolution-dated NPP of Sais in the present study that shows
the human activities at 7 ka can fill in this geochronological gap.

Our pollen grain analysis of the Sais found that Poaceae
(35–37; 37–40; >40 µm) appeared abruptly and coevally in the
consequent NPP Zone III dating back to 6.7 ka (Fig. 3). Poaceae
>35–40 µm is generally used to imply domesticated farming
activities elsewhere in the world21–24, although there has been
debate over the separation of larger grains of pollen of cereals
from wild grasses of smaller size25–29. In this study, we do not
intend to be definitive while applying classified sizes of Poaceae to
cereal cultivation/domestication. However, we touch on the
argument of early farming activities by using the little correlated

Fig. 2 Lithology description and age-depth model of core SH-1. Lithology and age-depth model of core SH-1 from archaeological site Sais (see Fig. 1a).
22 AMS-14C dates from SH-1 form the basis of this high-resolution study (the envelop of age-model represents the range between minimal and maximal
dating value at final 95% confidence intervals). The “natural layer” (without pottery and sherds) and the “cultural layer” (with pottery and sherds) are
shown in the core log. The basal sand layer of SH-1 is termed as “Gezira” (Turtleback) in Arabic. Sediment log SH-1 was modified from our previous
study37.
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relationship between Poaceae <35 µm and Poaceae >35–40 µm at
the site. The classified Poaceae sizes occurring from the Zone
III–VII (the bottom of Zone III dates to 6.7 ka) (Figs. 2 and 3)
contrasts to Poaceae <35 µm, the wild weeds seen throughout the
Holocene spectrum (Fig. 3). This unique relationship, which was
also reported by our preliminary study at another type archae-
ological site of Kom El-Khilgan in the NE Nile Delta30 (Fig. 1a),
suggests that Poaceae of >35–40 µm (Fig. 4_No. 21–25), especially
>40 µm (Fig. 4_No. 26–28) was imported by migrants into the
study area. This further indicates that the larger sizes of Poaceae
(>35 µm) that emerged at the site were domesticated cereal, which
had developed already in SW Asia and the east Sahara Desert
prior to 6.7 ka31–33. We therefore propose that herding predates
farming at the site by at least 300 years (Fig. 3).

We found husbandry being undertaken at the site since 6.7 ka,
indicated by concomitant fluctuation of animal microfossils and
Poaceae >35–40 µm in the Zones III–VII (Fig. 3). The propor-
tional change of animal microfossils and Poaceae (>35–40 µm)
through time, on other hand, suggests that herding may have
weakened while cropping-based activities intensified (Fig. 3).
Intensifying land exploitation is seen after 6.7 ka, indicated by
the increasing intensity of micro-charcoal (≥100 µm) and NPP
erosion indicators, together with Poaceae (>35–40 µm). Fire-
enhanced land exploitation could have helped cope with
increasing pressure from population growth as society advanced
(Fig. 3).

It is widely acknowledged that domesticates (goat/sheep, and
barley/wheats) were brought into the lower Nile valley early in the
history of human occupation4. The hot-dry climate in NE Africa,
including the lower Nile, did not support broader occupation of
indigenous domesticates34. Our NPP and pollen grains provide
firm biological evidence to support this hypothesis.

Interestingly, Linum (flax) was also found in SH-1, in a similar
distribution pattern to animal microfossils (Fig. 2). Linum
occurrence indicates the need of this material for the early

settlers’ livelihood35,36. It is reported that Linum was found as a
food resource in the Levant as early as 8000 years ago36, the major
route of early settlers who migrated into the lower Nile Valley4,5.
The sparse Linum in Zone I prior to 7.0 ka (Figs. 3 and 4_No. 9)
could give rise to an assumption that it was local plants that were
cultivated for handcraft products as demanded by the early
settlers.

The freshwater algae, ferns, and fungi, associated with wet
environments, indicate a wetter climate setting before 7.0 ka fol-
lowed by a drying climate towards recent time37 (Fig. 3). Pre-
sumably, unexpected Nile floods occurred prior to 7.0 ka, making
the delta area uninhabitable. The subsequent short-term (300 years)
climate drying (Zone II, Fig. 3) led to herding starting at the site, a
phenomenon also recognized at the site of Kom El-Khilgan. Per-
haps, herding was economically more productive than cropping-
based land use activities during the drier climate period. Obviously,
cropping began when the climate became wetter37 (Zone III, Fig. 3)
and the settlers had developed the capability to sustain themselves
during the post-AHP climate drying.

Methods
Age model. In this study, we took 22 samples consisting of charcoal and organic
mud from SH-1 for AMS radiocarbon dating (Fig. 2). Dating was conducted at the
Beta Laboratory in Florida, USA and the Institute of Earth Environment, Chinese
Academy of Sciences, Xi’an, China. Calibration was applied to all the ages at 95.4%
confidence intervals (2σ) in calendar years before 1950 (expressed as cal. yr BP), using
the Calib 8.1.0 radiocarbon age calibration program with IntCal20 datasets (Supple-
mentary Table 1)38. An age-depth model set at 10 cm intervals was constructed using
the ‘rbacon’ package in R39, and indicated as ka in this study.

NPP-pollen analysis. A total number of 116 samples were taken for NPP-pollen
analysis with a sampling interval of 5 cm. The samples were dried at room tem-
perature and a 10 g dry sample was taken for analysis following Moore et al.40 and
Kholeif and Mudie41. A tablet of exotic Lycopodium spores (27,637 N/tablet) was
added to each sample to calculate the pollen and NPP concentrations. 10% HCl
and 40% HF were added to remove carbonates and silicates, respectively. The
samples were heated with 10% KOH to dissolve humic matter. The materials

Fig. 3 NPP pollen spectrum of SH-1. Seven (7) indicators identify the signatures of the Holocene environmental change in the Nile Delta. Animal dung
and fibres appear noticeably in Zone II (7 ka), and the classified Poaceae (35–37; 37–40; >40 µm) representing domesticated cereal appear first in Zone III
(6.7 ka), indicating that herding predates farming at the site. Increasing charcoal (>100 µm) indicates the use of fires in cropping-base farming. The little
correlated relationship between wild Poaceae (<35 µm) and classified Poaceae indicates domesticated cereal imported from outside. Poaceae <35 µm and
charcoal >100 µm was cited from our previous study37.
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remaining were sieved through a 10 μm mesh in an ultrasonic instrument in order
to concentrate the pollen and NPP grains.

The identification of known NPP was based on comparison with descriptions
and illustrations in the literature7,12. The non-pollen grains were counted with a
Nikon Ci-L microscope (×400 magnification). On average 220 (400 max.) algae and

fungal spores were identified in each sample (Supplementary Table 2). An NPP
spectrum was prepared, using the stratigraphically constrained cluster classification
CONISS (Fig. 3). Pollen grains (Poaceae 35–37 µm, 37–40 µm, >40 µm) were
counted in this study (Supplementary Table 2). Poaceae <35 µm and charcoals are
cited from our previous study37.

Fig. 4 Type examples of non-pollen palynomorphs and pollen grains. Type examples of non-pollen palynomorphs are numbered as No. 1–18 and No.
29–36. Poaceae grains <35, 35–37, 37–40 and >40 µm are selected from Zone I–VII of SH-1 (seeing Fig. 3 for zonation).

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-022-00416-7 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |            (2022) 3:88 | https://doi.org/10.1038/s43247-022-00416-7 | www.nature.com/commsenv 5

www.nature.com/commsenv
www.nature.com/commsenv


NPP was grouped into 5 types of indicators that are described below (Fig. 3)7,12.
Hugo de Vries Laboratory (HdV) type numbers refer to the taxa defined by the HdV7.
Universiteit Gent (UG) Laboratory type numbers refer to those defined by the UG12.

Humid indicators. These consist of freshwater algae (Concentricystes and Mougeo-
tia) (Fig. 3; Fig. 4_No. 29–34)7, indicating freshwater conditions7,42,43; Fern Pteris
sp. (Type UG-1264)12 and fungal spores (Type HdV-8)7 indicate wet conditions.

Arid indicators. These include fungal spores Pleospora (Type HdV-3), Brachysporium
sp. (Type UG-1099), Amphirosellinia sp. (Type UG-1077), Meliola sp. (Type UG-
1113), and Podosporium sp. (Type UG-1104) (Fig. 3), indicating dry conditions7,12.

Erosion indicators. These include Glomus type fungal bodies (Type HdV-1103) and
fungal cells (Type HdV-200) (Fig. 3; Fig. 4_No. 35–36)5. Glomus is the largest
genus of arbuscular mycorrhizal fungi, occurring on a variety of host plants and
indirectly indicative of soil erosion7,10.

Animal dung indicators. These include fungal spores Sodaria sp. (Type HdV-55A),
Cercophora sp. (Type HdV-1013)5, and Coniochaeta Ligniaria (Type HdV-172)
(Fig. 3; Fig. 4_No.1–8)7.

Fiber indicators. Linum (flax) and animal hair (Fig. 3; Fig. 4_No. 9–18)35, which is
often used to imply early human-related activities36.

Data availability
The data that support the findings of this study are openly available as supplementary
tables. Supplementary Table 2 was uploaded to FigShare (https://doi.org/10.6084/
m9.figshare.19212396).
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