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Ball covering property and number of ends of CD spaces with
non-negative curvature outside a compact set
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Abstract. In this paper, we adapt work of Z.-D. Liu to prove a ball cov-
ering property for non-branching CD spaces with non-negative curvature
outside a compact set. As a consequence, we obtain uniform bounds on
the number of ends of such spaces.
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1. Introduction. In [10,11], Z.-D. Liu proved that Riemannian manifolds with
non-negative Ricci curvature outside a compact set satisfy a certain ball cov-
ering property. In the following, we denote the metric ball of radius r centered
at p ∈ M by Br(p) and the closed metric ball with the same radius and center
by Br(p).

Theorem A (Z.-D. Liu). Let Mn be a complete Riemannian manifold with
non-negative Ricci curvature outside a compact set B. Assume that RicM ≥
(n − 1)H and that B ⊂ BD0(p0) for some p0 ∈ M and D0 > 0. Then for
any μ > 0, there exists C = C(n,HD2

0, μ) > 0 such that, for any r > 0, the
following property is satisfied: If S ⊂ Br(p0), there exist p1, . . . , pk ∈ S with
k ≤ C such that

S ⊂
k⋃

j=1

Bμ·r (pj) .

We state and prove this result in the more general context of non-branching
metric measure spaces satisfying the curvature-dimension condition introduced
by Lott–Sturm–Villani [12,14,15] (see the section on preliminaries below for
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the definitions). This class of spaces contains the class of RCD spaces, as it
was recently shown that the latter spaces are non-branching (see [6, Theorem
1.3]), so, a fortiori, it also includes Alexandrov spaces [13,17] and weighted
Riemannian manifolds. More precisely, we prove the following theorem.

Theorem B. Let (X, d,m) be a non-branching metric measure space satisfying
the CD(K,N) condition for some N > 1 and K ∈ R. Assume that B is a
compact subset of X with B ⊂ BD0(p0) for some p0 ∈ M and D0 > 0 and such
that the CDloc(0, N) condition is satisfied on X \ B (see Definition 2.6). Then
for any μ > 0, there exists C = C(N,KD2

0, μ) > 0 such that, for any r > 0,
the following property is satisfied: If S ⊂ Br(p0), there exist p1, . . . , pk ∈ S
with k ≤ C and such that

S ⊂
k⋃

j=1

Bμ·r (pj) .

The proof follows the arguments of [10,11] almost verbatim, albeit with
some needed adaptations to account for the more general hypotheses. The main
tools we need are a version of the local-to-global theorem for the CD condition
(see Lemma 2.9) and a Bishop–Gromov inequality for certain star-shaped sets
(see Theorem 2.11). In general, one can prove that CD(K,N) spaces support
a Bishop–Gromov inequality for star-shaped sets following the proof of [15,
Theorem 2.3], just as is done in [5, Proposition 3.5] to get a timelike Bishop-
Gromov inequality in the context of Lorentzian synthetic spaces. However, it is
important to notice that Lemma 2.11 is not a direct consequence of this fact.
Namely, since the CD(K,N) condition implies a Bishop–Gromov inequality
with parameters K,N and we are interested in the corresponding inequality
with parameters 0, N , we need to follow the original proof of the Bishop-
Gromov inequality in [15] and make sure that all optimal transports involved
remain in the region where CDloc(0, N) holds.

Finally, a direct consequence is that spaces satisfying the hypotheses of
Theorem B have a uniformly bounded number of ends (see Definition 3.3).

Corollary C. Let (X, d,m) be a metric measure space satisfying the CD(K,N)
condition with N ≥ 1 and K ∈ R. Assume that B is a compact subset of X
with B ⊂ BD0(p0) for some p0 ∈ M and D0 > 0 and such that the CDloc(0, N)
condition is satisfied on X \ B. Then there exists C = C(N,KD2

0) > 0 such
that (X, d) has at most C ends.

In [3], a result bounding the number of ends of manifolds with non-negative
Ricci curvature outside a compact set was obtained using different techniques.
This argument was extended in [16] to the case of smooth metric measure
spaces with non-negative Bakry–Émery Ricci curvature outside of a compact
set. A related result bounding the number of ends of Alexandrov spaces with
non-negative sectional curvature outside a compact set was obtained in [9].
More recently, a result bounding the number of ends of RCD(0, N) spaces was
obtained in [8].
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2. Preliminaries. In this section, we provide a brief overview of the definitions
and results we will need to prove Theorem B. Throughout the article, we
consider complete and geodesic metric measure spaces (X, d,m) such that m is
finite on bounded sets and supp(m) = X. We begin by recalling the definition
of the Wasserstein space.

Definition 2.1. Let P(X, d) be the set of Borel probability measures on X
and P2(X, d,m) ⊂ P(X, d) the space of those probability measures that are
absolutely continuous with respect to m and have finite second moment, i.e.,
for some (and therefore for any) x0 ∈ X, the following holds:

∫
d2(x, x0) dm(x) < ∞.

This set P2(X, d,m) is endowed with the 2-Wasserstein metric

W2(μ0, μ1) = inf

⎛

⎝
∫

X×X

d2 (x0, x1) dπ (x0, x1)

⎞

⎠
1/2

,

where the infimum is taken over all couplings π ∈ P(X × X) from μ0 to μ1,
i.e., probability measures on X × X having first and second marginals equal
to μ0 and μ1 respectively.

Remark 2.2. It turns out that (P2(X),W2) is also a complete separable geo-
desic space. Moreover, in this case, the distance W2(μ0, μ1) can be character-
ized as

W 2
2 (μ0, μ1) = min

π

∫ 1∫

0

|γt|2 dt dπ(γ),

where the minimum is taken among all π ∈ P(C([0, 1],X)) such that (ei)#π =
μi, i = 0, 1. Here et denotes the usual evaluation map at time t. The set of
minimizers is denoted by OptGeo(μ0, μ1), and minimizers, which are always
supported in Geo(X) (the set of geodesics of (X, d)), are called optimal plans.
It is known that (μt)t∈[0,1] is a geodesic connecting μ0 to μ1 if and only if there
exists π ∈ OptGeo(μ0, μ1) such that μt = (et)#π (see [1]).

In order to recall the definition of the CD condition, we now recall the
volume distortion coefficients:

sκ(θ) =

⎧
⎪⎨

⎪⎩

1√
κ

sin (
√

κθ) if κ > 0,

θ if κ = 0,
1√
κ

sinh
(√−κθ

)
if κ < 0,

σ
(t)
K,N (θ) =

⎧
⎪⎨

⎪⎩

+∞ if Kθ2 ≥ Nπ2,

t if Kθ2 = 0 or Kθ2 < 0 and N = 0,
sK/N (tθ)

sK/N (θ) if Kθ2 < Nπ2 and Kθ2 �= 0,

τ
(t)
K,N (θ) = t1/Nσ

(t)
K,N−1(θ)

1−1/N .
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Definition 2.3. Given parameters K ∈ R and N ≥ 1, (X, d,m) satisfies the
CD(K,N) condition if for any μ0, μ1 ∈ P2(X, d,m), there exists an optimal
plan π ∈ OptGeo(μ0, μ1) such that, for any t ∈ [0, 1] and any N ′ ≥ N,

∫
ρ
1−1/N ′
t (x) dm(x) ≥

∫
τ
(1−t)
K,N ′ (d (γ0, γ1)) ρ

−1/N ′

0 (γ0)

+ τ
(t)
K,N ′ (d (γ0, γ1)) ρ

−1/N ′

1 (γ1) dπ(γ),
(2.1)

where ρt is the density of the absolutely continuous part of (et)#π with respect
to m.

Let us also recall the definition of the reduced curvature-dimension condi-
tion CD∗ due to Bacher–Sturm [2].

Definition 2.4. Given parameters K ∈ R and N ≥ 1, (X, d,m) satisfies the
CD∗(K,N) condition if for any μ0, μ1 ∈ P2(X, d,m), there exists an optimal
plan π ∈ OptGeo(μ0, μ1) such that, for any t ∈ [0, 1] and any N ′ ≥ N,

∫
ρ
1−1/N ′
t (x) dm(x) ≥

∫
σ
(1−t)
K,N ′ (d (γ0, γ1)) ρ

−1/N ′

0 (γ0)

+ σ
(t)
K,N ′ (d (γ0, γ1)) ρ

−1/N ′

1 (γ1) dπ(γ),
(2.2)

where ρt is the density of the absolute continuous part of (et)#π with respect
to m.

Let us point out that, by work of Cavalletti and Milman [4], an essentially
non-branching metric measure space (see the Definition on Page 50 in [4]) sat-
isfies the CD(K,N) condition if and only if it satisfies the CD∗(K,N) condition
(see [4, Corollary 13.6]).

Definition 2.5. Given parameters K ∈ R and N > 1, (X, d,m) satisfies the
CDloc(K,N) condition if each point x ∈ X has a neighborhood M(x) such
that, for each μ0, μ1 ∈ P2(X, d,m) supported in M(x), there exists an optimal
plan π ∈ OptGeo(μ0, μ1) satisfying (2.1) for all t ∈ [0, 1] and N ′ ≥ N .

We will assume that Definition 2.5 holds outside a compact set B ⊂ X in
the following sense.

Definition 2.6. The CDloc(K,N) condition holds in an open set Ω ⊂ X if
each point x ∈ Ω has a neighborhood M(x) ⊂ Ω such that, for each μ0, μ1 ∈
P2(X, d,m) supported in M(x), there exists an optimal plan π∈OptGeo(μ0, μ1)
satisfying (2.1) for all t ∈ [0, 1] and N ′ ≥ N .

From this point on, we will also assume that (X, d,m) is non-branching in
the following sense.

Definition 2.7. A metric space (X, d) is non-branching if whenever we have a
quadruple (z, x0, x1, x2) such that z is a midpoint of x0, x1 and of x0, x2, this
implies that x1 = x2.

In [7], it was proved that non-branching CD spaces have unique optimal
plans in the following sense.
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Theorem 2.8. Let (X, d,m) be a complete, separable, non-branching CD(K,N)
space for some K ∈ R and N ≥ 1. Then for any μ0, μ1 ∈ P2(X, d,m), there
is a unique optimal plan π ∈ OptGeo(μ0, μ1) and this π is induced by a map,
i.e., there exists a μ0-measurable map F : X → Geo(X) such that π = F#μ0.

In [2], it was proved that the CDloc(K,N) condition implies the reduced
curvature-dimension condition CD∗(K,N). In a similar fashion, and emulating
the arguments in [2], we prove Lemma 2.9, that allows us to obtain, in Theo-
rem 2.10, a version of the Brunn–Minkowski inequality. In turn, Theorem 2.10
implies Theorem 2.11, a Bishop–Gromov-type inequality. This result will be
instrumental in generalizing Theorem A.

Below, we let P∞(X, d,m) denote the space of probability measures which
are absolutely continuous with respect to m and have bounded support. For the
next lemma, note that we cannot directly apply the local-to-global property
since we are using the restricted metric on Ω and this might not be a geodes-
ic space unless Ω is geodesically convex, for example. However, the proof of
[2, Theorem 5.1] applies verbatim as we are assuming that all the measures
involved are connected by a geodesic in P∞(X, d,m) 1.

Lemma 2.9. Let (X, d,m) be a CD(K0, N) space and Ω ⊂ X an open set such
that the CDloc(K,N) condition holds in Ω. If μ0, μ1 ∈ P∞(X, d,m) are sup-
ported on Ω and the optimal plan π ∈ OptGeo(μ0, μ1) given by Theorem 2.8
is supported on geodesics contained in Ω, then π satisfies the condition (2.2)
for K and for all t ∈ [0, 1] and N ′ ≥ N .

Now we can follow the arguments in [15] to prove a generalized Bishop–
Gromov result for star-shaped sets outside a compact set. To this end, we need
the following modified version of the Brunn-Minkowski inequality.

Theorem 2.10. Let (X, d,m) be a CD(K0, N) space and Ω ⊂ X an open set
such that the CDloc(K,N) condition holds in Ω. Then for all measurable sets
A0, A1 ⊂ Ω such that m(A0)m(A1) > 0 and At ⊂ Ω for all t ∈ [0, 1],

m(At)1/N ′ ≥ σ
(1−t)
K,N ′ (θ)m(A0)1/N ′

+ σ
(t)
K,N ′(θ)m(A1)1/N ′

(2.3)

holds for all t ∈ [0, 1] and all N ′ ≥ N , where At denotes the set of points
which divide geodesics starting in A0 and ending in A1 with ratio t : (1 − t)
and where θ denotes the minimal/maximal length of such geodesics, that is,

At := {y ∈ X : ∃(x0, x1) ∈ A0 × A1 s.t. d(y, x0) = td(x0, x1),

d(y, x1) = (1 − t)d(x0, x1)}
and

θ :=

{
infx0∈A0,x1∈A1 d(x0, x1) if K ≥ 0,

supx0∈A0,x1∈A1
d(x0, x1) if K < 0.

In particular, if K ≤ 0, then

m(At)1/N ′ ≥ (1 − t)m(A0)1/N ′
+ tm(A1)1/N ′

.

1In fact, the proof of [2, Claim 5.2] simplifies in our case as by Theorem 2.8, the geodesic

joining μ0 and μ1 is unique, so there is no need to construct the sequence Γ(i).
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Proof. Assuming that 0 < m(A0)m(A1) < ∞, and thanks to Lemma 2.9, we
can apply CD∗(K,N) to μi := (1/m(Ai))1Ai

m for i = 0, 1 and proceed as in [15,
Proposition 2.1], just replacing the coefficients τ

(t)
K,N ′(·) by σ

(t)
K,N ′(·). Observe

that we cannot use the equivalence between the CD(K,N) and CD∗(K,N)
conditions due to F. Cavalletti and E. Milman (see [4]) in order to get condition
(2.1) in Lemma 2.9, even though the space X is non-branching, since we are
assuming the CDloc(K,N) only in an open subset of X. The general case
follows by approximation of Ai by sets of finite volume. �

Recall that, given a geodesic metric space (X, d) and x ∈ X, a set Wx ⊂ X
is star-shaped at x if x ∈ Wx and for any y ∈ Wx not in the cut-locus of x, the
minimal geodesic joining x and y is contained in Wx. In that case, we set

v(Wx, r) = m
(
Br(x) ∩ Wx

)
and

s(Wx, r) = lim sup
η→0

1
η
m

((
Br+η(x) \ Br(x)

) ∩ Wx

)
.

Theorem 2.11 (Bishop–Gromov theorem for star-shaped sets). Let (X, d,m)
be a CD(K0, N) space and Ω ⊂ X an open set such that the CDloc(K,N)
condition holds in Ω. Let x ∈ Ω and Wx ⊂ Ω be a star-shaped set at x such
that, for some ε0 > 0, every geodesic connecting points in Bε0(x) with points
in Wx is contained in Ω. Then

s(Wx, r)
s(Wx, R)

≥
(
sK/N (r)
sK/N (R)

)N

and
v(Wx, r)
v(Wx, R)

≥
∫ r

0
sK/N (t)N dt

∫ R

0
sK/N (t)N dt

for all 0 < r ≤ R ≤ radx(Wx) := sup{d(x, y) : y ∈ Wx}. Moreover, for K = 0,
we obtain the sharp inequalities

s(Wx, r)
s(Wx, R)

≥
( r

R

)N−1

and
v(Wx, r)
v(Wx, R)

≥
( r

R

)N

.

Proof. Let 0 < r ≤ R ≤ radx(Wx), 0 < ε ≤ ε0, and η > 0 and let

A0 := Bε(x) ∩ Wx and A1 :=
(
B(1+η)R(x) \ BR(x)

) ∩ Wx.

In particular, the (r/R)-intermediate set Ar/R between A0 and A1 is contained
in Ω, so we can apply Theorem 2.10 to get

m
(
Ar/R

)1/N ≥ σ
(1−r/R)
K,N (R ∓ ηR ∓ ε)m(A0)1/N

+σ
(r/R)
K,N (R ∓ ηR ∓ ε)m (A1)

1/N
.

We can take ε → 0, which yields

m
((

B(1+η)r(x)\Br(x)
) ∩ Wx) ≥ σ

(r/R)
K,N ((1 ∓ η)R)N m

(
(B(1+η)R(x)\BR(x)

) ∩ Wx

)

which implies
1
ηr

m
((

B(1+η)r(x) \ Br(x)
) ∩ Wx

)

≥ 1
ηR

m
(
v

(
B(1+η)R(x) \ BR(x)

) ∩ Wx

)
σ
(r/R)
K,N ((1 ∓ η) R)N

.
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In the case K = 0, we actually have σ
(r/R)
K,N ((1 ∓ η)R)N = (r/R)N . The pre-

ceding inequality in turn implies
1
ηr

m
((

B(1+η)r(x) \ Br(x)
) ∩ Wx

)

≥ 1
ηR

m
((

B(1+η)R(x) \ BR(x)
) ∩ Wx

) ( r

R

)N−1

.

We thus can conclude just as in the proof of [15, Theorem 2.3]. �

3. Proofs. In this section, we prove Theorem B. The proof follows almost ver-
batim the arguments in [11]. For the convenience of the reader, we elaborate on
this argument and stress the needed changes due to the more general hypothe-
ses. We proceed with the following technical lemma assuming the hypothesis
of Theorem B.

Lemma 3.1. Assume that p ∈ X and R > 0 are such that B2R(p) ⊂ X \
B2D(p0). Then for every m > 0, there exists δ = δ(m) ∈ (0, 1) such that
whenever a subset W ⊂ BR(p) satisfies

m(W ) ≥ 1
m

· m (BR(p)) , (3.1)

then there exists q ∈ W such that d(q, p) ≤ δR. In particular, B(1−δ)R(q) ⊂
BR(p).

Proof. Let δ ∈ (0, 1) and W ⊂ BR(p) \ BδR(p) be such that (3.1) holds.
Since B2R(p) ∩ B2D(p0) = ∅, the optimal plan between any two probability
measures supported on B(1+η)R(p) for sufficiently small η > 0 is concentrated
in geodesics outside BD(p0). Therefore, applying Theorem 2.11, we obtain

1
m

≤ m(W )
m(BR(p))

≤ m (BR(p) \ BδR(p))
m(BR(p))

≤
∫ R

δR
tN−1 dt

∫ R

0
tN−1 dt

= 1 − δN ,

that is, δ ≤ (1 − 1/m)1/N . Thus, if we take δ = (1 − 1/(2m))1/N and any W
satisfying (3.1), then W ∩ BδR(p) �= ∅, i.e., there is some q ∈ W such that
d(q, p) ≤ δR. In particular, for such q ∈ W and any x ∈ B(1−δ)R(q), we have

d(x, p) ≤ d(x, q) + d(q, p) < (1 − δ)R + δR = R,

so B(1−δ)R(q) ⊂ BR(p). �

Proof of Theorem B. Clearly we can assume that K < 0. Moreover, by rescal-
ing the metric in X by

√−K, we can further assume that (X, d,m) satis-
fies the CD(−1, N) condition. In particular, we get that B ⊂ BD(p0) where
D =

√−KD0.
For μ > 2, the result follows from the fact that Br(p0) ⊂ Bμ·r(p) for any

p ∈ Br(p0), so we can set C(N,KD2
0, μ) = 1. Therefore, we will assume from

now on that 0 < μ ≤ 2.
We now divide S into the union of S1 = S ∩ Bμr/2(p0) and S2 = S \ S1. If

S1 �= ∅, then S1 can be covered by just one Bμr(p) with p ∈ S1. In any case,
we only need to estimate the covering number of S2. We will actually estimate
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the number of (μr/4)-balls needed to cover S2, so for simplicity let us denote
t = μ/4.

Now, fix some λ > 2. The case when tr ≤ λD follows exactly as in [11,
Page 11] (where instead of λ it suffices to consider 2). Therefore we assume
that tr > λD. In particular, for q ∈ S2,

Btr(q) ∩ BλD(p0) = ∅.

Write ∂BλD(p0) as the union of subsets {U1, . . . , Um} such that d(x, y) <
2D for any x, y ∈ Ua. This can be done as follows. Take a maximal set of
points {q1, . . . , qm} ⊂ ∂BλD(p0) such that d(qa, qb) ≥ D, a �= b. Then

∂BλD(p0) ⊂
m⋃

j=1

BD(p0),

BD/2(qa) ∩ BD/2(qb) = ∅, a �= b.

Suppose BD/2(qs) has the smallest volume among all BD/2(qj). Since
⋃m

i=1

BD/2(qj) ⊂ B(1/2+2λ)D(qs), the Bishop-Gromov inequality corresponding to
the condition CD(−1, N) [15, Theorem 2.3] yields

m <

∫ (1/2+2λ)D

0
sinh

(
t
√

1/(N − 1)
)N−1

dt

∫ D/2

0
sinh

(
t
√

1/(N − 1)
)N−1

dt

=: m(N,D, λ). (3.2)

We define Ua = BD(qa) ∩ ∂BλD(p0) for a = 1, . . . ,m.
Let Mr be the subset of M consisting of all points on any minimal geodesic

emanating from p0 that is no shorter than r. Note that M − Br(p0) ⊂ Mr,
and Mr is star-shaped at p0.

We now divide MλD into m cones Ka by defining Ka to be the subset
consisting of all points on any minimal geodesic emanating from p0 that inter-
sects Ua. Observe that, by the triangle inequality, if d(xi, p0) > λD, xi ∈ Ka,
i = 1, 2, then any minimal geodesic connecting x1 and x2 will not pass
through BλD/2(p0). Indeed, let γi be a minimal geodesic from p0 to xi with
γi(λD) ∈ Ua, i = 1, 2. Then the broken geodesic from x1 to γ1(λD) to γ2(λD)
to x2 has length no greater than d(x1, p0) + d(x2, p0) − 2λD + 2D. On the
other hand, if a minimal geodesic connecting x1 and x2 intersects BλD/2(p0),
then it would have a length greater than d(x1, p0) + d(x2, p0) − λD, which is
a contradiction.

Now we can estimate the covering number just as in [10,11]. For the con-
venience of the reader, we will repeat some of the constructions.

Take a maximal set of points {p1, . . . , pk} in S2 such that d(pi, pj) > tr,
i �= j. Then

S2 ⊂
⋃

j

Btr(pj),

Btr/2(pi) ∩ Btr/2(pj) = ∅, i �= j.

We then divide the points pj into m families as follows: for each ball Btr/2(pj),
look at m(Btr/2(pj)∩Ka), a = 1, . . . , m. Fix an aj such that m(Btr/2(pj)∩Kaj

)
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is maximal. Then

m(Btr/2(pj) ∩ Kaj
) ≥ 1

m
m(Btr/2(pj)) ≥ 1

m(N,D, λ)
m(Btr/2(pj)), (3.3)

where the first inequality follows from the fact that the intersections Btr/2(pj)∩
Ka cover the ball Btr/2(pj) and Btr/2(pj)∩Kaj

is the intersection of maximal
measure, whereas the second inequality follows from equation (3.2). We denote

BL,aj
pj

:= Btr/2(pj) ∩ Kaj
,

and place pj in the aj-th family, call it Faj
. Fix a Ka. Suppose BL,a

p has the
smallest volume among all BL,a

pj
in this cone. By Lemma 3.1, we can find a

q ∈ BL,a
p such that

B(1−δ)tr/2(q) ⊂ Btr/2(p)

where δ = δ(m(N,D, λ)). Let Wq be the star-shaped set such that y ∈ Wq if
and only if there is a point x belonging to either B(1−δ)tr/2(q) or BL,a

pj
for some

pj ∈ Fa and there is a minimal geodesic γ connecting q and x which passes y.
Observe that, for ε0 = min{(1 − δ)tr, (λ − 2)D/2} > 0, z ∈ Bε0(q), and

y ∈ Wq, any geodesic joining z with y is outside BλD/2(p0). Indeed, if x ∈
B(1−δ)tr/2(q) ∪ ⋃

BL
pj

is such that y is in a geodesic γ joining q with x and γ1
is a geodesic joining z with y and passing through BλD/2(p0), then the broken
geodesic α from q to z to y to x will have length greater than

d(q, p0) + d(x, p0) − λD.

However, α also has length no greater than

ε0 + ε0+d(q, y)+d(y, x)=2ε0 + L(γ) ≤ 2ε0 + d(q, p0) + d(x, p0) − 2λD + 2D

which is a contradiction.
By a simple triangle inequality, we get that d(q, y) ≤ (2+t)r for all y ∈ Wq.

Therefore, applying Theorem 2.11 with K = 0, we get
m(Wq)

m
(
B(1−δ)tr/2(q)

) ≤ 2N (2 + t)N (1 − δ)−N t−N .

However,

m(Wq)
m

(
B(1−δ)tr/2(q)

) ≥
∑

pj∈Fa

m
(
BL,a

pj

)

m
(
Btr/2(p)

) ≥ #Fa

m
,

where #Fa denotes the cardinality of Fa. Thus we get

#Fa ≤ 2N (2 + t)N (1 − δ)−N t−Nm.

Adding up the contributions from the m families Fa and combining with (3.2),
we get that

k ≤ 2N (2 + t)N (1 − δ)−N t−Nm(N,D, λ)2. (3.4)

The right hand side of (3.4) depends on N , D (which in turn depends on
KD2

0), μ, and λ. Taking λ ↘ 2, we get the constant C = C(N,KD2
0, μ)

> 0. �
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Remark 3.2. Note that in Theorem B, we could require the CD(K,N) condi-
tion in X and the CDloc(0, N ′) condition in X \ B with N �= N ′ and following
the same argument, we would get a constant C = C(N,N ′,KD2

0, μ). We stated
the result as is for the sake of simplicity.

Definition 3.3. Let k ∈ N. A metric space (X, d) has k ends if the following
conditions hold:

1. For any K compact, X \ K has at most k unbounded connected compo-
nents.

2. There exists K ′ compact such that X \ K ′ has exactly k unbounded
connected components.

Proof of Corollary C. If the result is false, we take r large enough so that
X \ Br(p0) has n > C(N,KD2

0, 1/2) unbounded connected components. It is
clear that each such unbounded connected component E requires at least one
ball of radius r to cover E ∩ ∂B2r(p0). This contradicts Theorem B. �
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