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ABSTRACT ARTICLE HISTORY
First order kinetic mean field games formally describe the Nash equi- Received 23 December 2021
libria of deterministic differential games where agents control their ~ Accepted 9 July 2022
acceleration, asymptotically in the limit as the number of agents
tends to infinity. The known results for the well-posedness theory of
. . N . SUBJECT
mean field games with control on the acceleration assume either CLASSIFICATION
that the running and final costs are regularizing functionals of the 49N80: 91A16:

2020 MATHEMATICS

density variable, or the presence of noise, i.e. a second-order system. 49112; 35Q91
In this article we construct global in time weak solutions to a first
order mean field games system involving kinetic transport operators, KEYWORDS

where the costs are local (hence non-regularizing) functions of the Mean field games; optimal
density variable with polynomial growth. We show the uniqueness control of acceleration;
of these solutions on the support of the agent density. This is  Kinetic equations;
achieved by characterizing solutions through two convex optimiza- well-posedness theory
tion problems in duality. As part of our approach, we develop tools

for the analysis of mean field games on a non-compact domain by

variational methods. We introduce a notion of ‘reachable set’, built

from the initial measure, that allows us to work with initial measures

with or without compact support. In this way we are able to obtain

crucial estimates on minimizing sequences for merely bounded and

continuous initial measures. These are then carefully combined with

L'-type averaging lemmas from kinetic theory to obtain pre-com-

pactness for the minimizing sequence. Finally, under stronger con-

vexity and monotonicity assumptions on the data, we prove higher

order Sobolev estimates of the solutions.

1. Introduction

The aim of the theory of mean field games (MFG for short) is to characterize limits of
Nash equilibria of stochastic or deterministic differential games when the number of
agents tends to infinity. Such models were first proposed about 15 years ago, simultan-
eously by Lasry-Lions [1-3] and Huang-Malhamé-Caines [4].

This theory turned out to be extremely rich in applications and it provided excellent
mathematical questions. Its literature has witnessed a huge increase in the last decade.
From the theoretical viewpoint, there are two main approaches to the study of MFG.
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One is based on analytical and PDE techniques, while the other is a probabilistic
approach. The first approach goes back to the original works of Lasry-Lions and has
been extended in a great variety of directions in the subsequent years by many authors.
If a non-degenerate idiosyncratic noise is present in the models, this typically yields a
parabolic structure for the corresponding PDEs and one can expect (strong) classical
solutions or a suitable regularity for weak solutions to the corresponding PDE systems,
even when the corresponding Lagrangians are local functions of the density variable.
For a non-exhaustive list of works in this direction we refer the reader to [5-12]. The
probabilistic approach proved to be equally successful for problems involving
Lagrangians that are nonlocal functions of the measure variable. This approach seems
to be very powerful for handling different kinds of noises in combination with the non-
degenerate idiosyncratic one, such as the common noise. For a non-exhaustive collec-
tion of works in this direction we refer to [13-16].

When the model lacks a non-degenerate idiosyncratic noise, this clearly poses tech-
nical difficulties in the analysis. Typically, it means that additional structural assump-
tions need to be imposed on the data to be able to hope for (weak) solutions. Such
conditions are, for instance, suitable notions of convexity/monotonicity (cf. [17,18]), or
the presence of a suitable variational structure, as in the case of potential games
([19-24]). In the case of local couplings, it was pointed out by Lions in [25] that the
MEFG system (including the planning problem) can be transformed into a degenerate
elliptic system in space-time with oblique boundary conditions. Relying on this idea, in
a quite general setting, under suitable assumptions on the data (such as strict monoton-
icity and strong convexity of the Hamiltonians in the measure and momentum varia-
bles, respectively; regularity and positivity conditions on the initial data), it has been
proven recently in [26,27] that the corresponding first order MFG systems have smooth
classical solutions.

For an excellent, relatively complete account on the subject and a summary of results
to date we refer the reader to the collection [17].

In this article we study a class of first order kinetic MFG systems, involving
Lagrangians that are local functions of the density variable and that possess a variational
structure, in the sense of [19-21].

In our setting, the MFG system can be formally written as

—Owu(t,x,v) — v - Dyu(t,x,v) + H(x, v, Dyu(t, x,v)) = f(x, v, m), in (0, T) x M x R%,
om(t,x,v) +v - Dym(t, x,v) — div,(mD,H(x, v, D,u(t,x,v))) =0, in(0,T) x M x RY,
m(0,x,v) = mo(x,v), u(T,x,v) = g(x,v,mr), inM x R?,

(1.1)

Here M denotes either that d-dimensional flat torus T or the whole d-dimensional
Euclidean space RY and is the physical space for the position x of the agents, while the
velocity vector v of the agents lies in R?. T>0 is an arbitrary time horizon, H :

M x R% x R? — R is the Hamiltonian function, while frg: M x RY x R — R stand for
the running and final costs of the agents, respectively.

Under suitable assumptions on the data, we obtain the global in time existence,
uniqueness and Sobolev regularity of weak solutions to (1.1), relying on two convex
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optimization problems in duality. One of these problems can be seen as an optimal con-
trol problem for the Hamilton-Jacobi equation, while its dual is an optimal control
problem for the continuity equation (cf. [19-21]).

Review of the literature in connection to our work

MFG systems of type (1.1) have been introduced in the context of models when agents
control their acceleration. It seems that such a model can be traced back to the work
[28] (in the engineering community), where the authors proposed a MFG model where
agents control their acceleration. In the mathematical community, the first works in this
framework seem to be the ones [29-31]. These works consider Hamiltonians (with our
notation H - f) and final cost functions that are nonlocal regularizing functions in the
measure variable. Moreover, the Hamiltonians need to be either purely quadratic or
have quadratic growth in the momentum variable. In addition, in [29,30] further condi-
tions on the initial measure my, are also imposed. In [29] my, is taken to be compactly
supported and Holder continuous, while in [30] 1, is taken to be compactly supported.
These two works construct weak solutions to the corresponding MFG system in the
sense that the Hamilton-Jacobi equation has to be understood in the viscosity sense,
while the continuity equation is understood in the sense of distributions. In [31] the ini-
tial measure m, can be quite general and the corresponding Hamiltonian does not need
to have the so-called ‘separable structure’ which was assumed in [29,30] and is also
assumed in this article. These more general hypotheses come at the price of obtaining a
weaker notion of solution to the MFG system: the so-called mild solutions. However,
the authors show that, under the additional separability assumption on the
Hamiltonian, mild solutions become more standard weak solutions in the sense
described above.

Several interesting new works are built on the models introduced in [29-31]. In [32]
the authors study the ergodic behavior of MFG systems, for the case of Hamiltonians
that are purely quadratic in the momentum variable and nonlocal regularizing coupling
functions f, g, with additional growth assumption on f in the v variable. In [33] the
authors obtain mild solutions to MFG under acceleration control and state constraints,
under assumptions similar to the ones in [29] on the Hamiltonians, with the possibility
to consider Hamiltonians that are power-like functions in the momentum variable.
Lastly, in [34] the author studies a perturbation problem associated to MFG under
acceleration control, where the (Lagrangian) cost associated to the acceleration vanishes.

MFG models with degenerate diffusion share some common features with kinetic
type problems. In this context we can mention several works. In [35] and [36] the
authors study time independent MFG systems with purely quadratic Hamiltonians and
nonlocal regularizing coupling functions, where the diffusion operator is hypoelliptic or
satisfies a suitable Hormander condition. It is also worth mentioning that our system
(1.1) shares some similarities with MFG models where agents interact also through their
velocities. In this direction we refer to the works [37-41].

Finally, a second order MFG system of type (1.1) has been recently studied in [42].
In this work the author obtains weak and renormalized solutions (in the spirit of [12])
to a MFG system that involves a non-degenerate diffusion in the v direction. This seems
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to be the only work in the context of kinetic type MFG models where the coupling
functions f and g are taken to be local functions of the density variable m. Here the
Hamiltonian H is assumed to depend only on the momentum variable and either to be
globally Lipschitz continuous or to have quadratic/sub-quadratic growth. There are sev-
eral summability properties and moment bounds imposed on the initial density m,. In
the case of Lipschitz continuous Hamiltonians, the coupling functions f, g are supposed
to fulfill several further assumptions: a strong uniform increasing property in the m
variable and their derivatives in the (x, v) variable must have a linear growth condition
in the m variable.

In [42] the presence of the diffusion in the v direction allows the author to use suit-
able De Giorgi type arguments to show that the solution to the Fokker-Planck equation
is bounded and has fractional Sobolev regularity. These estimates seem to be instrumen-
tal to set up a fixed point scheme and to show that the MFG system has a weak solu-
tion. Furthermore, the presence of this diffusion allows to obtain second order Sobolev
estimates for the MFG system.

Description of our results

As highlighted above, in this work we are inspired by [19-21] and we obtain existence
and uniqueness of weak solutions to (1.1) (in the sense of Definition 2.3) via two con-
vex optimization problems in duality (Problem 3.1 and Problem 3.3). Compared to
these works, several major differences arise which require new ideas. A first obvious dif-
ference is that in our setting (in contrast to the compact setting of the flat torus which
is considered in the mentioned references) the velocity variable v lives in the non-com-
pact space RY. This clearly introduces technical issues in the analysis.

To prove our main results, the general outline of our programme is the same as the
one of [19-21]: prove the duality for Problem 3.1 and Problem 3.3; suitably relax
Problem 3.1 (this will be Problem 3.8) and show that the value of this is the same as
the original one; show existence of optimizers for the relaxed problem and apply the
duality result again to obtain existence of solutions in a suitable weak sense. In this
article H is supposed to have a superlinear growth in the momentum variable, and
fand g are supposed to have polynomial growth in their last variables. The growth of
f, g may be taken independently of the growth of the Hamiltonian (we refer to the next
section for the precise assumptions).

To show that the value of the relaxed problem is the same as the original one, a
standard approach used in [19-21] is to test the Hamilton-Jacobi inequality of any com-
petitor by competitors of the dual problem (i.e. solutions to the continuity equation).
To justify this computation a mollification argument was applied for solutions to the
continuity equation. In our case, this mollification alone is not enough because of the
non-compact setting. Therefore a delicate cutoff argument has to be also implemented.

The most delicate part, however, is to obtain existence of optimizers to the relaxed
problem and in particular to obtain proper compactness results for the minimizing
sequences. First, in our case the time trace of the solutions to the Hamilton-Jacobi
inequality constraint in Problem 3.8 is quite weak: u(t,-) has to be understood as a
locally finite signed Radon measure. Since in this work m, may have non-compact
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support, it takes additional effort to give a meaning to [, pamouo(dxdv) (a term that
appears in the objective functional present in Problem 3.8). Our construction, although
completely different, has some similarities in spirit with the one in [43], to define simi-
lar time boundary traces.

In order to obtain suitable estimates for the minimizing sequence of the relaxed prob-
lem, in [19-21] a typical trick was to test the Hamilton-Jacobi inequality constraint by
the initial measure m,. For this reason, it was necessary to impose enough regularity,
and more importantly a uniform positive lower bound of this density everywhere.
Because of this, estimates on the quantity [rmguodx, would readily yield summability
estimates on u, solely. We emphasize that in this article we assume that m, is merely a
bounded and continuous probability density and so we take a completely different route
when obtaining such estimates. We introduce the reachable set U,,,, a set of points in
time, space and velocity that can be reached from spt(m,) with arbitrary smooth admis-
sible controls (cf. Definition 2.2). In fact, by the controllability of the underlying ODE

system, which satisfies the Kalman rank condition, we have U,,, = ({0} x spt(my)) U

((0,T) x M x RY). In order to obtain our crucial estimates on the corresponding mini-
mizing sequence we use well chosen test functions that are supported in U,,,. This con-
struction seems to be new in the literature on variational MFG and we believe that it
could be instrumental also in other settings, to possibly relax regularity, positivity or
compact support assumptions on 1.

As there is no Hopf-Lax type representation formula available for solutions to our
Hamilton-Jacobi equations (which was the case in [19,20]), first, we obtain estimates on
truncations of the solutions. These are similar in flavor to the corresponding estimates
n [21], and such ideas date back to [44]. As our terminal data typically have merely
local summability, this will be the source of additional technical issues (in contrast to
[21], where the terminal data was taken to be regular enough).

Let us underline that the ideas and constructions that we have described so far allow
us to obtain summability estimates on u and D,u, using the structure of the problem.
This is not sufficient to yield weak precompactness for minimizing sequences due to the
lack of regularity estimates in x. To recover the necessary compactness we make use of
averaging lemmas available in kinetic theory. Averaging lemmas go back to the works
[45,46] and provide improved regularity and compactness properties for velocity aver-
ages of solutions of kinetic transport equations (see Subsection 6.1 for the precise defi-
nitions). For more details and a survey of results we refer the reader to the review [47]
and the references cited therein. When regularity with respect to v is additionally avail-
able, similar properties can be deduced for the full density function: we refer for
instance to [48] for regularity results in the I? case for 1 < p < 4+00. We carefully tailor
this approach to our setting, combining our estimates on D,u with L' averaging lemmas
[49-51] to deduce precompactness for minimizing sequences. In this way we prove
Theorem 6.8 on the existence of a minimizer of Problem 3.8. This in turn implies
Theorem 2.4, that system (1.1) has a (unique) weak solution. As was similarly obtained
in [19-21], we show the uniqueness of m and the uniqueness of u on {m > 0}.

A natural question that arises in the context of variational MFG is whether the vari-
ational structure and further strong monotonicity and convexity assumptions on the
data would yield higher order Sobolev estimates on weak solutions. Such estimates were
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recently obtained in more classical frameworks in [23,24, 39, 52-54]. In this article we
pursue similar Sobolev estimates, implied by taking stronger assumptions on the data.
In comparison with the works [23,24], in our setting we need to work with a consider-
ably weaker notion of time trace of u, which is not stable under perturbations of the
initial measure mg. Therefore, our Sobolev estimates remain local in time on (0, T].
Another delicate difference is due to the presence of the kinetic transport term. Because
of this, a careful choice of perturbations need to be used, which take into account the
kinetic nature of the problem. As a result of this, interestingly, first we obtain estimates
on differential operators of the form (D, + D,) applied to m and D,u. For the precise
results in this direction we refer to Theorem 8.2, Corollary 8.4 and Corollary 8.5.

The structure of the article is as follows. In Section 2 we state our standing assump-
tions and main results. In Section 3 we present the two variational problems in duality
along with the relaxed problem of the primal problem. In Section 4 we have collected
some preliminary estimates on weak solutions of the Hamilton-Jacobi inequality
obtained on the reachable set Uf,,,. In Section 5 we show that the relaxed problem has
the same value as the primal problem and hence the duality result holds. Section 6 con-
tains the existence result of a solution to the relaxed problem. Here we rely on the com-
bination of the estimates derived in the previous sections and suitably tailored averaging
lemmas from kinetic theory, applied in our context for distributional subsolutions to
kinetic Hamilton-Jacobi equations. In Section 7 we show that optimizers of the vari-
ational problems in duality provide weak solutions to the MFG system and, conversely,
weak solutions are also optimizers of the variational problems. Furthermore, strong con-
vexity yields (partial) uniqueness of these solutions. Section 8 is devoted to the deriv-
ation of higher order Sobolev estimates for the weak solutions. These require further
assumptions on the data.

We end the paper with two appendix sections. In Appendix A we discuss the time
regularity of distributional subsolutions to kinetic Hamilton-Jacobi equations which
allow us to construct suitable notions of time traces. Finally, in Appendix B we show
that truncations and maxima of distributional subsolutions to kinetic Hamilton-Jacobi
equations remain distributional subsolutions to suitably modified equations.

2. Standing assumptions and main results

In this section we state our main results on the existence, uniqueness and Sobolev regu-
larity of solutions to the MFG system.

We define F and G to be the anti-derivatives of the coupling functions f and g with
respect to m:

F(x,v,m) = Jmf(x, v,m') dm’ G(x,v,m) = Jm glx,v,m')dm’.
0 0

Throughout, we make the following assumptions on the Hamiltonian and cou-
pling functions.
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Assumption 1.
(H1) The Hamiltonian H is continuous in all variables, and convex and differentiable
with respect to p. Furthermore, for some r > 1, H satisfies bounds of the form

1 r c r
;|P| — Cy < H(x,v,p) < ;|P| + Cy, (2.1)

for all (x,v,p) € M x R? x R? and some constants ¢ >0 and Cy > 0. Finally, the
function Hy(x,v) := H(x,v,0) has positive part (Ho), € Co(M x RY), where Co(M x
R?) denotes the closure of the space C.(M x R?) with respect to the uniform norm.

(H2) F is continuous in all variables and strictly convex and differentiable with respect
to m for m > 0. Moreover, it satisfies the growth condition

1
—m? — Cp(x,v) < F(x,v,m) < Emt + Cr(x,v), m>0 (2.2)
q q

where g > 1 and the function Cp € L'(M x R?). For m < 0, we set F(x,v, m) = +00.

(H3) G is continuous and strictly convex. Moreover, it satisfies the growth condition

1
Ems — Cg(x,v) < G(x,v,m) < cm® + Cg(x,v), m >0, (2.3)

for some Cg € L'(M x R?) and 1 < s < q. For m <0, we set G(x,v,m) = +oc.

(H4) The initial datum my € Cy(M x RY) is a probability density.
We note that since m, is imposed to be a bounded probability density, by interpolation,

it is uniformly bounded in L*(M x R%), for any « € [1, + oc]. We emphasize that here
we impose growth conditions on F, G rather than on f, g.

Example 2.1. For any g >1 and continuous bounded function ¢ such that ¢ > ¢, with
co > 0 a strictly positive constant, the function

c(x,vymi m>0
+o00 m < 0,

F(x,v,m) :{

satisfies the given assumptions.

Definition 2.2 (Reachable set). It will be useful to define the set U, C [0, T] x M x R?
to be the set of points potentially reachable by a collection of agents initially distributed
according to m, and evolving according to the control system

for some control a € C([0, T]; R?). Observe that the previous control system satisfies the
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classical Kalman rank condition, and so we have

Uy, = {0} x {mg >0} U (0, T]xM x RY,

Under these standing assumptions, we define the following notion of weak solution
to the MFG system.

Definition 2.3. We say that (4, m) is a weak solution to (1.1), if the following
are fulfilled:

() wu€Ll (Un) Dyu € L (Up,) and m|Dyu|” € L'((0, T) x M x RY);
(i) m e Li((0,T) x M x R and mr € L(M x R%);
(iii) (o), € (L + L7)(M x R9) and (uo)_ is a locally finite Radon measure sup-
ported in {my > 0}.
(iv) { —Ou — v - Dyu + H(x, v, Dyu) %f(x, v,m), in Z'((0,T) x M x R?)
ur <g(-, -,mr),in Z'(M x R?).
(v)  The continuity equation from (1.1) holds in Z'((0, T) x M x R%).
(Vi) [y pamoto(dxdv) is finite.
(vii)  The following energy equality holds:

J dmouo( dxdv) — J dg(x, v, my)mr dx dv
MxR MxR

T
= J J /(x, v,m)mdxdvdt (2.4)
MxR

0

T
+ J J [Dy,H(x, v, Dyu) - Dyu — H(x,v, Dyu)|m dx dvdt.
0 JMxR?

2.1. Existence and uniqueness
The first of our main results is the existence and uniqueness of these weak solutions.

Theorem 2.4. Let Assumption 1 hold. Then there exists a weak solution (u, m) of the
mean field game system (1.1) in the sense of Definition 2.3. This solution is unique, in
the sense that if (u;, m;) and (u, m,) are both weak solutions in the sense of Definition
2.3, then m; = m, almost everywhere and u; = u, almost everywhere on the
set {m; > 0}.

2.2. Regularity

Our second main result is Sobolev regularity for weak solutions of the mean field games
system (1.1). For this result we assume quadratic growth of the Hamiltonian (r=2) and
stronger convexity and regularity hypotheses on the data, as follows.

Assumption 2.
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(H5) (Conditions on the coupling functions) There exists C> 0 such that the functions f,
g satisfy

[f(xl) V1 m) _f(x2) V2, m)| S C(m[Fl + 1)(|X1 — x2| + |V1 — V2|) (2 5)
V(x1,v1), (%2, v2) € M X R m > 0. ’

and
g, viom) = g(x2,v2,m)| < Clm™" + 1)(Jx1 — x| + |11 = 12]) (2.6)
V(XD 'V]), (XZ,‘Vz) e M x Rd, m > 0. ’

Moreover, there exists cf,c, > 0 such that
(f(x,vom) — f(x,v,m)) (m — m) > ¢gmin{m?® >, m?*}|m — m|* Vi, m > 0, i # m.
(2.7)
(g(x, v, 111) — g(x,v,m)) (m — m) > cemin{m* >, m**}|m — m|* Vi, m > 0, i # m.
(2.8)

In the above assumptions, if g <2 or s <2 one should interpret 092 and 0°"2 as +oo. In
this way, when m = 0, for instance, (2.7) reduces to f(x,v,m)m > cemi, as in the more
regular case q > 2. Similar comments can be made for (2.8).

(H6) (Quadratic growth and strong coercivity assumption on H) Suppose that r =2
and there exist ji,j, : RY - R? and ¢y > 0 such that

H(x,v,P) + L(x, v, W) — P- W > cglj1 (P) — jo(W)|*. (2.10)

In particular, and in light of our restriction (2.1), we assume that j; and j, have
linear growth.

(H7) L(- -, W)€ C*(M x RY)and |D? L(x,v, W)|,|D2 L(x,v, W)|, |D2L(x,v,W)| <
Co |[W* +Co,) ¥(x,v, W) € M x R? x R?.
Under these additional assumptions, we prove the following result. The proof is car-
ried out in Section 8.

Theorem 2.5. Suppose that (u, m) is a weak solution to (1.1) in the sense of Definition
2.3 and that (H5), (H6), (H7) hold.
Then, there exists C > 0 such that

q_ — _
||m> 1Dx>vm||Lfoc((0,T]xMde) <C, Hml/sz,VDV“HLIZOC((O,T]xMde) <cC
and

1 —
([ Dx,va”LZ(Mx]Rd) <C.
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Remark 2.6. The estimates appearing in this statement are informal; we in fact obtain
uniform Lz—type summability of differential quotients (see estimate (8.8) below). The
corresponding Sobolev estimates, however, are more delicate to obtain, because these
would need to be understood in the sense of weighted Sobolev spaces or more generally
in the sense of Sobolev spaces with respect to measures. Their precise versions would
need to involve tangent spaces with respect to the measure m, but these are beyond the
scope of the current article. We refer to [55] on this topic.

3. Variational problems in duality

We will prove existence of a solution to the MFG system (1.1) through a variational character-
ization. In this section we set up the variational problems used to obtain solutions. We recall
that here and throughout the rest of the article, we will work under Assumption 1.

3.1. Optimal control of the Hamilton-Jacobi equation: smooth setting

We define the Fenchel conjugates of F and G respectively by
F*(x,v, B) :=sup { fm — F(x,v,m)} G (x, v, u) := sup {um — G(x,v,m)}.
m>0 m>0

Under our assumptions on F, we have the bounds

{C|ﬁlq' — Ce(x,v) S F (v, f) < ¢ MBI + Celx,v) p>0, (3.1)

—F(x,v,0) =0 < F*(x,v, ) < —inf,50 F(x,v,m) < Ce(x,v) S<0,

where g = q/(q — 1) denotes the Holder conjugate exponent of g. Note also that F* is
non-decreasing. Similar observations hold for G*.

Using this, we define the following functional: for u € C}([0, T] x M x R?), let

T
A(u) = J J F*(x,v, — Oy — v - Dyu + H(x, v, Dyu)) dxdvdt
0 JMxR?

—J u(0, x, v)mp(x, v)dxdv—i—J G (%, v, u(T,x,v)) dxdv,
MxR? MxR?

whenever the integrals are meaningful, and set A(u) = 400 otherwise. We define a first
variational problem associated to this problem.

Problem 3.1. Minimize A(u) over u € Ej, where E, denotes the space

Eo:={uc C([0,T] x M x RY) : |[v||Dyu| € L®([0, T] x Ml x RY)}. (3.2)

Remark 3.2. E, is a Banach space when equipped with the norm

lleellg, = llull = + [[Dyuel| = + [[(1 4 [v]) D]
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3.2. Optimal control of the continuity equation

To state the dual problem we define the Lagrangian L: M x R* — R, which is the
Fenchel conjugate of the Hamiltonian H in the last variable. In other words, for any

(x,v,0) € M X R we define

L(x,v, o) := sup {o- p — H(x,v,p) }.
peRr?

Note that L then satisfies upper and lower bounds of the form
1
C—|oc|’/ —CL <L(x,v,0) < cL|oc|'J + Cy,
L

where ¥ = r/(r — 1) denotes the Holder conjugate exponent of r.

For pairs (m,w) € L'([0, T] x Ml x RY) x L'([0, T] x Ml x RY), we define the func-
tional
T

Bmw) = |

0

T
J ]:(x,v,m)dxdvdt+J J L(x,v, —K>mdxdvdt
MxR? MxR?

0 m
+ J g(x) v, mT(x, V)) dde,
MxR?

with the convention that

w 0 m=w=0,
L{x,v, —— |m=
m 400 m=0,w#0.

We then define a second variational problem, (formally) dual to the first.

Problem 3.3. Minimize B(m,w) over the set Kz of pairs (m,w) € L}([0, T] x M x
RY) x (LM([0,T] x M x R*))? with m >0, subject to (m,w) satisfying the following
continuity equation:

dym 4 v - Dem + div,w = 0,in Z'((0, T) x M x RY) (3.3)
and m|,_, = my in the sense of a weak trace.

Remark 3.4. Let us comment on the weak trace of m with respect to the time variable.
Since we are interested in competitors (m, w) for which B(m,w) is finite, there must
exist a vector-valued measurable function V € L”(mdxdvdt), that is, for which

T
J j [V|"mdxdvdt < +oo,
0 JMxR?

such that w = Vm (i.e. V is the density of w with respect to m). So, we notice that the
previous equation can be written as

Oym + div,(vm) + div,(Vm) = 0.
Since Vm=w € L'([0,T] x M x R?), we have |V|m e L'([0,T] x M x R%). We are

then able to prove that m has a narrowly continuous representative [0, T|2t—m,; €
P(M x R?), so that in particular m|,_, and m|,_, are meaningful. This is essentially a
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consequence of [56, Lemma 8.1.2], with minor modifications to account for the fact
that vm is only locally integrable; we sketch this in the appendix in Lemma A.12.

3.3. Duality

Lemma 3.5. We have the following duality:
inf A(u) =— min B(m,w).

u€kE, (m,w)eKp
Proof. This is an application of the classical Fenchel-Rockafeller duality theorem. Recall
that we defined the Banach space E, above in (3.2). Then let E; be defined by
Ey = C)([0,T] x M x R:R) x CY([0, T] x M x RY; R%);

we will express elements of E; as pairs (¢, ) of continuous bounded functions, where
¢ is real-valued and y is vector-valued. E; is a Banach space with respect to the uni-
form norm. On these spaces we define the respective functionals

Ao (u) := —JM Rdu(O,x, v)mo(x, v) dxdv+J G (x,v,u(T,x,v)) dx dv

MxR?

and
T

A = |

0

J F (x,v, — ¢+ H(x,v,f)) dxdvdt.
MxR?
Note that these functionals are convex. We also define the bounded linear map A :
E() — E1 bY
Au := (Oyu + v - Dyu, Dyu).
Then
A(u) = Ag(u) + Ay (Au).

We wish to apply Fenchel-Rockafeller duality. In order to do this we must verify the
existence of u € Ey such that Ay(u), A;(Au) < +o0o and A, is continuous at Au. For
example, we may take u to be of the form

u(t,x,v) := {(x —vt,v) +2Cy(t — T),

where Cp denotes the constant from the bounds on the Hamiltonian (2.1). We then

take { € C,(M x R?) non-negative to have sufficiently strong decay at infinity so that
(e l’(M xRY, D, el M xRY. (3.4)
Explicitly, for the case Ml = T? we may take for example

_ oty — 2y-k/2, d d
(o) = L) = b ks max{S, 2,

in which case |v||Dsu| = 0 and therefore u € E,.
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For the case M = R? we may take

—/.

s rq

L) =) = 1+ x4+ [v) 7% ks max{zd 2d }

In this case,
—k(x — vt)

Dyu = Dy{(x — vt,v) = ,
* * (1 + |x — vt + v} HH2

and so
k|v||x — vt|
(1+|x— vl‘|2 + |v|2

N X

k _
1+ Jx— vt + )2 <

[Vl[Dxus| = )1+k/2 SE(

>

which implies that u € E.
Then, in either case,

—0wu — v+ Dyu + H(x,v,Dyu) = —2Cy + H(x, v, Dyu) < ¢|Dyu| — Cy
It follows that the positive part satisfies
[~ — v Dy + H(x,v, Dyu)] . < c|Dyu" 1o, upscyy € LY([0, T] x M x RY).
and thus by the bounds on F* (3.1) we obtain

T
J J F*(x,v, — Ou — v - Dyu + H(x, v, Dyu)) dxdvdt < +oo.
0 JMxR?

That is, A; (Au) is finite.
Moreover, ur € L¥(M x R?) and thus

J G (x,v,u(T,x,v)) dxdv < +00.
MxR?
Finally, since up = { — 2CyT and my, is a probability density,
—J u(0, x, v)mo(x, v) dxdv < +oo.
MxR?

Thus Ay (u) is finite.
Now we verify that A; is continuous at Au with respect to convergence in E;.
Consider the sequence of pairs (¢,,¥,) € E;, n € N, such that

¢, =0u+v-Du+0d, Y,=Du+e,,
where (0,,¢,) € E; satisty ||(0n, &) < 27". Then
—¢, + H(x,v,¥,) = —2Cy — 0, + H(x, v, Dyu + ¢&,).
Using the bounds (2.1) on the Hamiltonian, we obtain

C
—¢, +H(x,v,¢,) < —2Cy — 0, + Cy + . |Dyu + &,|"

C C
< —Cy—6, +27 ' 2 |Dyul" + 27 e,
r r

A

—Cy+C(27"+27") + C|Dyu/’,
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for some constant C > 0. Therefore, for all n large enough that C(27" 4+ 27") < Cy, for
the positive part we have

[_(bn +H(x' v, lpn)]+ < ClDVu‘r'
Then the bounds (3.1) on F* imply that
F*(=¢, + H(x,v,,)) < 2Cr + C|Dyul" € L'([0, T] x M x RY),

(where the constant C>0 has changed line to line). The right hand side is in L'
because we constructed { to satisfy (3.4). We may therefore use it as a dominating func-
tion: since (J,,¢,) certainly converges to zero pointwise (in fact in uniform norm), and
F* is continuous with respect to the variable f§, by dominated convergence we may
conclude that

T
Ai[(dwth,)] = lim J JM Rf*("’v’ — ¢, + H(x, v, y,)) dxdvdt

n—+0o0 J

T
_J J F*(x,v, — Ou—v-Dyu+ H(x,v, Dyu)) dxdvdt
MxR?

0

- Al (Au)

Thus A, is indeed continuous at Au.

It remains to check that A is bounded below on E, Let u € E, and set f§:=
—Ow — v - Dyu + H(x,v,Dyu). Then, using the growth assumptions on F* and G,
similarly to the inequality (4.2) below, we have

AQw) 2 1B )17, + [lu(T. ), |

SLISf — J [TCr(x,v) + Cg(x,v)] dxdv
MxR?
— J u(0,x,v), mo(x,v) dxdv
MxR?
1. 2= = (),

inf {a? — cpa +b" — cob — ¢} > —o0,
a,b>0

v

1o+ [lu(T. )]

i+ CaT o+ T ) (lolls + l1moll)

Vv

where ¢, was set to be a large positive constant depending only on my, T, Cy, Cr, Cg.
Therefore, we are in position to apply the Fenchel-Rockafeller duality theorem (cf.
[57, Chapter 3, Theorem 4.1]), to conclude

inf A(u) = | max (= AN (m, ) = Af(~(m, )}

Here E| denotes the dual space of E;. By [58, IV.6] the dual space of Cg may be identi-
fied with the space of bounded, regular, finitely additive set functions. Thus E] is the
space of pairs (m, w), where m is a real-valued regular finitely additive set function, and
w is a R%-valued regular finitely additive set function.

It remains to identify

max {—Aj(A*(m,w)) — A (—(m,w))}.

(m,w)€E]

In what follows, we are going to show that the above maximization problem actually
admits solutions in a better space than E|. So, we have
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max {—AS(A*(m,w))—.AT(—(m,w))}: max {—AS(A*(m,w))—AT(—(m,w))},

(m, w)€E] (m,w)elé/l

where the set Ell stands for pairs (m, w) such that m is a finite Radon measure on
[0, T] x M x R? and w is a finite vector-valued Radon measure on [0, T] x M x R? tak-

ing values in RY. The proof of this is postponed to Lemma 3.6 below.
Then, by arguing as in [19, Section 3.3], we may identify that

max {—Aj(A*(m,w)) — A[(—(m,w))} = max —B(m,w)
(m, w)€E] (m,w)€E]
where the maximum is taken over (m,w) € E; such that (m,w) € L'([0,T] x M x
R?) x L'([0, T] x M x R% R?) and m > 0 almost everywhere, such that

om+v-Dem+divyw=0 in Z'((0,T) x M x R%), m|,_, = my.
Thus

inf A(u) =— min B(m,w).

uck, (m, w)eKp

Lemma 3.6. Using the notations and assumptions from Lemma 3.5, we have

max {—A5(A"(m,w) = Ai(=(mw))} = max {= AL (A" (mw)) = A} (~(m, )},

(m,w)€E] (m,w)€E,

Proof. Observe that any pair (m,w) € E| induces functionals on C? and (cg)d.
Therefore, there exist a signed Radon measure m with finite total variation and a finite
vector-valued measure w which coincide with, respectively, m and w on (the closure

with respect to the uniform norm of) C° and (C°)?. Then
t

0

A (~(mw) = sup {<—m,¢>+<—w,w>— | ] Rdf*(x,v,—¢+H<x,v,w>dxdv}

((/)s ‘//)GEI

By considering functions of the form ¢ = Iy + H,, for Hy(x,v) := H(x,v,0) (note
that our assumptions on H imply in particular that Hy € C;) and any non-negative y €
C) and >0, and ¥ =0, we find that Aj(—(m,w)) = 400 unless m is a positive func-
tional. Indeed, note that

t t
J J F*(x, v, —lx)dxdvgj J sup F*(x, v, f) dxdv < +o0,
MxR? M

0 0 xR4 p<0

and sup;_,(—m, ly) = +oo if (m, ) < 0.
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Next, by taking the supremum over the smaller set (¢, 1)) € C° x (C°)¢ we have

A(—(mw) > sup {<—m,¢ T Ho 4+ (—w )
(> ) €CUx(CO)?

—th F*(x,v, —¢—HO+H(x,v,w))dxdvdt}
MxR?

0

= sup (=tit, ¢ + Ho) + (—w, )
(s ¥)eCx ()
t
—J J f*(x)%—¢—Ho+H(x,v,lP))dxdvdt}
0 JMxR?
- (m — ﬁ’l,H()>.

Let us underline that the assumption on Hj plays a crucial role, otherwise the integral
of F* might not be finite for compactly supported test functions.
Since H is convex, for any y € Cg such that 0 < y, <1,

H(x,v, 1,9) < xrH (% v, ¥) + (1 = xr) Ho (%, v).
Thus
—¢xr — Ho + H(x, v, 1g¥0) < 1r(—¢ — Ho + H(x, v, ),
and in particular we can compare the positive parts:
(—=¢ur — Ho + H(x.v. z¥h)) ¢ < (xr(=¢ — Ho + H(x.v.¥))) ;-
Since F* is non—decreasing,
F*(x%,v, — ¢yr — Ho + H(x, v, xz¥h)) < sup F*(x,v, B) + F*(x,v, — ¢ — Hy+ H(x, v, ) € L.

<0

Hence, for all ¢ € CP, € (Cg)d such that

T
J d]:*(x,v, — ¢ — Hy+ H(x,v,}y)) dxdvdt < 400,
MxR

0

by dominated convergence we have

t
J F*(x,v, — ¢ — Ho+ H(x,v,)) dx dv dt
0 JMxR?

t

= lim J J F*(x,v, — g — Ho + H(x, v, g)) dxdvdt,
R—+o00 Jo JMxRY

where ¢p = Qyr, Vg = ¥yg for some continuous 0 < yp <1 converging pointwise to

the constant function 1 as R tends to positive infinity. We conclude that, for any m, w

(respectively signed, vector-valued) Radon measures with finite total variation,
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sp Lt + o) - [

(s et x ()" 0

— s {<—m,¢>+<—w,w>—J

(¢ ¥)€Cx ()" 0

J F(x,v, — ¢ — Hp +H(x,v,l//))dxdvdt}
MxR?

t

J F(x,v, —d)—}—H(x,v,tﬁ))dxdvdt},
MxR?

where we have used that Hy is also a C) function in order to relabel ¢. We have thus
proved that

Ai(=(m,w)) = A} (=(m, w)) = (m — m, Ho).

Next, note that if m € (Cg)/ is a positive functional with Radon measure part i,
then m —m is also a positive functional: given 0 < ¢p € C), let 0 <y, <1 be a
sequence of continuous functions, non-decreasing with R and converging pointwise to
the constant function 1 as R tends to positive infinity. Then, since 0 < ¢y < ¢, by
dominated convergence and the positivity of m,

(i, ) = lim (i, b2 = limm, d7) < (m, ).
Since (Hy), € Co, (m —m,(Hp),) =0 and thus (m — m,Hy) <0 for all m such that
Aj(—(m,w,)) is finite. Then
—Aj(=(m,w)) < —Aj(=(m,w)).

We now consider A;. We assume from now on that m € (C))" is a positive func-
tional, since we only wish to consider (m, w) for which Aj(—(m,w)) < 4o0.

AN o) = sup { (A om0~ |

u(0, x, v)mp(x,v) dx dv — J
u€ky MxR?

MxR?

G (v, u(T,x,v))dx dv}.

G (%, v, u(T,x,v)) dxdv}

= sup {((m0) ) - |

u(0,x,v)mg(x,v) dx dv — J
u€ky MxR?

MxR?

Then, taking supremum over the smaller set u € Cg, we have

AL (A" (m,w) > sup {<<m,w>,Au> |

u(0, x, v)mg(x,v) dx dv — J
ueC! MxR?

MxR?

G (v, u(T,x,v))dx dv}.

If u e C!, then Au € C. Thus

u(0, x, v)mo(x,v) dx dv — [
JMxR?

A5 (A" (myw)) > sup {<<rh,»v>,Au> -

ueC} JMxR?

G (%, v, u(T,x,v)) dxdv}.

We show that the right hand side is in fact equal to Ay(A"(m,w)) : given u € Ep, let
%z € CH(M x R?) be a sequence of cutoff functions such that 0 < y < 1. We construct
yr such that their support is contained in Byz(0) C M x R% the closed ball of radius
2R, yg =1 on Bg(0), the closed ball of radius R, and [|Vy|| <% for some constant

C> 0 independent of R. Thus note in particular that y, — 1 and Vyz — 0 pointwise as
R — +00. Let ug := uyy. Then
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|Aug| = |Oyug +v - Dyug| < Cllullg,,  [ur(0,%,v)] < [u(0,x,v)], [ur(T.xv)], < [u(T.xv)],.

Since m € (C))", we have (m, Cllullg,) = Cllul|g, (m,1) < +00. Moreover u(0,-) is
bounded and therefore integrable with respect to m,. Finally, note that

G (x,v,ur(T,x,v)) < G (x,v,u(T,x,v)) + sup G*(x, v, fiy).
Br<0

Hence, if

J G (x, v, u(T,x,v)) dxdv < +o0,
MxR?

we may apply the dominated convergence theorem to find that

() )~ |

u(0, x, v)my(x, v)dxdv—J G (x,v,u(T,x,v)) dxdv
MxR?

MxR?

= lim ((m,w), Aug) fj ug(0, x, v)mo(x, v)dxdva G (%, v,ug(T, x,v)) dxdv.
MxR?

R—+00 MxR4

This completes the proof that the suprema over E, and C! are equal for the Radon
measure parts. We conclude that

—Ay(A*(m, w)) < —Ay(A*(m, w)).

Now observe that, since the set E/l is contained in E] (it is precisely the set of Radon
measure parts of elements of E}),
max {—A;(A"(m, w)) — Aj(=(m,w))} < sup {=AG(A"(m,w)) — A} (=(m, w))}
(m,w)€E] (m, w)€E]
< sup {=A(A(m,w)) — Aj(=(m,w))}
(i, w)eE,
< sup {—Ay(AY(m,w)) — Ay (=(m,w))}.

(m,w)€E]

All of the above inequalities are therefore equalities. Moreover, since
— Ay (A (m,w)) = Aj(=(m, w)) < =A (A" (m, w)) — A (=(m, w)),
if (m, w) attains the supremum then the same is true of the Radon measure part

~ ~ . . . . . . =/
(m,w). Thus, without loss of generality, the optimizer is given by some (m,w) € E|,

i.e. a finite measure and a finite R%-valued measure. O

Remark 3.7. Let us notice that the minimizer of B(m, w) is unique (by the convexity of
F,G and L in their last variables). Moreover, the growth conditions on F,G and L

imply that m € L9((0,T) x M x RY), my € LS(M x RY) and 2 € L1((0, T) x M x

mr’—1
d 1 s s . d : —_q
R?). Furthermore, by Holder’s inequality, w € LP((0, T) x M x R)), with p := -5
These arguments are similar to the ones in [20, Theorem 2.1] and [19, Lemma 2].
Furthermore, the equation satisfied by m conserves mass, so that m € L°L, , and in

fact |lmy|[;, = [|mo|,, for all £ € [0,T].
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3.4. The relaxed problem

The third problem we define is a relaxation of Problem 3.1. Consider the functional

~ T
A(u, B, pr) == J JM Rdj’-'*(x, v, f)dxdvdt — J mo(x, v)uo( dx dv)

0 MxR?

+J g* (ﬁT) dxdv.
MxR?

Problem 3.8. Minimize A(u, f, f) over the set K4 of triples (i, f, fr) € LL (Uyn,) X
Ly, (Up,) x LN(M x Rd) satisfying

e The positive part of u satisfies u; € L}, ([0, T] x M x R%);
e The positive part of f§ satisfies f, € L7 ([0, T] x M x R?).
e The positive part of S satisfies (f7), € L¥(M x R%);

o Duel (Upy)

and subject to (3.5), understood in the sense of Definition 3.9.

Definition 3.9. We say that a triple (u, f§, ;) that belongs to the spaces from Problem
3.8 is a weak distributional solution to

—0 —v-Deu+ H(x,v,Dyu) < B, in(0,T) x M x RY, (3.5)
ur < fr, inM x RY, '
if
T
J J ul0yp + div(ve)] + ¢H(x, v, Dyu) dx dvdt
0 MXRd (36)

T
gj J ﬁ(]ﬁdxdvdtJrJ Prdrdxdy,
MxR? MxR?

0

for any ¢ € CL((0, T] x M x R?) nonnegative.

Remark 3.10.
(i) Let us emphasize that the weak form (3.6) encodes both inequalities from (3.5),
as we show this in Lemma A.6.
(if)  wuo is similarly understood as a certain notion of a trace at t=0 in a weak
sense. In particular, the term

_J o, Vo dx dv) = — (s, o),
MxR

which appears in the definition of A is to be understood as in Definition A.10. Moreover,
we underline that this quantity is set to be +oo, if there exist ¢ € C!({my > 0}) nonnega-
tive such that (u, ¢) = —oc.
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4. The Hamilton-Jacobi equation

In this section, we analyze the equation (3.5). We take the assumptions appropriate to
the minimization problem we will consider. Therefore, we suppose throughout that

(u, B, Br) € K4 is such that A(u, f, ;) < +00. From the finiteness of the energy we
deduce in particular that

—J Ugmgy < +00.
MxR?

4.1. Upper bounds

We prove upper bounds on u. First, we observe that for any constant / € R the function
(u—1), :=max{u — ,0} satisfies (see Lemma B.1)

{ —(@+v-D)(u—D, +Hv,Du)lpeny < Plpsy,  in Z((0,T) x M x RY),
(ur —1), < (Br—1, inZMxR?).
(4.1)
We use the notation L™ + L to denote the set of functions
{h=h+hy:h €L®hell},
which becomes a Banach space when equipped with the norm

||h||L”C+L'1’ = inf{thHLw + ||h2||Lq' th=h +hy}.

We also use the notation L! N L7 to denote the intersection of L' and L9 made into a
Banach space under the norm

1All e = max{|[All s, (Al }-
Note that the dual space is given by (L' N L1)* = L 4 L.
Lemma 4.1. Let | € R be given and let (u, B, fr) € Ka satisfy (4.1).

(i)  Then (u—1), € LY*(L* + L), ,, with the a priori estimate

G =D llggeqwaoy,, < NGB =D llgm oy paxzey + CaT + TR o

XV

< [I(Br - Dy |LS’(Mx]Rd) +CuT + Tl/q||ﬁ+||m’-
(i)  Suppose in addition that A(u, p, fr) < C . Then, there exists
C= C(CA, | m0||L1qu, T, Cr, CG) >0

such that

||ﬁ+||Lq’(((),T)><M><Rd) + ||(ﬂT)+||LS’(M><Rd) <C

Proof. First, let us note that, since (f;), € L¥(M x R?) and s’ > ¢’ (by Assumption 1),
(Br), € (L + L)(M x R?) and thus also (B; — 1), € (L® + L)(M x R?).
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(i) Lett€[0,T) be fixed. Let 0 < € C°(M x R?) and consider
{r,x,v) = Y(x+ (t — 1), v).
Then { is smooth and compactly supported and satisfies
o {+v-D=0.

By using ( as a test function for (u —1I), over t € [t, T], we obtain

J d(u—l)Jr(t,x,v)lp(x,v) dxdv < J (Br = 1), {rdxdv
MxR

MxR?

T

+ J J {[p — H(x,v, Dyu)]1 sy dx dv dr.

t JMxR?

Recall that when we write (u—1) (¢, -,-), we are always referring to the version of u

that is weakly right continuous with respect to time (cf. Appendix A, Lemma A.1).
Since H > —Cpg, we have

T

JMXRd(u — 1), (6,5 V) (x,v) dxdv < J

MxR?

(Br — 1D, {rdxdv+ J JM Rd([ﬁ+ + Cy]dxdvdr.

t

Then

|y < B =0 sl

+ ||C||Lq([t,T]xMde)||ﬁ+HLq’([t,T]xMde) + CH”CHLI([LT]xMde)'

We compute
T

0 menmesy = | [ et (= o) dcavat

t

T
[ ] v dxdvde = (7 = 0o
MxR

t

Similarly
1l sty = 1Nl asrey
and
2z, vty = (7= Wl aup-
Thus

JM Rd(”t - l)gpdxdv < (”(ﬂT - l)+||L°‘+L‘1/ +CuT + Tl/q||ﬁ+||mf) ||‘//||L10Lq-

This extends by density to all non-negative y € (L' N L9)(M x R?), and general ¥ €
(L' N L9)(M x R%) by non-negativity of (u—1I) .. We conclude by the fact that
1Bz — Dl < 1B — Dl The result follows.
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(i) By the definition of A and the assumptions on the data one has
Al ) = BN, + 1) I = | [TCe59) + Calos )
- J u(0,x,v)  mo(x,v) dxdv
MxR?

> 1B W + 1B — € = (1Bl + G + T8 N ) s
(4.2)
where in the last inequality we used the estimate from (i). This further yields the claim
in (ii). n
Corollary 4.2. Let (u, 5, fr) be as in the statement of Lemma 4.1 such that there exists

C; >0 with Au, B, Br) < Cji- Then, there exists C = C(C, ||mo|| 1> T>Cr, Cg) > 0
such that the following hold.

(1) ‘|(u0)+||LOO+Lq/<MXRd) S C7
(i) fypuremo(uo)_(dxdv) < C.

Proof. We notice that (i) is a simple consequence of Lemma 4.1(i)-(ii), by setting =0
and t=0 (in the sense of weak trace, given in Definition A.5).
For (ii), we observe

JMXRdmO(“O)-(dxdv) - _J

MxR4

mouo( dxdv) + J

y Rd(u0)+mo dxdv

T

< Al i) - |

0

J F*(x,v, f) dxdvdt
MxR

o AL 2R [N v A e
MxR

By the bounds (3.1) on F* and the corresponding estimates for G,
sup{—F"(x,v, )} < Cp(x,v),  sup{~=G" (%, fr)} < Cs(xv).
B

T

Hence, using the above bounds and (i), we obtain
[, o) (xn) < € G+ 1Calls+ ol

which completes the proof. O

4.2. Local L' bounds

Next, we prove bounds on the negative parts of u and f. We will obtain L} (Uy,)
bounds, by use of a duality argument involving a certain class of test functions which

satisfy the continuity equation associated to the control system.

Lemma 4.3. Let a € C}([0, T] x M x RY;RY) be a bounded control. Let ¢y € C}(M x
RY) satisfy 0 < ¢y < my. Let ¢ € C}(Uyn,) be the solution of the continuity equation
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Oi¢p + v - Dy¢ + div,(a¢) = 0, Pli—o = Po-

Then, for any (u, B, By) € Ka such that A(u, B, fr) < +o0, the following hold:
o ucLXL; (¢), that is,
ess supj |ue|p, dx dv < 4-o00.
tefo,T] JMxR?
e The negative part of [ satisfies p_ € L} _ (¢).

t,x, v

o The negative part of Py satisfies (fr)_ € L} (¢r).
e The following estimate holds:

Netllzons gy + 1B-Nlwx gy + N1Br) iy g,y + [1Dvt

r
L (@)

< C(a, ¢, mp, H, T)(l + 1Bl + H(ﬂT)Jr”L”JrM’) - JM Rd”()mo dxdv.
X

Proof. Note the following properties of ¢:

e (¢ is non-negative,
e ¢ has compact support contained in Uy, .
¢ € (L' NL>)

tLx,v*
In particular, since ¢, € (L' N L1)(M x R?) for any ¢ € [0, T], then

jM Rd(”t)+¢zdx‘i" < ||¢zH(leLq)x, |

Mol geaey,

By Lemma 4.1,
||u+||Lt°<(L°O+L‘1’)X’V < C(T,H) <1 + H(ﬁT)+||(L°C+Lq’)(M><Rd) + ||ﬂ+||L7’X V> (4.3)

and thus for t € [0, T], we have

JM Rd(ut)+¢t d.xdv S C(T) H) ¢) (]- + ||(ﬁT)+||(L°°+L‘1/)(M><Rd) + ||ﬁ+||L?/x v),

where (), is understood in the sense of weak trace (cf. Lemma A.1, Definition A.5).

For the negative part we make use of the equation. A density argument shows that ¢
is admissible as a test function in the weak form of the Hamilton-Jacobi inequality satis-
fied by u. Thus for 0 <s <t < T,

t

J us(bsdxdv—J u,(]btdxdv—i—J
MxR? MxR?

N

J u(0¢p +v- Dyp)dxdvdr
MxR?

t

t
+J J ¢H(x,v,Dyu) dxdvdr < J
MxR?

N N

J P dxdvdr.
MxR?

We apply this in the case s=0, t € (0, T]. Using the fact that ¢ satisfies the continuity
equation in a pointwise sense,
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J g by dxdv—J u(t, x,v)p(t, x,v) dx dv
MxR? MxR?
t

t t
- J J udiv,(a¢) dxdvdz —I—J j ¢H(x, v, Dyu) dxdvdr < J
MxR? MxR?

0 0 0

dxdvdr.
B¢
MxR?

Here, let us notice that we have used the existence of weak traces in the sense of
Lemma A.1. In particular the integral [, patigpydxdv is meaningful and finite, since
spt(¢y) C spt(myg) (Definition A.10).

Since Dyu € Lj, (Uym,) and a¢ € C' has compact support contained in U,,,, we may
integrate by parts to obtain

- Jt JMdeu div,(a¢) dxdvdr = J

0 0

t

J a-Dyu ¢dxdvdr.
MxR4

Then estimate

< la

(g1 Dyt

t
a-Dyu ¢pdxdvdr "(h)
JJMde )

0

where, in order to lighten the notation, we have used the shorthand

T 1/p
ll ) = (L JMXRd|h|pq’>dxdvdt> , pell +oo)

to denote L” norms with respect to the measure on [0, T] x M x R? with density ¢
with respect to Lebesgue measure. Thus
t

- J d”t(f)t dxdv + J J d(bH(x, v, Dyu) dxdvdr
MxR 0 JMxR

< la

t
L7($) HDvl/l () — JMXRduO¢O dxdv + J JMXRdﬂ¢ dx dvdr.

0

Using the lower bounds on the Hamiltonian H, rearranging terms and using Young’s
inequality for products (with a small parameter), we obtain

t

- U, dxdv + p_¢pdxdvdr + ¢
MxR? 0 JMxR?

t

t

J ¢|Dyu|" dxdvdz
0 JMxR?
¢

< Clla

J d)dxdvd‘c—J u0¢0dxdv+J J p.¢dxdvdr.
MxR? MxR? MxR?

r/
i) T Cn J .

0
Then

t

—J uth,dde—l—J J Bqﬁdxdvdt—l—cj
MxR? 0 JMxR?

t

J d¢)|Dvu|rdxdvdr
MxR

0 (4.4)

< C(a,(,b)(CH + ||[5+|\Lqr) — JM Rduomo dxdv+J d(u0)+(m0 — ¢o) dxdv.

MxR

Finally, since 0 < my— ¢, < mp € L' NL9, we use the (L™ + Lq/)x)v bounds on the
positive part (1), (Equation (4.3)) to conclude that
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t t
J ut|¢tdxdv—|—J J ﬁ_d)dxdvdr—kcj J ¢|Dyu|" dxdvdr
MxR? 0 JMxR? 0 JMxR?

< Clar i 1) (14 1B i+ 1) i) = [ s e

Notice that by setting t =T, (4.4) and the fact that uy < f; (together with the bounds
that we already have on (f1), ) readily yield also that (f;)_ € L'(¢r).
This completes the proof. O

Corollary 4.4. Let (u,f,fr) € Ka such that A(u,p,Br) < +0o. Then uc
Ly Umy)s B— € LL (Unm,)> (By)_ € LL (M x R?) and Dyu € L], (Up,).

Proof. First, consider a compact set

K C U {¢ >0},
acC,,0<¢,CL({m>0})

where ¢ € C! denotes the solution of the continuity equation
at¢ +v- Dx¢ + din(a(b) =0, ¢|t:0 = d)O' (45)
By compactness of K, there exist finitely many ¢;, i = 1, ..., k such that

k
K cC 'yl{dh > 0}.

The function max; ¢; is continuous and so

0 < g = ir%fmax o;.
1

Then
leall sy + BN gy + 11Dvell ey < O Z [ullzr sy + NB- gy + 1Dl )
By Lemma 4.3, this leads to the estimate
[ull ey + 1By + IDvttl | ey < G

where C = C(K, A(u, B, B)). We now claim that

U, C U > 0}.

ueC;,OS(/)oEC}({mPO}){qs }
This follows from the controllability of the ODE system
xX=v, v=a (4.6)

on M x R%. That is, for any initial datum (xg,v9) € M X R? and target (f.,x.,vs) €
(0, T] x Ml x R% there exists a control function a such that the solution (x(t),v(t)) of
the ODE (4.5) with (x(0),v(0)) = (xo, vo) satisfies (x(t.), v(t.)) = (xx, v4).

Next, note that (since my is continuous) {my > 0} contains a closed ball B, (x, o)
for some point (xo, vo) and some r> 0. Thus there exists 0 < ¢, € C!({my > 0}) such
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that ¢, > 0 on B,(xg,vy). Consider the solution ¢ of (4.4) for the control a found
above and with this choice of ¢,. It follows that (., x.,v.) € {¢ > 0}.
Finally, we notice that by the structure of the set Uf,,, we have the bound

(Br)_ € Lioe (M x RY). O

5. Duality for the relaxed problem

Theorem 5.1. Problems 3.3 and 3.8 are in duality:

inf ./Zlu, , = — min B(m,w).
(us B Br)EK A ( B ﬁT) (m,w)ekp ( )

Proof. For u € Ch([0,T] x M x R?) such that A(u) < 00, the triple (4, — du—
v Dyu+ H(x, v, Dyu),ur) lies in K 4. Thus

inf  A(u, §, fr) < inf A(u).
(inf (u. B, Br) < inf, (u)

By the duality result of Lemma 3.5,

inf ftu,, < inf A(u) = — min B(m,w).
(”)ﬁ’ﬁT)EKA ( ﬁ ﬁT) uECi ( ) (m,W)EICB ( )

It therefore remains only to prove the reverse inequality. This follows from Lemma 5.2
below, which states that for all (u, , ) € K4 and (m,w) € K5,

w, B, fr) = =B(m,w).

A(
Taking the infimum over (u, f§, ) € K4 and supremum over (m,w) € Kp gives

inf  A(u,f, > — min B(m,w
(s 5 fr) €K A ( ﬁﬁT) (m, w)EKs ( )

as required. O

Lemma 5.2. Let (u, f, fr) € K4 and (m,w) € Kg such that A(u, B, B1), B(m, w) < +oc.
Then

A(u, B, Br) + B(m,w) > 0

In the proof of this lemma we require the following observation regarding the com-
mutator between the operator v-D, and the operator given by convolution with a
fixed function.

Lemma 5.3. Let : R? — [0, + 00) be a function such that (1+ |v|)y € LL(RY). Let h €
L5(RY) for p € [1, + oc]. Then

vyxh—yx(vh) = (vy) *h.
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Proof. By direct computation, for all v € R,
vy *h(v) — yx (vh) = vJ dh(v —2)y(z)dz — J d(v —2)h(v —2)y(z) dz
R R

=| zx(z)h(v—-2z)dz

Rd
= (vy) x h.

a

Proof of Lemma 5.2. The overall idea of the proof is to use m as a test function in the

weak form of the inequality

—Ou —v-Dyu+ H(x,v,Dyu) < f
and its terminal condition
ur < .

To make this valid, we must first introduce an approximation procedure.
First, we introduce a lower cutoff on u and f. Let I < 0 and define u; := max{u,I}.
Similarly, for k <0, let 8, := max{f, k}. Then by Lemma B.1 we obtain

{ —Ow; — v+ Dyup + H(x, v, Dyu)lysy < Bilpsns (0,T) x M x R?

1
(ur)y < (B M x RY, ey

in the sense of distributions. By Lemma 4.1, u; € L°(L*> + Lq’)x,v. We emphasize that k
and [ are taken to be possibly independent at this point.

Next, we approximate m by a function in C!, which is then an admissible test func-
tion for the Hamilton-Jacobi Equation (5.1). We regularize m by convolution with a
mollifier. For ease of presentation, it will be convenient to work with the time, space

and velocity variables separately. Fix y € C°(RY) and define z, for ¢ > 0 by

1(v) =&y (g) :

For the space variable, consider i € C*(R?) and for § > 0 let

o) i= 57 (3

For the time variable, fix 0 € CX°(R) and for # > 0 let

0,(t) == n10<%)-

We then define the full mollifier ¢ by
@t x,v) = 0y ()95(x) 2. (v)-
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Then define the smooth functions
M = Q%5 ,m and W = Q% ,W.
Notice that for the convolution in time, (m, w) needs to be extended. We choose the
following extensions. We set w(t, -,-) =0 to for t<0 and t> T. Then, if <0, we set
m(t, - ,-) to be the solution to the problem
dm~+v-Dym =0, in(—n,0)x M xR
m(0, - ,) = my, inM x R

Similarly, for ¢t > T we set m(t, - ,-) to be the solution to
om+v-Dym=0, in(T,T+n)xM xR,
m(T, -,-) = mr, inM x RY,

where m is the trace of m in time at t=T.
As the final step in the approximation, we localize m. As localizers we consider

smooth functions {z € C*(M x RY) such that

1 [x] <R%,[v| <R C C
X, V) = D, <—,|D, <— . 52
Calxv) {0 oo IS DGl < 62)
We then define m® := {pm and w® := (i,
Then m™® satisfies the equation
om® +v.Dm® + div,w® = &, 5 . »,
where the error term is given by

Enser = (R [V: Dy x40yl stem + (v - Delp)m + (Dylg) - w. (5.3)

Here, we use the standard commutator notation [Aj, Azlf := A1 (Ayf) — Ay(Ayf), where
Ay, A, are some operators acting on the function f.

5.1. Convergence of the error term

We show that the error term &, 5. r defined by (5.3) converges to zero in the space
171
LI +19)
these parameters.
For the first term, either for p=1 or p =g, using the explicit formula for the commu-
tator we estimate

«w a R— 400 and 1,6,0 — 0, under a certain relationship between

1Cr [V - Do x| Opxetbsraml e < [V - Do 0] (OnW5) %6 xml| g |
< s o) O (Dt x|l e |
< ) Ot (Datps ) e
< Ivie |L1||6'7||L1HDXl//(SHLleHL}Lﬁ,V
< et Cr )
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where we have used Lemma 5.3 in the third inequality. Thus by choosing & = &(d) suffi-
ciently small with respect to J, we may ensure that

})jn(l) sup [|{r [+ D 2os)*| Opxetbstxm|lpay = 0.
—U R '

For the second term, observe that for all R>0, |v- D,(z| < CR™! and thus

(v DxCR)ﬁlHL}(leLq) < CR_leHL}(LlﬂL‘f)

XV X5V

< CR71||m||L}(L1ﬂL’4)

X5V

< CTR?IHmH(LlﬁLq)

[ Y

It follows that

R i 1V Del)mllyy s, = O-

For the third term, for either p=1 or p =g we have

_ C, .
| (DyCR) - WHL}LQ,V < R ||W||L}L§,V

C
< E”‘PHL}LQV W”Ll,x,v

< =5 e

tX, v

Taking ¢ = ¢(0) as above, we can then ensure this term converges to zero by choosing
R =R(J) sufficiently large with respect to 0 and &(0). Thus, for this choice of
¢(0), R(0), we have

lim sup ||(DyCR) - wl|r = 0.
3-0 by

Altogether, we have found that there exists a regime R = R(J) and & = &(9) such that

}513(1) Sl:,p Hgn,ri,s,R”L}Lﬁ,V =0.

5.2. Testing the equation

Using m® as a test function in the weak form of the equation for u;, one obtains

J w(0,x,v)m® (0, x,v) dx dv —J (Br)m B (T, x,v) dx dv
MxR? MxR?
T

T
+J J w (8, ® +v-Dxﬁ1<R))dxdvdt+J
MxR?

J fn<R)H(x, v, Dyu) 1y dxdvdt
0 0 JMxR?

T
gJ J Bt ® 1oy dxdv dt.
0 JMxR?

Using the equation satisfied by m™®), we have
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J (0,2, v)m® (0, x,v) dx dv — J (Br)m® (T, x,v) dx dv
MxR? MxR?

T T
- J J wdiv, w® dx dvdt + J

0 JMxR? 0
T

JM Rdﬁ’l<R>H(3c, v, Dyu) oy dxdvdt  (5.4)

T
gJ J ﬁkﬁa(R)Il{u>1}dxdvdt—J
MxR?

0 0

J dul En,a)g,R dxdvd:.
MxR

Next, note that D,u € L (U, ). By the chain rule for Lipschitz functions composed

loc
with Sobolev-regular functions,

Dyu; = Dvuﬂ{u>l}.

Thus, using the definition of distributional derivative we may integrate by parts to
obtain

T T
—J J uy div,w® dxdvdt:J J w® - Dyul o dxdvdt.
0 JMxR? 0 JMxR?

Since B(m,w) is finite, w is absolutely continuous with respect to m. It follows that
there exists & € L ([0, T] x Ml x R%; 7i1) such that

w=am.
Thus

T
J J (W(R) -Dyu+ mWH(x, v, Dvu)) Tguspy dxdvdt
0 JMxRA

T
= J JM Rd(& -Dyu+ H(x,v, Dvu))rh(R)]l{u>l} dxdvdt
0 X

T
> —J j L(x,v, — &)rh(R)]l{,Dl} dxdvdt.
0 JMxR?

Substituting this, we obtain

J w (0, x,v)m® (0, x,v) dx dv —J (Br),; B (T, x,v) dx dv
MxR?

MxR?

T

—J J L(x,v, — &)m® 1,y dxdvdt (5.5)
0 JMxR?

T

T
<J J Bt ® 1y dxdvdt—J
MxR?

0 0

J dul 5,1,5,3,13 dx dvdt.
MxR

We have shown above that there exists a regime R = R(J) and & = ¢(J) such that the
final term converges to zero uniformly in # as ¢ tends to zero, since u; €

LP(L* + L), ,. We now discuss the convergence of the other terms.
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5.3. Boundary terms

We consider the boundary terms at t =0, T. Note that Lemma 4.1 and Corollary 4.2
yield u(0,-) € LY + L™ (since (o), € L™ + L7 and u(0,-) is bounded below), while
by Lemma 4.1 and Corollary 4.4 we have (f;), € L* + L™.

We first show that ﬁl(()R) converges to mg in L' N L4, and ﬁz(TR)

converges to my in
L'NLY, in the limit as & tends to zero for a certain regime 7 = () and R = R(J),
¢ = &(0) according to the regime already found above.
For t =0, T, we write
g —my = (g — Capgeaiome) + Ge(Wsrome — me) + my((g = 1). (5.6)
We first note that my € (L' N Lq)x’v by the assumption that it is a bounded probabil-

ity density, while mr € L;

s , since the energy B(m,w) is finite, and mr € L} , since the

v
continuity equation conserves mass.
Then, since |m;({g —1)| < my, if m, € LP (where p € {1,9} or p € {1,s}) then by

dominated convergence

Jim{lme(Le = Dl = 0.

Moreover, by continuity of translations in L?,

}312% Wsxizo(o) v — mellyy = 0.
Since for all R>0
1R aarvme = mlug, < Wssatesime = mly
it follows that

lim sup 1CR(Wssxto(s)vme — me) || = 0.

Therefore, the latter two terms of (5.6) converge to zero as ¢ tends to zero with & = &(J)
and R=R(J) as already specified above, in (L'NL?), , for t=0 and in (L'NL%),,
for t=T.

It remains to estimate the difference #,y,*,m; — ;. For any function f € L%,
(p € [1, 4+ o0 to be specified),

J (Wskxypxoymy — my)(pf dxdv = J (my — (Oyrem), )W 5%y (Crf) dxdv.
MxR? MxR?

We use the notation f = Wk )y ((gf). Writing the time convolution explicitly, we
obtain

J (m; — (911*tm)t)_f dxdv = J J 0, (1) (m; — mt_f)f dxdvdr.
MxR? MxRA

—0o0
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Next, we use estimates on J;m :

(m; — mH,]?> = J

t—1

t t

@ fds= | (mv V), + (n V),

t—1

Then, since m, w € L',
t
[ome = me o f)| < (j Il + ||ws||L;,vds> (I Vf e + 19 ).
t—1

We estimate ]?:

[|v- vx,f”L% = |lv: Vil srarxo (Crf) [l 1
< (R+ Ce)|[ Vsl o el oo L Nl o
< (R+Copa P,

and similarly

”vV]?”L”C‘ = 5% Vot (Crf) | 1

< sl IV otell 1 Lo
= 5‘d/1’s‘<1+d/1’>|[f||u.

Thus

.
Lx,v

_ t
[(m = my_ )] < C(6,2,R) (j el + lwllys ds> Il
t—1

Finally

“Mde (e — (Oy%m),)f dxdv

t+n
< C(3,5R) <j Imlly, + el ds) e,

t—n
< w(n) C(6.6R) IIfls

where lim,_.ow(n) =0. Thus it is possible to choose # =1#(d) depending on
0,&(0), R(9) in such a way that

limw(n) C(,&R) =0, limn(d) =0.

0—0 0—0

We apply this in the case f = f; for i=1, 2, where

L, ift=T
Br)i=h+forw(0)=fi+f, fieq fLely,
LI, ift=0

Consequently, for t =0, T,

J rhéR) u(0)dxdv — J mou;(0) dx dv,
MxR? MxR4
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and

J dﬁq(TR)(ﬁT)ldxdv—>J mr(fy), dx dv,
MxR

MxR?
as 0 — 0 with 7, R, ¢ chosen to depend on ¢ in the manner specified.

Finally, we take the limit ] — —oo. For the term, =0, convergence holds by mono-
tonicity, and the limit is finite since

—J uomo dxdv < +o0o
MxR?

by finiteness of .,Zl(u, B, Br). For the term t=T, we first note that

JMde(ﬁT)lmT(x, y)dxdv < J

MxR?

Gmr) e+ | G ((Br)) e

MxR?
The second term on the right hand side converges due to the assumption on G (2.3),
since the integrand is dominated by

sup G*(u) < Cg € L'(M x R%).

u<0

5.4. Term involving pm

Since m € L' N LY, by standard results on approximation by mollification in L” spaces
we have
lim m® —m =0,
(155 )0 R s 400 | [P
and thus the same limit holds with #,¢ R chosen to depend on J as described above.
Then, since ff;, € L™ + L7, we deduce that
T

T
lim J J Bt ® 1,y dx dv dt :J
MxR?

(5, b‘)—>0, R—+o0 0 0

J Bim1 =y dxdvde.
MxR?

By the definition of Fenchel conjugate,

T
J J ﬂkm]l{u>l} dxdvdt < J
MxR?

0 0

T
J (f*(x’ Vs ﬂk) +f(x) v, m))]l{u>l} dxdvdt
MxR?

We then take the limit ] — —oco. Note F and F™ are both lower bounded by integrable
functions (conditions (2.2) and (3.1)). Then, by monotonicity,

T
lim J J (f(x, v,m) — inf F(x, v, m)) Lyspy dxdvde
MxR? m

I——00 0

T
= J J (]-"(x, v,m) — inf F(x, v, m)) dxdvdt.
MxR? m

0
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Moreover

T T
lim J J inf F (o, v, m) 1y dxdvdt = J J inf F(x, v, m) dxdvdt.
I=-00 Jo JMxr? ™ 0 JMxr? ™

Since the lower bound is integrable and F(-, -,m) has finite integral by finiteness of
the energy, both of these limits are finite. Thus

T

T
lim J J F(x,v,m) 1y dxdvdt = J J F(x,v,m)dxdvdt.
l=—co Jo JMxmre 0 JMxR?
A similar argument shows that
T

T
lim J J F (5, Bi) Liusny dxdvdt:J
MxR?

l=——00 Jo 0

J F*(x,v, Bi) dx dv dt
MxR?

where the right hand side is finite.

Finally, we consider k — —oo. Note that sups o F"(x,v ) < Cp(x,v) € L' by
assumption (see (3.1)). Since F*(f}) is a continuous non-decreasing function of f, as k
decreases to negative infinity F*(-, -, ff;) is decreasing and converges almost everywhere
to F*(-, -, ). Thus we deduce the convergence

lim J f*(x,v,ﬁk)dxdvdtzj F*(x,v, f) dxdvdt.
k=oe Jp<oy {p<0}

By the bounds (3.1), the right hand side is finite. Moreover, for any k < 0,

f*(x,v,ﬁk)dxdvdtzj F*(x,v, f) dxdvdt.

J{p>0} {p>0}

Thus we conclude that
T

lim J

k——00

T
J ]—"*(x,v,ﬁk)dxdvdtzj J F*(x,v, f) dxdvdt.
MxR4 MxR4

0 0

5.5. Lagrangian term

For the term involving the Lagrangian, we use a similar argument as was used in [20]. This
argument is based on the joint convexity of L(x,v, — w/m)m as a function of (m, w). In
our case we must additionally account for the convergence of the localizer (. By convexity,
for all (¢, x, v), the integrand satisfies the inequality

W\ .,
L (x> v, — T) ng]l{u>l}
m
T / / /
w(t', x',v)
= Jo JMx]R”Gﬂ(t sl =Xy =L <x, n m(t',x', v’)) m(t',x, V) dt' dx' dv' (pllysny

w
= 0;7*t‘ﬁ5*xlg*v [L (X, v, — %) m:| CRl{u>l}'

Then, note that



COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS e 1979

O s s %y {L (x, v, — %) m} (t,x,v) = OpPs*ay v {L (~, - %) m} (t,x,v)

+ Opethssu®y {L (x, v, — %) m— L(-, o= %) m} (t,x,v).

Then, since L(-, . —%)m € L'((0,T) x M x Rd), Hn*tnpé*xxg*v[L(-, . ﬂ)m] converges

>m

to L(-, R %)m in L'((0,T) x M x Rd) as 1, d, ¢ tend to zero. Since 0 < { <1,

'{Hﬂ*twé*ﬁ(a*v [L< g _:/’l> m] _L(" s _::l)m}élRﬂ{”ﬂ}

It follows that if we take the regime R = R(d),& = (), = n(9) established above, then

T
0—0 m m

We stay with this regime and consider the remaining term

T
J J Hn*tlpé*xxg*v{L<x, v, —K)m —L(-, . —K>m}(t,x, V){R(x,v) 1 yspy dxdvdt.
0 JMxR? m m

The integrand converges to zero almost everywhere: note then that

rl
Or/*tll/é*xxn*v{L(x) v, — E) m — L<'» N K)Wl}CRﬂ {u>1} < 0;7*tl//6*x}fn*v |:<C + |W|, )m:| .
m m m”

1—7

=0.
!

lim sup
1,0,¢—0 p

=0.
Ll

The right hand side converges in L' to Cm + |w|"m
dominated convergence we conclude that

as 0 tends to zero. Thus by

T

T ~
limj J L(x,v, —g)fnélgﬂ{wl}dxdvdt SJ J L(x,v, —K>m]{u>l} dxdvdt.
0=0 Jo Jmxrd m 0 JMxR? m

The reverse inequality follows from Fatou’s lemma. Thus
T

T ~
limj J L(x,v, —g)ﬁ%Rﬂ{wl}dxdvdt:J J L(x,v, —K)ml{wl} dxdvdt.
-0 Jo JMxRr? m 0 JMxR? m

Finally, we take the limit / — —oo. Since L(x,v, —#)m € L', in the limit we obtain
T
J J L(x,v, —K>mdxdvdt.
0 JMxR? m

5.6. Conclusion

From the discussion above, we have obtained

T

J uomodxdv—J g(x,v,mT)dxdv—J g*(x,v,uT)dxdv—J J L(x,v, —K)mdxdvdt
MxR? MxR? 0 JMxR? m

MxR?

T
<[ Fwnp - Fanm) aravar
JMxRA

0
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where all terms are finite. Rearranging this inequality, we obtain the statement

A(u, B, Br) + B(m,w) > 0. O

Corollary 5.4. Let (u,f,f;) € K4 and (m,w) € Kg be such that A(u,f, fy) < +oo
and B(m,w) < 4o0.
Then

B_m e L'((0,T) x M x R and (B;)_mr € L}(M x RY).

Moreover, for almost all t € [0, T],

T T

J [ugmy — Prmy|dxdv — L(x, v, — K) mdxdvdt < J pmdxdvdt,
MxR? t JMxR? m t JMxR?
and
t t
J [uomo — uymy] dxdv — L (x, v, — K) mdxdvdt < J pmdxdvdt.
MxR? 0 JMxR? m 0 JMxR?

(5.7)

In particular,

T T
J [ugmy — fymy] dxdv — J J L<x, v, — K)mdxdvdt < J J pmdxdvdt.
MxR? 0 JMxR? m 0 JMxR?

(5.8)

Proof. This is a consequence of the proof of Lemma 5.2 and in particular the inequality
(5.5). First, let wus show the first part of the statement, ie.
that f_m € L'((0, T) x M x R%)and(B;)_my € L'(M x RY).

As in the mentioned proof, let us first pass to the limit with #,J, ¢ R in the inequality
(5.5). Then, we pass to the limit as | — —oco and kK — —oo the remaining terms.

All the terms, except the ones involving ((f7)_);mr and (B_)ml,~; pass to the
limit, as in the proof. After rearranging, we also find that both [, p«((fr)_)mrdxdv

and fOT g (B_)gm 1=y dxdvdt are uniformly bounded, independently of I and k.
Therefore, the monotone convergence theorem yields

lim J d((ﬁT)f)lmT dxdv = J (fr)_mrdxdv
MxR M

l=—o0 xR?

and

T T
lim lim J J (B)kml{u>l}dxdvdt:J
MxR?

I—=—00 k——00 ] 0

J dﬁ,mdxdvdt.
MxR

The summability results follow, and so does (5.8).
For the case of general t € [0, T], we begin by testing the equation to find that, for
example,
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J wi(t,x, v)m P (¢, x,v )dxdv—J (ﬁT)lfn(R)(T,x,v) dxdv
MxR? MxR?

T

- J J L(x,v, — &)rh(R)]l{u>l} dxdvdt
t JMxR?

T

T
gJ J Bt ® 1y dxdvdt—J J w Ey50rdxdvde.
M xR? MxR?

t t

We note that we are referring to the version of u; that is weakly right continuous in
time (see Appendix A). The only term that requires attention is

J w(t, %, v)m P (¢, x,v) dx dv.
MxR?

For almost all ¢ € [0, T], u;(t) € (LY + L®)(M x R?%) and m, € L' N L4, Thus the argu-
ments for the boundary terms in Lemma 5.2 show that

1imJ w(t, x,v)m (R) (t,x,v )dxdv—J u(t, x, v)m(t,x,v) dx dv.
0=0 JpxRA MxRY

The limit [ — —oo is then taken by monotone convergence, noting that (u;), m; €

L'(M x R?). Note that the argument for the case (5.7) shows that limit is not negative
infinity, since all other terms have finite limits. O

Corollary 5.5. Let (u, B, fy) € K4 and (m,w) € Kg be such that A(u, B, fr) < +oo and
B(m,w) < +00. Then

(1)  m|Dyu|" is uniformly bounded in L'((0,T) x M x R?), by a constant that
depends only on the data and A(u, B, By) and B(m,w).
(2)  The following estimate holds:

T
J J mH(x,v,Dvu)—&—mL(x,v, —K> +Dyu-w dxdvdt
MxR? m

T
< J ,BTdexdv—J Uy dxdv—I—J J pmdxdvdt
MxR? MxR? 0 JMxR?

T
+J J mL(x,v, ——)dxdvdt
0 JMxR? m

Proof. This is a consequence of (5.4). Using the same notation as in the proof of
Lemma 5.2, we rewrite (5.4) as
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T
J J m M H(x, v, Dyu) 1y gy dx dv dt
MxR

0

< J (By)m® (T, x,v) dxdv — J
MxR? MxRA

T T
+ J J B ® 1oy dxdvdt — J
MxR?

0 0

(0, x,v)m® (0, x,v) dx dv

J deul - H{u>l} dxdvdt
MxR

T
—J J up Ey,5,,rdxdvdt
MxR?

0

< J (ﬁT)Jh(R)(T, x,v)dxdv + JMXRd (1410, x,v)]_m® (0, x,v) dx dv
MxR?

T T
+J J ﬂ+r?z(R)dxdvdt—J J Dyuy - w® 1,0y dxdvdt
0 JMxR? 0 JMxR?

T
—J J up Ey,5,6,r dxdvdt.
MxR?

0

Let us observe that for some 0 > 0 parameter that we choose later, Young’s inequality
yields

T
- J J Dyuy - w® 10y dedvdt
0 JMxRY

T
:—J J O(m® ) Dyuy - w7 () 710y dxdvdt
MIxR?

0

1 T 1 / T I
g-@’J J m®|Dyug| 1 gy dxdvdt—i——,(?"J J [ ()77 1oy dxdv dt.
rJo Jmxrd r o Jnvixrd

We notice that —% =1—17". Thus, by using the growth condition (2.1) on the
Hamiltonian and choosing 0 appropriately, we can conclude that there exists a constant
C>0 (independent of the parameters I, k, R, 7, ¢,0), such that after passing to the limit
with R,7,¢,0, as in the proof of Lemma 5.2, we obtain

T
J J dm|Dvul|rﬂ{u>l}dxdvdt§C+J (Br).m(T,x,v)dxdv
MxR

0 MxR?

+ JMde [u1(0,x,v)] _my(x,v)dxdv

T

T
+j J ﬂ+mdxdvdt+CJ
MxR?

lw|”m"~" dxdvdt.
0 0 JMxR?

Since the right hand side of this inequality is uniformly bounded, independently of I

(by Lemma 4.1(ii), Corollary 4.2(ii) and Remark 3.7), the result follows by Fatou’s
lemma by sending I — —o0.
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Using (5.4), we have

T

T
J J rh(R)H(x, v, Dvu)ﬂ{u>l} dxdvdt + J
0 JMxR? 0

J rh(R)L<x, y, — i) 1oy dxdvdt
MxR? m

T
+ J J Dyu- w® 1,0 dxdvde
0 JMxR?

< J (ﬁT)lrh(R)(T,x, v)dxdyv — J (0, x, v)rh(m(o,x, v)dxdv
MxR? MxR?
T

T ~
7 ~ w
* Jo JMdeﬂkm(R) H{IDI} drdvdt Jo JMdem<R)L<x’ " %) 1{“>1} dxdvdt

T
—J J uy Ey,5,6,r dxdvdt.
MxR?

0

Passing to the limit with R,#,¢,d, as in the proof of Lemma 5.2, by Fatou’s lemma we
obtain

T T
J J mH(x, v, Dvu)]l{u>l} dxdvdt + J J mL (x, v, — K) 1{u>l} dxdvdt
0 JMxR? 0 JMxR? m

T
+ Dyu-wly,~p dxdvdt
0 JMxR?

< J (Br)m(T,x,v)dxdv — J u(0,x,v)m(0,x,v) dx dv
MxR4 MxR4
T T w
+ Bim1 sy dxdvdt + J J mL <x, v, — —) Tjuspy dxdvde.
M xR 0 JMxR? m

0

Finally, taking the limit /, k — —oo as in the proofs of Lemma 5.2 and Corollary 5.4, we
obtain

T

J J mH(x,v,Dvu)+mL<x,v, —W) +Dyu-w dxdvdt
0 JMxR? m

T

< J prmydxdv — J uomgy dx dv + J
MxR? MxR?

J pmdxdvdt
0 JMxR?

T w
—I—J J mL(x,v, ——>dxdvdt.

0 JMxR? m

6. Existence of a solution of the relaxed problem

In this section we prove the existence of a solution for the relaxed problem. Consider a
minimizing sequence (uy.f,.(fr),),- We will extract a convergent subsequence, and
show that the limit constitutes a minimizer of the objective functional.

6.1. Compactness of the minimizing sequence

The following proposition enables the extraction of a convergent subsequence.
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Proposition 6.1. Let (u,), be a sequence of solutions to the Hamilton-Jacobi equations
—Oiuy — v - Dyuy + H(x, v, Dvun) = ﬂn:

Assume that:

e The family (uy), is uniformly bounded in LL! | (Up,).

x, v, loc

e The family (Dyuy,), is uniformly bounded in L (Up,).

loc

e The family (B,), is uniformly bounded in L _(Uyn,).

Then there exists a subsequence (uy,); that is strongly convergent in Ll Um,)-

The proof of this result will be a consequence of some intermediate results that we
detail below.

Remark 6.2. Let us notice that the assumptions of Proposition 6.1 hold true by
Corollary 4.4 and Lemma 4.1.

Proposition 6.1 is proved by treating the Hamilton-Jacobi equation as a kinetic trans-
port equation with right hand side bounded in L, _(Uy,) :

—Owuy — v - Doty = B, — H(x, v, Dyuy,).

A form of compactness for the solutions can be obtained by using an averaging lemma.
Averaging lemmas are results in kinetic theory showing that, for L?-bounded families of
solutions to the kinetic transport equation, with L’-bounded source terms, the velocity
averages
p¢[u](t,x) = J du(t,x, v)p(v) dv ¢ € C?(Rd),
R

enjoy additional fractional Sobolev regularity and/or strong L”-compactness. In our case
we are in the setting p=1, and we use an L' averaging result from [49]. It is necessary

to assume a certain equi-integrability condition on the solution u,. This condition is
defined below.

Definition 6.3 (Equi-integrability in velocity). Let (u;),., be a bounded family in
L} ([0, T] x M x R?). The family is locally equi-integrable in v if, for all & > 0 and all
compact sets K C [0, T] x M x RY, there exists # > 0 such that for all measurable fami-
lies (At,x)(;, x)efo, 7 Of measurable subsets of R? for which SUP (1, xyelo, T)xM [Ab x| <15

T
J J J Ik|us(t, x,v)|dvdxdt < ¢ for all 7 € A.
0 Jmla,,

The required averaging lemma is quoted below. This result was proved in [49] for
the stationary case, i.e. the equation v - D,u = . The result can be adapted to the time
dependent equation by standard techniques; see [50] or [51] for statements in the time
dependent setting.
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Theorem 6.4. Let (u;),., be a bounded family in L>=([0, T); LL (M x R?)) satisfying

loc

Oy + v - Deu; = B, (6.1)

where (B;),cp is a bounded family in Ll _([0,T] x M x R?). Assume that (u;),., is

loc
equi-integrable in v. Then

o The family (u;),., is locally equi-integrable in all variables in [0, T] x M x RY.
e For each ¢ € C.(RY), the family of averages (pgluil)jen is relatively (strongly)
compact in L{. ([0, T] x M).

In our setting we expect to have local summability estimates in Uf,, rather than
[0, T] x M x R?. To deal with this technicality we make use of a localization procedure:
given a compact set K, consider a smooth bump function { supported in K. If u, satis-
fies the kinetic transport Equation (6.2), then u;{ satisfies

Oi(u;0) +v - De(wp) = B, + (0l + v - Vilu,. (6.2)

The right hand side of the above equation is bounded in L'([0, T] x M x R%), uni-
formly in 4, as long as u; and 3, are bounded in L}, (U, ).

We wish to apply this to the solutions of the Hamilton-Jacobi equation. To do this,
we verify the equi-integrability condition. To prove equi-integrability, we make use of
the L" estimates available for the v-derivative D, u.

Lemma 6.5. Let (u;),.5 be a bounded family in L°L, | (Uy, ). Assume that (Dyu;) ;.
is a bounded family in Lj, (Up,). Then:
o (ui);ep is bounded in L} L%\ (Upn,), where 1/o=1/r —1/d if r<d, or any a <
+oo ifr > d.
o (u;);cp is equi-integrable in v, locally in U,y,.

Proof. We obtain higher integrability in the velocity variable by using Sobolev embed-
ding. We first apply a localization procedure. Given a compact set K C U,,,, let (i
denote a smooth bump function with compact support contained in ,,,, such that {x
takes values contained in [0,1] and {x =1 on K. Then

Dv(u/l{K) - Dvul CK + u, DVCK'

Let K’ denote the support of {x. Then
Dl < ) (1P ey + ol )

thus D, (u;{x) is bounded in L', uniformly in 1. Moreover it is compactly supported.

We then apply Sobolev embedding in the v variable. Letting 1* := -4

=5, we have

il cr ) < Nualklly pe < Call Dy(uali)ll < C(d, CK)(HDM

tyxv

) T ||”i||L;°L;,V(K’))~

Thus (u;), is uniformly bounded in L} L}

t,xv,loc*
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We now apply a bootstrap argument: it follows from the above that D,(u,;(x) is
bounded in L} L!', and thus (u,), is bounded in L} L* for o= (1—2/d)"". This

t,xv,loc

process can be repeated until we obtain that (1), is bounded in L} L7, , for 1/r, =

1/r — 1/d, if r < d; otherwise we may obtain L! L%, _for any o < +oc.

t,xv,loc
We now prove local equi-integrability. Let (At,X)(t,x)e[o, T)xm D€ a measurable family

of measurable subsets of R, such that |A, ,| < for all £, x. Then

T
j j j iy dvdxdt < g, Tl ol Tl oo
o JmJa, ’ a

where ’ denotes a Holder conjugate exponent. From the condition on the measure of
A, we have

!

T
| ]| el avaar < € sup el sl gy < COONALy sy 17

0 tyx

which proves equi-integrability. O

It follows that, under the assumptions of Proposition 6.1, Theorem 6.4 can be applied
to ({xun), for any (g € C°(U,,,). We deduce strong L -compactness for the averages
(Pglunlk]),- We now use this to prove strong compactness for the full solutions u,,.

Lemma 6.6. Assume that the family (u,), satisfies the following:

(4n),, is uniformly bounded in L°L), .
(uy),, is equi-integrable in all variables.
(uy), share the same compact support K.
(Dyuy),, is uniformly bounded in L; L'

t,x—v*

For each ¢ € C*(R?), the family of averages (pglun]), is relatively (strongly)
compact in L{, .

Then the family (u,), is relatively (strongly) compact in L'.
Proof. First, note that the first two assumptions imply the weak L' sequential compact-
ness of (u,),. We pass (without relabelling) to a weakly convergent subsequence u,,
and let u denote the weak limit. In the remainder of the proof we improve the mode of

: 1
convergence of u, to u to strong convergence in L.

Step 1: Approximation by smoothing in v. We approximate u, by a function that is
smooth with respect to the v variable. Fix ¢ € C° (R?) and define, for & > 0,

6.0 = 7%(3).
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Let

Un o (t,x,v) := J dun(t, x V) (v —v)dv.
R

Step 2: Compactness for the approximations. Fix v, € RY. For any y € LY. with

X
compact support we consider testing the sequence (u,), against the test function

‘P(t>x)¢s("* - V).
Since
(U Y (ve — ) = (WY (vi — 1)), n— +o0,

we deduce that u,, (-, -,v.) converges weakly in L}

t,x,loc to u*V¢{:('> ‘ 7V*) as n — +oo.
Note moreover for each fixed v € R%, u, ,(t,x,v) is a velocity average with respect to

the test function ¢,(v —-). Therefore, by Theorem 6.4 the convergence in fact holds
strongly in L}, for each v € R.
Furthermore, for fixed ¢ > 0, the family (u,.), is equi-continuous in v into L{°L! :

indeed

|, (26,0 + h) — uy (8 x,v)| =

J un(t,%,V) (¢, (v — vV + h) — (v —)) dv/
Rd
< Il [t 0.
Thus
l[tn,o (> v+ ) — o ')V)HL;OLi < Cgsup ||umHLf°L}w |h|.

By an Arzela-Ascoli argument the convergence therefore holds locally uniformly in v,
with respect to the strong topology on L! : that is, for all compact sets K, ¢ R? and

t,x, loc
Kt,x C [0> T] X Rd’

lim sup [ (v) — % 8,(D) 12 ) = 0.
n—00 ¢k, X

Consequently, the convergence holds in Lj ; in fact, since u, , — u * ¢, is supported for
all n in K + B¢;(0), the convergence holds in L.
Step 3: Removing the approximation.
The bound on D,u, implies that, for any h € RY,
[0 (8,2, - +h) = wa(t, ) |1y < [B[[[Dytan (8, %, -) [ -
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It follows that

l[utn, e — uleL["xL;SS stlnp ||Dvum||L;,xL;-
Indeed, by definition of u, .,
[Un,e — ta](t,x,v) = JRd [t (t, %, v — h) — uy,(t,x,v)]p.(h) dh.
Thus, for any g € L' (RY),

J d[u”’g — un](t,x, v)g(v)dv = J J [t (t,x,v — h) — uu(t, x,v)]p,(h)g(v) dh dv
R R

Rd

< gl |t ) = e 00|

L

hy, _
< ||g||L(,’||Dvun(t’x")|L;JRd|h||¢l (g)le * dh

< Cyel| Dyun(t, x, )|

I gHL;"
That is,
([t4n, e, %, ) — un(t, x, ‘)HL;SEHDV”n(t’ X5 ')”L;’

then, one integrates in ¢, x and takes supremum.
Finally, estimate
lotw = lly < ot =ty -+ ltne = byl + gy, — ulyy

< Ckllun — “n,eHL},XL; + [t — u*v¢£”L}’x’v + Cluxvg, — “HL})XL;

=Ckesup ||D1’um||L}’ng + [Jun, s — ”*vd’s”L},N + [luxyp, — uHL[‘)xL(,'
m

Thus
timsup [, — ully, <esup Dyl g, + wred, — ullyy , — 0
n—0o0 7 m ’ >
as ¢ — 0, which completes the proof. O

Proof of Proposition 6.1. The proof of this proposition follows by applying Lemma 6.6
to (Cxun),,- O

It remains to obtain the necessary convergence of (f,), and (fr,),,-

Lemma 6.7. Let (uy, B, fr.,) be a minimizing sequence for Problem 3.8. There exists a

modification (uy, B, Br.,) of this sequence that is also minimizing such that (B,), is

1
loc

weakly precompact in Li,_(Uy,) and (BT),,)" is weakly precompact in L. (M x RY).

Proof. We replace f, with some f,> f, and (Br,n), with BT)n > fr., such that
(B, BT,,,) is uniformly integrable, and (uy, B [}T,n) is still a minimizing sequence. We
do this in a similar manner to [20]: since (f,)_ is bounded in L} (U, ), using a com-

pact exhaustion of U, and a diagonal argument, by [59] it is possible to pass to a
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subsequence such that the following holds for some J, € R. We define B., by

(Bn)f = (ﬂn)fl{(ﬂn),ifn}’ (Bn)+ = (ﬂn)Jr'
Then it is possible to choose J, in such a way that:

e For each compact set K C U,,,, the sequence (f,) 1k is uniformly integrable.
e The measure of the set {(8,)_ >J,} NK converges to zero as n tends
to infinity.

We use the exact same construction for fi,, and we can get the same properties

(now taking K C M x RY).
We notice, that by construction the constraints

—Oity, — v - Dyuy, + H(x, v, Dyuy,) < ﬁn
and
Ur,n S BT,n

are still satisfied. Finally,

T
J J F*(x,v,Bn)dxdvdt—J
MxR¢

0 0

T

J F*(x, v, f,) dxdvdt
MxR?

T
< J J |F* (%, v,0) — F*(x,v, B,,)| 1 (g, <,y dx dvdt.
0 JMxR?
By the estimate (3.1), the integrand on the right hand side is dominated by 2Cr € L',
and thus the right hand side converges to zero as n tends to infinity.

The exact same arguments apply to G* and BTJ, too. Thus (i, f,» BT’n) is a minimiz-
ing sequence. Moreover, there exists (u, 5, f1) such that up to passing to a subsequence,

(u,), converges to u strongly in LL (Uy,), (B,), converges weakly to f in LL (U,

n

and (ET’,[)" converges to f weakly in L (M x RY). O

6.2. Existence of a minimizer of A over K4

In this subsection, we prove that there exists a minimizer (u, f3, ;) by passing to the
limit in the functional

o T
At B Pr.) = J J F*(x,v,,) dxdvdt — J Uy (0, x,v)mo(x, v) dx dv
MxR? MxR

0

+j G (B, (7)) dxdv.
MxR?

Theorem 6.8. Under our standing assumptions, the functional A admits a minimizer
over K 4.
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Proof. Let (uy, B, Pr.,)nen be @ minimizing sequence. Without loss of generality, for
example by considering u, € C', we may assume equality in the Hamilton-Jacobi equa-
tion:

—O¢tty — v+ Dytty + H(x, v, Dyuty) = P,y un(T,%,v) = fr (%, v).
For this minimizing sequence we have, for some constant C >0,
sup A(un, B> Br,n) < C.
n

We have discussed that this implies uniform in # bounds on the following quantities:

1650 sy | ()
MxR?
1Br) Il

||Dvun||L]’0C(L{m0)’ ||(ﬁn)+HL?:x)v’ ”(ﬂ”)—”LLCW

(UO,n)-s-H(L%Jqu’) >

X,V

(MxR?)> |
mo).

To get the uniform integrability on (f,)_ and (f;,)_, we perform the surgery argu-

ment as in Lemma 6.7. So, let (un,Bn,BT,n)neN be the modification of the minimizing
sequence (which will still have uniformly bounded energy). By Proposition 6.1 we know

that (u,),.y is strongly precompact in L{ (U,,), while Lemma 6.7 yields that (f,)

loc neN
and (BT,n)nEN are weakly precompact in L}, (Uy,) and L} (M x RY), respectively. In
particular, after passing to a subsequence let us denote by u the strong L| (U,,) limit
of (uy),. In what follows, to ease the notation, we drop the tilde symbol, but whenever
we write 8, and f; ,, we mean the corresponding modified versions.

Passing to further subsequences (that we do not relabel), there exist limit functions

so that we may also assume the following weak convergences:

e (B,); — B, weakly in LZ,X)V([O, T] x M x R?), as n — +o0.
e f,— P, weakly in L} (Uy,), as n — +oo.

o (Br.). — (Br),, weakly in LY(M x RY), as n — +o0.

o .1 — P, weakly in L (M x RY), as n — +o0.

e Dyu, — Dyu, weakly in L| (U,,), as n — +oo.

r
loc

With these convergences in hand, we are ready to pass to the limit in the Hamilton-
Jacobi inequality constraint and the functional. Note that the weak form of the inequal-

ity (Definition 3.9) implies that, for all n and all test functions ¢ € C>°((0,T] x M x
R%) such that ¢ > 0,

T T
J J d(@,d) + v Dyd)u, + ¢H(x, v, Dyu,) dxdvdt < J
MxR

0 0

J ¢p, dxdvdt
MxR? (6.3)

+J ¢(T,x,v)Br,, dxdv.
MxR?

Note again that ¢ is compactly supported in U, . By the weak convergence of D,u,
in L] (Uy) and the convexity of H it follows that

loc
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T
J J ¢H(x,v,Dyu) dxdvdt = J ¢H(x,v, Dyu) dxdvdt
0 JMxR? Un,

T
< lim ian

¢H(x,v, Dyu,) dx dvdt = lim inf J
Un, n

0

J (PH(x, v, Dyuy) dx dvdt.
MxR

All the other convergences stated above are sufficient to guarantee convergence against
¢. So, we obtain that the limit (u, f§, ;) satisfies (3.6).

Next, we consider the convergence in the functional. In addition to the previous con-
vergences, along the previously chosen subsequence, we have

o (ugn), - (#19) ., weakly-*in (L> + LYY (M x R?), as n — +oo.

The convergence of the sequence ((uo,,)_ o), requires special attention. The bound-

edness of this sequence in L'(M x R?) lets us conclude that there exists a nonnegative
Radon measure v such that after passing to a subsequence (that we do not relabel)

(uo,n) _my Zvasn — +oo.

This means in particular that for all ¢ € C.(M x R?), we have

J d(uo,n) _modxdv — J ¢v(dxdv),asn — +oo.
MxR? MxR?

Since the the sequence ((uo,,)_ o),y is supported in the open set {m, > 0}, we get
that spt(v) C spt(mg). Now, let us take ¢ € C.({my > 0}) arbitrary and define  :=
¢/my. Since my € C(M x RY), by assumption, we have that € C.({mo > 0}) and so

J d‘ﬁ(uo,n),mo dxdv = J (d/myg)(uo,n) _modxdv
MxR

Mx R4

= J P (up,»)_dxdv — J (¢p/mo)v(dxdv),asn — +oo0.
MxR?

MxR?

Thus, this means that as n — 400, (u,0)_ converges weakly-* to the nonnegative
Radon measure (#g)_ := m%) -v, e (up)_ has density miu with respect to v. We notice
that this means that (#y) is absolutely continuous with respect to v. In fact, we also
have that v is absolutely continuous with respect to (up) , and so we can
write v = myg - () _.

Let us take now ¢ € C°(U,,), and test the inequalities satisfied by (u,, B, fr )
similarly to (6.3), to obtain

T T
J J d((’?tqﬁ + v Dyd)u, + ¢H(x, v, Dyu,) dxdvdt < J
MxR

0 0

+J (f)(T,x,v)ﬁT)ndxdv—J ¢ (0, x,v)ug, , dx dv.
MxR4 MxR?

J BB, dxdvdt
MxR

Incorporating also the previously described convergence of (uy,,)
limit along the chosen subsequence and obtain

,» We can pass to the
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T

J J (Orp + v - Dyp)u + ¢pH(x, v, Dyu) dx dv dt
0 JMxR?

T

<] proraxa- |

MxR

dqboﬁg(dxdv) + J

0

J ppdxdvds,
MxR

where 2 := (u49), — (#o)_. We notice that #, is a signed Radon measure, supported
in spt(my).

Having in hand this last inequality, we readily check that the assumptions of Lemma
A.11 are fulfilled with the choice of §, = iy and [ as before. This means in particular
that u satisfies

—O0u —v-Dyu+ H(x,v,Dyu) < B, in Z'((0, T) x M x RY)

up > igin Z'({my > 0}); up < frin Z'(M x RY),
where when writing the traces u, and ur, we are referring to the right continuous ver-
sion of u in time. Since by construction, (itg, mo) = [y, ga (o), mo dxdv — ((itg) _, my)
is finite, we have that (uo, m,) is meaningful and finite, with

—(ug, mo) < —(itg, my).

Lower semicontinuity of the term involving — [, pamouo( dxdv).

Claim.
Jomgs0ymo(uo)_(dxdv) < i gamo(ito) _(dxdv) < liminf, o [y, ga(tio,n) _mo dxdv.

Proof of Claim. First, notice that since uy — #ip is a positive distribution, it can be repre-

sented by a Radon measure. We may therefore write, for some vy € .4 (M x R?),
such that spt(rg) C spt(my) and

Uy = Uy + vy = [(170)+ + Vo] — (0)_.
It follows that the Hahn-Jordan decomposition of u, satisfies
(uo), < (o), + vo, (o) < (Ho)_.

Now consider any compactly supported function { € C.({mo > 0}), such that 0 <
{ <1. Then

n—oo n—oo

j {mg(tig)_(dxdv) = lim J {(ug, n)_mgdxdv < lim ian (ug,n)_mg dxdv.
MxR? MxR? MxR?

Since (up)_ < (©g)_ as measures,

J {mo(up) _(dxdv) <lim ian (uo,n) _mo dxdv.

MxR? n—o0 JMxR?

Then take a non-decreasing sequence of functions {; such that {; converges pointwise
to the indicator function of the set {m, > 0} as k tends to infinity: consider for
example functions such that
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1 ifmg(x,v) > 2k
Ck(x’v) = . —(k+1
0 if mo(x,v) < 27K+D),

This is always possible since mq is continuous. Then, by monotone convergence, we
indeed have

J mo(up)_(dxdv) = lim j Cemo(ug)_(dxdv) < limian (uo,n)_mg dxdv,
MxR? k=+00 JyvxR? n=00 JMxRY
as desired and the claim follows.

By the weak star convergence of (ug,,), to (itg), in (L™ + L¥)(M x R%), we also
have that, for i, the positive part (ug,,) mo converges to (iig),mqg strongly in L'(M x
R?). Since —uy < —ii as signed measures, we deduce that

—J mou( dxdv) < —J moiig( dx dv) < lim inf—J ug, nmo dx dv , (6.4)
MxR? MxR? n MxR?

as required.
The term involving G~.
For the term involving G*, we notice that by convexity

n—-+00

J G (x,v, fr)dxdv < lim ian G (x,v, fr ) dxdv. (6.5)
MxR4 M xR

Indeed, by classical results (cf. [57, Proposition 1.2.3, Corollary 1.2.2]), this is a conse-
quence of the convexity of the integrand in the last variable and Fatou’s lemma that
yields the lower semi-continuity with respect to the strong topology on L} (M x R?).
The term involving F™.
First note that, for functions f such that f. € L7([0,T] x M x RY) and B_ €
L} ([0, T] x M x R?), by (3.1) the following inequality holds:

IF* (%, ) < ¢ VB |T + Cr(xv) € L'([0, T] x M x RY).
Thus

T
j J f*(x,v,ﬁ)dxdvdt:J F*(x,v, B) dxdv dt. (6.6)
MxR4

Indeed, since U, = {0} x {mo >0} U (0, T) x M x R, for all 6 > 0 we have

T
J J j’-'*(x,v,ﬁ)dxdvdt—J F*(x,v, ) dxdv dt
MxR?

0 Uy

0
gJ J I (v, B)| dedvdr.
{moy>0}

0

The integrand is bounded by the L' function |F*(x,v, B)| and converges to zero almost
everywhere as J tends to zero. Thus, taking 6 — 0 we obtain (6.6). A similar equality
holds for all §,,.

Therefore, by the convexity of 7* (and by arguments similar to the one for G*), we
conclude that
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JT JMXRdf*(x, v, f)dxdvdt = J

0 Uy

F*(x,v, ) dxdvdt < liminfj F*(x,v, f,) dxdvdt
n—-+0o0 umo

T
= limian J F*(x,v, B,) dxdvdt.
M xR

n—+0oo Jg
(6.7)
Thus, collecting all the previous arguments, one deduces that
A(u, B, By) < limlnfj(un,ﬁn,wn).
The thesis of the theorem follows. O

Corollary 6.9. In the setting and notation of the previous theorem, in fact uy = i
on {mg > 0}.

Proof. Since (u, f, fr) is a minimizer,

T
Au, B, pr) < —J motip(dx dv) 4 lim ian J F*(x,v, f,) dxdvdt
MxR?

MXRd n—+0o0 0

+ lim inf[ G (% v, Br, ) dxdv
JMxR4

n—oo

T

J f*(x,v,ﬂﬁdxdvdt—i—[ g*(ﬂT,n)dxdv>
MxR?

MxR?

< lim —J mog, »(dxdv) + J
n—+00 MxR?

0
= A(u, B, Br),

where in the last equality we have used that (u,, $,, fr,) is a minimizing sequence.
All the above inequalities are therefore equalities. From the inequalities (6.4), (6.5)
and (6.7) for each of the terms, we deduce that

—J mouy(dxdv) = —J moiig( dx dv).

MxR? MxR?

It follows that uy = 1, as signed measures on {my > 0}. Indeed, first note that uy > g
as signed measures, or in other words 1, — #ip is a nonnegative measure. For any non-
negative test function ¢, € C.({my > 0}) we have my > ¢ > 0 on the support of ¢,
for some & > 0. Thus there exists a constant C such that ¢, < Cmy. Thus

0< JMde¢O<uO —ip)(dxdv) < CJM mo(ug — tip)(dxdv) = 0.

xR4

Thus uy = g as signed measures on {my > 0}. O

7. Existence and uniqueness of a solution to the MFG system

In this section we prove Theorem 2.4. First, we show that the minimizers of Problems

3.3 and 3.8 that we have obtained in the previous sections provide weak solutions
(u, m) of the MFG.
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Theorem 7.1. Let (u, 3, fr) be a minimizer offl over IC 4 and let (m, w) be a minimizer

of B over K. Then

(i) ptxv,) =f(x,v,m(t,x,v)) for a.e. (t,x,v) € (0,T) x M x RY,
Br(x,v) = g(x, v,mr(x,v)) for ae. (x,v) € M x R%
(i)  w(t,x,v) = —m(t,x,v)Dy H(x,v, Dyu(t, x,v)) for a.e. (t,x,v) € (0,T) x M x R%.

As a consequence, (u, m) is a weak solution to (1.1) in the sense of Definition 2.3.
Proof. By Theorem 5.1,
A(u, B, B7) + B(m, w) = 0.

Substituting the definitions of the functionals, we obtain

T
J J f(x,v,m)+.7:*(x,v,[3)dxdvdt—J mou( dx dv)
0 JMxR? MxR?

T

+J g(x,v,mT)+Q*(x,v,ﬁT)dxdv+J J L(x,v, —K>mdxdvdt:0.
MxR? 0 JMxR? m

Fenchel’s inequality then implies that
T

T
J J ﬁmdxdvdt—i—J ﬁTmT—mouodxdv+J J L<x,v, —K)mdxdvdtgo.
0 JMxR? MxR? 0 JMxR? m

By Corollary 5.4, the left hand side is non-negative, and therefore equality holds:
T

T
J J ﬁmdxdvdt—i—J ﬁTmT—mouodxdv—l—J J L(x,v, —K)mdxdvdtzo.
MxR? MxR? 0 JMxR? m

0
(7.1)

Moreover, equality also holds almost everywhere in the applications of Fenchel’s
inequality. Thus the following hold almost everywhere in [0, T] x M x R¢:

B =f(x,v,m(t,x,v)), Br=gxv,m(T,x,v)). (7.2)
By (7.1) and Corollary 5.5,

T
J J mH(x,v,Dvu)+mL<x,v, —K>+Dvu-w dxdvdt <O0.
0 JMxR? m
By Fenchel’s inequality, the integrand on the right hand side is non-negative; we deduce
that equality holds in the above estimate and thus the integrand is equal almost every-
where to zero. It follows that

w

= —D, H(x,v,D,u)

almost everywhere on the support of m. Moreover,
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mL (x, v, — K) = m(Dvu - Dy, H(x, v, Dyut) — H(x, v, Dvu)). (7.3)
m

The energy equality then follows from substituting (7.2) and (7.3) into (7.1). O

We show now, conversely, that weak solutions to the MFG system are in fact mini-
mizers in the corresponding variational problems. The proof of this result follows simi-
lar ideas as the corresponding ones from [20,21].

Theorem 7.2. Let (u, m) be a weak solution to (1.1) in the sense of Definition 2.3. Then
by setting ff:=f(-, -,m), pr :=g(:, -,mr) and w:= —mD, H(-, -,D,u), we find that
(m, w) is a solution of Problem 3.3, while (u, 5, fy) is a solution of Problem 3.8.

Proof. First let us notice that by Fenchel’s equality one has
Folo of (s om)) = F (s -om) —mf (- m).

We define the Borel set B:={(tx,v) € [0,T] x M x R?: f(x,v,m(t,x,v)) > 0}.
Restricted to this set, we find

—Cpg < F*(5 -»f( -»m)) < F(-, -,m), a.e. in B,

where in the first inequality we have used our assumptions (3.1). Since, Cp, F*(-, -,0)
and F(- -,m) are summable, this implies in particular that F*(-, -,f(- -.m),) €
L'([0,T] x M x R?). Using the growth condition on F* we find furthermore
that f(-, -.m), = B € LY([0, T] x M x R?).
Now, on B, i.e. when f(-, -,m) <0, we find
0<mf(c-m) = —mf () = F - ofCm)) = FC - om)
<SupF (o)~ F (s m).
<0

Again, the summability of the right hand side, we find that mf(-, -,m)_ € L'([0, T] x
M x Rd). Using the exact same arguments for G*, we find similarly that (f;), €
LY (M x R?) and my(By)_ € L'(M x R?).

Moreover, we have that Dyu € LI (Up,), meL'([0,T]x M xRY) and we
LY([0, T] x M x ]Rd;]Rd), so (m, w) and (u,f, fy) are admissible competitors for the
two optimization problems.

Now, take (i, 8, f) as an admissible competitor for the problem involving the func-

tional A. By the convexity and differentiability of F* and G" in their last variable we
have
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- T B )

A(@, B, Br) = L JM Rd}"*(x, v, p) dxdvdt — JM Rdmoito(dxdv) +JM Rdg*(ﬁT) e dv
T T

ZJ J f*(x,V,ﬂ)ddedt-f-J J 8ﬁ\7:*(x7V,ﬁ)(B—ﬂ)dxdvdt
0 JMxR? 0 JMxR?

— mOUQ(dXdV) + J mo(uo - ﬁo)(dXdV)

JMxRA MxR?

] gnasave| 9,00 - pr) axer

MxR? Mx

~ T —
A(u, B, Br) + J JM JR{dm(ﬁ —f(, - ,m))dxdvdt + J mo (g — to)( dx dv)

0 MxR?

+ mT(BT_g(', ',mT))dxdv
MxR?

where we have used the fact that mf (-, -,m) € L'([0, T] x M x R?) and mrg(-, -, my) €
L'(M x R?) (by the arguments at the beginning of this proof). Moreover, mf €
L'([0, T] x M x R?) and mrBy € L'(M x R?) (cf. Corollary 5.4) and

BF* (%, v, f) = OF*(x, v, f (%, v, m)) = pF " (%, v, O F (x, v, m)) = m,
08, G (%, v, Pr) = 0pG" (x, v, g(x, v, m7)) = 0p,G" (%, v, O, G(x, v, m1)) = mr.

Now, using (2.4), one obtains

T

A(a, B, Br) > A(u, B, Br) ‘|‘J

J dexdvdt—i—J mT/?dedv—J motio(dx dv)
0 JMxR? MxR? M

xR4

T
+J J L(, -, —w/m)mdxdvdt,
0 JMxR?

where in the last line we have used

D, H(-, -,Dyu) - Dyu — H(, -,Dyu) = L(-, -, Dp,H(-, -, Dyur)).

v v

By Corollary 5.4 we conclude that A(@, f, fr) > A(u, B, B7), as desired.
Using the very same ideas and the convexity of F and G, we can conclude similarly
that (m, w) must be a minimizer in Problem 3.3. O

Finally, we show that solutions in the sense of Definition 2.3 are unique, again fol-
lowing similar ideas as the corresponding ones from [21]. One major difference, how-
ever, is that we develop a suitable comparison principle for the distributional solutions
to the corresponding Hamilton-Jacobi inequalities. This completes the proof of
Theorem 2.4.

Proof of Theorem 2.4. The existence of a weak solution (u, m) follows from combining

Theorem 6.8 (existence of a minimizer for .,Zl), Theorem 5.1 (duality, and the fact that

the infimum for B is attained) and Theorem 7.1 (minimizers are weak solutions in the
sense of Definition 2.3).
For the uniqueness, we first apply Theorem 7.2 to obtain that for i=1, 2, (u;, f(-, -, m;),

g(-, -, m;(T))) are minimizers of A over K ; and (m;, — m;DyH(-, -, Dyu;)) are minimizers
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of B over K. Since the minimizer of B is unique by strict convexity, m; = m, =: m almost
everywhere and —m;D,H(-, -, Dyu;) = —m;D,H(:, -, D,u;) =: w almost everywhere.

To show that u; = u, almost everywhere on the set {m > 0}, we first define u =
max{uy,u,}. By Lemma B.2, u also satisfies the Hamilton-Jacobi inequality, with f =
f(, -,m) and B =g(-, -,mr). Since u; < u for i=1, 2, we have

—J moup(dxdv) < —J mo[u;],(dxdv),

MxR? MxR?

and thus A(u, f, f) < A(w;, B, fr). Since u; is a minimizer, equality holds. By duality,
equality then holds in the energy inequalities of Corollary 5.4 for u and m, with f, B, w
as defined previously. Thus, for almost all ¢ € [0, T],

T T
J utmtdxdv—J J L<x,v,—K> mdxdvdt—l—J J ﬁmdxdvdt—l—J prmpdxdv.
MxR? M xR? m MxR?

t t MxR?

The same is true replacing u by u;, and so
J usm;dxdv = J (u;),m; dx dv, i=1,2.
MxR? MxR?

Thus, since also u; <u, we deduce that u; = u almost everywhere on the set
{m > 0}. |

8. Sobolev estimates on the solutions

In this section, we obtain Sobolev estimates on the optimizers of the variational prob-
lems, and hence on weak solutions for the MFG system (1.1). The general idea is to
“compare” the optimality of the optimizers in the variational problems with their care-
fully chosen translates. Then using strong convexity of the data one can deduce differ-
ential quotient estimates.

These results are inspired by [23,24]. However, because of the kinetic nature of the
model we need completely new ideas when we consider perturbations. So, the estimates
that we obtain are on suitable kinetic differential operators applied to the solutions.
Another crucial difference between our results and the ones in [23,24] is that our
Sobolev estimates in the x and v variables are local in time on (0, T]. The main reason
behind this is that we have a weaker notion of trace for u,, that we cannot ensure to be
stable under perturbations. This imposed further technical complications that require us
to work in the case of r=2.

We emphasize that these estimates are consequences of the stronger convexity and
regularity assumptions on the data stated in Assumption 2.

8.1. Local in time Sobolev estimates

Let {: [0, T] — R be a smooth cutoff function such that {(0) =0 and {(t) > 0 for all
t>0. We define 1 : [0, ] — R as 5(t) := [, {(s) ds.
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For competitors (m, w) in Problem 3.3, without loss of generality one might assume

the representation w = Vm, for a suitable vector field V. Let § € R? with |§| < 1 and
define

m® (t,x,v) == m(t,x + n(t)d,v + {(t)d) and VO(t,x,v) := V(t,x + n(t)d, v+ {(£)d) — {'(t)d.

We use the notation w° := Vom?.
We notice that by construc‘uon, if (m w) = (m, Vm) is a distributional solution to
(3.3), so is (m®, w®) = (m®, V°m?) and m°(0, -,-) = my.

Similarly, for competitors (u, f§, f7) in Problem 3.8 we define
w(t,%,v) = u(t,x + n(t)0, v+ {()8), B(tx,v) = B(t,x +n(t)d, v + {(1)9),
and f5(x,v) := Br(x +n(t)o, v + [(1)9).
Furthermore, we define
HY (x,v,) == H(x + n(t)8,v + {(£)5,&) + (1) - &,
Fo(x,,0) := F(x+n(t)s, v+ {(t)3,0),
G (%, 0) := Glx +n(1)3, v+ ()3, 0).

When computing the Legendre transforms of these functions in their last variables we
obtain

(H®)*(x,v, &) := H* (x + n(t)d, v + {(£)6, & — L' (£)d),
(fa)*(x, v, 0) := F*(x+n(t)d,v + {()5,0),
(@) (x%,v,0) := G*(x + n(t)d,v + {(£)4,6).

Let us notice that H° satisfies in particular the hypotheses imposed in Assumptions 1.
~5 . N

Correspondingly, we define the functionals A~ and B° and the constraint sets IC; and
K%, using the shifted versions of the data functions. By construction, as a consequence
of a change of variable formula, the proof of the following lemma is immediate.

Lemma 8.1. (m, w) is an optimizer of B over Kp if and only if (m°,w?) is an optimizer
of B° over K. Similarly, (u,p,Br) is an optimizer of A over K4 if and only if

. ~5 .
(u®, °, B2 is an optimizer of A" over KY.
Proof. We provide the proof of one of the statements only, the other ones follow similar

steps. Suppose that (m’,w°) is an optimizer of B’ over IC%. This means in particular
the minimality of the quantity
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T . . T N W5
j J ]—"b(x,v,mb)dxdvdt—l—J J (H?)* (x,v, ——5>mdxdvdt
MxR? MxR? m

0 0

+ J G (%, v, m‘;(x, v))dxdv
Mx R4

- JTJ Fx+n(t)d,v + ()8, m(t,x +n(t)d, v+ {(£)0)) dx dv dt
MxR?

~ w(t,x+n(t)d, v+ {(t)9)
m(t,x + n(t)d,v + {(£)0)

" JT JMXRdH* <x + (1), v+ {(1)9,

)mdxdvdt
0
+ J G(x+n(t)o,v+ (1), mp(x +n(t)d, v+ {(¢)d)) dxdv
MxR?
T T w
=J J f(x,v,m)dxdvdwj J H*(x,v, —>mdxdvdt
0 JMxRY 0 JMxR? m

+ J G(x, v,mr(x,v)) dxdv,
MxR?

where in the last equality we have used the change of variables (x, v)—(x — n(t)d,v — {(t)0).
So, this means that the minimality of (m°, w?), after a change of variables, yields the minimal-
ity of (m, w). 0

Now we are ready to state the main result of this subsection.

Theorem 8.2. Suppose that (u, m) is a weak solution to (1.1) in the sense of Definition
2.3 and that (H5), (H6), (H7) hold.
Then, there exists C > 0 such that

. _ _
[~ (nDy + CDV)m”LZ((O,T]xMde) <G ||m1/2(’7Dx + 5Dv)Dv”||LZ((o,T]xMde) <C
and
i_l —
[m%~(n(T)Dx + {(T)Dy)mr || 2 pyurey < C-
Remark 8.3. As for Theorem 2.5, this is an informal statement: the result we obtain is
on suitable difference quotients as in estimate (8.8) below.

Proof of Theorem 8.2. Let (uy, B, Br.,)
such that u, € C1([0, T] x M x RY),

wcy be a minimizing sequence for Problem 3.8

B, = =0y, — v - Deu, + H(x,v,Dyuy), pr,=u(T, -,-).

Let us recall that after passing to a subsequence, that we do not relabel, as a conse-
quence of Proposition 6.1, Lemma 6.7 and by Claim 2 in the proof of Theorem 7.1, we
have that

e (By), — P weakly in L1([0, T] x M x R?), as n — 4o0.
s (ﬁn), - B_) Weakly in Llloc(umo)’ as n — +oo.
® (ﬂT,n)+ - (ﬂT)+, weakly in Ls/(M X ]Rd), as n — +oo.
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e (Br,)_ — (By)_, weakly in L} (M x R%), as n — +o0.
o (uon), — (itg),, weakly-+ in (L + L%)(M x R?), as n — +oo.
e D,u, — Dyu, weakly in L7 ([0, T] x M x R?), as n — 4oo0.

Notice that the previous arguments imply also that the subsequence can be chosen
such that for all M <0

Balip >my i\[ﬂl{ﬁzm,weakly —x in (L +LY)([0, T] x M x RY) as n — 400 (8.1)
and
Br,u i, >m) i\ﬂTJl{/;TZM},weakly — % in (L% + LY)(M x RY) as n — 4oo0.

Furthermore, by Theorem 7.1, we have that f=f(-, -,m) and B;=g(:, -,mr).
Let w = —mD, H(-, -, Dyu).

Fix 6 € R? such that [6] < 1 and {:[0,T] — R as described at the beginning of
this subsection.

Now, the main idea is to use u’ as a test function in the weak formulation of the
equation satisfied by (m, w) and u, as test function in the weak form of the equation
satisfied by (m° w?). Then we combine these inequalities with the energy equality (2.4)
written for (m, w) and (m’ w°), respectively, and rely on the strong convexity and
regularity properties of the data to deduce a differential quotient estimate.

Following these steps, we obtain

JMde {ﬁ‘;’an - ug’nmo] dxdv > J

0

T
JMde(Hé(x’ v, D) — ﬁz)m + Dvuz -wdxdt.

We combine this with the energy equality (2.4) for (m, w) to get
J (ﬁg"n _g(" '>mT))mT_ (ug,n—uo)modxdv
MxR?

T i
> I J (H°(x, v, D,ul) + H*(x,v, — w/m) + Dyud - w/m — >+ f(-, -,m))mdxdvdt.
Jo JMxr?

(8.2)

Similarly, using u, as a test function in the weak form of the equation for (m’, w®) and

combining with (2.4) for (m?, w°),

[ [0 gt G~ ] axa

T
> J J (H(X, V,Dvun) + (H(s)*(x’ v, — Wé/m(s) (83)
0 JMxR?

+ Dyt - W' /m® — B, + fO(m?))m® dx dt

Adding (8.2) and (8.3), after some changes of variables (translations) and a Taylor
expansion of L, we deduce
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J [ (Bt 00003, €00, D) 1 003, 003, = /o) + Do o/ mm vl
][ 00— 00D 4 H 5 0000 = SO0, — /) + Do wfmm s vt
< JMxR (B, %) = 2, v, my)me | v — JMdez(”"’” ~ )y drdv
J [ B 7 = of )| mdxdvar,
J J JE v = w/m)  H (08,9 4 €06, — wjm) — (08 Dysd | mdxdvde
J JM | H (v = w/m) + H (x = n(6)d,v = {(5)0, — w/m) + C/(t)é-Dvu;"}mdxdvdt
= [ r,n(my + my®) = 2g(x,v, mr)mr} dxdv — JMXRdZ(uO’” — up)mo dx dv
J W+Wem)hmmm
L

[C/ )0 - Dyu,, (t)5-DVu’S]mdxdvdt
R? "

1
dJ J ([P()DLH" + (Do H | (x + ()8, v + 1L ()0, — w/m)J,5)ym dr dsdxdvdt
0

S
%
2

X

=

T 1
+J J dJ J (2n(O)(H)DLH" (x + t(t)8, v + 1L ()8, — w/m)d, 6)ym dr dsdx dv dt.
MxR

(8.4)

where we have also used the facts that by the choice of 1 and {, we have ug,n =

Uo,ny U = tly and my = my.

Our aim now is to pass to the limit n — 400 in (8.4) and derive a differential quo-
tient estimate. For this, we consider each of the terms separately.

Step 1. First, we notice that by (H7) and by the fact that ‘W‘ -e L'([0, T] x M x R?),
there exists C> 0 such that

T 1 p—s
J J J J < [ (H) D2 H* + C(t)D%H* | (x + ()8, v + 1L (£)d, — w/m)d, 5>m drdsdxdvdt
0 JMxR? Jo Js

+ JTJ Jl J_S<27’I(l‘>g(t)DivH*(x+ m(t)d, v+ 1{(t)d, — w/m)é, d)ymdt dsdxdvdt
o JMxR? Jo

T
ngﬂj OM )amm<q5
0 Juxrd \m"

Step 2. Second, let us notice that by the fact that m € (L' N L)([0, T] x M x RY)
and by (8.1), for any M < 0 we have
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T

T
lim J J dﬂ;ltél{ﬁfézM}dedth = J J iné(n’lié)ﬂ{ft&(mid)zM}m dXd'th.
MxR MxR

n——+0o0 0 0

Therefore,

limsup JT JMde [ﬁi + B, - zf(m)} mdxdvdt

n—+oo JO

T
< l 5ﬂ 5 75ﬂ » ) d d dt
= i J JMde [ﬂ” {ﬁnzM}—i_ﬁ” {B,°>M} f(m)]m xdy

n—+oo Jo

T S <
= J JM y [fé(m‘;) ﬂ{f&(ma)zM} +f*0(m*5) ﬂ{fﬂ;(m,(;)ZM} — zf(m)} mdxdv dt.

0

Now, sending M — —oo, we conclude that

T
limsupJ J [ﬁi +B,° - 2f(m)} mdxdvdt
n—+o0o Jo JMxR?

’ (8.5)
<] P ) — o m)] marv

0

where we have used the fact that f(m)m, (f°(m°)) ., (f°(m=°)), € L' so that the inte-
grand is upper bounded by an L' function to allow us to apply the monotone conver-
gence theorem. Since the left hand side of inequality (8.4) is bounded from below by
zero, it follows the right hand side of (8.5) is not negative infinity.

By the very same arguments one can conclude that

limsupj [ﬂT’n(m(; + m7°) — 2g(x, v, mT)mT} dxdv
MxR?

n—-+0oo

<| [P0 g2 — 2g(omn)|mr dx.
MxR?

Step 3. By Young’s inequality, we have

T
J JMde [C/(t)é Dy’ — ()5 - Dvuﬂmdxdvdt

0

T
+ CJ J IDyu;,® — Dyul)*m dx dv dt,
0 JMxR?

where ¢ > 0 is an arbitrary constant, and C = C(c, T, (") > 0.

Step 4. By the previous steps we can conclude that
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T
L JM (Hx2n(1)3,v=(6)5, Doi, ) + H' (x20(8)3,vL(1)5, — w/m)
T

+ Dy’ - w/m)m dx dv dt — CJ

|Dyu; % — Dyul|*m dx dvdt
0 JMxR? " "

is uniformly bounded above, independently of #n € N. Let us recall that % €
LY((0,T) x M x RY), and so is H*(x*5(t)s,v={(t)d, —w/m)m € L'((0,T) x M x
R?). Using the growth condition on H, by choosing ¢ >0 small enough in our applica-
tion of Young’s inequality we deduce that D,u;° is uniformly bounded in L2 ((0, T) x
M x R% RY). By a change of variable, one can similarly deduce that Dyu, is uniformly
bounded in L2.,((0,T) x M x R, RY).

Claim. After passing to a subsequence that we do not relabel, we have D,u; % — D,u™°
weakly in L2,((0, T) x M x R%;R?), as n — 4o0.

Proof of Claim. By the uniform boundedness of the sequence, we know that there exists a sub-
sequence of it (that we do not relabel) and ¢ € L2,((0, T) x M x RY;RY), as weak limit, i.e.
T

T
J J Dvuf‘s-qﬁmdxdvdt—>J J ¢ pmdxdvdt,
0 JMxR? 0 JMxR?

V¢ € L2 ((0,T) x M x R RY),as n — 4-o0.

Thus, we aim to show that & = D,u™°. As D,u;° — D,u™°, weakly in L2 (Uy,), as
n — 400, we can argue similarly as in the proof of Claim 2, in the proof of Theorem

7.1 to deduce the claim.

Step 5. By summarizing, (8.4) implies that

T
J J (H(x +n(t)d,v + {(£)3, D) 4+ H* (x + n(£)3, v + {(£), — w/m) + D,u - w/m)m dx dvdt
0 JMxR?

T o
+ J J (H(x — ()8, v — {(£)d, Dyu; ) + H* (x — n(t)d,v — {(£)3, — w/m) + Dyu,® - w/m)m dx dvdt
0 JMxR?

T
— CI [ |D1,u;‘S — Dvu2|2mdxdv dt
Jo JMxRr?

< J [ﬁT,,,(m‘; +m7°) — 2g(x, v,mT)mT] dxdv — J 2(uo, n — to)mp dx dv
MxR? MxR?

+ [T [M . |82+ 8,7 — 2 (m)| m dxdvde
JO X
+Clof.

Using the additional assumption (2.10) and the inequality |a + b|* < 2(a® 4 b?), for
¢ > 0 sufficiently small, one can conclude that there exists ¢y > 0 depending only on the
data, such that
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T
o J J |Dyu;,’ — Dvuf,\zm dxdvdt
0 JMxR?

< J [ﬂT,n(m(% + m}é) —2g(x, v, mT)mT} dxdv — J 2(ug,n — tg)mgy dxdv
MxR? MxR?

+ JT JM y [/}Z + ﬁ;é - 2f(m)} mdx dv dt

0
+ Clo).
(8.6)

Now, our aim is to pass to the limit with n — +oo first in (8.6). For this we take
liminf, ., of the left hand side and limsup,_ ,  of the right hand side. We notice
that the term — [, pa2up, nmmo dx dv needs special attention, since we do not have upper
semicontinuity of it. Because of this, we add to both sides of (8.6) the quantity

T
ZJ J f*(x,v,ﬂ,,)dxdvdt+2J G (Pr,,) dxdv
MxR?

0 MxR4

before passing to the limit. Thus we obtain

n——+oo 0

T
liminfcoJ J |Dvu;" —Dvu‘,’,|2mdxdvdt
MxR?

T
+liminf2J J ]:*(x,v,ﬁ,,)dxdvdt+liminf2J G (Pr,)dxdv
MxR? MxR?

n—-+0o0 0 n—-+0oo

Slimsupj [ﬁT)n(m‘;—%—m;a) —2g(x,v,mT)mT} dxdv+2J ugmodxdv
n—+o00 JMxR? MxR?

+limsup JT JM » [ﬁz +B,°— 2f(m)} mdxdvdt

n—+oo JO
T
+limsup (—ZJ uo,,,modxdv—i—ZJ J ]:*(x,v,ﬁn)dxdvdt—i—ZJ Q*(ﬂT’n)dxdv>
n—+00 MxR? 0 JMxR? MxR?

+CloJ.

All the arguments in the previous steps allow us to pass to the limit. By the fact that
(t4n> P> Br,,) is @ minimizing sequence, we get that

T
limsup <—2J U, o dx dv + 2 J J F*(x,v, B,) dxdvdt + ZJ
n—+00 MxR? 0 JMxR?

MxR?

G (Pr,n) dde>

T
lim (—ZJ Uo, nMo dxdv—i—ZJ J F(x,v, ﬁn)dxdvdt—I—ZJ
MxR? MxR?

n—-+00 0 MxR?

= 2-;‘(”’ B B,)

G (Pr,n) dde>

T
_ 2<_J womg dxdv+J J f*(x,v,ﬂ)dxdvdtJrZJ
MxR? MxR?

0 MxR?
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So, after simplification, one obtains

T
o J J |Du? — Dvu‘3|2m dxdvdt
MxR?

< JMXRd [g ( ) +g (mT(S) — Zg(x, Vv, mTi| mr dxdv (87)

T N N N <
+ J J [£2(m®) + 2 (m™®) — 2f (m)|mdx dvdt
0 JMxR?
+ CloJ.
Now, using (2.5) and (2.7) the very same arguments as in [23, computation (4.25)] yield
J (Fo(m°) +f°(m™°) — 2f(m))mdxdv
MxR4

< Clo (1 + J min{m® m}?dx dv) - C—fJ min{(m®)72, mi2}|m® — m|* dx dv.
MxR? 2 Jmxrd

Similarly, (2.6) and (2.8) yield
| (nd) +.g20m) ~ 2g(omr) ) mr e
MxR?
< Clo)? (1 + J min{m$, mr}* dx dv) — C—gJ min{(m3)* 2, m§ 2} mS — my|* dxdv.
MxR? 2 Jpaxpe
Combining these estimates with (8.7), we get

T
co J J |D1,1f‘3 — Dvu‘>|2m dxdvdt
MxR4

T <
+ C—fJ J min{(m®)?%, m12}|m® — m|* dx dv dt (8.8)
2 Jo Jmxre

C. -
+—gj min{ (m2)*2, m2}md — myf? dedv < CJ52.
2 JMxre

Dividing by |d|* and letting 6 — 0, we easily obtain the result. O

8.1.1. Recovering estimates on the operator (tDy + D,) applied to solutions

By choosing a specific structure for the cutoff function {, we can recover estimates on
more particular differential operators. Suppose that {(¢) = 0 for t € [0,%,/2], and {(t) =
1, for t € (ty, T] for some ty € (0,T) (to be chosen to be arbitrary), in such a way that
also #1(ty) = to. Then in Theorem 8.2, the operator (D, + (D,), for t > t, becomes
(tDy + D,). So, one can state the following local in time corollary.

Corollary 8.4. Suppose that the assumptions of Theorem 8.2 take place. Then, there exists
C > 0 such that

. _ _
[|m2~" (D, + DV>m||L120C((o, T)xmixrd) < Cs Hml/z(th + DV)DVuHLlZOC((O, TxMxr?) < C

and
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I (TD, + Dy)mr | ey < C-

8.1.2. Recovering estimates on the operator D, applied to solutions

Now suppose that 5(t) =0 for t € [0,f/2] and 5(t) =1 for t € (t, T| (where t, €
(0, T) can be chosen arbitrarily). We still require that { := #'. With this choice of cutoff
functions #, {, we can formulate the following result as a corollary of Theorem 8.2.

Corollary 8.5. Suppose that the assumptions of Theorem 8.2 take place. Then, there exists
C > 0 such that

. _ _
|2 1Dxm||L120€((O,T]><Mde) <G, Hml/szDVuHleoc((o,T]xMde) <C
and

1 —
[m%Dxmr|| pyrey < C.

8.1.3. Proof of Theorem 2.5
Finally, the proof of Theorem 2.5 follows from the previous two corollaries and the
inequality

ID,h| < |(tDx + D,)h| + T|D;h| for all t € [0, 7],

(8.1.3) for any Sobolev function h.
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Appendix A.
Time regularity

In this appendix, we collect some facts about the regularity with respect to time of solutions u of
—Ou —v-Du+H(x,v,Dyu) < B, in Z'((0,T) x M x RY). (A1)

By this we mean that, for any non-negative test function 0 < ¢ € C°((0, T) x M x R%),
T

JTJ (O +v-Dydp)u+ ¢ H(x,v,Dyu)dxdvdt < J
MxR?

0 0

J B dxdvdt. (A.2)
M xR?

What we discuss is close to the standard theory of distributional solutions. However, in our case
technical difficulties arise since, firstly, (A.1) is an inequality and, secondly, we wish to work on
the atypical domain U,,,. We therefore found it useful to clarify several points. Our main goal is
to give a precise sense to the specification of boundary data for this problem at time t= T, and
to give a meaning to u, (the ‘value of u at time t=0’), which appears in the functional .A defin-
ing the variational problem.

Throughout this appendix we impose the following summability conditions on the pair
(u,B) € LL _(Upm,) x LL .(Uy,,) and that H satisfies (2.1).

loc loc

Assumption 3. The pair (u, ) € LL_(Unm,) X Li,.(Un,) satisfies the following assumptions:

e The positive part of B satisfies f, € L([0, T] x Ml x R%);
o DuclLl (Un);

loc
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Under Assumption 3, by a density argument the weak form (A.2) extends additionally to test
functions in C!((0, T) x M x RY).

Lemma A.l. Let (u,f) € L, (Upn,) X LL,.(Um,) be a distributional solution to (A.1) satisfying
Assumption 3. Then

(1) for any ¢ € C((0, T) x M x RY) the function

(0, T)2t—{(d (1), u(t)) := ,[Mded)(t’ x,v)u(t,x,v) dxdv

is of locally bounded variation and therefore has a right continuous representative with a
countable number of jump discontinuities.

(2)  There exists a path (0, T)Dt—ii; € C1(M x RY) which is right continuous with respect to
the weak-star topology on C!(M x RY)' and such that i, = u, as elements of (C!) for
almost every t € (0, T).

Proof. Since S+ O,u+v-Dyu— H(x,v,D,u) is a positive distribution, it is given by some
Radon measure v on (0, T) x M x R?. We have
Ou=—v-Du+H(x,v,Dyu)— f+v=pu (A.3)

which we will use to deduce weak time regularity for u.
Consider a test function ¢ € C'((0, T) x M x R?). The function

f¢ (0,T) = R
<¢ u - foRd¢ t XV ) (t)x, V) dxdv (A4)
has distributional derivative
fo= i L(dyu) = (0p +v-Dachyu) + (¢, Hx,v, Dyu) +v = f). (A5)

By Assumption 3, u, ,B and H(x,v, Dyu) are all locally integrable functions on U,,, and so in par-
ticular on (0,T) x M x R?. Thus the distributional derivative f§ defined in (A.5) is a Radon
measure on (0, T), and so the path (A.4) is of locally bounded variation.

It follows that f, has a unique right-continuous version. That is, there exists a set Eg C [0, T]
of full measure and a right continuous function f ¢ such that f s(t) =fy(t) for all t € E;. The
function f » satisfies

Fo0) =F4(8) + fi((s.])

forall0 <s<t<T.
Now consider € C!(M x RY) (independent of time). The path t—(u(t),})) has time
derivative

S Woul) = (v Vot + kD) v ).

For each compact subset K C M x R, we define the following Radon measure on (0, T) : for
A C (0, T) Borel,

tc(A) = S IIllllrasky + 1HCS -5 Dore) = Bllpsask) + v(A X K).
v:3(x, v)eK

For the right-continuous versions we have, for all 0 <'s < t < T and all y € C!(M x R?) with
support contained in K,

U?x/,(t) _f¢(5)| < Wl px (s, £])- (A.6)
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Using these estimates, it is possible to construct a right continuous version of u: that is, a path
t—i, € CH(M x R?)’ that is right continuous with respect to the weak-star topology.

Such a construction is classical, but because of the lack of a precise reference in our context,
we sketch the main ideas here. Take a countable dense set Z C C!(M x R%); there is a full meas-
ure set E C (0, T) such that (y,u(t)) =f,(¢) for all t € E and all § € Z, and moreover u(t) €
L} (M x RY) (the latter is true for almost all ¢ since u is L ). Then

(@(0).) = 1,(1)

defines a bounded linear functional on Z, for all t € E. The estimate (A.6) can be used to show
that this is in fact true for all ¢t € (0, T). The resulting functional #(t) extends by density to a
continuous linear functional on C!(M x RY). Then the estimate (A.6) can be used to prove that
(it(t), ) is right continuous for all ¥y € C'(M x R?), not just on Z. O

Next, we construct the extension of # to the boundaries t = 0, T.

Definition A.2 (Transport shift). Let t € R. The operator T, : C.(M x R?) — C.(M x R?) is
defined by

Tip(x,v) = d(x — tv,v).

Remark A.3 (Group property). For any s,t € R, T T, =T ¢4y

Lemma A.4. Let u be a solution to (A.1) and let @i be its right continuous representative,
obtained in Lemma A.l. Let € C{(M x RY) be non-negative. Consider the function
(0, T)2t—(T s, ui(t)). Then

(1) Asttendsto T —, (Tap,u(t)) either tends to a finite limit or to positive infinity.
(2) Asttends to 0+, (T, ui(t)) either tends to a finite limit or to negative infinity.

Proof. Observe that
(5} +v- Vx)Ttlﬁ =0.

It follows that

% (T (1)) = (To, H(x, v, Dyut) + v — ).

Then the negative part of the time derivative satisfies

[% <Ttl//>ﬂ(t))] ST Cutpy)e L'(0, 7).

Thus (7 ), (t)) can be written as the difference of monotone functions, where the decreasing
part is absolutely continuous on (0, T) and can be extended to finite limits at the endpoints. By
monotonicity, the increasing part either has a finite limit at =T, or tends to positive infinity;
similarly, at +=0 it either has a finite limit or tends to negative infinity. m]

Definition A.5 (Weak traces). For any yrp, € C}(M x RY), let
(Ypur) = tlgrp7<7z-er)ﬁ(t)>, (o> uo) = tlim(’fﬁ//o,ﬁ(t)). (A7)

These define linear maps from C'(M x RY) to R U {—oc} in the case of g, and R U {+oo} in the
case of ur.

We now suppose that, in addition to the weak Hamilton-Jacobi inequality in the interior
(A.2), u satisfies the following: for all non-negative test functions ¢ € C!((0, T] x M x R¥)
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T ¢

J po dxdvdt+J Prdrdxdv.
MxR? MxR?
(A.8)

In our setting, we will have that f; € L] (M x R?) is a given function whose positive part satis-
fies (pr), € LY(M x RY). In this case, we show below that the time trace uy, enjoys some
more properties.

JTJ ul0yp + divy(ve)] + ¢H(x, v, Dyu) dx dvdt < J
MxR?

0 0

Lemma A.6. If u satisfies (A.8) with fi; € (M x Rd), then ur as defined in (A.7) is a bounded
linear functional on C/(M x R?) and ur < By in the sense of distributions: that is, for all Y €
CH(M x RY) non-negative,

Wpur) < (¥ Br).
In particular, we have that (, ur) = +oo does not occur for any y € C1(M x R?).

Remark A.7. Since then By — ur is a positive distribution, if f € LL_(M x R?) then we in fact
have that ur is represented by a signed Radon measure with absolutely continuous positive part.

Proof of Lemma A.6. In what follows, we will use the right continuous representative of u
constructed in Lemma A.l. By the abuse of notation, we write simply u for #. Fix Y €
CH(M x R?) non-negative. For each & > 0 small consider a smooth, non-negative test function
1, : [0, T] — R, chosen such that n(t) =0 for all 0 < t < T — ¢ and the derivative 7, satisfies

0 telo,T—g¢
0<n <egl, "(t) =
=Me = n:(t) {51 te [T —e+ &, T— €.
Note that as a consequence of the fundamental theorem of calculus, one has lim, o #,(T) = 1.
We define the following non-negative test function ¢, € C'((0, T] x Ml x R?) :

d)s(t’ X V) = "s(t)l//T(x + (T - t)V, V).
Substituting this choice of ¢ into (A.8), we obtain

| o] e (- 0wy axavae <)
T—¢ MxR

Mx

By dxdv + o (e). (A.9)
Rd

where
T

o(e) = JT JMXWM)S dxdvdt — J

J ¢ H(x, v, Dyu) dxdvdt.
T—e MxR?

T—e¢
Note that lim, . o;(¢) = 0, since f and H(x, v, D,u) are locally integrable and ¢, are bounded in
L, uniformly in e.

We exclude the possibility that (Y, ur) = 4+00. Indeed, if this occurs, then for any M >0,
there exists ¢ such that for any t € [T — ¢, T),

M< J u(t)Wp(x+ (T — t)v,v) dxdv.
MxR?

Then by bounding the left hand side of inequality (A.9) from below we obtain that for any
e<é,

M(1 - 26) < (1)

Mx

Prypdxdv+ oy (e).
]Rd
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Taking the limit ¢ — 0 gives

M< J B dxdv.
M xR4

Since this holds for any M > 0, we derive a contradiction. Thus—using also Lemma A.4—uy is in
fact a linear map from C!(M x R?) to R. We note also that the map

t»—>J du(t)lﬁT(x—F (T —t)v,v)dxdv
MxR

extends to a function that is bounded and continuous (from the left) at t=T.
Next, we show that ur < f; as functionals on C!(M x R?). We have

T
! J J why(x+ (T — t)v,v) dxdvdt < nc(T)J B dxdv + os(e), (A.10)
& Jr—¢ JMxR? MxR?
where
T
o (e) = o (e) + j (7! - ﬂ;)J up(x+ (T — t)v,v) dxdvdt.
T—e MxR?

For the second term here we have

JT (7! — n;)J wyr(x+ (T — t)v,v) dxdvdt
MxR?

T—¢

T—¢e+ée?
[ e (7= o]

+
T—¢?

< 26 (u(t), Y (x4 (T = v, V) |, 1
which converges to zero as ¢ — 0 since the trajectory (u(t), Yr(x + (T — t)v,v)) is bounded near

t=T. Thus lim, o o,(¢) = 0.
Taking the limit ¢ — 0 in inequality (A.10), we conclude that

(pur) < (Yp, Br)-

Since f; — ur is a positive linear functional on C!(M x R%), it is bounded, and therefore uy is
also a bounded linear functional on C!(M x RY). O

T
[ = e et = ]

Corollary A.8. If u satisfies (A.8) with iz € M(M x R?) then, in the notation of equation (A.3),
the measure v extends to a finite Radon measure on (0, T] x M x R given by v(A) = v(Al (g 1))

Proof. We show that, for any non-negative test function ¢ € C((0, T] x M x R?),

(v, 1o, 1)) < Ho0. (A.11)

It suffices to prove (A.11) for test functions of the form ¢(t,x,v) = 0(t)7 f(x,v), where 0 €
C!(0,T] and € C1(M x RY).
Then

SO0 = OO o)+ (. Hwm D) +0 = ) 2 0T o) + v = G = ).
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It follows that (once again using the right continuous version of u), for t < T,
t

bl d) < (D) = | [ 0T o) + $(Cu+ ) dndvas.
0 X
Taking the limit ¢t — T, by definition of uy,

T

v dlom) < (b ur) fj

0

J 0/ (8)(T o) + H(Cit + B,) dedvds < +oc.
MxR?

O

We now discuss the trace of u at t=0: u, as defined in Definition A.7. (Y, up) is defined for
all y € C/(M x RY). Our aim is to give a meaning to the quantity (1o, o), which appears in
the definition of the functional A. In the case where my € C! (M x RY) this is straightforward,
noting that we allow the possible value —oco. We now consider the more general case
where my € C(M x R?).

Lemma A.9. Assume that, for all ¢ € C:({mg > 0}), (¢, uo) # —oc. Then uy is represented by a
Radon measure on {my > 0}. Furthermore, the positive part (ug), has the property that

J mg d(ug) , (%, v) < 4o00.
{my>0}

Proof. Let ¢ € C!(M x RY) be non-negative. Since
d -
3\ Tep () = ~(T1¢, Cu + o),
we have
T

(s u0) < j (T 1, Cat + ) dt + (Trb, B} —: S

0

The right hand side is linear in ¢ and satisfies

T
[, (70 -+ 8.3t + (T )| < 181 (10 + Bl + Wbl )

0

here K7 denotes the set
Ky :={(x+vT,v): (x,v) € K},
where K is the support of ¢, and Kjo 7 is the set
Ko, 7 == {(x +vt,v) : (x,v) € K,t € [0, T]}.

Thus S defines a bounded linear functional on C.(M x RY). In particular it is a distribution;
moreover, it is represented by a signed Radon measure.

Observe next that S — ug is a positive linear functional on C'({mo > 0}), and thus bounded
and a distribution. By positivity it is given by a Radon measure v on {my > 0}. We deduce that

MOIS—I/().

That is, ug is a signed Radon measure.
Moreover, from the definition of the Hahn-Jordan decomposition we have the following esti-
mate for the positive part:

T

(b (w0).,) < [ (To, ot + ) dt + (T2, (By).,).

0
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Let ¢, € C.(M x R?) be an increasing sequence of functions such that ¢, converges to myq as
n — oo. Since

T

sup{y (#o) ) < L (Tumo, Cu + f) dt + (Trmo, (Br) ) < CuTl[mo|

+ TYB o llmoll o + 11(Br)-

we conclude that (my, (uo), ) is finite. =]

my

lellmollze>

Based on the previous lemma, we make the following definition.

Definition A.10. We define —(my, 1) as follows:

(1)  If there exists ¢ € C!({mo > 0}) such that (¢, uy) = —o0, then we define
—{my, uy) = +o0.

(2)  Otherwise, let ¢, € C.({mp > 0}) be an increasing sequence of functions such that ¢,
converges to mgy as n — oo, and define

—(mo, uo) = — lim (¢b,,, uo)-

This is well-defined (allowing for the possible value +00) by Lemma A.9.

Lemma A.11. Suppose that the assumptions of Lemma A.6 hold and suppose in addition that

T T
J J u[0rp + divy(ve)] + ¢pH(x, v, Dyu) dxdvdt < J
MxR?

0 0

J B dxdvdt
MxR? (A.12)

+ J Brordxdv — J Botho dxdv,
MxR? MxR?

holds for all ¢ € C!(U,,), where By € M ({my > 0}) is also given. Then for the trace u, of the
right continuous version of u we have

Bo < ug,in &' ({my > 0}),

and in particular (ug,\y) # —oco for any € C:({my > 0}).
If in addition we suppose that f, is such that (f,, mo) is meaningful and finite, then (uo, mo) is
finite and

(Bo>mo) < (uo, mo).

Proof. The proof of this result follows the same lines as the proof of Lemma A.6, so we point out
only the main differences. Let u stand for the right continuous representative constructed in Lemma
A.1.Fix y, € C'({mg > 0}) non-negative. For each ¢ > 0 small consider a smooth, non-negative test
function #, : [0, T] — R, chosen such that #(#) = 0 for all ¢ < t < T and the derivative 7, satisfies

—¢! telde—é,

—1 ! /
=M= i (t) {o teleT).

Note that as a consequence of the fundamental theorem of calculus, one has lim, . #,(0) = 1.
We define the following non-negative test function ¢, € C: (U, ):

bt v) = n()Yr(x — tv,v).
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Substituting this choice of ¢ into (A.12), we obtain

[ 0/O] o= ) eyt < =0 (B ) + 310
0 MxR
where

&

or(e) = JF JMXW/}@ dxdvdt — J

J ¢ H(x,v,Dyu) dxdvdt.

0 0 JMxR?

As before, we note that lim, .o a;(e) = 0. We exclude the possibility that (u,,) = —co. For
this, we rewrite the previous inequality as

&

0O) o) =) < = | 0] o= v drdvae,

and use the same arguments as when proving (ur, ;) # +0o in the proof of Lemma A.6.
Therefore, u, defines a linear map on C!({my > 0}). Having this, we can show the inequality
(Bo> o) < (1o, y) in the same way as corresponding inequality in Lemma A.6.
Now, using the Definition A.10, (up,mg) is meaningful, having also the possibility that it is
—oo. However, if the additional assumption that (f,,m) is finite takes place, taking a an
increasing sequence of test functions, we find that (fy, mo) < (ug,mp), so clearly, the latter term

cannot be —oo. 0

Through similar arguments it is possible to justify the existence of weak time traces for com-
petitors m in Problem 3.3, thereby giving meaning to the initial value problem

{Otm +v- Dym + div,w = 0,in Z'((0, T) x M x RY)

ml,_o = my.

Recall that in Remark 3.4 we established that, in the cases of interest to us, there exists a function
V € L"(mdxdvdt) such that w = Vm, and so we may assume that m is a distributional solution
of the following equation:

Orm + div,(vm) + div,(Vm) = 0,

with [V|m € L'([0, T] x M x R%).

This setting is much more standard since here the time derivatives & (¢, m;) will be in L'[0, T]
for any ¢ € C!(M x RY) rather than measures, that is, we expect absolutely continuous rather
than right continuous trajectories. Moreover we can work on the whole space [0, T] x M x RY
rather than only the reachable set i/,,,,.

Deducing that m has a narrowly continuous representative is essentially an application of [56,
Lemma 8.1.2]. However, since we do not necessarily have

T
J J |v|mdxdvdt < 400,
MxR?

0

due to the unbounded drift v, we cannot immediately apply this lemma. Below we briefly sketch
the adaptation to our case.

Lemma A.12. (See [56, Lemma 8.1.2]). Let 0 < m € (L' N L9)([0, T] x Ml x RY) be a non-nega-
tive function satisfying
Orm + div,(vm) + div,(Vm) = 0

in the sense of distributions on (0,T) x M x RY, where V is given, such that |V|m e
LY([0, T] xM x RY).

Then there exists a continuous curve i, : [0, T] — (C*(M x R?)) such that i, = m, for almost
all t € [0, T]. Thus g is well-defined as an element of (C1(M x RY))" (or in fact, by positivity, a
Radon measure).
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Furthermore, if mq is a probability measure, then m, extends unique? to a narrowly continuous
curve in the space of probability measures, i.e. mq, € C([0, T]; P(M x R%)).

Proof. Since m, |V|m € L'([0, T] x Ml x R), for any compact set K C M x R? we have

T
J J (Iv| + |V|)mdxdvdt < +o0.
0 Jx

It follows that, as in the proof of [56, Lemma 8.1.2], we may select a dense subset {¢,},y Of
CH(M x RY) and take a version 71, of m, such that ti—(¢,,m,) is continuous with respect to
for all n and #m, = m, for almost all ¢ € [0, T], and a define a unique weak-* continuous exten-
sion of 7. to (C'(M x R?))". Thus 7, is well-defined as the unique element of (C!(M x R%))’

satisfying
<¢m@:@w¢m>ﬁnm¢eqwukh

Moreover, since 7 is non-negative, in fact /71, is a Radon measure on M x R? for all ¢ € [0, T].

Furthermore, it follows from the continuity of 71, in the weak-* sense of (C!(M x R%))’, and
the fact that m is locally finite, that, for any (N.B. now time-dependent) ¢ € CL([0, T] x M x
R?), the path t—(¢(t,-), ;) is continuous. Thus we may also use the final argument from
[56, Lemma 8.1.2] (similar to our argument for the time traces at the boundary in Lemma A.6)
to prove the following equality (c.f. [56, Equation (8.1.4)]): for any ¢ € C1([0, T] x Ml x R?) and
any0<t, <, <T,

5}

(d(ta, ), e,) — ((t1,-), My ) = J (O1p +v-Dyp + V- D,p,m,) dt. (A.13)
a1

Next we wish to show that, if m, is a probability measure, then 7, is a probability measure
for all t € [0, T]. If this is the case, then we may apply [56, Remark 5.1.6]—if 1, — 71, in the
sense of distributions as # tends to infinity, then this convergence also holds in the narrow
sense—to deduce that s, is a narrowly continuous path in the space of probability measures,
as desired.

To do this we use the argument of Lemma A.4 to avoid the need for vm to be integrable.
First, fix a sequence (g € C°(M x R?) of smooth, compactly supported functions, approximating
the constant function 1 in a monotone limit as R tends to infinity—that is, let {; satisfy the
assumptions given in Equation (5.2). We note in particular that ||D(z||;~ < C/R for some con-
stant C>0 independent of R. Then, for each ¢, consider the test function 7, , (p (recall 7
from Definition A.2), which satisfies

(8t +v- Dx)Tt—t*CR =0, Tt—t*é’R|t:t* = CR-
Using (A.13) with t; =0, t, = t, and ¢ = T, (p, we find that

by

(Crome,) = (T -1, (g, o) +J (DT 1-1,Lg), Viny) dt.

0
We observe that, for all ¢ € [0, £,],
. C(1+t,
DT )l = It~ 0D+ Dyl < (1 -+ )05l < S5
Thus (since m; = m; for almost all t)

C(1+t.)
R
The right hand side tends to zero as R tends to infinity, since |V|m € L'([0,T] x Ml x R?).

Moreover, since 1, is a probability measure and 7 _, (p increases monotonically to 1 pointwise
as R tends to infinity, it follows that

T
J J |V|m, dxdvdt.
MxR4

0

Jt* (Du(T 1. L), Vi) dt’ <

0
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im (7 g, o) = 1.

Finally, since #1,, is a Radon measure and limg_({g, 711;,) is a monotone limit,
iy, (M x RY) = Jim (Cp i, ) = 1.
—00

That is, 7n,, is a probability measure for all ¢, € [0, T]. This completes the proof. O

Appendix B.
Truncations and maxima

Given a distributional solution to the Hamilton-Jacobi inequality
— O —v-Dau+H(x,v,Dyu) < B, in Z'((0,T) x M x RY) B.1)
ur < Bp,in Z'(M x R?) '

in the sense of Definition 3.9, we show that the truncations of u from below, that is, the func-
tions max{u,l} for some <0, satisfy a similar inequality. In a similar vein, we also show that
given u' and u® both satisfying (B.1), their maximum satisfies the same inequality (B.1).

Lemma B.1. Let u € L, ((0,T) x M x R?) satisfy (B.1) in the sense of distributions. Assume
that f € LL_((0,T) x M x RY) and D,u € L ((0,T) x M x R?). Then ) := (u— 1), satisfies
— Oy — v - Dy + H(x, v, Dyuy) Lyynyy < Blyspy,  in 2'((0,T) x M x ]Rd),
[(u=1,], < (Br—1, inZ'(MxR.
A similar result holds for the truncation uvi= (u —1I), + 1. Moreover it suffices to consider
the case [=0.
Lemma B.2. Let u;, u, satisfy Assumption 3 and (B.1). Then u = max{uy, u,} also satisfies (B.1).

The result here is in the spirit of renormalization [60]. Bouchut [61, Theorem 1.1] proved a
chain rule for the kinetic transport operator, i.e. the identity

(0; +v-Dy)h(u) = W (u)(0; +v-Dy)u (B.2)

that applies when h is a Lipschitz function and d;u + v - Dyu € L] . However, since in our case
Oiu + v - D,u may only be a measure, we are not able to use this result directly, or indeed prove
a chain rule with equality as in Equation (B.2). Nevertheless, the ideas of the proofs in [24, 61]
can be used to obtain the inequality that is sufficient for our case.

The argument proceeds in several steps.

B.1. Extension

We define the following time shift and extension of u on the time interval (—2#x, T + 2#) for
n>0:

. u(t,x,v), te€(0,7)
u(t,x,v) =
0, te [T, T+ 2y
Then, defining
5 txv), te(0,T
B - [ B0, e @)
H(x,v,0), te[T,T+2n,

@t satisfies the following inequality in the sense of distributions on (0, T 4 215) x M x R? (see the
similar construction in [21, Section 6.3]):
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—yit — v - Dyt + H(x, v, Dyit) < p + By i1, 142q i Z'((0, T+ 2n) x M x RY).

B.2. Fenchel’s inequality
Since L is the Fenchel conjugate of H, for any continuously differentiable vector field a € C}
we have

~Oyit — v+ Dyt — a - Dyt < L(x,v, —a) + B+ Br Olirriay,  in Z((0, T +2n7) x M x RY).

B.3. Regularisation
Fix non-negative, symmetric, unit mass mollifiers y,1 € C*(RY) and 0 € C*(R). Assume
that 0 is supported on the set [—1, 1]. Then define, for ¢, 0,1 > 0,

a (v g (x L/t
%) =¢ d%(g): Vo(x) =0~ (5> Oy (t) =1 19<E>~
Then define the full mollifier ¢ by

@t x,v) = Oy ()Y5(x) 2 (v).

Then the regularization u, s := u * ¢ satisfies the following inequality, in a pointwise sense on
(n, T+n x M xR :

(O +v Dt a -Dyuyss < Lygs + Byus+ @t = T )rxoBr + Eneo
where f, . 5 = B * ¢ and Lyes = L(x,v, —a) * ¢, while &, , 5 denotes the commutator
Eneo = Opxe[xWs*c(v- Dy +a-Dy)u — (v- Dy + a - D)y 4o s5xtt].
With the choice ¢ = &° this error converges to zero in L} by Lemma 5.3 and [60].

B.4. The maximum function

We fix a smooth approximation of the functions x. = max{x,0} and max{x;,x,}. First, for
each « > 0 we fix a smooth function y,(x) approximating x; in such a way that 0 <1y, (x) < x,
and 0 <9/ (x) <1 for all « > 0 and lim,_ y,(x) = x4 for all x and lim,_oy(x) =1 for x> 0.
Note in particular that then 7/ (x) = 0 for all « > 0 and x < 0, so that 7/, converges pointwise to
the function 1,0 as « tends to zero.

We similarly define an approximation h, of the maximum function by

ho(x1,%2) = x2 + 7, (%1 — x2).
Observe that h, satisfies 0 < 0,,h, < 1 for i=1, 2, and
6xlhm(X1,X2) + 8xlh,,(x1,x2) =1.

B.5. Inequality for the truncations and maximum
Since y/, is non-negative,

_(at +v- Dx +a- Dv)un,s,é V;(uq,s,&) < [ﬁ;7)g,5 + Lr/,s,é + Qo(t - T> ')*x,vﬁT =+ gq,e,&] V;(un,s,&)~
(B.3)
Thus, since y, € C' and u,, 5 is smooth in all variables, applying the usual chain rule
_(at +v- Dx +a- Dv)ya(un,a,é) S I:Bn,g,é + Ln,a,é + QD(t - T: ')*x,vﬁT + Sﬂ,n,é] V;(un,a,é)-

Similarly, given two subsolutions u' and u?,
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*(8t+V'Dx+“'DV)hoc(u;17sé”"is&)
< |:ﬁ;1,g,(5+Ln,s,5+(P(t )*x VBT+511#O:|81 ( Up e 50 nr())

+ [ﬂn,s,é + Ln,s,ﬁ + (P(t - T’ ~)*x,vﬁT + 5121;,():| aZhoc(u;,g,é’ uzf())
Thus

(81 +v-Di+a-D )h ( r] &, )’uz &, (5) < ﬂﬂ &0 + L'l,“i"j + (P(t - T, ‘)*X,VﬂT
+51 Oalh (ur(?z)’ mo)"‘g;;sanh ( 0’”;7?5)
B.6. Limits
We now take the limit as the smoothing parameters tend to zero in the previous inequalities.

This procedure yields the proofs of the Lemmas B.1 and B.2. We continue to choose ¢ = §* to

ensure convergence of the commutator. We detail the procedure in the case of the truncation
(B.3); the case of the maximum function is similar.

Proof of Lemma B.1. We first test the inequality (B.3) with an arbitrary non-negative smooth
function { € C((0, T] x M x R?). We fix an extension of { to a function { € C((0, T + 1] x

M x R%) and consider integrating over [0, T + 7 d] x M x R?. For all 7 > 0 small enough that the
support of { is contained in (5, T + 1] x M x RY,

T+n
J J Va(thy66) (0L + v - DL + div,(al)) dxdv dt
MxR?

0

T+n
< j j Brows + Lo + Ens]Valn.00)C dxdvdt
0 MxR4

T+n
[ sl )00 (T = i) vt
T—n JMxR?

We have used that u, , s(T + 1,x,v) = 0. Since 0 <}/, < 1, we may estimate the boundary term
from above to obtain

T+n
J J o (ttn0.5) (D + v - Dol + divy (al)) dedvdt
MxR?

0

T+n
< J JMXR“ [ﬁﬂ:ﬂﬁ + L5+ 5,1,8,5] ya,(un,g,g)ﬁdxdvdt
0

+ [selBr ) o+ L Tn) e

Since i, 5, L(x,v, —a) € Li., Uy, By 50 Ly,e,5 converge respectively to these strongly in L}
by standard results on convolutions. We have already noted that £, . s converges to zero in L| .
We therefore also obtain pointwise convergence along a subsequence. Similarly, ¢ * { converges
to { pointwise since { is smooth. From this we obtain convergence of all terms, by continuity of
7, and 7/, and applying dominated convergence. Hence we obtain the following inequality:

loc

T T
J J 7, () (0 + v - Dy{ + div,(al)) dxdvdt < J JMde B+ L(x,v, —a)]y,y (u){ dxdvds
0 JMxR? 0

+ JMde [Br(xv)] LT, x,v) dxdv.

The convergences as o — 0 all follow by dominated convergence: for example, since u €
L} ((0,T] x M x R%) and ¢ has support contained in (0, T] x M x R?, we have
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7.(W) (O + v+ Dl + divy (al)) < [ul|(8; +v- Dy)| € L.

A similar argument is used for the term involving fr.

For the remaining term, use that [y/,| <1 (the bound being uniform in o > 0), and both f
and H(x,v,D,u) are in L _((0,T] x M x R?) by assumption. Then

T

T
J J u+(8tC+v-DxC+divv(aC))dxdvdtSJ
MxR?

0 0

JMX]Rd [ﬁ + L(-x’ v, — a)]l{u>0}CdXdV dt

+ JMXRd [Br] L dxdv.

Finally, taking a sequence of vector fields a converging in L"((0,T) x M x RY) to
—D,H(x,v,D,uy), we conclude that

T ¢

T
J J uy (O +v-Dyl)dxdvdt < J J (B — H(x, v, Dyuy )10y { dx dv dt
MxR4 MxRY

0 0

+ apenslBrl. b dxan

that is, the following holds in the sense of distributions:
- 8tu+ -V Dxu+ + H(x’ v, Dvu+)1{u>0} < ﬂl{u>0}’ in 9/((0’ T) x M x Rd)
[ui], < (Br), in Z'(M xRY).
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