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A variational approach to first order kinetic mean field
games with local couplings

Megan Griffin-Pickering and Alp�ar R. M�esz�aros

Department of Mathematical Sciences, Durham University, Durham, UK

ABSTRACT
First order kinetic mean field games formally describe the Nash equi-
libria of deterministic differential games where agents control their
acceleration, asymptotically in the limit as the number of agents
tends to infinity. The known results for the well-posedness theory of
mean field games with control on the acceleration assume either
that the running and final costs are regularizing functionals of the
density variable, or the presence of noise, i.e. a second-order system.
In this article we construct global in time weak solutions to a first
order mean field games system involving kinetic transport operators,
where the costs are local (hence non-regularizing) functions of the
density variable with polynomial growth. We show the uniqueness
of these solutions on the support of the agent density. This is
achieved by characterizing solutions through two convex optimiza-
tion problems in duality. As part of our approach, we develop tools
for the analysis of mean field games on a non-compact domain by
variational methods. We introduce a notion of ‘reachable set’, built
from the initial measure, that allows us to work with initial measures
with or without compact support. In this way we are able to obtain
crucial estimates on minimizing sequences for merely bounded and
continuous initial measures. These are then carefully combined with
L1-type averaging lemmas from kinetic theory to obtain pre-com-
pactness for the minimizing sequence. Finally, under stronger con-
vexity and monotonicity assumptions on the data, we prove higher
order Sobolev estimates of the solutions.
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1. Introduction

The aim of the theory of mean field games (MFG for short) is to characterize limits of
Nash equilibria of stochastic or deterministic differential games when the number of
agents tends to infinity. Such models were first proposed about 15 years ago, simultan-
eously by Lasry–Lions [1–3] and Huang-Malham�e-Caines [4].
This theory turned out to be extremely rich in applications and it provided excellent

mathematical questions. Its literature has witnessed a huge increase in the last decade.
From the theoretical viewpoint, there are two main approaches to the study of MFG.
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One is based on analytical and PDE techniques, while the other is a probabilistic
approach. The first approach goes back to the original works of Lasry-Lions and has
been extended in a great variety of directions in the subsequent years by many authors.
If a non-degenerate idiosyncratic noise is present in the models, this typically yields a
parabolic structure for the corresponding PDEs and one can expect (strong) classical
solutions or a suitable regularity for weak solutions to the corresponding PDE systems,
even when the corresponding Lagrangians are local functions of the density variable.
For a non-exhaustive list of works in this direction we refer the reader to [5–12]. The
probabilistic approach proved to be equally successful for problems involving
Lagrangians that are nonlocal functions of the measure variable. This approach seems
to be very powerful for handling different kinds of noises in combination with the non-
degenerate idiosyncratic one, such as the common noise. For a non-exhaustive collec-
tion of works in this direction we refer to [13–16].
When the model lacks a non-degenerate idiosyncratic noise, this clearly poses tech-

nical difficulties in the analysis. Typically, it means that additional structural assump-
tions need to be imposed on the data to be able to hope for (weak) solutions. Such
conditions are, for instance, suitable notions of convexity/monotonicity (cf. [17,18]), or
the presence of a suitable variational structure, as in the case of potential games
([19–24]). In the case of local couplings, it was pointed out by Lions in [25] that the
MFG system (including the planning problem) can be transformed into a degenerate
elliptic system in space-time with oblique boundary conditions. Relying on this idea, in
a quite general setting, under suitable assumptions on the data (such as strict monoton-
icity and strong convexity of the Hamiltonians in the measure and momentum varia-
bles, respectively; regularity and positivity conditions on the initial data), it has been
proven recently in [26,27] that the corresponding first order MFG systems have smooth
classical solutions.
For an excellent, relatively complete account on the subject and a summary of results

to date we refer the reader to the collection [17].
In this article we study a class of first order kinetic MFG systems, involving

Lagrangians that are local functions of the density variable and that possess a variational
structure, in the sense of [19–21].
In our setting, the MFG system can be formally written as

�@tuðt, x, vÞ � v � Dxuðt, x, vÞ þHðx, v,Dvuðt, x, vÞÞ ¼ f ðx, v,mÞ, in ð0,TÞ �M�R
d,

@tmðt, x, vÞ þ v � Dxmðt, x, vÞ � divvðmDpHðx, v,Dvuðt, x, vÞÞÞ ¼ 0, in ð0,TÞ �M�R
d,

mð0, x, vÞ ¼ m0ðx, vÞ, uðT, x, vÞ ¼ gðx, v,mTÞ, inM� R
d:

8>><
>>:

(1.1)

Here M denotes either that d-dimensional flat torus T
d or the whole d-dimensional

Euclidean space R
d and is the physical space for the position x of the agents, while the

velocity vector v of the agents lies in R
d: T> 0 is an arbitrary time horizon, H :

M� R
d � R

d ! R is the Hamiltonian function, while f , g : M� R
d � R ! R stand for

the running and final costs of the agents, respectively.
Under suitable assumptions on the data, we obtain the global in time existence,

uniqueness and Sobolev regularity of weak solutions to (1.1), relying on two convex
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optimization problems in duality. One of these problems can be seen as an optimal con-
trol problem for the Hamilton-Jacobi equation, while its dual is an optimal control
problem for the continuity equation (cf. [19–21]).

Review of the literature in connection to our work

MFG systems of type (1.1) have been introduced in the context of models when agents
control their acceleration. It seems that such a model can be traced back to the work
[28] (in the engineering community), where the authors proposed a MFG model where
agents control their acceleration. In the mathematical community, the first works in this
framework seem to be the ones [29–31]. These works consider Hamiltonians (with our
notation H – f) and final cost functions that are nonlocal regularizing functions in the
measure variable. Moreover, the Hamiltonians need to be either purely quadratic or
have quadratic growth in the momentum variable. In addition, in [29,30] further condi-
tions on the initial measure m0 are also imposed. In [29] m0 is taken to be compactly
supported and H€older continuous, while in [30] m0 is taken to be compactly supported.
These two works construct weak solutions to the corresponding MFG system in the
sense that the Hamilton-Jacobi equation has to be understood in the viscosity sense,
while the continuity equation is understood in the sense of distributions. In [31] the ini-
tial measure m0 can be quite general and the corresponding Hamiltonian does not need
to have the so-called ‘separable structure’ which was assumed in [29,30] and is also
assumed in this article. These more general hypotheses come at the price of obtaining a
weaker notion of solution to the MFG system: the so-called mild solutions. However,
the authors show that, under the additional separability assumption on the
Hamiltonian, mild solutions become more standard weak solutions in the sense
described above.
Several interesting new works are built on the models introduced in [29–31]. In [32]

the authors study the ergodic behavior of MFG systems, for the case of Hamiltonians
that are purely quadratic in the momentum variable and nonlocal regularizing coupling
functions f, g, with additional growth assumption on f in the v variable. In [33] the
authors obtain mild solutions to MFG under acceleration control and state constraints,
under assumptions similar to the ones in [29] on the Hamiltonians, with the possibility
to consider Hamiltonians that are power-like functions in the momentum variable.
Lastly, in [34] the author studies a perturbation problem associated to MFG under
acceleration control, where the (Lagrangian) cost associated to the acceleration vanishes.
MFG models with degenerate diffusion share some common features with kinetic

type problems. In this context we can mention several works. In [35] and [36] the
authors study time independent MFG systems with purely quadratic Hamiltonians and
nonlocal regularizing coupling functions, where the diffusion operator is hypoelliptic or
satisfies a suitable H€ormander condition. It is also worth mentioning that our system
(1.1) shares some similarities with MFG models where agents interact also through their
velocities. In this direction we refer to the works [37–41].
Finally, a second order MFG system of type (1.1) has been recently studied in [42].

In this work the author obtains weak and renormalized solutions (in the spirit of [12])
to a MFG system that involves a non-degenerate diffusion in the v direction. This seems
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to be the only work in the context of kinetic type MFG models where the coupling
functions f and g are taken to be local functions of the density variable m. Here the
Hamiltonian H is assumed to depend only on the momentum variable and either to be
globally Lipschitz continuous or to have quadratic/sub-quadratic growth. There are sev-
eral summability properties and moment bounds imposed on the initial density m0. In
the case of Lipschitz continuous Hamiltonians, the coupling functions f, g are supposed
to fulfill several further assumptions: a strong uniform increasing property in the m
variable and their derivatives in the (x, v) variable must have a linear growth condition
in the m variable.
In [42] the presence of the diffusion in the v direction allows the author to use suit-

able De Giorgi type arguments to show that the solution to the Fokker-Planck equation
is bounded and has fractional Sobolev regularity. These estimates seem to be instrumen-
tal to set up a fixed point scheme and to show that the MFG system has a weak solu-
tion. Furthermore, the presence of this diffusion allows to obtain second order Sobolev
estimates for the MFG system.

Description of our results

As highlighted above, in this work we are inspired by [19–21] and we obtain existence
and uniqueness of weak solutions to (1.1) (in the sense of Definition 2.3) via two con-
vex optimization problems in duality (Problem 3.1 and Problem 3.3). Compared to
these works, several major differences arise which require new ideas. A first obvious dif-
ference is that in our setting (in contrast to the compact setting of the flat torus which
is considered in the mentioned references) the velocity variable v lives in the non-com-

pact space R
d: This clearly introduces technical issues in the analysis.

To prove our main results, the general outline of our programme is the same as the
one of [19–21]: prove the duality for Problem 3.1 and Problem 3.3; suitably relax
Problem 3.1 (this will be Problem 3.8) and show that the value of this is the same as
the original one; show existence of optimizers for the relaxed problem and apply the
duality result again to obtain existence of solutions in a suitable weak sense. In this
article H is supposed to have a superlinear growth in the momentum variable, and
f and g are supposed to have polynomial growth in their last variables. The growth of
f, g may be taken independently of the growth of the Hamiltonian (we refer to the next
section for the precise assumptions).
To show that the value of the relaxed problem is the same as the original one, a

standard approach used in [19–21] is to test the Hamilton-Jacobi inequality of any com-
petitor by competitors of the dual problem (i.e. solutions to the continuity equation).
To justify this computation a mollification argument was applied for solutions to the
continuity equation. In our case, this mollification alone is not enough because of the
non-compact setting. Therefore a delicate cutoff argument has to be also implemented.
The most delicate part, however, is to obtain existence of optimizers to the relaxed

problem and in particular to obtain proper compactness results for the minimizing
sequences. First, in our case the time trace of the solutions to the Hamilton–Jacobi
inequality constraint in Problem 3.8 is quite weak: uðt, �Þ has to be understood as a
locally finite signed Radon measure. Since in this work m0 may have non-compact
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support, it takes additional effort to give a meaning to
Ð
M�R

dm0u0ð dx dvÞ (a term that
appears in the objective functional present in Problem 3.8). Our construction, although
completely different, has some similarities in spirit with the one in [43], to define simi-
lar time boundary traces.
In order to obtain suitable estimates for the minimizing sequence of the relaxed prob-

lem, in [19–21] a typical trick was to test the Hamilton-Jacobi inequality constraint by
the initial measure m0. For this reason, it was necessary to impose enough regularity,
and more importantly a uniform positive lower bound of this density everywhere.
Because of this, estimates on the quantity

Ð
T
dm0u0 dx, would readily yield summability

estimates on u0 solely. We emphasize that in this article we assume that m0 is merely a
bounded and continuous probability density and so we take a completely different route
when obtaining such estimates. We introduce the reachable set Um0 , a set of points in
time, space and velocity that can be reached from sptðm0Þ with arbitrary smooth admis-
sible controls (cf. Definition 2.2). In fact, by the controllability of the underlying ODE

system, which satisfies the Kalman rank condition, we have Um0 ¼ ðf0g � sptðm0ÞÞ [
ðð0,TÞ �M� R

dÞ: In order to obtain our crucial estimates on the corresponding mini-
mizing sequence we use well chosen test functions that are supported in Um0 : This con-
struction seems to be new in the literature on variational MFG and we believe that it
could be instrumental also in other settings, to possibly relax regularity, positivity or
compact support assumptions on m0.
As there is no Hopf–Lax type representation formula available for solutions to our

Hamilton-Jacobi equations (which was the case in [19,20]), first, we obtain estimates on
truncations of the solutions. These are similar in flavor to the corresponding estimates
in [21], and such ideas date back to [44]. As our terminal data typically have merely
local summability, this will be the source of additional technical issues (in contrast to
[21], where the terminal data was taken to be regular enough).
Let us underline that the ideas and constructions that we have described so far allow

us to obtain summability estimates on u and Dvu, using the structure of the problem.
This is not sufficient to yield weak precompactness for minimizing sequences due to the
lack of regularity estimates in x. To recover the necessary compactness we make use of
averaging lemmas available in kinetic theory. Averaging lemmas go back to the works
[45,46] and provide improved regularity and compactness properties for velocity aver-
ages of solutions of kinetic transport equations (see Subsection 6.1 for the precise defi-
nitions). For more details and a survey of results we refer the reader to the review [47]
and the references cited therein. When regularity with respect to v is additionally avail-
able, similar properties can be deduced for the full density function: we refer for
instance to [48] for regularity results in the Lp case for 1 < p < þ1: We carefully tailor
this approach to our setting, combining our estimates on Dvu with L1 averaging lemmas
[49–51] to deduce precompactness for minimizing sequences. In this way we prove
Theorem 6.8 on the existence of a minimizer of Problem 3.8. This in turn implies
Theorem 2.4, that system (1.1) has a (unique) weak solution. As was similarly obtained
in [19–21], we show the uniqueness of m and the uniqueness of u on fm > 0g:
A natural question that arises in the context of variational MFG is whether the vari-

ational structure and further strong monotonicity and convexity assumptions on the
data would yield higher order Sobolev estimates on weak solutions. Such estimates were
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recently obtained in more classical frameworks in [23,24, 39, 52–54]. In this article we
pursue similar Sobolev estimates, implied by taking stronger assumptions on the data.
In comparison with the works [23,24], in our setting we need to work with a consider-
ably weaker notion of time trace of u, which is not stable under perturbations of the
initial measure m0. Therefore, our Sobolev estimates remain local in time on ð0,T�:
Another delicate difference is due to the presence of the kinetic transport term. Because
of this, a careful choice of perturbations need to be used, which take into account the
kinetic nature of the problem. As a result of this, interestingly, first we obtain estimates
on differential operators of the form ðtDx þ DvÞ applied to m and Dvu. For the precise
results in this direction we refer to Theorem 8.2, Corollary 8.4 and Corollary 8.5.
The structure of the article is as follows. In Section 2 we state our standing assump-

tions and main results. In Section 3 we present the two variational problems in duality
along with the relaxed problem of the primal problem. In Section 4 we have collected
some preliminary estimates on weak solutions of the Hamilton-Jacobi inequality
obtained on the reachable set Um0 : In Section 5 we show that the relaxed problem has
the same value as the primal problem and hence the duality result holds. Section 6 con-
tains the existence result of a solution to the relaxed problem. Here we rely on the com-
bination of the estimates derived in the previous sections and suitably tailored averaging
lemmas from kinetic theory, applied in our context for distributional subsolutions to
kinetic Hamilton-Jacobi equations. In Section 7 we show that optimizers of the vari-
ational problems in duality provide weak solutions to the MFG system and, conversely,
weak solutions are also optimizers of the variational problems. Furthermore, strong con-
vexity yields (partial) uniqueness of these solutions. Section 8 is devoted to the deriv-
ation of higher order Sobolev estimates for the weak solutions. These require further
assumptions on the data.
We end the paper with two appendix sections. In Appendix A we discuss the time

regularity of distributional subsolutions to kinetic Hamilton-Jacobi equations which
allow us to construct suitable notions of time traces. Finally, in Appendix B we show
that truncations and maxima of distributional subsolutions to kinetic Hamilton-Jacobi
equations remain distributional subsolutions to suitably modified equations.

2. Standing assumptions and main results

In this section we state our main results on the existence, uniqueness and Sobolev regu-
larity of solutions to the MFG system.
We define F and G to be the anti-derivatives of the coupling functions f and g with

respect to m:

Fðx, v,mÞ ¼
ðm
0
f ðx, v,m0Þ dm0 Gðx, v,mÞ ¼

ðm
0
gðx, v,m0Þ dm0:

Throughout, we make the following assumptions on the Hamiltonian and cou-
pling functions.

1950 M. GRIFFIN-PICKERING AND A. R. MÉSZÁROS



Assumption 1.
(H1) The Hamiltonian H is continuous in all variables, and convex and differentiable
with respect to p. Furthermore, for some r > 1, H satisfies bounds of the form

1
cr
jpjr � CH � Hðx, v, pÞ � c

r
jpjr þ CH , (2.1)

for all ðx, v, pÞ 2 M� R
d � R

d and some constants c > 0 and CH � 0. Finally, the

function H0ðx, vÞ :¼ Hðx, v, 0Þ has positive part ðH0Þþ 2 C0ðM� R
dÞ, where C0ðM�

R
dÞ denotes the closure of the space CcðM� R

dÞ with respect to the uniform norm.

(H2) F is continuous in all variables and strictly convex and differentiable with respect
to m for m > 0. Moreover, it satisfies the growth condition

1
cq

mq � CFðx, vÞ � Fðx, v,mÞ � c
q
mq þ CFðx, vÞ, m � 0 (2.2)

where q> 1 and the function CF 2 L1ðM� R
dÞ. For m< 0, we set Fðx, v,mÞ ¼ þ1:

(H3) G is continuous and strictly convex. Moreover, it satisfies the growth condition

1
c
ms � CGðx, vÞ � Gðx, v,mÞ � cms þ CGðx, vÞ, m � 0, (2.3)

for some CG 2 L1ðM� R
dÞ and 1 < s � q. For m< 0, we set Gðx, v,mÞ ¼ þ1:

(H4) The initial datum m0 2 CbðM� R
dÞ is a probability density.

We note that since m0 is imposed to be a bounded probability density, by interpolation,

it is uniformly bounded in LaðM� R
dÞ, for any a 2 ½1, þ1�: We emphasize that here

we impose growth conditions on F ,G rather than on f, g.

Example 2.1. For any q> 1 and continuous bounded function c such that c � c0 with
c0 > 0 a strictly positive constant, the function

Fðx, v,mÞ ¼
cðx, vÞmq m � 0

þ1 m < 0,

(

satisfies the given assumptions.

Definition 2.2 (Reachable set). It will be useful to define the set Um0 � ½0,T� �M� R
d

to be the set of points potentially reachable by a collection of agents initially distributed
according to m0 and evolving according to the control system

_x ¼ v, _v ¼ a,

for some control a 2 Cð½0,T�;RdÞ: Observe that the previous control system satisfies the
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classical Kalman rank condition, and so we have

Um0 ¼ f0g � fm0 > 0g [ ð0,T ��M� R
d:

Under these standing assumptions, we define the following notion of weak solution
to the MFG system.

Definition 2.3. We say that (u, m) is a weak solution to (1.1), if the following
are fulfilled:

(i) u 2 L1locðUm0Þ, Dvu 2 LrlocðUm0Þ and mjDvujr 2 L1ðð0,TÞ �M� R
dÞ;

(ii) m 2 Lqðð0,TÞ �M� R
dÞ and mT 2 LsðM� R

dÞ;
(iii) ðu0Þþ 2 ðL1 þ Lq0ÞðM� R

dÞ and ðu0Þ� is a locally finite Radon measure sup-
ported in fm0 > 0g:

(iv) �@tu� v � Dxuþ Hðx, v,DvuÞ � f ðx, v,mÞ, in D0ðð0,TÞ �M� R
dÞ

uT � gð�, � ,mTÞ, in D0ðM� R
dÞ:

�
(v) The continuity equation from (1.1) holds in D0ðð0,TÞ �M� R

dÞ:
(vi)

Ð
M�R

dm0u0ð dx dvÞ is finite.
(vii) The following energy equality holds:ð

M�R
d
m0u0ð dx dvÞ �

ð
M�R

d
gðx, v,mTÞmT dx dv

¼
ðT
0

ð
M�R

d
f ðx, v,mÞm dx dv dt

þ
ðT
0

ð
M�R

d
DpvHðx, v,DvuÞ � Dvu� Hðx, v,DvuÞ
� �

m dx dv dt:

(2.4)

2.1. Existence and uniqueness

The first of our main results is the existence and uniqueness of these weak solutions.

Theorem 2.4. Let Assumption 1 hold. Then there exists a weak solution (u, m) of the
mean field game system (1.1) in the sense of Definition 2.3. This solution is unique, in
the sense that if (u1, m1) and (u2, m2) are both weak solutions in the sense of Definition
2.3, then m1 ¼ m2 almost everywhere and u1 ¼ u2 almost everywhere on the
set fm1 > 0g:

2.2. Regularity

Our second main result is Sobolev regularity for weak solutions of the mean field games
system (1.1). For this result we assume quadratic growth of the Hamiltonian (r¼ 2) and
stronger convexity and regularity hypotheses on the data, as follows.

Assumption 2.
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(H5) (Conditions on the coupling functions) There exists C> 0 such that the functions f,
g satisfy

jf ðx1, v1,mÞ � f ðx2, v2,mÞj � Cðmq�1 þ 1Þðjx1 � x2j þ jv1 � v2jÞ
8ðx1, v1Þ, ðx2, v2Þ 2 M� R

d, m � 0:
(2.5)

and

jgðx1, v1,mÞ � gðx2, v2,mÞj � Cðms�1 þ 1Þðjx1 � x2j þ jv1 � v2jÞ
8ðx1, v1Þ, ðx2, v2Þ 2 M� R

d, m � 0:
(2.6)

Moreover, there exists cf , cg > 0 such that

f ðx, v, ~mÞ � f ðx, v,mÞ
� �

ð~m �mÞ � cfminf~mq�2,mq�2gj~m �mj2 8~m,m � 0, ~m 6¼ m:

(2.7)

gðx, v, ~mÞ � gðx, v,mÞ
� �

ð~m �mÞ � cgminf~ms�2,ms�2gj~m �mj2 8~m,m � 0, ~m 6¼ m:

(2.8)

In the above assumptions, if q< 2 or s< 2 one should interpret 0q�2 and 0s�2 as þ1. In
this way, when ~m ¼ 0, for instance, (2.7) reduces to f ðx, v,mÞm � cf mq, as in the more
regular case q � 2. Similar comments can be made for (2.8).

(H6) ðQuadratic growth and strong coercivity assumption on HÞ Suppose that r ¼ 2

and there exist j1, j2 : R
d ! R

d and cH > 0 such that

Hðx, v,PÞ þ Lðx, v,WÞ � P �W � cHjj1ðPÞ � j2ðWÞj2: (2.10)

In particular, and in light of our restriction (2.1), we assume that j1 and j2 have
linear growth.

(H7) Lð�, � ,WÞ 2 C2ðM�R
dÞ and jD2

xxLðx, v,WÞj, jD2
xvLðx, v,WÞj, jD2

vvLðx, v,WÞj �
C0 jWj2 þC0, Þ 8ðx, v,WÞ 2M�R

d �R
d:

Under these additional assumptions, we prove the following result. The proof is car-
ried out in Section 8.

Theorem 2.5. Suppose that (u, m) is a weak solution to (1.1) in the sense of Definition
2.3 and that (H5), (H6), (H7) hold.
Then, there exists �C > 0 such that

km
q
2�1Dx, vmkL2locðð0,T��M�R

dÞ � �C, km1=2Dx, vDvukL2locðð0,T��M�R
dÞ � �C

and

km
s
2�1
T Dx, vmTkL2ðM�R

dÞ � �C:
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Remark 2.6. The estimates appearing in this statement are informal; we in fact obtain
uniform L2-type summability of differential quotients (see estimate (8.8) below). The
corresponding Sobolev estimates, however, are more delicate to obtain, because these
would need to be understood in the sense of weighted Sobolev spaces or more generally
in the sense of Sobolev spaces with respect to measures. Their precise versions would
need to involve tangent spaces with respect to the measure m, but these are beyond the
scope of the current article. We refer to [55] on this topic.

3. Variational problems in duality

We will prove existence of a solution to the MFG system (1.1) through a variational character-
ization. In this section we set up the variational problems used to obtain solutions. We recall
that here and throughout the rest of the article, we will work under Assumption 1.

3.1. Optimal control of the Hamilton-Jacobi equation: smooth setting

We define the Fenchel conjugates of F and G respectively by

F	ðx, v, bÞ :¼ sup
m�0

bm�Fðx, v,mÞ
� �

G	ðx, v, uÞ :¼ sup
m�0

um� Gðx, v,mÞ
� �

:

Under our assumptions on F , we have the bounds

cjbjq0 � CFðx, vÞ � F	ðx, v, bÞ � c�1jbjq0 þ CFðx, vÞ b > 0,

�Fðx, v, 0Þ ¼ 0 � F	ðx, v, bÞ � � infm�0 Fðx, v,mÞ � CFðx, vÞ b � 0,

(
(3.1)

where q0 ¼ q=ðq� 1Þ denotes the H€older conjugate exponent of q. Note also that F	 is
non-decreasing. Similar observations hold for G	:

Using this, we define the following functional: for u 2 C1
bð½0,T� �M� R

dÞ, let

AðuÞ :¼
ðT
0

ð
M�R

d
F	ðx, v, � @tu� v � DxuþHðx, v,DvuÞÞ dx dv dt

�
ð
M�R

d
uð0, x, vÞm0ðx, vÞ dx dvþ

ð
M�R

d
G	ðx, v, uðT, x, vÞÞ dx dv,

whenever the integrals are meaningful, and set AðuÞ ¼ þ1 otherwise. We define a first
variational problem associated to this problem.

Problem 3.1. Minimize AðuÞ over u 2 E0, where E0 denotes the space

E0 :¼ fu 2 C1
bð 0,T½ � �M� R

dÞ : jvjjDxuj 2 L1ð 0,T½ � �M� R
dÞg: (3.2)

Remark 3.2. E0 is a Banach space when equipped with the norm

kukE0 :¼ kukL1 þ kDvukL1 þ kð1þ jvjÞDxukL1
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3.2. Optimal control of the continuity equation

To state the dual problem we define the Lagrangian L : M� R
2d ! R, which is the

Fenchel conjugate of the Hamiltonian H in the last variable. In other words, for any

ðx, v, aÞ 2 M� R
2d, we define

Lðx, v, aÞ :¼ sup
p2Rd

a � p� Hðx, v, pÞ
� �

:

Note that L then satisfies upper and lower bounds of the form

1
cL
jajr

0
� CL � Lðx, v, aÞ � cLjajr

0
þ CL,

where r0 ¼ r=ðr � 1Þ denotes the H€older conjugate exponent of r.

For pairs ðm,wÞ 2 L1ð½0,T� �M� R
dÞ � L1ð½0,T� �M� R

dÞ, we define the func-
tional

Bðm,wÞ :¼
ðT
0

ð
M�R

d
Fðx, v,mÞ dx dv dt þ

ðT
0

ð
M�R

d
L x, v, � w

m

	 

m dx dv dt

þ
ð
M�R

d
Gðx, v,mTðx, vÞÞ dx dv,

with the convention that

L x, v, � w
m

	 

m ¼

0 m ¼ w ¼ 0,

þ1 m ¼ 0,w 6¼ 0:

(

We then define a second variational problem, (formally) dual to the first.

Problem 3.3. Minimize Bðm,wÞ over the set KB of pairs ðm,wÞ 2 L1ð½0,T� �M�
R

dÞ � ðL1ð½0,T� �M� R
dÞÞd with m � 0, subject to ðm,wÞ satisfying the following

continuity equation:

@tmþ v � Dxmþ divvw ¼ 0, in D0ðð0,TÞ �M� R
dÞ (3.3)

and mjt¼0 ¼ m0 in the sense of a weak trace.

Remark 3.4. Let us comment on the weak trace of m with respect to the time variable.
Since we are interested in competitors (m, w) for which Bðm,wÞ is finite, there must
exist a vector-valued measurable function V 2 Lr0ðm dx dv dtÞ, that is, for whichðT

0

ð
M�R

d
jVjr0m dx dv dt < þ1,

such that w ¼ Vm (i.e. V is the density of w with respect to m). So, we notice that the
previous equation can be written as

@tmþ divxðvmÞ þ divvðVmÞ ¼ 0:

Since Vm ¼ w 2 L1ð½0,T� �M� R
dÞ, we have jVjm 2 L1ð½0,T� �M� R

dÞ: We are

then able to prove that m has a narrowly continuous representative ½0,T��t 7!mt 2
PðM� R

dÞ, so that in particular mjt¼0 and mjt¼T are meaningful. This is essentially a
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consequence of [56, Lemma 8.1.2], with minor modifications to account for the fact
that vm is only locally integrable; we sketch this in the appendix in Lemma A.12.

3.3. Duality

Lemma 3.5. We have the following duality:

inf
u2E0

AðuÞ ¼ � min
ðm,wÞ2KB

Bðm,wÞ:

Proof. This is an application of the classical Fenchel–Rockafeller duality theorem. Recall
that we defined the Banach space E0 above in (3.2). Then let E1 be defined by

E1 :¼ C0
bð 0,T½ � �M� R

d;RÞ � C0
bð 0,T½ � �M� R

d;RdÞ;

we will express elements of E1 as pairs ð/,wÞ of continuous bounded functions, where
/ is real-valued and w is vector-valued. E1 is a Banach space with respect to the uni-
form norm. On these spaces we define the respective functionals

A0ðuÞ :¼ �
ð
M�R

d
uð0, x, vÞm0ðx, vÞ dx dvþ

ð
M�R

d
G	ðx, v, uðT, x, vÞÞ dx dv

and

A1ð/,wÞ :¼
ðT
0

ð
M�R

d
F	ðx, v, � /þ Hðx, v,wÞÞ dx dv dt:

Note that these functionals are convex. We also define the bounded linear map K :

E0 ! E1 by

Ku :¼ ð@tuþ v � Dxu,DvuÞ:

Then

AðuÞ ¼ A0ðuÞ þ A1ðKuÞ:

We wish to apply Fenchel–Rockafeller duality. In order to do this we must verify the
existence of u 2 E0 such that A0ðuÞ,A1ðKuÞ < þ1 and A1 is continuous at Ku: For
example, we may take u to be of the form

uðt, x, vÞ :¼ fðx � vt, vÞ þ 2CHðt � TÞ,

where CH denotes the constant from the bounds on the Hamiltonian (2.1). We then

take f 2 C1
bðM� R

dÞ non-negative to have sufficiently strong decay at infinity so that

f 2 Ls0ðM� R
dÞ, Dx, vf 2 Lrq

0 ðM� R
dÞ: (3.4)

Explicitly, for the case M ¼ T
d we may take for example

fðx, vÞ ¼ fðvÞ ¼ ð1þ jvj2Þ�k=2; k > max
d
s0
,
d
rq0

� �
,

in which case jvjjDxuj ¼ 0 and therefore u 2 E0:
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For the case M ¼ R
d we may take

fðx, vÞ ¼ fðvÞ ¼ ð1þ jxj2 þ jvj2Þ�k=2; k > max
2d
s0
,
2d
rq0

:

� �
:

In this case,

Dxu ¼ Dxfðx� vt, vÞ ¼ �kðx � vtÞ
ð1þ jx� vtj2 þ jvj2Þ1þk=2

,

and so

jvjjDxuj ¼
kjvjjx� vtj

ð1þ jx� vtj2 þ jvj2Þ1þk=2
� k

2
ð1þ jx� vtj2 þ jvj2Þ�k=2 � k

2
,

which implies that u 2 E0:
Then, in either case,

�@tu� v � Dxuþ Hðx, v,DvuÞ ¼ �2CH þHðx, v,DvuÞ � cjDvujr � CH

It follows that the positive part satisfies

�@tu� v � Dxuþ Hðx, v,DvuÞ½ �þ � cjDvujr1fcjDvujr>CHg 2 Lq0ð 0,T½ � �M� R
dÞ:

and thus by the bounds on F	 (3.1) we obtainðT
0

ð
M�R

d
F	ðx, v, � @tu� v � DxuþHðx, v,DvuÞÞ dx dv dt < þ1:

That is, A1ðKuÞ is finite.
Moreover, uT 2 Ls0ðM� R

dÞ and thusð
M�R

d
G	ðx, v, uðT, x, vÞÞ dx dv < þ1:

Finally, since u0 ¼ f� 2CHT and m0 is a probability density,

�
ð
M�R

d
uð0, x, vÞm0ðx, vÞ dx dv < þ1:

Thus A0ðuÞ is finite.
Now we verify that A1 is continuous at Ku with respect to convergence in E1.

Consider the sequence of pairs ð/n,wnÞ 2 E1, n 2 N, such that

/n ¼ @tuþ v � Dxuþ dn, wn ¼ Dvuþ en,

where ðdn, enÞ 2 E1 satisfy kðdn, enÞkL1 � 2�n: Then

�/n þ Hðx, v,wnÞ ¼ �2CH � dn þ Hðx, v,Dvuþ enÞ:

Using the bounds (2.1) on the Hamiltonian, we obtain

�/n þ Hðx, v,wnÞ � �2CH � dn þ CH þ c
r
jDvuþ enjr

� �CH � dn þ 2r�1 c
r
jDvujr þ 2r�1 c

r
jenjr

� �CH þ Cð2�n þ 2�rnÞ þ CjDvujr,
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for some constant C> 0. Therefore, for all n large enough that Cð2�n þ 2�rnÞ < CH , for
the positive part we have

�/n þ Hðx, v,wnÞ
� �

þ � CjDvujr:

Then the bounds (3.1) on F	 imply that

F	ð�/n þHðx, v,wnÞÞ � 2CF þ CjDvujrq
0
2 L1ð 0,T½ � �M� R

dÞ,

(where the constant C> 0 has changed line to line). The right hand side is in L1

because we constructed f to satisfy (3.4). We may therefore use it as a dominating func-
tion: since ðdn, enÞ certainly converges to zero pointwise (in fact in uniform norm), and
F	 is continuous with respect to the variable b, by dominated convergence we may
conclude that

A1 ð/n,wnÞ
� �

¼ lim
n!þ1

ðT
0

ð
M�R

d
F	ðx, v, � /n þHðx, v,wnÞÞ dx dv dt

¼
ðT
0

ð
M�R

d
F	ðx, v, � @tu� v � Dxuþ Hðx, v,DvuÞÞ dx dv dt

¼ A1ðKuÞ:

Thus A1 is indeed continuous at Ku:
It remains to check that A is bounded below on E0. Let u 2 E0 and set b :¼

�@tu� v � DxuþHðx, v,DvuÞ: Then, using the growth assumptions on F	 and G	,
similarly to the inequality (4.2) below, we have

AðuÞ � kbþk
q0

Lq0
þ kuðT , � , �Þþk

s0

Ls0 �
ð
M�R

d
TCFðx, vÞ þ CGðx, vÞ½ � dx dv

�
ð
M�R

d
uð0, x, vÞþm0ðx, vÞ dx dv

� kbþk
q0

Lq0 þ kuðT , � , �Þþk
s0

Ls0 � C � kðuTÞþkLs0 þ CHT þ T1=qkbþkLq0
� 


ðkm0kL1 þ km0kLqÞ

� inf
a, b�0

aq0 � c0aþ bs0 � c0b� c0f g > �1,

where c0 was set to be a large positive constant depending only on m0,T,CH ,CF ,CG:

Therefore, we are in position to apply the Fenchel–Rockafeller duality theorem (cf.
[57, Chapter 3, Theorem 4.1]), to conclude

inf
u2E0

AðuÞ ¼ max
ðm,wÞ2E01

f�A	
0ðK

	ðm,wÞÞ � A	
1ð�ðm,wÞÞg:

Here E01 denotes the dual space of E1. By [58, IV.6] the dual space of C0
b may be identi-

fied with the space of bounded, regular, finitely additive set functions. Thus E01 is the
space of pairs (m, w), where m is a real-valued regular finitely additive set function, and

w is a R
d-valued regular finitely additive set function.

It remains to identify

max
ðm,wÞ2E01

�A	
0ðK	ðm,wÞÞ � A	

1ð�ðm,wÞÞ
� �

:

In what follows, we are going to show that the above maximization problem actually
admits solutions in a better space than E01: So, we have
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max
ðm,wÞ2E01

�A	
0ðK	ðm,wÞÞ � A	

1ð�ðm,wÞÞ
� �

¼ max
ðm,wÞ2~E 0

1

�A	
0ðK	ðm,wÞÞ � A	

1ð�ðm,wÞÞ
� �

,

where the set ~E
0
1 stands for pairs (m, w) such that m is a finite Radon measure on

½0,T� �M� R
d and w is a finite vector-valued Radon measure on ½0,T� �M� R

d tak-

ing values in R
d: The proof of this is postponed to Lemma 3.6 below.

Then, by arguing as in [19, Section 3.3], we may identify that

max
ðm,wÞ2E01

f�A	
0ðK

	ðm,wÞÞ � A	
1ð�ðm,wÞÞg ¼ max

ðm,wÞ2E01
�Bðm,wÞ

where the maximum is taken over ðm,wÞ 2 E01 such that ðm,wÞ 2 L1ð½0,T� �M�
R

dÞ � L1ð½0,T� �M� R
d;RdÞ and m � 0 almost everywhere, such that

@tmþ v � Dxmþ divvw ¼ 0 in D0ðð0,TÞ �M� R
dÞ, mjt¼0 ¼ m0:

Thus

inf
u2E0

AðuÞ ¼ � min
ðm,wÞ2KB

Bðm,wÞ:

w

Lemma 3.6. Using the notations and assumptions from Lemma 3.5, we have

max
ðm,wÞ2E01

�A	
0ðK	ðm,wÞÞ � A	

1ð�ðm,wÞÞ
� �

¼ max
ðm,wÞ2~E 0

1

�A	
0ðK	ðm,wÞÞ � A	

1ð�ðm,wÞÞ
� �

,

Proof. Observe that any pair ðm,wÞ 2 E01 induces functionals on C0
c and ðC0

c Þ
d:

Therefore, there exist a signed Radon measure ~m with finite total variation and a finite
vector-valued measure ~w which coincide with, respectively, m and w on (the closure

with respect to the uniform norm of) C0
c and ðC0

c Þ
d: Then

A	
1ð�ðm,wÞÞ ¼ sup

ð/,wÞ2E1
h�m,/i þ h�w,wi �

ðt
0

ð
M�R

d
F	ðx,v, �/þHðx,v,wÞÞdxdv

( )

By considering functions of the form / ¼ lvþH0, for H0ðx, vÞ :¼ Hðx, v, 0Þ (note
that our assumptions on H imply in particular that H0 2 Cb) and any non-negative v 2
C0
b and l> 0, and w¼ 0, we find that A	

1ð�ðm,wÞÞ ¼ þ1 unless m is a positive func-
tional. Indeed, note that

ðt
0

ð
M�R

d
F	ðx, v, � lvÞ dx dv �

ðt
0

ð
M�R

d
sup
b�0

F	ðx, v, bÞ dx dv < þ1,

and supl>0h�m, lvi ¼ þ1 if hm, vi < 0:
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Next, by taking the supremum over the smaller set ð/,wÞ 2 C0
c � ðC0

c Þ
d we have

A	
1ð�ðm,wÞÞ � sup

ð/,wÞ2C0
c�ðC0

c Þ
d

�
h�m,/þ H0i þ h�w,wi

�
ðt
0

ð
M�R

d
F	ðx, v, � /� H0 þ Hðx, v,wÞÞ dx dv dt

�

¼ sup
ð/,wÞ2C0

c�ðC0
c Þ

d

�
h�~m,/þ H0i þ h�~w,wi

�
ðt
0

ð
M�R

d
F	ðx, v, � /� H0 þ Hðx, v,wÞÞ dx dv dt

�
� hm� ~m,H0i:

Let us underline that the assumption on H0 plays a crucial role, otherwise the integral
of F	 might not be finite for compactly supported test functions.
Since H is convex, for any vR 2 C0

b such that 0 � vR � 1,

Hðx, v, vrwÞ � vRHðx, v,wÞ þ ð1� vRÞH0ðx, vÞ:

Thus

�/vR � H0 þ Hðx, v, vRwÞ � vR �/� H0 þHðx, v,wÞð Þ,

and in particular we can compare the positive parts:

ð�/vR � H0 þ Hðx, v, vRwÞÞþ � ðvR �/� H0 þ Hðx, v,wÞð ÞÞþ:

Since F	 is non-decreasing,

F	 x, v, � /vR �H0 þHðx, v, vRwÞð Þ � sup
b<0

F	ðx, v, bÞ þ F	 x, v, � /�H0 þHðx, v,wÞð Þ 2 L1:

Hence, for all / 2 C0
b, w 2 ðC0

bÞ
d such thatðT

0

ð
M�R

d
F	ðx, v, � /� H0 þHðx, v,wÞÞ dx dv dt < þ1,

by dominated convergence we haveðt
0

ð
M�R

d
F	ðx, v, � /� H0 þ Hðx, v,wÞÞ dx dv dt

¼ lim
R!þ1

ðt
0

ð
M�R

d
F	ðx, v, � /R � H0 þ Hðx, v,wRÞÞ dx dv dt,

where /R ¼ /vR, wR ¼ wvR for some continuous 0 � vR � 1 converging pointwise to
the constant function 1 as R tends to positive infinity. We conclude that, for any ~m, ~w
(respectively signed, vector-valued) Radon measures with finite total variation,
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sup
ð/,wÞ2C0

c�ðC0
c Þ

d

�
h�~m,/þH0i þ h�~w,wi �

ðt
0

ð
M�R

d
F	ðx, v, � /� H0 þHðx, v,wÞÞ dx dv dt

�

¼ sup
ð/,wÞ2C0

b�ðC0
bÞ

d

�
h�~m,/i þ h�~w,wi �

ðt
0

ð
M�R

d
F	ðx, v, � /þ Hðx, v,wÞÞ dx dv dt

�
,

where we have used that H0 is also a C0
b function in order to relabel /: We have thus

proved that

A	
1ð�ðm,wÞÞ � A	

1ð�ð~m, ~wÞÞ � hm� ~m,H0i:

Next, note that if m 2 ðC0
bÞ

0 is a positive functional with Radon measure part ~m,
then m� ~m is also a positive functional: given 0 � / 2 C0

b, let 0 � vR � 1 be a
sequence of continuous functions, non-decreasing with R and converging pointwise to
the constant function 1 as R tends to positive infinity. Then, since 0 � /vR � /, by
dominated convergence and the positivity of m,

h~m,/i ¼ lim
R!0

h~m,/vRi ¼ lim
R!0

hm,/vRi � hm,/i:

Since ðH0Þþ 2 C0, hm� ~m, ðH0Þþi ¼ 0 and thus hm� ~m,H0i � 0 for all m such that
A	

1ð�ðm,w, ÞÞ is finite. Then
�A	

1ð�ðm,wÞÞ � �A	
1ð�ð~m, ~wÞÞ:

We now consider A	
0: We assume from now on that m 2 ðC0

bÞ
0 is a positive func-

tional, since we only wish to consider (m, w) for which A	
1ð�ðm,wÞÞ < þ1:

A	
0ðK	ðm,wÞÞ ¼ sup

u2E0
hK	ðm,wÞ, ui �

ð
M�R

d
uð0, x, vÞm0ðx, vÞ dx dv�

ð
M�R

d
G	ðx, v, uðT, x, vÞÞ dx dv

� �

¼ sup
u2E0

hðm,wÞ,Kui �
ð
M�R

d
uð0, x, vÞm0ðx, vÞ dx dv�

ð
M�R

d
G	ðx, v, uðT, x, vÞÞ dx dv

� �
:

Then, taking supremum over the smaller set u 2 C1
c , we have

A	
0ðK

	ðm,wÞÞ � sup
u2C1

c

hðm,wÞ,Kui �
ð
M�R

d
uð0, x, vÞm0ðx, vÞ dx dv�

ð
M�R

d
G	ðx, v, uðT, x, vÞÞ dx dv

� �
:

If u 2 C1
c , then Ku 2 C0

c : Thus

A	
0ðK

	ðm,wÞÞ � sup
u2C1

c

hð~m, ~wÞ,Kui �
ð
M�R

d
uð0, x, vÞm0ðx, vÞ dx dv�

ð
M�R

d
G	ðx, v, uðT, x, vÞÞ dx dv

� �
:

We show that the right hand side is in fact equal to A	
0ðK	ð~m, ~wÞÞ : given u 2 E0, let

vR 2 C1
c ðM� R

dÞ be a sequence of cutoff functions such that 0 � vR � 1: We construct

vR such that their support is contained in �B2Rð0Þ 
 M� R
d, the closed ball of radius

2R, vR ¼ 1 on �BRð0Þ, the closed ball of radius R, and krvRk � C
R for some constant

C> 0 independent of R. Thus note in particular that vR ! 1 and rvR ! 0 pointwise as
R ! þ1: Let uR :¼ uvR: Then
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jKuRj ¼ j@tuR þ v � DxuRj � CkukE0 , juRð0, x, vÞj � juð0, x, vÞj, uRðT , x, vÞ½ �þ � uðT , x, vÞ½ �þ:

Since m 2 ðC0
bÞ

0, we have h~m,CkukE0i ¼ CkukE0h~m, 1i < þ1: Moreover uð0, �Þ is
bounded and therefore integrable with respect to m0. Finally, note that

G	ðx, v, uRðT, x, vÞÞ � G	ðx, v, uðT, x, vÞÞ þ sup
bT<0

G	ðx, v, bTÞ:

Hence, if ð
M�R

d
G	ðx, v, uðT, x, vÞÞ dx dv < þ1,

we may apply the dominated convergence theorem to find that

hð~m, ~wÞ,Kui �
ð
M�R

d
uð0, x, vÞm0ðx, vÞ dx dv�

ð
M�R

d
G	ðx, v, uðT, x, vÞÞ dx dv

¼ lim
R!þ1

hð~m, ~wÞ,KuRi �
ð
M�R

d
uRð0, x, vÞm0ðx, vÞ dx dv�

ð
M�R

d
G	ðx, v, uRðT, x, vÞÞ dx dv:

This completes the proof that the suprema over E0 and C1
c are equal for the Radon

measure parts. We conclude that

�A	
0ðK	ðm,wÞÞ � �A	

0ðK	ð~m, ~wÞÞ:

Now observe that, since the set ~E
0
1 is contained in E01 (it is precisely the set of Radon

measure parts of elements of E01),

max
ðm,wÞ2E01

f�A	
0ðK	ðm,wÞÞ � A	

1ð�ðm,wÞÞg � sup
ðm,wÞ2E01

f�A	
0ðK	ð~m, ~wÞÞ � A	

1ð�ð~m, ~wÞÞg

� sup
ð~m, ~wÞ2~E 0

1

f�A	
0ðK	ð~m, ~wÞÞ � A	

1ð�ð~m, ~wÞÞg

� sup
ðm,wÞ2E01

f�A	
0ðK	ðm,wÞÞ � A	

1ð�ðm,wÞÞg:

All of the above inequalities are therefore equalities. Moreover, since

�A	
0ðK	ðm,wÞÞ � A	

1ð�ðm,wÞÞ � �A	
0ðK	ð~m, ~wÞÞ � A	

1ð�ð~m, ~wÞÞ,

if (m, w) attains the supremum then the same is true of the Radon measure part

ð~m, ~wÞ: Thus, without loss of generality, the optimizer is given by some ðm,wÞ 2 ~E
0
1,

i.e. a finite measure and a finite R
d-valued measure. w

Remark 3.7. Let us notice that the minimizer of Bðm,wÞ is unique (by the convexity of
F ,G and L in their last variables). Moreover, the growth conditions on F ,G and L

imply that m 2 Lqðð0,TÞ �M� R
dÞ, mT 2 LsðM� R

dÞ and jwjr0
mr0�1 2 L1ðð0,TÞ �M�

R
dÞ: Furthermore, by H€older’s inequality, w 2 Lpðð0,TÞ �M� R

dÞÞ, with p :¼ r0q
r0þq�1 :

These arguments are similar to the ones in [20, Theorem 2.1] and [19, Lemma 2].
Furthermore, the equation satisfied by m conserves mass, so that m 2 L1t L1x, v, and in
fact kmtkL1x, v ¼ km0kL1x, v for all t 2 ½0,T�:
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3.4. The relaxed problem

The third problem we define is a relaxation of Problem 3.1. Consider the functional

~Aðu, b, bTÞ :¼
ðT
0

ð
M�R

d
F	ðx, v, bÞ dx dv dt �

ð
M�R

d
m0ðx, vÞu0ð dx dvÞ

þ
ð
M�R

d
G	ðbTÞ dx dv:

Problem 3.8. Minimize ~Aðu, b, bTÞ over the set KA of triples ðu, b, bTÞ 2 L1locðUm0Þ �
L1locðUm0Þ � L1ðM� R

dÞ satisfying

� The positive part of u satisfies uþ 2 L1locð½0,T� �M� R
dÞ;

� The positive part of b satisfies bþ 2 Lq0ð½0,T� �M� R
dÞ:

� The positive part of bT satisfies ðbTÞþ 2 Ls0ðM� R
dÞ;

� Dvu 2 LrlocðUm0Þ,

and subject to (3.5), understood in the sense of Definition 3.9.

Definition 3.9. We say that a triple ðu, b, bTÞ that belongs to the spaces from Problem
3.8 is a weak distributional solution to

�@tu� v � Dxuþ Hðx, v,DvuÞ � b, in ð0,TÞ �M� R
d,

uT � bT , inM� R
d,

(
(3.5)

if ðT
0

ð
M�R

d
u @t/þ divðv/Þ½ � þ /Hðx, v,DvuÞ dx dv dt

�
ðT
0

ð
M�R

d
b/ dx dv dt þ

ð
M�R

d
bT/T dx dv,

(3.6)

for any / 2 C1
c ðð0,T� �M� R

dÞ nonnegative.

Remark 3.10.
(i) Let us emphasize that the weak form (3.6) encodes both inequalities from (3.5),

as we show this in Lemma A.6.
(ii) u0 is similarly understood as a certain notion of a trace at t¼ 0 in a weak

sense. In particular, the term

�
ð
M�R

d
m0ðx, vÞu0ð dx dvÞ ¼ �hu0,m0i,

which appears in the definition of ~A is to be understood as in Definition A.10. Moreover,
we underline that this quantity is set to be þ1, if there exist / 2 C1

c ðfm0 > 0gÞ nonnega-
tive such that hu0,/i ¼ �1:
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4. The Hamilton–Jacobi equation

In this section, we analyze the equation (3.5). We take the assumptions appropriate to
the minimization problem we will consider. Therefore, we suppose throughout that

ðu, b, bTÞ 2 KA is such that ~Aðu, b, bTÞ < þ1: From the finiteness of the energy we
deduce in particular that

�
ð
M�R

d
u0m0 < þ1:

4.1. Upper bounds

We prove upper bounds on u. First, we observe that for any constant l 2 R the function
ðu� lÞþ :¼ maxfu� l, 0g satisfies (see Lemma B.1)

�ð@t þ v �DxÞðu� lÞþ þHðx, v,DvuÞ1fu>lg � b1fu>lg, in D0ðð0,TÞ �M�R
dÞ,

ðuT � lÞþ � ðbT � lÞþ, in D0ðM�R
dÞ:

(

(4.1)

We use the notation L1 þ Lq
0
to denote the set of functions

fh ¼ h1 þ h2 : h1 2 L1, h2 2 Lq
0 g,

which becomes a Banach space when equipped with the norm

khkL1þLq0 :¼ inffkh1kL1 þ kh2kLq0 : h ¼ h1 þ h2g:

We also use the notation L1 \ Lq to denote the intersection of L1 and Lq made into a
Banach space under the norm

khkL1\Lq :¼ maxfkhkL1 , khkLqg:

Note that the dual space is given by ðL1 \ LqÞ	 ¼ L1 þ Lq
0
:

Lemma 4.1. Let l 2 R be given and let ðu, b, bTÞ 2 KA satisfy (4.1).

(i) Then ðu� lÞþ 2 L1t ðL1 þ Lq0Þx, v, with the a priori estimate

kðu� lÞþkL1t ðL1þLq0 Þx, v � kðbT � lÞþkðL1þLq0 ÞðM�R
dÞ þ CHT þ T1=qkbþkLq0

� kðbT � lÞþkLs0 ðM�R
dÞ þ CHT þ T1=qkbþkLq0:

(ii) Suppose in addition that ~Aðu, b, bTÞ < C ~A . Then, there exists

C ¼ C C ~A , km0kL1\Lq ,T,CF ,CG
� �

> 0

such that

kbþkLq0 ðð0,TÞ�M�R
dÞ þ kðbTÞþkLs0ðM�R

dÞ � C:

Proof. First, let us note that, since ðbTÞþ 2 Ls0ðM� R
dÞ and s0 � q0 (by Assumption 1),

ðbTÞþ 2 ðL1 þ Lq0ÞðM� R
dÞ and thus also ðbT � lÞþ 2 ðL1 þ Lq0ÞðM� R

dÞ:

1964 M. GRIFFIN-PICKERING AND A. R. MÉSZÁROS



(i) Let t 2 ½0,TÞ be fixed. Let 0 � w 2 C1
c ðM� R

dÞ and consider

fðs, x, vÞ :¼ wðxþ ðt � sÞv, vÞ:

Then f is smooth and compactly supported and satisfies

@sfþ v � Dxf ¼ 0:

By using f as a test function for ðu� lÞþ over s 2 ½t,T�, we obtainð
M�R

d
ðu� lÞþðt, x, vÞwðx, vÞ dx dv �

ð
M�R

d
ðbT � lÞþfT dx dv

þ
ðT
t

ð
M�R

d
f b�Hðx, v,DvuÞ½ �1fu>lg dx dv ds:

Recall that when we write ðu� lÞþðt, � , �Þ, we are always referring to the version of u
that is weakly right continuous with respect to time (cf. Appendix A, Lemma A.1).
Since H � �CH , we haveð

M�R
d
ðu� lÞþðt, x, vÞwðx, vÞ dx dv �

ð
M�R

d
ðbT � lÞþfT dx dvþ

ðT
t

ð
M�R

d
f bþ þ CH½ � dx dv ds:

Thenð
M�R

d
ðut � lÞþw dx dv � kðbT � lÞþkL1þLq0kfTkL1\Lq

þ kfkLqð t,T½ ��M�R
dÞkbþkLq0 ð t,T½ ��M�R

dÞ þ CHkfkL1ð t,T½ ��M�R
dÞ:

We compute

kfkL1ð t,T½ ��M�R
dÞ ¼

ðT
t

ð
M�R

d
wðxþ ðt � sÞv, vÞ dx dv ds

¼
ðT
t

ð
M�R

d
wðx, vÞ dx dv ds ¼ ðT � tÞkwkL1ðM�R

dÞ:

Similarly

kfTkL1ðM�R
dÞ ¼ kwkL1ðM�R

dÞ

and

kfkLqð t,T½ ��M�R
dÞ ¼ ðT � tÞ1=qkwkLqðM�R

dÞ:

Thus ð
M�R

d
ðut � lÞþw dx dv � kðbT � lÞþkL1þLq0 þ CHT þ T1=qkbþkLq0

� 

kwkL1\Lq :

This extends by density to all non-negative w 2 ðL1 \ LqÞðM� R
dÞ, and general w 2

ðL1 \ LqÞðM� R
dÞ by non-negativity of ðu� lÞþ: We conclude by the fact that

kðbT � lÞþkL1þLq0 � kðbT � lÞþkLs0 : The result follows.
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(i) By the definition of ~A and the assumptions on the data one has

~Aðu,b, bTÞ � kbþk
q0

Lq0
þ kðbTÞþk

s0

Ls0 �
ð
M�R

d
TCFðx, vÞ þ CGðx, vÞ½ � dx dv

�
ð
M�R

d
uð0, x, vÞþm0ðx, vÞ dx dv

� kbþk
q0

Lq0 þ kðbTÞþk
s0

Ls0 � C � kðbTÞþkLs0 þ CHT þ T1=qkbþkLq0
� 


km0kL1\Lq ,

(4.2)

where in the last inequality we used the estimate from (i). This further yields the claim
in (ii). w

Corollary 4.2. Let ðu, b, bTÞ be as in the statement of Lemma 4.1 such that there exists

C ~A > 0 with ~Aðu, b, bTÞ < C ~A : Then, there exists C ¼ CðC ~A , km0kL1\Lq ,T,CF ,CGÞ > 0
such that the following hold.

(i) kðu0ÞþkL1þLq0ðM�R
dÞ � C;

(ii)
Ð
M�R

dm0ðu0Þ�ð dx dvÞ � C:

Proof. We notice that (i) is a simple consequence of Lemma 4.1(i)-(ii), by setting l¼ 0
and t¼ 0 (in the sense of weak trace, given in Definition A.5).
For (ii), we observeð

M�R
d
m0ðu0Þ�ð dx dvÞ ¼ �

ð
M�R

d
m0u0ð dx dvÞ þ

ð
M�R

d
ðu0Þþm0 dx dv

� ~Aðu, b, bTÞ �
ðT
0

ð
M�R

d
F	ðx, v, bÞ dx dv dt

�
ð
M�R

d
G	ðbTÞ dx dvþ kðu0ÞþkL1þLq0km0kL1\Lq :

By the bounds (3.1) on F	 and the corresponding estimates for G	,

sup
b
f�F	ðx, v, bÞg � CFðx, vÞ, sup

bT

f�G	ðx, v, bTÞg � CGðx, vÞ:

Hence, using the above bounds and (i), we obtainð
M�R

d
m0ðu0Þ�ð dx dvÞ � C ~A þ kCFkL1 þ kCGkL1 þ Ckm0kL1\Lq ,

which completes the proof. w

4.2. Local L1 bounds

Next, we prove bounds on the negative parts of u and b. We will obtain L1locðUm0Þ
bounds, by use of a duality argument involving a certain class of test functions which
satisfy the continuity equation associated to the control system.

Lemma 4.3. Let a 2 C1
bð½0,T� �M� R

d;RdÞ be a bounded control. Let /0 2 C1
c ðM�

R
dÞ satisfy 0 � /0 � m0. Let / 2 C1

c ðUm0Þ be the solution of the continuity equation
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@t/þ v � Dx/þ divvða/Þ ¼ 0, /jt¼0 ¼ /0:

Then, for any ðu, b, bTÞ 2 KA such that ~Aðu, b, bTÞ < þ1, the following hold:

� u 2 L1t L1x, vð/Þ, that is,

ess sup
t2 0,T½ �

ð
M�R

d
jutj/t dx dv < þ1:

� The negative part of b satisfies b� 2 L1t, x, vð/Þ:
� The negative part of bT satisfies ðbTÞ� 2 L1x, vð/TÞ:
� The following estimate holds:

kukL1t L1x, vð/Þ þ kb�kL1t, x, vð/Þ þ kðbTÞ�kL1x, vð/TÞ þ kDvukrLrt, x, vð/Þ

� Cða,/,m0,H,TÞ 1þ kbþkLq0 þ kðbTÞþkL1þLq0
� �

�
ð
M�R

d
u0m0 dx dv:

Proof. Note the following properties of / :

� / is non-negative,
� / has compact support contained in Um0 :

� / 2 ðL1 \ L1Þt, x, v:

In particular, since /t 2 ðL1 \ LqÞðM� R
dÞ for any t 2 ½0,T�, thenð

M�R
d
ðutÞþ/t dx dv � k/tkðL1\LqÞx, vkuþkL1t ðL1þLq0 Þx, v :

By Lemma 4.1,

kuþkL1t ðL1þLq0 Þx, v � CðT,HÞ 1þ kðbTÞþkðL1þLq0 ÞðM�R
dÞ þ kbþkLq0t, x, v

� 

(4.3)

and thus for t 2 ½0,T�, we haveð
M�R

d
ðutÞþ/t dx dv � CðT,H,/Þ 1þ kðbTÞþkðL1þLq0ÞðM�R

dÞ þ kbþkLq0t, x, v
� 


,

where ðutÞþ is understood in the sense of weak trace (cf. Lemma A.1, Definition A.5).
For the negative part we make use of the equation. A density argument shows that /

is admissible as a test function in the weak form of the Hamilton-Jacobi inequality satis-
fied by u. Thus for 0 � s < t � T,ð

M�R
d
us/s dx dv�

ð
M�R

d
ut/t dx dvþ

ðt
s

ð
M�R

d
uð@t/þ v � Dx/Þ dx dv ds

þ
ðt
s

ð
M�R

d
/Hðx, v,DvuÞ dx dv ds �

ðt
s

ð
M�R

d
b/ dx dv ds:

We apply this in the case s¼ 0, t 2 ð0,T�: Using the fact that / satisfies the continuity
equation in a pointwise sense,
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ð
M�R

d
u0/0 dx dv�

ð
M�R

d
uðt, x, vÞ/ðt, x, vÞ dx dv

�
ðt
0

ð
M�R

d
udivvða/Þ dx dv dsþ

ðt
0

ð
M�R

d
/Hðx, v,DvuÞ dx dv ds �

ðt
0

ð
M�R

d
b/ dx dv ds:

Here, let us notice that we have used the existence of weak traces in the sense of
Lemma A.1. In particular the integral

Ð
M�R

du0/0 dx dv is meaningful and finite, since
sptð/0Þ � sptðm0Þ (Definition A.10).
Since Dvu 2 LrlocðUm0Þ and a/ 2 C1 has compact support contained in Um0 , we may

integrate by parts to obtain

�
ðt
0

ð
M�R

d
u divvða/Þ dx dv ds ¼

ðt
0

ð
M�R

d
a � Dvu / dx dv ds:

Then estimate ����
ðt
0

ð
M�R

d
a � Dvu / dx dv ds

���� � kakLr0ð/ÞkDvukLrð/Þ,

where, in order to lighten the notation, we have used the shorthand

khkLpð/Þ :¼
ðT
0

ð
M�R

d
jhjp/ dx dv dt

 !1=p

, p 2 1, þ1Þ½

to denote Lp norms with respect to the measure on ½0,T� �M� R
d with density /

with respect to Lebesgue measure. Thus

�
ð
M�R

d
ut/t dx dvþ

ðt
0

ð
M�R

d
/Hðx, v,DvuÞ dx dv ds

� kakLr0ð/ÞkDvukLrð/Þ �
ð
M�R

d
u0/0 dx dvþ

ðt
0

ð
M�R

d
b/ dx dv ds:

Using the lower bounds on the Hamiltonian H, rearranging terms and using Young’s
inequality for products (with a small parameter), we obtain

�
ð
M�R

d
ut/t dx dvþ

ðt
0

ð
M�R

d
b�/ dx dv dsþ c

ðt
0

ð
M�R

d
/jDvujr dx dv ds

� Ckakr
0

Lr0ð/Þ þ CH

ðt
0

ð
M�R

d
/ dx dv ds�

ð
M�R

d
u0/0 dx dvþ

ðt
0

ð
M�R

d
bþ/ dx dv ds:

Then

�
ð
M�R

d
ut/t dx dvþ

ðt
0

ð
M�R

d
b�/ dx dv dsþ c

ðt
0

ð
M�R

d
/jDvujr dx dv ds

� Cða,/Þ CH þ kbþkLq0
� �

�
ð
M�R

d
u0m0 dx dvþ

ð
M�R

d
ðu0Þþðm0 � /0Þ dx dv:

(4.4)

Finally, since 0 � m0 � /0 � m0 2 L1 \ Lq, we use the ðL1 þ Lq
0 Þx, v bounds on the

positive part ðu0Þþ (Equation (4.3)) to conclude that
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ð
M�R

d
jutj/t dx dvþ

ðt
0

ð
M�R

d
b�/ dx dv dsþ c

ðt
0

ð
M�R

d
/jDvujr dx dv ds

� Cða,/,m0,H,TÞ 1þ kbþkLq0 þ kðbTÞþkL1þLq0
� �

�
ð
M�R

d
u0m0 dx dv:

Notice that by setting t¼T, (4.4) and the fact that uT � bT (together with the bounds
that we already have on ðbTÞþ) readily yield also that ðbTÞ� 2 L1ð/TÞ:
This completes the proof. w

Corollary 4.4. Let ðu, b, bTÞ 2 KA such that ~Aðu, b, bTÞ < þ1. Then u 2
L1locðUm0Þ, b� 2 L1locðUm0Þ, ðbTÞ� 2 L1locðM� R

dÞ and Dvu 2 LrlocðUm0Þ:

Proof. First, consider a compact set

K 
 [
a2C1

b, 0�/02C1
c ðfm0>0gÞ

f/ > 0g,

where / 2 C1 denotes the solution of the continuity equation

@t/þ v � Dx/þ divvða/Þ ¼ 0, /jt¼0 ¼ /0: (4.5)

By compactness of K, there exist finitely many /i, i ¼ 1, :::, k such that

K 
 [
k

i¼1
f/i > 0g:

The function maxi /i is continuous and so

0 < dK :¼ inf
K

max
i

/i:

Then

kukL1ðKÞ þ kb�kL1ðKÞ þ kDvukLrðKÞ � d�1
K

Xk
i¼1

kukL1ð/iÞ þ kb�kL1ð/iÞ þ kDvukLrð/iÞ:

By Lemma 4.3, this leads to the estimate

kukL1ðKÞ þ kb�kL1ðKÞ þ kDvukLrðKÞ � C,

where C ¼ CðK, ~Aðu, b, bTÞÞ: We now claim that

Um0 
 [
a2C1

b, 0�/02C1
c ðfm0>0gÞ

f/ > 0g:

This follows from the controllability of the ODE system

_x ¼ v, _v ¼ a (4.6)

on M� R
d: That is, for any initial datum ðx0, v0Þ 2 M� R

d and target ðt	, x	, v	Þ 2
ð0,T� �M� R

d, there exists a control function a such that the solution ðxðsÞ, vðsÞÞ of
the ODE (4.5) with ðxð0Þ, vð0ÞÞ ¼ ðx0, v0Þ satisfies ðxðt	Þ, vðt	ÞÞ ¼ ðx	, v	Þ:
Next, note that (since m0 is continuous) fm0 > 0g contains a closed ball �Brðx0, v0Þ

for some point (x0, v0) and some r> 0. Thus there exists 0 � /0 2 C1
c ðfm0 > 0gÞ such
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that /0 > 0 on �Brðx0, v0Þ: Consider the solution / of (4.4) for the control a found
above and with this choice of /0: It follows that ðt	, x	, v	Þ 2 f/ > 0g:
Finally, we notice that by the structure of the set Um0 , we have the bound

ðbTÞ� 2 L1locðM� R
dÞ: w

5. Duality for the relaxed problem

Theorem 5.1. Problems 3.3 and 3.8 are in duality:

inf
ðu,b, bTÞ2KA

~Aðu, b, bTÞ ¼ � min
ðm,wÞ2KB

Bðm,wÞ:

Proof. For u 2 C1
bð½0,T� �M� R

dÞ such that AðuÞ < þ1, the triple ðu, � @tu�
v � DxuþHðx, v,DvuÞ, uTÞ lies in KA: Thus

inf
ðu, bÞ2KA

~Aðu, b, bTÞ � inf
u2C1

b

AðuÞ:

By the duality result of Lemma 3.5,

inf
ðu, b, bTÞ2KA

~Aðu, b, bTÞ � inf
u2C1

b

AðuÞ ¼ � min
ðm,wÞ2KB

Bðm,wÞ:

It therefore remains only to prove the reverse inequality. This follows from Lemma 5.2
below, which states that for all ðu, b, bTÞ 2 KA and ðm,wÞ 2 KB,

~Aðu, b, bTÞ � �Bðm,wÞ:

Taking the infimum over ðu, b, bTÞ 2 KA and supremum over ðm,wÞ 2 KB gives

inf
ðu,b, bTÞ2KA

~Aðu, b, bTÞ � � min
ðm,wÞ2KB

Bðm,wÞ

as required. w

Lemma 5.2. Let ðu, b, bTÞ 2 KA and ðm,wÞ 2 KB such that ~Aðu, b, bTÞ,Bðm,wÞ < þ1.
Then

~Aðu, b, bTÞ þ Bðm,wÞ � 0:

In the proof of this lemma we require the following observation regarding the com-
mutator between the operator v � Dx and the operator given by convolution with a
fixed function.

Lemma 5.3. Let v : Rd ! ½0, þ1Þ be a function such that ð1þ jvjÞv 2 L1vðRdÞ. Let h 2
LpvðRdÞ for p 2 ½1, þ1�. Then

vv 	 h� v 	 ðvhÞ ¼ ðvvÞ 	 h:
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Proof. By direct computation, for all v 2 R
d,

vv 	 hðvÞ � v 	 ðvhÞ ¼ v
ð
R

d
hðv� zÞvðzÞ dz �

ð
R

d
ðv� zÞhðv� zÞvðzÞ dz

¼
ð
R

d
zvðzÞhðv� zÞ dz

¼ ðvvÞ 	 h:

w

Proof of Lemma 5.2. The overall idea of the proof is to use m as a test function in the
weak form of the inequality

�@tu� v � Dxuþ Hðx, v,DvuÞ � b

and its terminal condition

uT � bT :

To make this valid, we must first introduce an approximation procedure.
First, we introduce a lower cutoff on u and b. Let l � 0 and define ul :¼ maxfu, lg:

Similarly, for k � 0, let bk :¼ maxfb, kg: Then by Lemma B.1 we obtain

�@tul � v � Dxul þ Hðx, v,DvuÞ1fu>lg � bk1fu>lg, ð0,TÞ �M� R
d

ðuTÞl � ðbTÞl, M� R
d,

(
(5.1)

in the sense of distributions. By Lemma 4.1, ul 2 L1t ðL1 þ Lq
0 Þx, v: We emphasize that k

and l are taken to be possibly independent at this point.
Next, we approximate m by a function in C1

c , which is then an admissible test func-
tion for the Hamilton-Jacobi Equation (5.1). We regularize m by convolution with a
mollifier. For ease of presentation, it will be convenient to work with the time, space

and velocity variables separately. Fix v 2 C1
c ðRdÞ and define ve for e > 0 by

veðvÞ :¼ e�dv
v
e

	 

:

For the space variable, consider w 2 C1
c ðRdÞ and for d > 0 let

wdðxÞ :¼ d�dw
x
d

	 

:

For the time variable, fix h 2 C1
c ðRÞ and for g > 0 let

hgðtÞ :¼ g�1h
t
g

	 

:

We then define the full mollifier u by

uðt, x, vÞ ¼ hgðtÞwdðxÞveðvÞ:
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Then define the smooth functions

~m :¼ u	t, x, vm and ~w ¼ u	t, x, vw:

Notice that for the convolution in time, (m, w) needs to be extended. We choose the
following extensions. We set wðt, � , �Þ ¼ 0 to for t< 0 and t>T. Then, if t< 0, we set
mðt, � , �Þ to be the solution to the problem

@tmþ v � Dxm ¼ 0, in ð�g, 0Þ �M� R
d,

mð0, � , �Þ ¼ m0, inM� R
d:

(

Similarly, for t>T we set mðt, � , �Þ to be the solution to

@tmþ v � Dxm ¼ 0, in ðT,T þ gÞ �M� R
d,

mðT, � , �Þ ¼ mT , inM� R
d,

(

where mT is the trace of m in time at t¼T.
As the final step in the approximation, we localize ~m: As localizers we consider

smooth functions fR 2 C1
c ðM� R

dÞ such that

fRðx, vÞ ¼
1 jxj � R2, jvj � R

0 jxj > 2R2, jvj > 2R:
jDxfRj �

C
R2

, jDvfRj �
C
R

:

(
(5.2)

We then define ~mðRÞ :¼ fR ~m and ~wðRÞ :¼ fR~w:

Then ~mðRÞ satisfies the equation

@t ~m
ðRÞ þ v � Dx ~m

ðRÞ þ divv~w
ðRÞ ¼ Eg, d, e,R,

where the error term is given by

Eg, d, e,R :¼ fR v � Dx, ve	v½ �hg	twd	xmþ ðv � DxfRÞ~m þ ðDvfRÞ � ~w: (5.3)

Here, we use the standard commutator notation ½K1,K2�f :¼ K1ðK2f Þ � K2ðK1f Þ, where
K1,K2 are some operators acting on the function f.

5.1. Convergence of the error term

We show that the error term Eg, d, e,R defined by (5.3) converges to zero in the space
L1t ðL1 þ LqÞx, v, as R ! þ1 and g, e, d ! 0, under a certain relationship between
these parameters.
For the first term, either for p¼ 1 or p¼ q, using the explicit formula for the commu-

tator we estimate

kfR v � Dx, ve	v½ �hg	twd	xmkL1t Lpx, v � k v � Dx, ve	v½ �ðhgwdÞ	t, xmkL1t Lpx, v
� k v, ve	v½ �hg	tðDxwdÞ	xmkL1t Lpx, v
� kðvveÞ	vhg	tðDxwdÞ	xmkL1t Lpx, v
� kvvekL1khgkL1kDxwdkL1kmkL1t Lpx, v
� ed�1 � CT1=p0kmkLpt, x, v ,
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where we have used Lemma 5.3 in the third inequality. Thus by choosing e ¼ eðdÞ suffi-
ciently small with respect to d, we may ensure that

lim
d!0

sup
g,R

kfR v � Dx, veðdÞ	v
� �

hg	twd	xmkL1t Lpx, v ¼ 0:

For the second term, observe that for all R> 0, jv � DxfRj � CR�1 and thus

kðv � DxfRÞ~mkL1t ðL1\LqÞx, v � CR�1k~mkL1t ðL1\LqÞx, v
� CR�1kmkL1t ðL1\LqÞx, v
� CTR

�1kmkðL1\LqÞt, x, v :

It follows that

lim
R!þ1

sup
g, d, e

kðv � DxfRÞ~mkL1t ðL1\LqÞx, v ¼ 0:

For the third term, for either p¼ 1 or p¼ q we have

kðDvfRÞ � ~wkL1t Lpx, v �
C
R
k~wkL1t Lpx, v

� C
R
kukL1t Lpx, vkwkL1t, x, v

� C
R
d�d=p0e�d=p0 kwkL1t, x, v :

Taking e ¼ eðdÞ as above, we can then ensure this term converges to zero by choosing
R ¼ RðdÞ sufficiently large with respect to d and eðdÞ: Thus, for this choice of
eðdÞ,RðdÞ, we have

lim
d!0

sup
g

kðDvfRÞ � ~wkL1t Lpx, v ¼ 0:

Altogether, we have found that there exists a regime R ¼ RðdÞ and e ¼ eðdÞ such that

lim
d!0

sup
g

kEg, d, e,RkL1t Lpx, v ¼ 0:

5.2. Testing the equation

Using ~mðRÞ as a test function in the weak form of the equation for ul, one obtainsð
M�R

d
ulð0, x, vÞ~mðRÞð0, x, vÞ dx dv�

ð
M�R

d
ðbTÞl ~mðRÞðT, x, vÞ dx dv

þ
ðT
0

ð
M�R

d
ulð@t ~mðRÞ þ v � Dx ~m

ðRÞÞ dx dv dt þ
ðT
0

ð
M�R

d
~mðRÞHðx, v,DvuÞ1fu>lg dx dv dt

�
ðT
0

ð
M�R

d
bk ~m

ðRÞ1fu>lg dx dv dt:

Using the equation satisfied by ~mðRÞ, we have

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 1973



ð
M�R

d
ulð0, x, vÞ~mðRÞð0, x, vÞ dx dv�

ð
M�R

d
ðbTÞl ~mðRÞðT, x, vÞ dx dv

�
ðT
0

ð
M�R

d
uldivv~w

ðRÞ dx dv dt þ
ðT
0

ð
M�R

d
~mðRÞHðx, v,DvuÞ1fu>lg dx dv dt

�
ðT
0

ð
M�R

d
bk ~m

ðRÞ1fu>lg dx dv dt �
ðT
0

ð
M�R

d
ul Eg, d, e,R dx dv dt:

(5.4)

Next, note that Dvu 2 LrlocðUm0Þ: By the chain rule for Lipschitz functions composed
with Sobolev-regular functions,

Dvul ¼ Dvu1fu>lg:

Thus, using the definition of distributional derivative we may integrate by parts to
obtain

�
ðT
0

ð
M�R

d
ul divv~w

ðRÞ dx dv dt ¼
ðT
0

ð
M�R

d
~wðRÞ � Dvu1fu>lg dx dv dt:

Since Bðm,wÞ is finite, w is absolutely continuous with respect to m. It follows that

there exists ~a 2 Lr0ð½0,T� �M� R
d; ~mÞ such that

~w ¼ ~a ~m:

Thus

ðT
0

ð
M�R

d
~wðRÞ � Dvuþ ~mðRÞHðx, v,DvuÞ
� 


1fu>lg dx dv dt

¼
ðT
0

ð
M�R

d
~a � DvuþHðx, v,DvuÞð Þ~mðRÞ1fu>lg dx dv dt

� �
ðT
0

ð
M�R

d
Lðx, v, � ~aÞ~mðRÞ1fu>lg dx dv dt:

Substituting this, we obtain

ð
M�R

d
ulð0, x, vÞ~mðRÞð0, x, vÞ dx dv�

ð
M�R

d
ðbTÞl ~mðRÞðT, x, vÞ dx dv

�
ðT
0

ð
M�R

d
Lðx, v, � ~aÞ~mðRÞ1fu>lg dx dv dt

�
ðT
0

ð
M�R

d
bk ~m

ðRÞ1fu>lg dx dv dt �
ðT
0

ð
M�R

d
ul Eg, d, e,R dx dv dt:

(5.5)

We have shown above that there exists a regime R ¼ RðdÞ and e ¼ eðdÞ such that the
final term converges to zero uniformly in g as d tends to zero, since ul 2
L1t ðL1 þ Lq0Þx, v: We now discuss the convergence of the other terms.
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5.3. Boundary terms

We consider the boundary terms at t ¼ 0,T: Note that Lemma 4.1 and Corollary 4.2
yield ulð0, �Þ 2 Lq

0 þ L1 (since ðu0Þþ 2 L1 þ Lq
0
and ulð0, �Þ is bounded below), while

by Lemma 4.1 and Corollary 4.4 we have ðbTÞl 2 Ls
0 þ L1:

We first show that ~mðRÞ
0 converges to m0 in L1 \ Lq, and ~mðRÞ

T converges to mT in
L1 \ Lq, in the limit as d tends to zero for a certain regime g ¼ gðdÞ and R ¼ RðdÞ,
e ¼ eðdÞ according to the regime already found above.
For t ¼ 0,T, we write

~mðRÞ
t �mt ¼ ð~mðRÞ

t � fRwd	xve	vmtÞ þ fRðwd	xve	vmt �mtÞ þmtðfR � 1Þ: (5.6)

We first note that m0 2 ðL1 \ LqÞx, v by the assumption that it is a bounded probabil-

ity density, while mT 2 Lsx, v since the energy Bðm,wÞ is finite, and mT 2 L1x, v since the
continuity equation conserves mass.
Then, since jmtðfR � 1Þj � mt , if mt 2 Lp (where p 2 f1, qg or p 2 f1, sg) then by

dominated convergence

lim
R!þ1

kmtðfR � 1ÞkLpx, v ¼ 0:

Moreover, by continuity of translations in Lp,

lim
d!0

kwd	xveðdÞ	vmt �mtkLpx, v ¼ 0:

Since for all R> 0

kfRðwd	xve	vmt �mtÞkLpx, v � kwd	xve	vmt �mtkLpx, v ,

it follows that

lim
d!0

sup
R

kfRðwd	xveðdÞ	vmt �mtÞkLpx, v ¼ 0:

Therefore, the latter two terms of (5.6) converge to zero as d tends to zero with e ¼ eðdÞ
and R ¼ RðdÞ as already specified above, in ðL1 \ LqÞx, v for t¼ 0 and in ðL1 \ LsÞx, v
for t¼T.
It remains to estimate the difference wd	xve	vmt � ~mt: For any function f 2 Lpx, v

(p 2 ½1, þ1� to be specified),ð
M�R

d
wd	xve	vmt � ~mtð ÞfRf dx dv ¼

ð
M�R

d
mt � ðhg	tmÞt
� �

wd	xve	vðfRf Þ dx dv:

We use the notation ~f :¼ wd	xve	vðfRf Þ: Writing the time convolution explicitly, we
obtain ð

M�R
d
mt � ðhg	tmÞt
� �

~f dx dv ¼
ð1
�1

ð
M�R

d
hgðsÞ mt �mt�sð Þ~f dx dv ds:
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Next, we use estimates on @tm :

hmt �mt�s,~f i ¼
ðt
t�s

h@tm,~f is ds ¼
ðt
t�s

hm, v � rx
~f is þ hw,rv

~f is ds:

Then, since m,w 2 L1,

jhmt �mt�s,~f ij �
ðt
t�s

kmskL1x, v þ kwskL1x, v ds
 !

kv � rx
~f kL1 þ krv

~f kL1
� 


:

We estimate ~f :

kv � rx
~f kL1 ¼ kv � rxwd	xve	vðfRf ÞkL1

� ðRþ CeÞkrxwdkLp0kvekLp0 kf kLp
� ðRþ CeÞd�ð1þd=pÞe�d=pkf kLp

and similarly

krv
~f kL1 ¼ kwd	xrvve	vðfRf ÞkL1

� kwdkLp0 krvvekLp0kf kLp
� d�d=pe�ð1þd=pÞkf kLp :

Thus

jhmt �mt�s,~f ij � Cðd, e,RÞ
ðt
t�s

kmskL1x, v þ kwskL1x, v ds
 !

kf kLpx, v :

Finally����
ð
M�R

d
mt � ðhg	tmÞt
� �

~f dx dv

���� � Cðd, e,RÞ
ðtþg

t�g
kmskL1x, v þ kwskL1x, v ds

 !
kf kLpx, v

� xðgÞ Cðd, e,RÞ kf kLpx, v ,

where limg!0 xðgÞ ¼ 0: Thus it is possible to choose g ¼ gðdÞ depending on
d, eðdÞ,RðdÞ in such a way that

lim
d!0

xðgÞ Cðd, e,RÞ ¼ 0, lim
d!0

gðdÞ ¼ 0:

We apply this in the case f ¼ fi for i¼ 1, 2, where

ðbTÞl ¼ f1 þ f2 or ulð0Þ ¼ f1 þ f2, f1 2
Ls

0
x, v if t ¼ T

Lq
0

x, v if t ¼ 0
f2 2 L1x, v:

(

Consequently, for t ¼ 0,T,ð
M�R

d
~mðRÞ
0 ulð0Þ dx dv !

ð
M�R

d
m0ulð0Þ dx dv,
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and ð
M�R

d
~mðRÞ
T ðbTÞl dx dv !

ð
M�R

d
mTðbTÞl dx dv,

as d ! 0 with g,R, e chosen to depend on d in the manner specified.
Finally, we take the limit l ! �1: For the term, t¼ 0, convergence holds by mono-

tonicity, and the limit is finite since

�
ð
M�R

d
u0m0 dx dv < þ1

by finiteness of ~Aðu, b, bTÞ: For the term t¼T, we first note thatð
M�R

d
ðbTÞlmTðx, vÞ dx dv �

ð
M�R

d
GðmTÞ dx dvþ

ð
M�R

d
G	ððbTÞlÞ dx dv:

The second term on the right hand side converges due to the assumption on G (2.3),
since the integrand is dominated by

sup
u<0

G	ðuÞ � CG 2 L1ðM� R
dÞ:

5.4. Term involving bm

Since m 2 L1 \ Lq, by standard results on approximation by mollification in Lp spaces
we have

lim
ðg, d, eÞ!0,R!þ1

k~mðRÞ �mkL1\Lq ¼ 0,

and thus the same limit holds with g, e,R chosen to depend on d as described above.
Then, since bk 2 L1 þ Lq

0
, we deduce that

lim
ðd, eÞ!0,R!þ1

ðT
0

ð
M�R

d
bk ~m

ðRÞ1fu>lg dx dv dt ¼
ðT
0

ð
M�R

d
bkm1fu>lg dx dv dt:

By the definition of Fenchel conjugate,ðT
0

ð
M�R

d
bkm1fu>lg dx dv dt �

ðT
0

ð
M�R

d
F	ðx, v, bkÞ þ Fðx, v,mÞð Þ1fu>lg dx dv dt:

We then take the limit l ! �1: Note F and F	 are both lower bounded by integrable
functions (conditions (2.2) and (3.1)). Then, by monotonicity,

lim
l!�1

ðT
0

ð
M�R

d
Fðx, v,mÞ � inf

m
Fðx, v,mÞ

� 

1fu>lg dx dv dt

¼
ðT
0

ð
M�R

d
Fðx, v,mÞ � inf

m
Fðx, v,mÞ

� 

dx dv dt:
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Moreover

lim
l!�1

ðT
0

ð
M�R

d
inf
m

Fðx, v,mÞ1fu>lg dx dv dt ¼
ðT
0

ð
M�R

d
inf
m

Fðx, v,mÞ dx dv dt:

Since the lower bound is integrable and Fð�, � ,mÞ has finite integral by finiteness of
the energy, both of these limits are finite. Thus

lim
l!�1

ðT
0

ð
M�R

d
Fðx, v,mÞ1fu>lg dx dv dt ¼

ðT
0

ð
M�R

d
Fðx, v,mÞ dx dv dt:

A similar argument shows that

lim
l!��1

ðT
0

ð
M�R

d
F	ðx, v, bkÞ1fu>lg dx dv dt ¼

ðT
0

ð
M�R

d
F	ðx, v, bkÞ dx dv dt

where the right hand side is finite.
Finally, we consider k ! �1: Note that supb�0 F	ðx, v, bÞ � CFðx, vÞ 2 L1 by

assumption (see (3.1)). Since F	ðbÞ is a continuous non-decreasing function of b, as k
decreases to negative infinity F	ð�, � , bkÞ is decreasing and converges almost everywhere
to F	ð�, � , bÞ: Thus we deduce the convergence

lim
k!�1

ð
fb�0g

F	ðx, v, bkÞ dx dv dt ¼
ð
fb�0g

F	ðx, v, bÞ dx dv dt:

By the bounds (3.1), the right hand side is finite. Moreover, for any k � 0,ð
fb>0g

F	ðx, v, bkÞ dx dv dt ¼
ð
fb>0g

F	ðx, v, bÞ dx dv dt:

Thus we conclude that

lim
k!�1

ðT
0

ð
M�R

d
F	ðx, v, bkÞ dx dv dt ¼

ðT
0

ð
M�R

d
F	ðx, v, bÞ dx dv dt:

5.5. Lagrangian term

For the term involving the Lagrangian, we use a similar argument as was used in [20]. This
argument is based on the joint convexity of Lðx, v, � w=mÞm as a function of (m, w). In
our case we must additionally account for the convergence of the localizer fR. By convexity,
for all (t, x, v), the integrand satisfies the inequality

L x, v, � ~w
~m

	 

~mfR1fu>lg

�
ðT
0

ð
M�R

d
hgðt � t0Þwdðx � x0Þveðv� v0ÞL x, v, � wðt0, x0, v0Þ

mðt0, x0, v0Þ

	 

mðt0, x0, v0Þ dt0 dx0 dv0 fR1fu>lg

¼ hg	twd	xve	v L x, v, � w
m

	 

m

� �
fR1fu>lg:

Then, note that
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hg	twd	xve	v L x, v, � w
m

	 

m

� �
ðt, x, vÞ ¼ hg	twd	xve	v L �, � w

m

	 

m

� �
ðt, x, vÞ

þ hg	twd	xve	v L x, v, � w
m

	 

m� L �, � , � w

m

	 

m

� �
ðt, x, vÞ:

Then, since L �, � , � w
m

� �
m 2 L1ðð0,TÞ �M� R

dÞ, hg	twd	xve	v½L �, � , w
m

� �
m� converges

to L �, � , � w
m

� �
m in L1ðð0,TÞ �M� R

dÞ as g, d, e tend to zero. Since 0 � fR � 1,

lim
g, d, e!0

sup
R

���� hg	twd	xve	v L �, � , � w
m

	 

m

� �
� L �, � , � w

m

	 

m

� �
fR1fu>lg

����
L1
¼ 0:

It follows that if we take the regime R ¼ RðdÞ, e ¼ eðdÞ, g ¼ gðdÞ established above, then

lim
d!0

���� hg	twd	xve	v L �, � , � w
m

	 

m

� �
� L �, � , � w

m

	 

m

� �
fR1fu>lg

����
L1
¼ 0:

We stay with this regime and consider the remaining termðT
0

ð
M�R

d
hg	twd	xve	v L x, v, � w

m

	 

m� L �, � , � w

m

	 

m

� �
ðt, x, vÞfRðx, vÞ1fu>lg dx dv dt:

The integrand converges to zero almost everywhere: note then that����hg	twd	xve	v L x, v, � w
m

	 

m� L �, � , � w

m

	 

m

� �
fR1fu>lg

���� � hg	twd	xve	v C þ jwjr0

mr0

	 

m

� �
:

The right hand side converges in L1 to Cmþ jwjr0m1�r0 as d tends to zero. Thus by
dominated convergence we conclude that

lim
d!0

ðT
0

ð
M�R

d
L x, v, � ~w

~m

	 

~mfR1fu>lg dx dv dt �

ðT
0

ð
M�R

d
L x, v, � w

m

	 

m1fu>lg dx dv dt:

The reverse inequality follows from Fatou’s lemma. Thus

lim
d!0

ðT
0

ð
M�R

d
L x, v, � ~w

~m

	 

~mfR1fu>lg dx dv dt ¼

ðT
0

ð
M�R

d
L x, v, � w

m

	 

m1fu>lg dx dv dt:

Finally, we take the limit l ! �1: Since L x, v, � w
m

� �
m 2 L1, in the limit we obtainðT

0

ð
M�R

d
L x, v, � w

m

	 

m dx dv dt:

5.6. Conclusion

From the discussion above, we have obtainedð
M�R

d
u0m0 dx dv�

ð
M�R

d
Gðx, v,mTÞ dx dv�

ð
M�R

d
G	ðx, v, uTÞ dx dv�

ðT
0

ð
M�R

d
L x, v, � w

m

	 

m dx dv dt

�
ðT
0

ð
M�R

d
F	ðx, v, bÞ þ Fðx, v,mÞð Þ dx dv dt,
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where all terms are finite. Rearranging this inequality, we obtain the statement
~Aðu, b, bTÞ þ Bðm,wÞ � 0: w

Corollary 5.4. Let ðu, b, bTÞ 2 KA and ðm,wÞ 2 KB be such that ~Aðu, b, bTÞ < þ1
and Bðm,wÞ < þ1:

Then

b�m 2 L1ðð0,TÞ �M� R
dÞ and ðbTÞ�mT 2 L1ðM� R

dÞ:

Moreover, for almost all t 2 ½0,T�,ð
M�R

d
utmt � bTmT½ � dx dv�

ðT
t

ð
M�R

d
L x, v, � w

m

	 

m dx dv dt �

ðT
t

ð
M�R

d
bm dx dv dt,

andð
M�R

d
u0m0 � utmt½ � dx dv�

ðt
0

ð
M�R

d
L x, v, � w

m

	 

m dx dv dt �

ðt
0

ð
M�R

d
bm dx dv dt:

(5.7)

In particular,ð
M�R

d
u0m0 � bTmT½ � dx dv�

ðT
0

ð
M�R

d
L x, v, � w

m

	 

m dx dv dt �

ðT
0

ð
M�R

d
bm dx dv dt:

(5.8)

Proof. This is a consequence of the proof of Lemma 5.2 and in particular the inequality
(5.5). First, let us show the first part of the statement, i.e.

that b�m 2 L1ðð0,TÞ �M� R
dÞandðbTÞ�mT 2 L1ðM� R

dÞ:
As in the mentioned proof, let us first pass to the limit with g, d, e,R in the inequality

(5.5). Then, we pass to the limit as l ! �1 and k ! �1 the remaining terms.
All the terms, except the ones involving ððbTÞ�ÞlmT and ðb�Þkm1fu>lg pass to the

limit, as in the proof. After rearranging, we also find that both
Ð
M�R

dððbTÞ�ÞlmT dx dv

and
Ð T
0

Ð
M�R

dðb�Þkm1fu>lg dx dv dt are uniformly bounded, independently of l and k.
Therefore, the monotone convergence theorem yields

lim
l!�1

ð
M�R

d
ððbTÞ�ÞlmT dx dv ¼

ð
M�R

d
ðbTÞ�mT dx dv

and

lim
l!�1

lim
k!�1

ðT
0

ð
M�R

d
ðb�Þkm1fu>lg dx dv dt ¼

ðT
0

ð
M�R

d
b�m dx dv dt:

The summability results follow, and so does (5.8).
For the case of general t 2 ½0,T�, we begin by testing the equation to find that, for

example,
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ð
M�R

d
ulðt, x, vÞ~mðRÞðt, x, vÞ dx dv�

ð
M�R

d
ðbTÞl ~mðRÞðT, x, vÞ dx dv

�
ðT
t

ð
M�R

d
Lðx, v, � ~aÞ~mðRÞ1fu>lg dx dv dt

�
ðT
t

ð
M�R

d
bk ~m

ðRÞ1fu>lg dx dv dt �
ðT
t

ð
M�R

d
ul Eg, d, e,R dx dv dt:

We note that we are referring to the version of ul that is weakly right continuous in
time (see Appendix A). The only term that requires attention isð

M�R
d
ulðt, x, vÞ~mðRÞðt, x, vÞ dx dv:

For almost all t 2 ½0,T�, ulðtÞ 2 ðLq0 þ L1ÞðM� R
dÞ and mt 2 L1 \ Lq: Thus the argu-

ments for the boundary terms in Lemma 5.2 show that

lim
d!0

ð
M�R

d
ulðt, x, vÞ~mðRÞðt, x, vÞ dx dv ¼

ð
M�R

d
ulðt, x, vÞmðt, x, vÞ dx dv:

The limit l ! �1 is then taken by monotone convergence, noting that ðutÞþmt 2
L1ðM� R

dÞ: Note that the argument for the case (5.7) shows that limit is not negative
infinity, since all other terms have finite limits. w

Corollary 5.5. Let ðu, b, bTÞ 2 KA and ðm,wÞ 2 KB be such that ~Aðu, b, bTÞ < þ1 and
Bðm,wÞ < þ1. Then

(1) mjDvujr is uniformly bounded in L1ðð0,TÞ �M� R
dÞ, by a constant that

depends only on the data and ~Aðu, b, bTÞ and Bðm,wÞ:
(2) The following estimate holds:ðT

0

ð
M�R

d
mHðx, v,DvuÞ þmL x, v, � w

m

	 

þ Dvu � w dx dv dt

�
ð
M�R

d
bTmT dx dv�

ð
M�R

d
u0m0 dx dvþ

ðT
0

ð
M�R

d
bm dx dv dt

þ
ðT
0

ð
M�R

d
mL x, v, � w

m

	 

dx dv dt:

Proof. This is a consequence of (5.4). Using the same notation as in the proof of
Lemma 5.2, we rewrite (5.4) as
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ðT
0

ð
M�R

d
~mðRÞHðx, v,DvuÞ1fu>lg dx dv dt

�
ð
M�R

d
ðbTÞl ~mðRÞðT, x, vÞ dx dv�

ð
M�R

d
ulð0, x, vÞ~mðRÞð0, x, vÞ dx dv

þ
ðT
0

ð
M�R

d
bk ~m

ðRÞ1fu>lg dx dv dt �
ðT
0

ð
M�R

d
Dvul � ~wðRÞ1fu>lg dx dv dt

�
ðT
0

ð
M�R

d
ul Eg, d, e,R dx dv dt

�
ð
M�R

d
ðbTÞþ ~mðRÞðT, x, vÞ dx dvþ

ð
M�R

d ulð0, x, vÞ½ �� ~mðRÞð0, x, vÞ dx dv

þ
ðT
0

ð
M�R

d
bþ ~mðRÞ dx dv dt �

ðT
0

ð
M�R

d
Dvul � ~wðRÞ1fu>lg dx dv dt

�
ðT
0

ð
M�R

d
ul Eg, d, e,R dx dv dt:

Let us observe that for some h > 0 parameter that we choose later, Young’s inequality
yields

�
ðT
0

ð
M�R

d
Dvul � ~wðRÞ1fu>lg dx dv dt

¼ �
ðT
0

ð
M�R

d
hð~mðRÞÞ

1
rDvul � ~wðRÞh�1ð~mðRÞÞ�

1
r1fu>lg dx dv dt

� 1
r
hr
ðT
0

ð
M�R

d
~mðRÞjDvuljr1fu>lg dx dv dt þ

1
r0
h�r0

ðT
0

ð
M�R

d
j~wðRÞjr0ð~mðRÞÞ�

r0
r1fu>lg dx dv dt:

We notice that � r0
r ¼ 1� r0: Thus, by using the growth condition (2.1) on the

Hamiltonian and choosing h appropriately, we can conclude that there exists a constant
C> 0 (independent of the parameters l, k,R, g, e, d), such that after passing to the limit
with R, g, e, d, as in the proof of Lemma 5.2, we obtain

ðT
0

ð
M�R

d
mjDvuljr1fu>lg dxdvdt� Cþ

ð
M�R

d
ðbTÞþmðT,x,vÞdxdv

þ
ð
M�R

d ulð0,x,vÞ½ ��m0ðx,vÞdxdv

þ
ðT
0

ð
M�R

d
bþmdxdvdtþC

ðT
0

ð
M�R

d
jwjr

0
m1�r0 dxdvdt:

Since the right hand side of this inequality is uniformly bounded, independently of l
(by Lemma 4.1(ii), Corollary 4.2(ii) and Remark 3.7), the result follows by Fatou’s
lemma by sending l ! �1:
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Using (5.4), we haveðT
0

ð
M�R

d
~mðRÞHðx, v,DvuÞ1fu>lg dx dv dt þ

ðT
0

ð
M�R

d
~mðRÞL x, v, � ~w

~m

	 

1fu>lg dx dv dt

þ
ðT
0

ð
M�R

d
Dvu � ~wðRÞ1fu>lg dx dv dt

�
ð
M�R

d
ðbTÞl ~mðRÞðT, x, vÞ dx dv�

ð
M�R

d
ulð0, x, vÞ~mðRÞð0, x, vÞ dx dv

þ
ðT
0

ð
M�R

d
bk ~m

ðRÞ1fu>lg dx dv dt þ
ðT
0

ð
M�R

d
~mðRÞL x, v, � ~w

~m

	 

1fu>lg dx dv dt

�
ðT
0

ð
M�R

d
ul Eg, d, e,R dx dv dt:

Passing to the limit with R, g, e, d, as in the proof of Lemma 5.2, by Fatou’s lemma we
obtainðT

0

ð
M�R

d
mHðx, v,DvuÞ1fu>lg dx dv dt þ

ðT
0

ð
M�R

d
mL x, v, � w

m

	 

1fu>lg dx dv dt

þ
ðT
0

ð
M�R

d
Dvu � w1fu>lg dx dv dt

�
ð
M�R

d
ðbTÞlmðT, x, vÞ dx dv�

ð
M�R

d
ulð0, x, vÞmð0, x, vÞ dx dv

þ
ðT
0

ð
M�R

d
bkm1fu>lg dx dv dt þ

ðT
0

ð
M�R

d
mL x, v, � w

m

	 

1fu>lg dx dv dt:

Finally, taking the limit l, k ! �1 as in the proofs of Lemma 5.2 and Corollary 5.4, we
obtain ðT

0

ð
M�R

d
mHðx, v,DvuÞ þmL x, v, � w

m

	 

þ Dvu � w dx dv dt

�
ð
M�R

d
bTmT dx dv�

ð
M�R

d
u0m0 dx dvþ

ðT
0

ð
M�R

d
bm dx dv dt

þ
ðT
0

ð
M�R

d
mL x, v, � w

m

	 

dx dv dt:

6. Existence of a solution of the relaxed problem

In this section we prove the existence of a solution for the relaxed problem. Consider a
minimizing sequence ðun , bn, ðbTÞnÞn: We will extract a convergent subsequence, and
show that the limit constitutes a minimizer of the objective functional.

6.1. Compactness of the minimizing sequence

The following proposition enables the extraction of a convergent subsequence.
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Proposition 6.1. Let ðunÞn be a sequence of solutions to the Hamilton-Jacobi equations

�@tun � v � Dxun þ Hðx, v,DvunÞ ¼ bn,

Assume that:

� The family ðunÞn is uniformly bounded in L1t L1x, v, locðUm0Þ:
� The family ðDvunÞn is uniformly bounded in LrlocðUm0Þ:
� The family ðbnÞn is uniformly bounded in L1locðUm0Þ:

Then there exists a subsequence ðunjÞj that is strongly convergent in L1locðUm0Þ:
The proof of this result will be a consequence of some intermediate results that we

detail below.

Remark 6.2. Let us notice that the assumptions of Proposition 6.1 hold true by
Corollary 4.4 and Lemma 4.1.

Proposition 6.1 is proved by treating the Hamilton-Jacobi equation as a kinetic trans-
port equation with right hand side bounded in L1locðUm0Þ :

�@tun � v � Dxun ¼ bn � Hðx, v,DvunÞ:

A form of compactness for the solutions can be obtained by using an averaging lemma.
Averaging lemmas are results in kinetic theory showing that, for Lp-bounded families of
solutions to the kinetic transport equation, with Lp-bounded source terms, the velocity
averages

q/ u½ �ðt, xÞ :¼
ð
R

d
uðt, x, vÞ/ðvÞ dv / 2 C1

c ðRdÞ,

enjoy additional fractional Sobolev regularity and/or strong Lp-compactness. In our case
we are in the setting p¼ 1, and we use an L1 averaging result from [49]. It is necessary
to assume a certain equi-integrability condition on the solution un. This condition is
defined below.

Definition 6.3 (Equi-integrability in velocity). Let ðukÞk2K be a bounded family in

L1locð½0,T� �M� R
dÞ: The family is locally equi-integrable in v if, for all e > 0 and all

compact sets K 
 ½0,T� �M� R
d, there exists g > 0 such that for all measurable fami-

lies ðAt, xÞðt, xÞ2½0,T��M
of measurable subsets of Rd for which supðt, xÞ2½0,T��M

jAt, xj < g,ðT
0

ð
M

ð
At, x

1K jukðt, x, vÞj dv dx dt < e for all k 2 K:

The required averaging lemma is quoted below. This result was proved in [49] for
the stationary case, i.e. the equation v � Dxu ¼ b: The result can be adapted to the time
dependent equation by standard techniques; see [50] or [51] for statements in the time
dependent setting.
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Theorem 6.4. Let ðukÞk2K be a bounded family in L1ð½0,T�; L1locðM� R
dÞÞ satisfying

@tuk þ v � Dxuk ¼ bk, (6.1)

where ðbkÞk2K is a bounded family in L1locð½0,T� �M� R
dÞ. Assume that ðukÞk2K is

equi-integrable in v. Then

� The family ðukÞk2K is locally equi-integrable in all variables in ½0,T� �M� R
d:

� For each / 2 CcðRdÞ, the family of averages ðq/½uk�Þk2K is relatively (strongly)

compact in L1locð½0,T� �MÞ:

In our setting we expect to have local summability estimates in Um0 rather than

½0,T� �M� R
d: To deal with this technicality we make use of a localization procedure:

given a compact set K, consider a smooth bump function f supported in K. If uk satis-
fies the kinetic transport Equation (6.2), then ukf satisfies

@tðukfÞ þ v � DxðukfÞ ¼ bkfþ ð@tfþ v � rxfÞuk: (6.2)

The right hand side of the above equation is bounded in L1ð½0,T� �M� R
dÞ, uni-

formly in k, as long as uk and bk are bounded in L1locðUm0Þ:
We wish to apply this to the solutions of the Hamilton-Jacobi equation. To do this,

we verify the equi-integrability condition. To prove equi-integrability, we make use of
the Lr estimates available for the v-derivative Dvu:

Lemma 6.5. Let ðukÞk2K be a bounded family in L1t L1x, v, locðUm0Þ. Assume that ðDvukÞk2K
is a bounded family in LrlocðUm0Þ. Then:

� ðukÞk2K is bounded in L1t, xL
a
v, locðUm0Þ, where 1=a ¼ 1=r � 1=d if r< d, or any a <

þ1 if r � d:
� ðukÞk2K is equi-integrable in v, locally in Um0 :

Proof. We obtain higher integrability in the velocity variable by using Sobolev embed-
ding. We first apply a localization procedure. Given a compact set K 
 Um0 , let fK
denote a smooth bump function with compact support contained in Um0 , such that fK
takes values contained in ½0, 1� and fK � 1 on K. Then

DvðukfKÞ ¼ Dvuk fK þ uk DvfK :

Let K 0 denote the support of fK. Then

kDvðukfKÞkL1 � CðfKÞ kDvukkLrðK 0Þ þ kukkL1t L1x, vðK 0Þ
� 


,

thus DvðukfKÞ is bounded in L1, uniformly in k. Moreover it is compactly supported.
We then apply Sobolev embedding in the v variable. Letting 1	 :¼ d

d�1 , we have

kukkL1t, xL1	v ðKÞ � kukfKkL1t, xL1	v � CdkDvðukfKÞkL1 � Cðd, fKÞ kDvukkLrðK 0Þ þ kukkL1t L1x, vðK 0Þ
� 


:

Thus ðukÞk is uniformly bounded in L1t, xL
1	
v, loc:
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We now apply a bootstrap argument: it follows from the above that DvðukfKÞ is

bounded in L1t, xL
1	
v , and thus ðukÞk is bounded in L1t, xL

a
v, loc for a ¼ ð1� 2=dÞ�1: This

process can be repeated until we obtain that ðukÞk is bounded in L1t, xL
r	
v, loc, for 1=r	 ¼

1=r � 1=d, if r< d; otherwise we may obtain L1t, xL
a
v, loc for any a < þ1:

We now prove local equi-integrability. Let ðAt, xÞðt, xÞ2½0,T��M
be a measurable family

of measurable subsets of Rd, such that jAt, xj < g for all t, x. ThenðT
0

ð
M

ð
At, x

1K jukj dv dx dt � k1At, x1KkL1t, xLa0v kuk1KkL1t, xLav ,

where 0 denotes a H€older conjugate exponent. From the condition on the measure of
At, x, we haveðT
0

ð
M

ð
At, x

1K jukðt, x, vÞj dv dx dt � CðKÞ sup
t, x

jAt, xj1=a
0
kukkLrt, xLavðKÞ � CðKÞkukkL1t, xLavðKÞ g1=a

0
,

which proves equi-integrability. w

It follows that, under the assumptions of Proposition 6.1, Theorem 6.4 can be applied
to ðfKunÞn for any fK 2 C1

c ðUm0Þ: We deduce strong L1loc-compactness for the averages
ðq/½unfK �Þn: We now use this to prove strong compactness for the full solutions un.

Lemma 6.6. Assume that the family ðunÞn satisfies the following:

� ðunÞn is uniformly bounded in L1t L1x, v.
� ðunÞn is equi-integrable in all variables.
� ðunÞn share the same compact support K.
� ðDvunÞn is uniformly bounded in L1t, xL

r
v:

� For each / 2 C1
c ðRdÞ, the family of averages ðq/½un�Þn is relatively (strongly)

compact in L1loc:

Then the family ðunÞn is relatively (strongly) compact in L1.

Proof. First, note that the first two assumptions imply the weak L1 sequential compact-
ness of ðunÞn: We pass (without relabelling) to a weakly convergent subsequence un,
and let u denote the weak limit. In the remainder of the proof we improve the mode of
convergence of un to u to strong convergence in L1.

Step 1: Approximation by smoothing in v. We approximate un by a function that is

smooth with respect to the v variable. Fix / 2 C1
c ðRdÞ and define, for e > 0,

/eðvÞ :¼ e�d/
v
e

	 

:
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Let

un, eðt, x, vÞ :¼
ð
R

d
unðt, x, v0Þ/eðv� v0Þ dv0:

Step 2: Compactness for the approximations. Fix v	 2 R
d: For any w 2 L1t, x with

compact support we consider testing the sequence ðunÞn against the test function

wðt, xÞ/eðv	 � vÞ:

Since

hun,w/eðv	 � �Þi ! hu,w/eðv	 � �Þi, n ! þ1,

we deduce that un, eð�, � , v	Þ converges weakly in L1t, x, loc to u	v/eð�, � , v	Þ as n ! þ1:

Note moreover for each fixed v 2 R
d, un, eðt, x, vÞ is a velocity average with respect to

the test function /eðv� �Þ: Therefore, by Theorem 6.4 the convergence in fact holds

strongly in L1t, x, loc for each v 2 R
d:

Furthermore, for fixed e > 0, the family ðun, eÞn is equi-continuous in v into L1t L1x :
indeed

jun, eðt, x, vþ hÞ � un, eðt, x, vÞj ¼
����
ð
R

d
unðt, x, v0Þ /eðv� v0 þ hÞ � /eðv� v0Þ

� �
dv0
����

� jhjkr/ekL1
ð
R

d
junðt, x, v0Þj dv0:

Thus

kun, eð�, � , vþ hÞ � un, eð�, � , vÞkL1t L1x
� Ce sup

m
kumkL1t L1x, v

jhj:

By an Arzel�a-Ascoli argument the convergence therefore holds locally uniformly in v,

with respect to the strong topology on L1t, x, loc : that is, for all compact sets Kv 
 R
d and

Kt, x 
 ½0,T� � R
d,

lim
n!1

sup
v2Kv

kun, eðvÞ � u 	 /eðvÞkL1t, xðKt, xÞ ¼ 0:

Consequently, the convergence holds in L1loc; in fact, since un, e � u 	 /e is supported for
all n in K þ BCeð0Þ, the convergence holds in L1.

Step 3: Removing the approximation.
The bound on Dvun implies that, for any h 2 R

d,

kunðt, x, � þhÞ � unðt, x, �ÞkLrv � jhjkDvunðt, x, �ÞkLrv :
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It follows that

kun, e � unkL1t, xLrv�e sup
m

kDvumkL1t, xLrv :

Indeed, by definition of un, e,

un, e � un½ �ðt, x, vÞ ¼
ð
R

d
unðt, x, v� hÞ � unðt, x, vÞ½ �/eðhÞ dh:

Thus, for any g 2 Lr
0

v ðRdÞ,ð
R

d
un, e � un½ �ðt, x, vÞgðvÞ dv ¼

ð
R

d

ð
R

d
unðt, x, v� hÞ � unðt, x, vÞ½ �/eðhÞgðvÞ dh dv

� kgkLr0v

ð
R

d
kunðt, x, � þhÞ � unðt, x, �ÞkLrv j/eðhÞj dh

� kgkLr0v kDvunðt, x, �ÞkLrv

ð
R

d
jhjj/1

h
e

	 

je�d dh

� C/ekDvunðt, x, �ÞkLrvkgkLr0v :

That is,

kun, eðt, x, �Þ � unðt, x, �ÞkLrv�ekDvunðt, x, �ÞkLrv ,

then, one integrates in t, x and takes supremum.
Finally, estimate

kun � ukL1t, x, v � kun � un, ekL1t, x, v þ kun, e � u	v/ekL1t, x, v þ ku	v/e � ukL1t, x, v
� CKkun � un, ekL1t, xLrv þ kun, e � u	v/ekL1t, x, v þ CKku	v/e � ukL1t, xLrv
�CKe sup

m
kDvumkL1t, xLrv þ kun, e � u	v/ekL1t, x, v þ ku	v/e � ukL1t, xLrv :

Thus

limsup
n!1

kun � ukL1t, x, v�Ke sup
m

kDvumkL1t, xLrv þ ku	v/e � ukL1t, xLrv ! 0

as e ! 0, which completes the proof. w

Proof of Proposition 6.1. The proof of this proposition follows by applying Lemma 6.6
to ðfKunÞn: w

It remains to obtain the necessary convergence of ðbnÞn and ðbT, nÞn:

Lemma 6.7. Let ðun, bn, bT, nÞ be a minimizing sequence for Problem 3.8. There exists a

modification ðun, ~bn, ~bT, nÞ of this sequence that is also minimizing such that ð~bnÞn is

weakly precompact in L1locðUm0Þ and ð~bT, nÞn is weakly precompact in L1locðM� R
dÞ:

Proof. We replace bn with some ~bn � bn and ðbT, nÞn with ~bT, n � bT, n such that

ð~bn, ~bT, nÞ is uniformly integrable, and ðun, ~bn, ~bT, nÞ is still a minimizing sequence. We

do this in a similar manner to [20]: since ðbnÞ� is bounded in L1locðUm0Þ, using a com-
pact exhaustion of Um0 and a diagonal argument, by [59] it is possible to pass to a
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subsequence such that the following holds for some Jn 2 R: We define ~bn by

ð~bnÞ� :¼ ðbnÞ�1fðbnÞ��Jng, ð~bnÞþ ¼ ðbnÞþ:

Then it is possible to choose Jn in such a way that:

� For each compact set K 
 Um0 , the sequence ð~bnÞ�1K is uniformly integrable.
� The measure of the set fðbnÞ� > Jng \ K converges to zero as n tends

to infinity.

We use the exact same construction for ~bT, n, and we can get the same properties

(now taking K 
 M� R
d).

We notice, that by construction the constraints

�@tun � v � Dxun þHðx, v,DvunÞ � ~bn

and

uT, n � ~bT, n

are still satisfied. Finally,����
ðT
0

ð
M�R

d
F	ðx, v, ~bnÞ dx dv dt �

ðT
0

ð
M�R

d
F	ðx, v, bnÞ dx dv dt

����
�
ðT
0

ð
M�R

d
jF	ðx, v, 0Þ � F	ðx, v, bnÞj1fbn��Jng dx dv dt:

By the estimate (3.1), the integrand on the right hand side is dominated by 2CF 2 L1,
and thus the right hand side converges to zero as n tends to infinity.

The exact same arguments apply to G	 and ~bT, n too. Thus ðun, ~bn, ~bT, nÞ is a minimiz-
ing sequence. Moreover, there exists ðu, b, bTÞ such that up to passing to a subsequence,

ðunÞn converges to u strongly in L1locðUm0Þ, ð~bnÞn converges weakly to b in L1locðUm0Þ
and ð~bT, nÞn converges to bT weakly in L1locðM� R

dÞ: w

6.2. Existence of a minimizer of ~A over KA

In this subsection, we prove that there exists a minimizer ðu, b, bTÞ by passing to the
limit in the functional

~Aðun, ~bn, ~bT, nÞ :¼
ðT
0

ð
M�R

d
F	ðx, v, ~bnÞ dx dv dt �

ð
M�R

d
unð0, x, vÞm0ðx, vÞ dx dv

þ
ð
M�R

d
G	ð~bT, nðx, vÞÞ dx dv:

Theorem 6.8. Under our standing assumptions, the functional ~A admits a minimizer
over KA:
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Proof. Let ðun , bn, bT, nÞn2N be a minimizing sequence. Without loss of generality, for
example by considering un 2 C1, we may assume equality in the Hamilton-Jacobi equa-
tion:

�@tun � v � Dxun þ Hðx, v,DvunÞ ¼ bn, unðT, x, vÞ ¼ bT, nðx, vÞ:

For this minimizing sequence we have, for some constant C> 0,

sup
n

~Aðun, bn, bT, nÞ � C:

We have discussed that this implies uniform in n bounds on the following quantities:

kðbT, nÞþkLs0ðM�R
dÞ,
ð
M�R

d
ðu0, nÞ�m0 dx dv,

kðbT, nÞ�kL1x, v, locðM�R
dÞ, kðu0, nÞþkðL1þLq0Þx, v ,

kDvunkLrlocðUm0 Þ
, kðbnÞþkLq0t, x, v , kðbnÞ�kL1locðUm0 Þ

:

To get the uniform integrability on ðbnÞ� and ðbT, nÞ�, we perform the surgery argu-

ment as in Lemma 6.7. So, let ðun , ~bn ,
~bT, nÞn2N be the modification of the minimizing

sequence (which will still have uniformly bounded energy). By Proposition 6.1 we know

that ðunÞn2N is strongly precompact in L1locðUm0Þ, while Lemma 6.7 yields that ð~bnÞn2N
and ð~bT, nÞn2N are weakly precompact in L1locðUm0Þ and L1locðM� R

dÞ, respectively. In
particular, after passing to a subsequence let us denote by u the strong L1locðUm0Þ limit
of ðunÞn: In what follows, to ease the notation, we drop the tilde symbol, but whenever
we write bn and bT, n, we mean the corresponding modified versions.
Passing to further subsequences (that we do not relabel), there exist limit functions

so that we may also assume the following weak convergences:

� ðbnÞþ * bþ, weakly in Lq
0

t, x, vð½0,T� �M� R
dÞ, as n ! þ1:

� bn * b, weakly in L1locðUm0Þ, as n ! þ1:

� ðbT, nÞþ * ðbTÞþ, weakly in Ls0ðM� R
dÞ, as n ! þ1:

� bn,T * bT , weakly in L1locðM� R
dÞ, as n ! þ1:

� Dvun * Dvu, weakly in LrlocðUm0Þ, as n ! þ1:

With these convergences in hand, we are ready to pass to the limit in the Hamilton-
Jacobi inequality constraint and the functional. Note that the weak form of the inequal-

ity (Definition 3.9) implies that, for all n and all test functions / 2 C1
c ðð0,T� �M�

R
dÞ such that / � 0,ðT

0

ð
M�R

d
ð@t/þ v � Dx/Þun þ /Hðx, v,DvunÞ dx dv dt �

ðT
0

ð
M�R

d
/bn dx dv dt

þ
ð
M�R

d
/ðT, x, vÞbT, n dx dv:

(6.3)

Note again that / is compactly supported in Um0 : By the weak convergence of Dvun
in LrlocðU0Þ and the convexity of H it follows that
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ðT
0

ð
M�R

d
/Hðx, v,DvuÞ dx dv dt ¼

ð
Um0

/Hðx, v,DvuÞ dx dv dt

� lim inf
n

ð
Um0

/Hðx, v,DvunÞ dx dv dt ¼ lim inf
n

ðT
0

ð
M�R

d
/Hðx, v,DvunÞ dx dv dt:

All the other convergences stated above are sufficient to guarantee convergence against
/: So, we obtain that the limit ðu, b, bTÞ satisfies (3.6).
Next, we consider the convergence in the functional. In addition to the previous con-

vergences, along the previously chosen subsequence, we have

� ðu0, nÞþ *
? ð�u0Þþ, weakly-	 in ðL1 þ Lq

0 ÞðM� R
dÞ, as n ! þ1:

The convergence of the sequence ððu0, nÞ�m0Þn requires special attention. The bound-

edness of this sequence in L1ðM� R
dÞ lets us conclude that there exists a nonnegative

Radon measure � such that after passing to a subsequence (that we do not relabel)

ðu0, nÞ�m0 *
?
�, as n ! þ1:

This means in particular that for all / 2 CcðM� R
dÞ, we haveð

M�R
d
/ðu0, nÞ�m0 dx dv !

ð
M�R

d
/�ð dx dvÞ, as n ! þ1:

Since the the sequence ððu0, nÞ�m0Þn2N is supported in the open set fm0 > 0g, we get
that sptð�Þ � sptðm0Þ: Now, let us take / 2 Ccðfm0 > 0gÞ arbitrary and define w :¼
/=m0: Since m0 2 CðM� R

dÞ, by assumption, we have that w 2 Ccðfm0 > 0gÞ and soð
M�R

d
wðu0, nÞ�m0 dx dv ¼

ð
M�R

d
ð/=m0Þðu0, nÞ�m0 dx dv

¼
ð
M�R

d
/ðu0, nÞ� dx dv !

ð
M�R

d
ð/=m0Þ�ð dx dvÞ, as n ! þ1:

Thus, this means that as n ! þ1, ðun, 0Þ� converges weakly-	 to the nonnegative
Radon measure ð�u0Þ� :¼ 1

m0
� �, i.e. ðu0Þ� has density 1

m0
with respect to �. We notice

that this means that ð�u0Þ� is absolutely continuous with respect to �. In fact, we also
have that � is absolutely continuous with respect to ð�u0Þ�, and so we can
write � ¼ m0 � ð�u0Þ�:
Let us take now / 2 C1

c ðUm0Þ, and test the inequalities satisfied by ðun, bn, bT, nÞ,
similarly to (6.3), to obtainðT

0

ð
M�R

d
ð@t/þ v � Dx/Þun þ /Hðx, v,DvunÞ dx dv dt �

ðT
0

ð
M�R

d
/bn dx dv dt

þ
ð
M�R

d
/ðT, x, vÞbT, n dx dv�

ð
M�R

d
/ð0, x, vÞu0, n dx dv:

Incorporating also the previously described convergence of ðu0, nÞn, we can pass to the
limit along the chosen subsequence and obtain
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ðT
0

ð
M�R

d
ð@t/þ v � Dx/Þuþ /Hðx, v,DvuÞ dx dv dt

�
ð
M�R

d
bT/T dx dv�

ð
M�R

d
/0�u0ð dx dvÞ þ

ðT
0

ð
M�R

d
/b dx dv dt,

where �u0 :¼ ð�u0Þþ � ð�u0Þ�: We notice that �u0 is a signed Radon measure, supported
in sptðm0Þ:
Having in hand this last inequality, we readily check that the assumptions of Lemma

A.11 are fulfilled with the choice of b0 ¼ �u0 and bT as before. This means in particular
that u satisfies

�@tu� v � DxuþHðx, v,DvuÞ � b, in D0ðð0,TÞ �M� R
dÞ

u0 � �u0 in D0ðfm0 > 0gÞ; uT � bT in D0ðM� R
dÞ,

(

where when writing the traces u0 and uT, we are referring to the right continuous ver-
sion of u in time. Since by construction, h�u0,m0i ¼

Ð
M�R

dð�u0Þþm0 dx dv� hð�u0Þ�,m0i
is finite, we have that hu0,m0i is meaningful and finite, with

�hu0,m0i � �h�u0,m0i:

Lower semicontinuity of the term involving �
Ð
M�R

dm0u0ð dx dvÞ:

Claim.Ð
fm0>0gm0ðu0Þ�ð dx dvÞ �

Ð
M�R

dm0ð�u0Þ�ð dx dvÞ � lim infn!1
Ð
M�R

dðu0, nÞ�m0 dx dv:

Proof of Claim. First, notice that since u0 � �u0 is a positive distribution, it can be repre-

sented by a Radon measure. We may therefore write, for some �0 2 MþðM� R
dÞ,

such that sptð�0Þ � sptðm0Þ and
u0 ¼ �u0 þ �0 ¼ ð�u0Þþ þ �0

� �
� ð�u0Þ�:

It follows that the Hahn-Jordan decomposition of u0 satisfies

ðu0Þþ � ð�u0Þþ þ �0, ðu0Þ� � ð�u0Þ�:

Now consider any compactly supported function f 2 Ccðfm0 > 0gÞ, such that 0 �
f � 1: Thenð

M�R
d
fm0ð�u0Þ�ð dx dvÞ ¼ lim

n!1

ð
M�R

d
fðu0, nÞ�m0 dx dv � lim inf

n!1

ð
M�R

d
ðu0, nÞ�m0 dx dv:

Since ðu0Þ� � ð�u0Þ� as measures,ð
M�R

d
fm0ðu0Þ�ð dx dvÞ � lim inf

n!1

ð
M�R

d
ðu0, nÞ�m0 dx dv:

Then take a non-decreasing sequence of functions fk such that fk converges pointwise
to the indicator function of the set fm0 > 0g as k tends to infinity: consider for
example functions such that
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fkðx, vÞ ¼
1 if m0ðx, vÞ > 2�k

0 if m0ðx, vÞ � 2�ðkþ1Þ:

(

This is always possible since m0 is continuous. Then, by monotone convergence, we
indeed haveð
M�R

d
m0ðu0Þ�ð dx dvÞ ¼ lim

k!þ1

ð
M�R

d
fkm0ðu0Þ�ð dx dvÞ � lim inf

n!1

ð
M�R

d
ðu0, nÞ�m0 dx dv,

as desired and the claim follows.

By the weak star convergence of ðu0, nÞþ to ð�u0Þþ in ðL1 þ Lq0ÞðM� R
dÞ, we also

have that, for �u0, the positive part ðu0, nÞþm0 converges to ð�u0Þþm0 strongly in L1ðM�
R

dÞ: Since �u0 � ��u0 as signed measures, we deduce that

�
ð
M�R

d
m0u0ð dx dvÞ � �

ð
M�R

d
m0�u0ð dx dvÞ � lim inf

n
�
ð
M�R

d
u0, nm0 dx dv , (6.4)

as required.
The term involving G	:
For the term involving G	, we notice that by convexityð

M�R
d
G	ðx, v, bTÞ dx dv � lim inf

n!þ1

ð
M�R

d
G	ðx, v, bT, nÞ dx dv: (6.5)

Indeed, by classical results (cf. [57, Proposition I.2.3, Corollary I.2.2]), this is a conse-
quence of the convexity of the integrand in the last variable and Fatou’s lemma that

yields the lower semi-continuity with respect to the strong topology on L1locðM� R
dÞ:

The term involving F	:

First note that, for functions b such that bþ 2 Lq0ð½0,T� �M� R
dÞ and b� 2

L1locð½0,T� �M� R
dÞ, by (3.1) the following inequality holds:

jF	ðx, v, bÞj � c�1jbþjq
0
þ CFðx, vÞ 2 L1ð 0,T½ � �M� R

dÞ:

Thus ðT
0

ð
M�R

d
F	ðx, v, bÞ dx dv dt ¼

ð
Um0

F	ðx, v, bÞ dx dv dt: (6.6)

Indeed, since Um0 ¼ f0g � fm0 > 0g [ ð0,TÞ �M� R
d, for all d > 0 we have����

ðT
0

ð
M�R

d
F	ðx, v, bÞ dx dv dt �

ð
Um0

F	ðx, v, bÞ dx dv dt
���� �

ðd
0

ð
fm0>0g

jF	ðx, v, bÞj dx dv dt:

The integrand is bounded by the L1 function jF 	ðx, v, bÞj and converges to zero almost
everywhere as d tends to zero. Thus, taking d ! 0 we obtain (6.6). A similar equality
holds for all bn.
Therefore, by the convexity of F	 (and by arguments similar to the one for G	), we

conclude that
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ðT
0

ð
M�R

d
F	ðx, v, bÞ dx dv dt ¼

ð
Um0

F	ðx, v, bÞ dx dv dt � lim inf
n!þ1

ð
Um0

F	ðx, v, bnÞ dx dv dt

¼ lim inf
n!þ1

ðT
0

ð
M�R

d
F	ðx, v, bnÞ dx dv dt:

(6.7)

Thus, collecting all the previous arguments, one deduces that

~Aðu, b, bTÞ � lim inf
n!þ1

~Aðun, bn,wnÞ:

The thesis of the theorem follows. w

Corollary 6.9. In the setting and notation of the previous theorem, in fact u0 ¼ �u0

on fm0 > 0g:

Proof. Since ðu, b, bTÞ is a minimizer,

~Aðu,b,bTÞ � �
ð
M�R

d
m0�u0ð dx dvÞ þ lim inf

n!þ1

ðT
0

ð
M�R

d
F	ðx, v, bnÞ dx dv dt

þ lim inf
n!1

ð
M�R

d
G	ðx, v, bT, nÞ dx dv

� lim
n!þ1

�
ð
M�R

d
m0u0, nð dx dvÞ þ

ðT
0

ð
M�R

d
F	ðx, v,bnÞ dx dv dt þ

ð
M�R

d
G	ðbT, nÞ dx dv

 !

¼ ~Aðu, b, bTÞ,

where in the last equality we have used that ðun, bn, bT, nÞ is a minimizing sequence.
All the above inequalities are therefore equalities. From the inequalities (6.4), (6.5)

and (6.7) for each of the terms, we deduce that

�
ð
M�R

d
m0u0ð dx dvÞ ¼ �

ð
M�R

d
m0�u0ð dx dvÞ:

It follows that u0 ¼ �u0 as signed measures on fm0 > 0g: Indeed, first note that u0 � �u0

as signed measures, or in other words u0 � �u0 is a nonnegative measure. For any non-
negative test function /0 2 Ccðfm0 > 0gÞ we have m0 � e > 0 on the support of /0,
for some e > 0: Thus there exists a constant C such that /0 � Cm0: Thus

0 �
ð
M�R

d
/0ðu0 � �u0Þð dx dvÞ � C

ð
M�R

d
m0ðu0 � �u0Þð dx dvÞ ¼ 0:

Thus u0 ¼ �u0 as signed measures on fm0 > 0g: w

7. Existence and uniqueness of a solution to the MFG system

In this section we prove Theorem 2.4. First, we show that the minimizers of Problems
3.3 and 3.8 that we have obtained in the previous sections provide weak solutions
(u, m) of the MFG.

1994 M. GRIFFIN-PICKERING AND A. R. MÉSZÁROS



Theorem 7.1. Let ðu, b, bTÞ be a minimizer of ~A over KA and let (m, w) be a minimizer
of B over KB. Then

(i) bðt, x, v, Þ ¼ f ðx, v,mðt, x, vÞÞ for a.e. ðt, x, vÞ 2 ð0,TÞ �M� R
d,

bTðx, vÞ ¼ gðx, v,mTðx, vÞÞ for a.e. ðx, vÞ 2 M� R
d;

(ii) wðt, x, vÞ ¼ �mðt, x, vÞDpvHðx, v,Dvuðt, x, vÞÞ for a.e. ðt, x, vÞ 2 ð0,TÞ �M� R
d:

As a consequence, (u, m) is a weak solution to (1.1) in the sense of Definition 2.3.

Proof. By Theorem 5.1,

~Aðu, b, bTÞ þ Bðm,wÞ ¼ 0:

Substituting the definitions of the functionals, we obtainðT
0

ð
M�R

d
Fðx, v,mÞ þ F	ðx, v, bÞ dx dv dt �

ð
M�R

d
m0u0ð dx dvÞ

þ
ð
M�R

d
Gðx, v,mTÞ þ G	ðx, v, bTÞ dx dvþ

ðT
0

ð
M�R

d
L x, v, � w

m

	 

m dx dv dt ¼ 0:

Fenchel’s inequality then implies thatðT
0

ð
M�R

d
bm dx dv dt þ

ð
M�R

d
bTmT �m0u0 dx dvþ

ðT
0

ð
M�R

d
L x, v, � w

m

	 

m dx dv dt � 0:

By Corollary 5.4, the left hand side is non-negative, and therefore equality holds:ðT
0

ð
M�R

d
bm dx dv dt þ

ð
M�R

d
bTmT �m0u0 dx dvþ

ðT
0

ð
M�R

d
L x, v, � w

m

	 

m dx dv dt ¼ 0:

(7.1)

Moreover, equality also holds almost everywhere in the applications of Fenchel’s

inequality. Thus the following hold almost everywhere in ½0,T� �M� R
d :

b ¼ f ðx, v,mðt, x, vÞÞ, bT ¼ gðx, v,mðT, x, vÞÞ: (7.2)

By (7.1) and Corollary 5.5,ðT
0

ð
M�R

d
mHðx, v,DvuÞ þmL x, v, � w

m

	 

þ Dvu � w dx dv dt � 0:

By Fenchel’s inequality, the integrand on the right hand side is non-negative; we deduce
that equality holds in the above estimate and thus the integrand is equal almost every-
where to zero. It follows that

w
m

¼ �DpvHðx, v,DvuÞ

almost everywhere on the support of m. Moreover,
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mL x, v, � w
m

	 

¼ m Dvu � DpvHðx, v,DvuÞ �Hðx, v,DvuÞ

� �
: (7.3)

The energy equality then follows from substituting (7.2) and (7.3) into (7.1). w

We show now, conversely, that weak solutions to the MFG system are in fact mini-
mizers in the corresponding variational problems. The proof of this result follows simi-
lar ideas as the corresponding ones from [20,21].

Theorem 7.2. Let (u, m) be a weak solution to (1.1) in the sense of Definition 2.3. Then
by setting b :¼ f ð�, � ,mÞ, bT :¼ gð�, � ,mTÞ and w :¼ �mDpvHð�, � ,DvuÞ, we find that
(m, w) is a solution of Problem 3.3, while ðu, b, bTÞ is a solution of Problem 3.8.

Proof. First let us notice that by Fenchel’s equality one has

F	ð�, � , f ð�, � ,mÞÞ ¼ Fð�, � ,mÞ �mf ð�, � ,mÞ:

We define the Borel set B :¼ fðt, x, vÞ 2 ½0,T� �M� R
d : f ðx, v,mðt, x, vÞÞ � 0g:

Restricted to this set, we find

�CF � F	ð�, � , f ð�, � ,mÞÞ � Fð�, � ,mÞ, a:e: in B,

where in the first inequality we have used our assumptions (3.1). Since, CF, F	ð�, � , 0Þ
and Fð�, � ,mÞ are summable, this implies in particular that F	ð�, � , f ð�, � ,mÞþÞ 2
L1ð½0,T� �M� R

dÞ: Using the growth condition on F	 we find furthermore

that f ð�, � ,mÞþ ¼ bþ 2 Lq0ð½0,T� �M� R
dÞ:

Now, on Bc, i.e. when f ð�, � ,mÞ � 0, we find

0 � mf ð�, � ,mÞ� ¼ �mf ð�, � ,mÞ ¼ F	ð�, � , f ð�, � ,mÞÞ � Fð�, � ,mÞ
� sup

b<0
F	ð�, � , bÞ � Fð�, � ,mÞ:

Again, the summability of the right hand side, we find that mf ð�, � ,mÞ� 2 L1ð½0,T� �
M� R

dÞ: Using the exact same arguments for G	, we find similarly that ðbTÞþ 2
Ls

0 ðM� R
dÞ and mTðbTÞ� 2 L1ðM� R

dÞ:
Moreover, we have that Dvu 2 LrlocðUm0Þ, m 2 L1ð½0,T� �M� R

dÞ and w 2
L1ð½0,T� �M� R

d;RdÞ, so (m, w) and ðu, b, bTÞ are admissible competitors for the
two optimization problems.
Now, take ð�u, �b, �bTÞ as an admissible competitor for the problem involving the func-

tional ~A: By the convexity and differentiability of F	 and G	 in their last variable we
have
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~Að�u, �b, �bTÞ ¼
ðT
0

ð
M�R

d
F	ðx, v, �bÞ dx dv dt �

ð
M�R

d
m0�u0ð dx dvÞ þ

ð
M�R

d
G	ð�bTÞ dx dv

�
ðT
0

ð
M�R

d
F	ðx, v, bÞ dx dv dt þ

ðT
0

ð
M�R

d
@bF	ðx, v, bÞð�b � bÞ dx dv dt

�
ð
M�R

d
m0u0ð dx dvÞ þ

ð
M�R

d
m0ðu0 � �u0Þð dx dvÞ

þ
ð
M�R

d
G	ðbTÞ dx dvþ

ð
M�R

d
@bTG

	ðbTÞð�bT � bTÞ dx dv

¼ ~Aðu, b, bTÞ þ
ðT
0

ð
M�R

d
mð�b � f ð�, � ,mÞÞ dx dv dt þ

ð
M�R

d
m0ðu0 � �u0Þð dx dvÞ

þ
ð
M�R

d
mTð�bT � gð�, � ,mTÞÞ dx dv

where we have used the fact that mf ð�, � ,mÞ 2 L1ð½0,T� �M� R
dÞ and mTgð�, � ,mTÞ 2

L1ðM� R
dÞ (by the arguments at the beginning of this proof). Moreover, m�b 2

L1ð½0,T� �M� R
dÞ and mT

�bT 2 L1ðM� R
dÞ (cf. Corollary 5.4) and

@bF	ðx, v, bÞ ¼ @bF	ðx, v, f ðx, v,mÞÞ ¼ @bF	ðx, v, @mFðx, v,mÞÞ ¼ m,
@bTG

	ðx, v, bTÞ ¼ @bG	ðx, v, gðx, v,mTÞÞ ¼ @bTG
	ðx, v, @mTGðx, v,mTÞÞ ¼ mT :

Now, using (2.4), one obtains

~Að�u, �b, �bTÞ � ~Aðu, b, bTÞ þ
ðT
0

ð
M�R

d
m�b dx dv dt þ

ð
M�R

d
mT

�bT dx dv�
ð
M�R

d
m0�u0ð dx dvÞ

þ
ðT
0

ð
M�R

d
Lð�, � , � w=mÞm dx dv dt,

where in the last line we have used

DpvHð�, � ,DvuÞ � Dvu� Hð�, � ,DvuÞ ¼ Lð�, � ,DpvHð�, � ,DvuÞÞ:

By Corollary 5.4 we conclude that ~Að�u, �b, �bTÞ � ~Aðu, b, bTÞ, as desired.
Using the very same ideas and the convexity of F and G, we can conclude similarly

that (m, w) must be a minimizer in Problem 3.3. w

Finally, we show that solutions in the sense of Definition 2.3 are unique, again fol-
lowing similar ideas as the corresponding ones from [21]. One major difference, how-
ever, is that we develop a suitable comparison principle for the distributional solutions
to the corresponding Hamilton-Jacobi inequalities. This completes the proof of
Theorem 2.4.

Proof of Theorem 2.4. The existence of a weak solution (u, m) follows from combining

Theorem 6.8 (existence of a minimizer for ~A), Theorem 5.1 (duality, and the fact that

the infimum for ~B is attained) and Theorem 7.1 (minimizers are weak solutions in the
sense of Definition 2.3).
For the uniqueness, we first apply Theorem 7.2 to obtain that for i¼ 1, 2, ðui, f ð�, � ,miÞ,

gð�, � ,miðTÞÞÞ are minimizers of ~A over K ~A and ðmi, �miDpHð�, � ,DvuiÞÞ are minimizers
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of ~B over K~B : Since the minimizer of ~B is unique by strict convexity, m1 ¼ m2 ¼: m almost
everywhere and�m1DpHð�, � ,Dvu1Þ ¼ �m2DpHð�, � ,Dvu2Þ ¼: w almost everywhere.
To show that u1 ¼ u2 almost everywhere on the set fm > 0g, we first define u ¼

maxfu1, u2g: By Lemma B.2, u also satisfies the Hamilton-Jacobi inequality, with b ¼
f ð�, � ,mÞ and bT ¼ gð�, � ,mTÞ: Since ui � u for i¼ 1, 2, we have

�
ð
M�R

d
m0u0ð dx dvÞ � �

ð
M�R

d
m0 ui½ �0ð dx dvÞ,

and thus ~Aðu, b, bTÞ � ~Aðui, b, bTÞ: Since ui is a minimizer, equality holds. By duality,
equality then holds in the energy inequalities of Corollary 5.4 for u and m, with b, bT ,w
as defined previously. Thus, for almost all t 2 ½0,T�,ð
M�R

d
utmtdxdv¼

ðT
t

ð
M�R

d
L x,v,�w

m

	 

mdxdvdtþ

ðT
t

ð
M�R

d
bmdxdvdtþ

ð
M�R

d
bTmTdxdv:

The same is true replacing u by ui, and soð
M�R

d
utmt dx dv ¼

ð
M�R

d
ðuiÞtmt dx dv, i ¼ 1, 2:

Thus, since also ui � u, we deduce that ui ¼ u almost everywhere on the set
fm > 0g: w

8. Sobolev estimates on the solutions

In this section, we obtain Sobolev estimates on the optimizers of the variational prob-
lems, and hence on weak solutions for the MFG system (1.1). The general idea is to
“compare” the optimality of the optimizers in the variational problems with their care-
fully chosen translates. Then using strong convexity of the data one can deduce differ-
ential quotient estimates.
These results are inspired by [23,24]. However, because of the kinetic nature of the

model we need completely new ideas when we consider perturbations. So, the estimates
that we obtain are on suitable kinetic differential operators applied to the solutions.
Another crucial difference between our results and the ones in [23,24] is that our
Sobolev estimates in the x and v variables are local in time on ð0,T�: The main reason
behind this is that we have a weaker notion of trace for u0, that we cannot ensure to be
stable under perturbations. This imposed further technical complications that require us
to work in the case of r¼ 2.
We emphasize that these estimates are consequences of the stronger convexity and

regularity assumptions on the data stated in Assumption 2.

8.1. Local in time Sobolev estimates

Let f : ½0,T� ! R be a smooth cutoff function such that fð0Þ ¼ 0 and fðtÞ � 0 for all

t> 0. We define g : ½0,T� ! R as gðtÞ :¼
Ð t
0 fðsÞ ds:

1998 M. GRIFFIN-PICKERING AND A. R. MÉSZÁROS



For competitors (m, w) in Problem 3.3, without loss of generality one might assume

the representation w ¼ Vm, for a suitable vector field V. Let d 2 R
d with jdj 
 1 and

define

mdðt, x, vÞ :¼ mðt, x þ gðtÞd, vþ fðtÞdÞ and Vdðt, x, vÞ :¼ Vðt, x þ gðtÞd, vþ fðtÞdÞ � f0ðtÞd:

We use the notation wd :¼ Vdmd:

We notice that by construction, if ðm,wÞ ¼ ðm,VmÞ is a distributional solution to
(3.3), so is ðmd,wdÞ ¼ ðmd,VdmdÞ and mdð0, � , �Þ ¼ m0:

Similarly, for competitors ðu, b, bTÞ in Problem 3.8 we define

udðt, x, vÞ :¼ uðt, xþ gðtÞd, vþ fðtÞdÞ, bdðt, x, vÞ :¼ bðt, x þ gðtÞd, vþ fðtÞdÞ,
and bdTðx, vÞ :¼ bTðx þ gðtÞd, vþ fðtÞdÞ:

Furthermore, we define

Hdðx, v, nÞ :¼ Hðx þ gðtÞd, vþ fðtÞd, nÞ þ f0ðtÞd � n,
F dðx, v, hÞ :¼ Fðxþ gðtÞd, vþ fðtÞd, hÞ,
Gdðx, v, hÞ :¼ Gðx þ gðtÞd, vþ fðtÞd, hÞ:

When computing the Legendre transforms of these functions in their last variables we
obtain

ðHdÞ	ðx, v, nÞ :¼ H	ðx þ gðtÞd, vþ fðtÞd, n� f0ðtÞdÞ,
ðF dÞ	ðx, v, hÞ :¼ F	ðxþ gðtÞd, vþ fðtÞd, hÞ,
ðGdÞ	ðx, v, hÞ :¼ G	ðx þ gðtÞd, vþ fðtÞd, hÞ:

Let us notice that Hd satisfies in particular the hypotheses imposed in Assumptions 1.

Correspondingly, we define the functionals ~Ad
and Bd and the constraint sets Kd

A and

Kd
B, using the shifted versions of the data functions. By construction, as a consequence

of a change of variable formula, the proof of the following lemma is immediate.

Lemma 8.1. (m, w) is an optimizer of B over KB if and only if ðmd,wdÞ is an optimizer

of Bd over Kd
B. Similarly, ðu, b, bTÞ is an optimizer of ~A over KA if and only if

ðud, bd, bdTÞ is an optimizer of ~Ad
over Kd

A:

Proof. We provide the proof of one of the statements only, the other ones follow similar

steps. Suppose that ðmd,wdÞ is an optimizer of Bd over Kd
B: This means in particular

the minimality of the quantity
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ðT
0

ð
M�R

d
F dðx, v,mdÞ dx dv dt þ

ðT
0

ð
M�R

d
ðHdÞ	 x, v, � wd

md

	 

m dx dv dt

þ
ð
M�R

d
Gdðx, v,md

Tðx, vÞÞ dx dv

¼
ðT
0

ð
M�R

d
Fðx þ gðtÞd, vþ fðtÞd,mðt, x þ gðtÞd, vþ fðtÞdÞÞ dx dv dt

þ
ðT
0

ð
M�R

d
H	 xþ gðtÞd, vþ fðtÞd, � wðt, x þ gðtÞd, vþ fðtÞdÞ

mðt, x þ gðtÞd, vþ fðtÞdÞ

	 

m dx dv dt

þ
ð
M�R

d
Gðxþ gðtÞd, vþ fðtÞd,mTðxþ gðtÞd, vþ fðtÞdÞÞ dx dv

¼
ðT
0

ð
M�R

d
Fðx, v,mÞ dx dv dt þ

ðT
0

ð
M�R

d
H	 x, v, � w

m

	 

m dx dv dt

þ
ð
M�R

d
Gðx, v,mTðx, vÞÞ dx dv,

where in the last equality we have used the change of variables ðx, vÞ7!ðx � gðtÞd, v� fðtÞdÞ:
So, this means that the minimality of ðmd,wdÞ, after a change of variables, yields the minimal-
ity of (m, w). w

Now we are ready to state the main result of this subsection.

Theorem 8.2. Suppose that (u, m) is a weak solution to (1.1) in the sense of Definition
2.3 and that (H5), (H6), (H7) hold.
Then, there exists �C > 0 such that

km
q
2�1ðgDx þ fDvÞmkL2ðð0,T��M�R

dÞ � �C, km1=2ðgDx þ fDvÞDvukL2ðð0,T��M�R
dÞ � �C

and

km
s
2�1
T ðgðTÞDx þ fðTÞDvÞmTkL2ðM�R

dÞ � �C:

Remark 8.3. As for Theorem 2.5, this is an informal statement: the result we obtain is
on suitable difference quotients as in estimate (8.8) below.

Proof of Theorem 8.2. Let ðun, bn ,bT, nÞn2N be a minimizing sequence for Problem 3.8

such that un 2 C1
c ð½0,T� �M� R

dÞ,

bn ¼ �@tun � v � Dxun þ Hðx, v,DvunÞ, bT, n ¼ uðT, � , �Þ:

Let us recall that after passing to a subsequence, that we do not relabel, as a conse-
quence of Proposition 6.1, Lemma 6.7 and by Claim 2 in the proof of Theorem 7.1, we
have that

� ðbnÞþ * bþ, weakly in Lq
0 ð½0,T� �M� R

dÞ, as n ! þ1:

� ðbnÞ� * b�, weakly in L1locðUm0Þ, as n ! þ1:

� ðbT, nÞþ * ðbTÞþ, weakly in Ls
0 ðM� R

dÞ, as n ! þ1:
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� ðbT, nÞ� * ðbTÞ�, weakly in L1locðM� R
dÞ, as n ! þ1:

� ðu0, nÞþ *
? ð~u0Þþ, weakly-	 in ðL1 þ Lq0ÞðM� R

dÞ, as n ! þ1:

� Dvun * Dvu, weakly in Lrmð½0,T� �M� R
dÞ, as n ! þ1:

Notice that the previous arguments imply also that the subsequence can be chosen
such that for all M< 0

bn1fbn�Mg*
?
b1fb�Mg, weakly � 	 in ðL1 þ Lq0Þð 0,T½ � �M� R

dÞ as n ! þ1 (8.1)

and

bT, n1fbT, n�Mg *
?
bT1fbT�Mg, weakly � 	 in ðL1 þ Ls0ÞðM� R

dÞ as n ! þ1:

Furthermore, by Theorem 7.1, we have that b ¼ f ð�, � ,mÞ and bT ¼ gð�, � ,mTÞ:
Let w ¼ �mDpvHð�, � ,DvuÞ:
Fix d 2 R

d such that jdj 
 1 and f : ½0,T� ! R as described at the beginning of
this subsection.
Now, the main idea is to use udn as a test function in the weak formulation of the

equation satisfied by (m, w) and un as test function in the weak form of the equation
satisfied by ðmd,wdÞ: Then we combine these inequalities with the energy equality (2.4)
written for (m, w) and ðmd,wdÞ, respectively, and rely on the strong convexity and
regularity properties of the data to deduce a differential quotient estimate.
Following these steps, we obtainð
M�R

d
bdT, nmT � ud0, nm0

h i
dx dv �

ðT
0

ð
M�R

d
ðHdðx, v,Dvu

d
nÞ � bdnÞmþ Dvu

d
n � w dx dt:

We combine this with the energy equality (2.4) for (m, w) to getð
M�R

d
ðbdT, n � gð�, � ,mTÞÞmT � ðud0, n � u0Þm0 dx dv

�
ðT
0

ð
M�R

d
ðHdðx, v,Dvu

d
nÞ þH	ðx, v, � w=mÞ þ Dvu

d
n � w=m� bdn þ f ð�, � ,mÞÞm dx dv dt:

(8.2)

Similarly, using un as a test function in the weak form of the equation for ðmd,wdÞ and
combining with (2.4) for ðmd,wdÞ,ð

M�R
d
ðbT, n � gdðx, v,md

TÞÞmd
T � ðu0, n � ud0Þmd

0

h i
dx dv

�
ðT
0

ð
M�R

d
ðHðx, v,DvunÞ þ ðHdÞ	ðx, v, � wd=mdÞ

þ Dvun � wd=md � bn þ f dðmdÞÞmd dx dt

(8.3)

Adding (8.2) and (8.3), after some changes of variables (translations) and a Taylor
expansion of L, we deduce
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ðT
0

ð
M�R

d
ðHðxþ gðtÞd, vþ fðtÞd,Dvu

d
nÞ þH	ðxþ gðtÞd, vþ fðtÞd, � w=mÞ þ Dvu

d
n � w=mÞm dx dv dt

þ
ðT
0

ð
M�R

d
ðHðx � gðtÞd, v� fðtÞd,Dvu

�d
n Þ þH	ðx � gðtÞd, v� fðtÞd, � w=mÞ þ Dvu

�d
n � w=mÞm dx dv dt

�
ð
M�R

d
bT, nðmd

T þm�d
T Þ � 2gðx, v,mTÞmT

h i
dx dv�

ð
M�R

d
2ðu0, n � u0Þm0 dx dv

þ
ðT
0

ð
M�R

d
bdn þ b�d

n � 2f ðmÞ
h i

m dx dv dt,

þ
ðT
0

ð
M�R

d
�H	ðx, v, � w=mÞ þH	ðxþ gðtÞd, vþ fðtÞd, � w=mÞ � f0ðtÞd � Dvu

d
n

h i
m dx dv dt

þ
ðT
0

ð
M�R

d
�H	ðx, v, � w=mÞ þH	ðx� gðtÞd, v� fðtÞd, � w=mÞ þ f0ðtÞd � Dvu

�d
n

h i
m dx dv dt

¼
ð
M�R

d
bT, nðmd

T þm�d
T Þ � 2gðx, v,mTÞmT

h i
dx dv�

ð
M�R

d
2ðu0, n � u0Þm0 dx dv

þ
ðT
0

ð
M�R

d
bdn þ b�d

n � 2f ðmÞ
h i

m dx dv dt,

þ
ðT
0

ð
M�R

d
f0ðtÞd � Dvu

�d
n � f0ðtÞd � Dvu

d
n

h i
m dx dv dt

þ
ðT
0

ð
M�R

d

ð1
0

ð�s

s

�
g2ðtÞD2

xxH
	 þ f2ðtÞD2

vvH
	� �
ðxþ sgðtÞd, vþ sfðtÞd, � w=mÞd, d

�
m ds ds dx dv dt

þ
ðT
0

ð
M�R

d

ð1
0

ð�s

s

�
2gðtÞfðtÞD2

xvH
	ðxþ sgðtÞd, vþ sfðtÞd, � w=mÞd, d

�
m ds ds dx dv dt:

(8.4)

where we have also used the facts that by the choice of g and f, we have ud0, n ¼
u0, n, ud0 ¼ u0 and md

0 ¼ m0:

Our aim now is to pass to the limit n ! þ1 in (8.4) and derive a differential quo-
tient estimate. For this, we consider each of the terms separately.

Step 1. First, we notice that by (H7) and by the fact that jwjr
0

mr0�1 2 L1ð½0,T� �M� R
dÞ,

there exists C> 0 such that

ðT
0

ð
M�R

d

ð1
0

ð�s

s

D
g2ðtÞD2

xxH
	 þ f2ðtÞD2

vvH
	� �
ðx þ sgðtÞd, vþ sfðtÞd, � w=mÞd, d

E
m ds ds dx dv dt

þ
ðT
0

ð
M�R

d

ð1
0

ð�s

s
h2gðtÞfðtÞD2

xvH
	ðx þ sgðtÞd, vþ sfðtÞd, � w=mÞd, dim ds ds dx dv dt

� C0jdj2
ðT
0

ð
M�R

d

jwjr0

mr0�1
þm

	 

dx dv dt � Cjdj2:

Step 2. Second, let us notice that by the fact that m 2 ðL1 \ LqÞð½0,T� �M� R
dÞ

and by (8.1), for any M< 0 we have
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lim
n!þ1

ðT
0

ð
M�R

d
b6d
n 1fb6d

n �Mgm dx dv dt ¼
ðT
0

ð
M�R

d
f6dðm6dÞ1ff6dðm6dÞ�Mgm dx dv dt:

Therefore,

limsup
n!þ1

ðT
0

ð
M�R

d
bdn þ b�d

n � 2f ðmÞ
h i

m dx dv dt

� lim
n!þ1

ðT
0

ð
M�R

d
bdn1fbdn�Mg þ b�d

n 1fb�d
n �Mg � 2f ðmÞ

h i
m dx dv dt

¼
ðT
0

ð
M�R

d
f dðmdÞ1ff dðmdÞ�Mg þ f�dðm�dÞ1ff�dðm�dÞ�Mg � 2f ðmÞ
h i

m dx dv dt:

Now, sending M ! �1, we conclude that

limsup
n!þ1

ðT
0

ð
M�R

d
bdn þ b�d

n � 2f ðmÞ
h i

m dx dv dt

�
ðT
0

ð
M�R

d
f dðmdÞ þ f�dðm�dÞ � 2f ðmÞ
� �

m dx dv dt,

(8.5)

where we have used the fact that f ðmÞm, ðf dðmdÞÞþ, ðf�dðm�dÞÞþ 2 L1 so that the inte-
grand is upper bounded by an L1 function to allow us to apply the monotone conver-
gence theorem. Since the left hand side of inequality (8.4) is bounded from below by
zero, it follows the right hand side of (8.5) is not negative infinity.
By the very same arguments one can conclude that

limsup
n!þ1

ð
M�R

d
bT, nðmd

T þm�d
T Þ � 2gðx, v,mTÞmT

h i
dx dv

�
ð
M�R

d
gdðmd

TÞ þ g�dðm�d
T Þ � 2gðmTÞ

h i
mT dx dv:

Step 3. By Young’s inequality, we have

ðT
0

ð
M�R

d
f0ðtÞd � Dvu

�d
n � f0ðtÞd � Dvu

d
n

h i
m dx dv dt

þ c
ðT
0

ð
M�R

d
jDvu

�d
n � Dvu

d
nj
2m dx dv dt,

where c> 0 is an arbitrary constant, and C ¼ Cðc,T, f0Þ > 0:

Step 4. By the previous steps we can conclude that
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ðT
0

ð
M�R

d
ðHðx6gðtÞd, v6fðtÞd,Dvu

6d
n Þ þ H	ðx6gðtÞd, v6fðtÞd, � w=mÞ

þ Dvu
6d
n � w=mÞm dx dv dt � c

ðT
0

ð
M�R

d
jDvu

�d
n � Dvu

d
nj
2m dx dv dt

is uniformly bounded above, independently of n 2 N: Let us recall that jwj2
m 2

L1ðð0,TÞ �M� R
dÞ, and so is H	ðx6gðtÞd, v6fðtÞd, � w=mÞm 2 L1ðð0,TÞ �M�

R
dÞ: Using the growth condition on H, by choosing c> 0 small enough in our applica-

tion of Young’s inequality we deduce that Dvu6d
n is uniformly bounded in L2mðð0,TÞ �

M� R
d;RdÞ: By a change of variable, one can similarly deduce that Dvun is uniformly

bounded in L2m6dðð0,TÞ �M� R
d;RdÞ:

Claim. After passing to a subsequence that we do not relabel, we have Dvu6d
n * Dvu6d

weakly in L2mðð0,TÞ �M� R
d;RdÞ, as n ! þ1:

Proof of Claim. By the uniform boundedness of the sequence, we know that there exists a sub-

sequence of it (that we do not relabel) and n 2 L2mðð0,TÞ �M� R
d;RdÞ, as weak limit, i.e.ðT

0

ð
M�R

d
Dvu

6d
n � /m dx dv dt !

ðT
0

ð
M�R

d
n � /m dx dv dt,

8/ 2 L2mðð0,TÞ �M� R
d;RdÞ, as n ! þ1:

Thus, we aim to show that n ¼ Dvu6d: As Dvu6d
n * Dvu6d, weakly in L2locðUm0Þ, as

n ! þ1, we can argue similarly as in the proof of Claim 2, in the proof of Theorem
7.1 to deduce the claim.

Step 5. By summarizing, (8.4) implies that

ðT
0

ð
M�R

d
ðHðx þ gðtÞd, v þ fðtÞd,Dvu

d
nÞ þH	ðx þ gðtÞd, vþ fðtÞd, � w=mÞ þ Dvu

d
n � w=mÞm dx dv dt

þ
ðT
0

ð
M�R

d
ðHðx � gðtÞd, v � fðtÞd,Dvu

�d
n Þ þ H	ðx � gðtÞd, v � fðtÞd, � w=mÞ þ Dvu

�d
n � w=mÞm dx dv dt

� c
ðT
0

ð
M�R

d
jDvu

�d
n � Dvu

d
nj
2m dx dv dt

�
ð
M�R

d
bT, nðmd

T þm�d
T Þ � 2gðx, v,mTÞmT

h i
dx dv�

ð
M�R

d
2ðu0, n � u0Þm0 dx dv

þ
ðT
0

ð
M�R

d
bdn þ b�d

n � 2f ðmÞ
h i

m dx dv dt

þ Cjdj2:

Using the additional assumption (2.10) and the inequality jaþ bj2 � 2ða2 þ b2Þ, for
c> 0 sufficiently small, one can conclude that there exists c0 > 0 depending only on the
data, such that
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c0

ðT
0

ð
M�R

d
jDvu

�d
n � Dvu

d
nj
2m dx dv dt

�
ð
M�R

d
bT, nðmd

T þm�d
T Þ � 2gðx, v,mTÞmT

h i
dx dv�

ð
M�R

d
2ðu0, n � u0Þm0 dx dv

þ
ðT
0

ð
M�R

d
bdn þ b�d

n � 2f ðmÞ
h i

m dx dv dt

þ Cjdj2:
(8.6)

Now, our aim is to pass to the limit with n ! þ1 first in (8.6). For this we take
lim infn!þ1 of the left hand side and limsupn!þ1 of the right hand side. We notice
that the term �

Ð
M�R

d2u0, nm0 dx dv needs special attention, since we do not have upper
semicontinuity of it. Because of this, we add to both sides of (8.6) the quantity

2
ðT
0

ð
M�R

d
F	ðx, v, bnÞ dx dv dt þ 2

ð
M�R

d
G	ðbT, nÞ dx dv

before passing to the limit. Thus we obtain

liminf
n!þ1

c0

ðT
0

ð
M�R

d
jDvu

�d
n �Dvu

d
nj
2mdxdvdt

þ liminf
n!þ1

2
ðT
0

ð
M�R

d
F	ðx,v,bnÞdxdvdtþ liminf

n!þ1
2
ð
M�R

d
G	ðbT,nÞdxdv

� limsup
n!þ1

ð
M�R

d
bT,nðmd

Tþm�d
T Þ�2gðx,v,mTÞmT

h i
dxdvþ2

ð
M�R

d
u0m0dxdv

þ limsup
n!þ1

ðT
0

ð
M�R

d
bdnþb�d

n �2f ðmÞ
h i

mdxdvdt

þ limsup
n!þ1

�2
ð
M�R

d
u0,nm0dxdvþ2

ðT
0

ð
M�R

d
F	ðx,v,bnÞdxdvdtþ2

ð
M�R

d
G	ðbT,nÞdxdv

 !

þCjdj2:

All the arguments in the previous steps allow us to pass to the limit. By the fact that
ðun, bn, bT, nÞ is a minimizing sequence, we get that

limsup
n!þ1

�2
ð
M�R

d
u0, nm0 dx dvþ 2

ðT
0

ð
M�R

d
F	ðx, v, bnÞ dx dv dt þ 2

ð
M�R

d
G	ðbT, nÞ dx dv

 !

lim
n!þ1

�2
ð
M�R

d
u0, nm0 dx dvþ 2

ðT
0

ð
M�R

d
F	ðx, v, bnÞ dx dv dt þ 2

ð
M�R

d
G	ðbT, nÞ dx dv

 !

¼ 2 ~Aðu, b, btÞ

¼ 2 �
ð
M�R

d
u0m0 dx dvþ

ðT
0

ð
M�R

d
F	ðx, v, bÞ dx dv dt þ 2

ð
M�R

d
G	ðbTÞ dx dv

 !
:
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So, after simplification, one obtains

c0

ðT
0

ð
M�R

d
jDvu

�d � Dvu
dj2m dx dv dt

�
ð
M�R

d
gdðmd

TÞ þ g�dðm�d
T Þ � 2gðx, v,mT

h i
mT dx dv

þ
ðT
0

ð
M�R

d
f dðmdÞ þ f�dðm�dÞ � 2f ðmÞ
� �

m dx dv dt

þ Cjdj2:

(8.7)

Now, using (2.5) and (2.7) the very same arguments as in [23, computation (4.25)] yieldð
M�R

d
f dðmdÞ þ f�dðm�dÞ � 2f ðmÞ
� �

m dx dv

� Cjdj2 1þ
ð
M�R

d
minfmd

,mgq dx dv
	 


�
cf
2

ð
M�R

d
minfðmdÞq�2,mq�2gjmd �mj2 dx dv:

Similarly, (2.6) and (2.8) yieldð
M�R

d
gdðmd

TÞ þ g�dðm�d
T Þ � 2gðmTÞ

� 

mT dx dv

� Cjdj2 1þ
ð
M�R

d
minfmd

T ,mTgs dx dv
	 


�
cg
2

ð
M�R

d
minfðmd

TÞ
s�2,ms�2

T gjmd
T �mT j2 dx dv:

Combining these estimates with (8.7), we get

c0

ðT
0

ð
M�R

d
jDvu

�d � Dvu
dj2m dx dv dt

þ
cf
2

ðT
0

ð
M�R

d
minfðmdÞq�2,mq�2gjmd �mj2 dx dv dt

þ
cg
2

ð
M�R

d
minfðmd

TÞ
s�2,ms�2

T gjmd
T �mT j2 dx dv � Cjdj2:

(8.8)

Dividing by jdj2 and letting d ! 0, we easily obtain the result. w

8.1.1. Recovering estimates on the operator ðtDx þ DvÞ applied to solutions
By choosing a specific structure for the cutoff function f, we can recover estimates on
more particular differential operators. Suppose that fðtÞ ¼ 0 for t 2 ½0, t0=2�, and fðtÞ ¼
1, for t 2 ðt0,T� for some t0 2 ð0,TÞ (to be chosen to be arbitrary), in such a way that
also gðt0Þ ¼ t0: Then in Theorem 8.2, the operator ðgDx þ fDvÞ, for t > t0 becomes
ðtDx þ DvÞ: So, one can state the following local in time corollary.

Corollary 8.4. Suppose that the assumptions of Theorem 8.2 take place. Then, there exists
�C > 0 such that

km
q
2�1ðtDx þ DvÞmkL2locðð0,T��M�R

dÞ � �C, km1=2ðtDx þ DvÞDvukL2locðð0,T��M�R
dÞ � �C

and
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km
s
2�1
T ðTDx þ DvÞmTkL2ðM�R

dÞ � �C:

8.1.2. Recovering estimates on the operator Dx applied to solutions
Now suppose that gðtÞ ¼ 0 for t 2 ½0, t0=2� and gðtÞ ¼ 1 for t 2 ðt0,T� (where t0 2
ð0,TÞ can be chosen arbitrarily). We still require that f :¼ g0: With this choice of cutoff
functions g, f, we can formulate the following result as a corollary of Theorem 8.2.

Corollary 8.5. Suppose that the assumptions of Theorem 8.2 take place. Then, there exists
�C > 0 such that

km
q
2�1DxmkL2locðð0,T��M�R

dÞ � �C, km1=2DxDvukL2locðð0,T��M�R
dÞ � �C

and

km
s
2�1
T DxmTkL2ðM�R

dÞ � �C:

8.1.3. Proof of Theorem 2.5
Finally, the proof of Theorem 2.5 follows from the previous two corollaries and the
inequality

jDvhj � jðtDx þ DvÞhj þ TjDxhj for all t 2 0,T½ �,

(8.1.3) for any Sobolev function h.
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Appendix A.
Time regularity

In this appendix, we collect some facts about the regularity with respect to time of solutions u of

�@tu� v � DxuþHðx, v,DvuÞ � b, in D0ðð0,TÞ �M� R
dÞ: (A.1)

By this we mean that, for any non-negative test function 0 � / 2 C1
c ðð0,TÞ �M� R

dÞ,ðT
0

ð
M�R

d
@t/þ v � Dx/ð Þuþ / Hðx, v,DvuÞ dx dv dt �

ðT
0

ð
M�R

d
b/ dx dv dt: (A.2)

What we discuss is close to the standard theory of distributional solutions. However, in our case
technical difficulties arise since, firstly, (A.1) is an inequality and, secondly, we wish to work on
the atypical domain Um0 : We therefore found it useful to clarify several points. Our main goal is
to give a precise sense to the specification of boundary data for this problem at time t¼T, and
to give a meaning to u0 (the ‘value of u at time t¼ 0’), which appears in the functional ~A defin-
ing the variational problem.

Throughout this appendix we impose the following summability conditions on the pair
ðu, bÞ 2 L1locðUm0Þ � L1locðUm0Þ and that H satisfies (2.1).

Assumption 3. The pair ðu, bÞ 2 L1locðUm0Þ � L1locðUm0Þ satisfies the following assumptions:

� The positive part of b satisfies bþ 2 Lq0ð½0,T� �M� R
dÞ;

� Dvu 2 LrlocðUm0Þ;
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Under Assumption 3, by a density argument the weak form (A.2) extends additionally to test
functions in C1

c ðð0,TÞ �M� R
dÞ:

Lemma A.1. Let ðu, bÞ 2 L1locðUm0Þ � L1locðUm0Þ be a distributional solution to (A.1) satisfying
Assumption 3. Then

(1) for any / 2 C1
c ðð0,TÞ �M� R

dÞ the function

ð0,TÞ�t 7!h/ðtÞ, uðtÞi :¼
ð
M�R

d
/ðt, x, vÞuðt, x, vÞ dx dv

is of locally bounded variation and therefore has a right continuous representative with a
countable number of jump discontinuities.

(2) There exists a path ð0,TÞ�t 7!~ut 2 C1
c ðM� R

dÞ0 which is right continuous with respect to
the weak-star topology on C1

c ðM� R
dÞ0 and such that ~ut ¼ ut as elements of ðC1

c Þ
0 for

almost every t 2 ð0,TÞ:

Proof. Since bþ @tuþ v � Dxu� Hðx, v,DvuÞ is a positive distribution, it is given by some
Radon measure � on ð0,TÞ �M� R

d: We have

@tu ¼ �v � DxuþHðx, v,DvuÞ � bþ � ¼: l, (A.3)

which we will use to deduce weak time regularity for u.
Consider a test function / 2 C1

c ðð0,TÞ �M� R
dÞ: The function

f/ : ð0,TÞ ! R

t 7!h/, uðtÞi :¼
Ð
M�R

d/ðt, x, vÞuðt, x, vÞ dx dv (A.4)

has distributional derivative

f 0/ ¼ d
dt

h/, ui ¼ h@t/þ v � Dx/, ui þ h/,Hðx, v,DvuÞ þ � � bi: (A.5)

By Assumption 3, u, b and Hðx, v,DvuÞ are all locally integrable functions on Um0 and so in par-
ticular on ð0,TÞ �M� R

d: Thus the distributional derivative f 0/ defined in (A.5) is a Radon
measure on ð0,TÞ, and so the path (A.4) is of locally bounded variation.

It follows that f/ has a unique right-continuous version. That is, there exists a set E/ 
 ½0,T�
of full measure and a right continuous function ~f / such that ~f /ðtÞ ¼ f/ðtÞ for all t 2 E/: The
function ~f / satisfies

~f /ðtÞ ¼ ~f /ðsÞ þ f 0/ððs, t �Þ

for all 0 < s < t < T:
Now consider w 2 C1

c ðM� R
dÞ (independent of time). The path t 7!huðtÞ,wi has time

derivative

d
dt

hw, uðtÞi ¼ hv � rxw, ui þ hw,Hðx, v,DvuÞ þ � � bi:

For each compact subset K 
 M� R
d, we define the following Radon measure on ð0,TÞ : for

A 
 ð0,TÞ Borel,
lKðAÞ :¼ sup

v:9ðx, vÞ2K
jvjkukL1ðA�KÞ þ kHð�, � ,DvuÞ � bkL1ðA�KÞ þ �ðA� KÞ:

For the right-continuous versions we have, for all 0 < s < t < T and all w 2 C1
c ðM� R

dÞ with
support contained in K,

j~f wðtÞ � ~f wðsÞj � kwkC1lKððs, t �Þ: (A.6)
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Using these estimates, it is possible to construct a right continuous version of u: that is, a path
t 7!~ut 2 C1

c ðM� R
dÞ0 that is right continuous with respect to the weak-star topology.

Such a construction is classical, but because of the lack of a precise reference in our context,
we sketch the main ideas here. Take a countable dense set Z 
 C1

c ðM� R
dÞ; there is a full meas-

ure set E 
 ð0,TÞ such that hw, uðtÞi ¼ ~f wðtÞ for all t 2 E and all w 2 Z, and moreover uðtÞ 2
L1locðM� R

dÞ (the latter is true for almost all t since u is L1loc). Then

h~uðtÞ,wi :¼ ~f wðtÞ

defines a bounded linear functional on Z, for all t 2 E: The estimate (A.6) can be used to show
that this is in fact true for all t 2 ð0,TÞ: The resulting functional ~uðtÞ extends by density to a
continuous linear functional on C1

c ðM� R
dÞ: Then the estimate (A.6) can be used to prove that

h~uðtÞ,wi is right continuous for all w 2 C1
c ðM� R

dÞ, not just on Z. w

Next, we construct the extension of ~u to the boundaries t ¼ 0,T:

Definition A.2 (Transport shift). Let t 2 R. The operator T t : CcðM� R
dÞ ! CcðM� R

dÞ is
defined by

T t/ðx, vÞ ¼ /ðx� tv, vÞ:

Remark A.3 (Group property). For any s, t 2 R, T sT t ¼ T sþt:

Lemma A.4. Let u be a solution to (A.1) and let ~u be its right continuous representative,
obtained in Lemma A.1. Let w 2 C1

c ðM� R
dÞ be non-negative. Consider the function

ð0,TÞ�t 7!hT tw, ~uðtÞi. Then

(1) As t tends to T � , hT tw, ~uðtÞi either tends to a finite limit or to positive infinity.
(2) As t tends to 0þ , hT tw, ~uðtÞi either tends to a finite limit or to negative infinity.

Proof. Observe that

ð@t þ v � rxÞT tw ¼ 0:

It follows that

d
dt

hT tw, ~uðtÞi ¼ hT tw,Hðx, v,DvuÞ þ � � bi:

Then the negative part of the time derivative satisfies

d
dt

hT tw, ~uðtÞi
� �

�
� hT tw,CH þ bþi 2 L1ð0,TÞ:

Thus hT tw, ~uðtÞi can be written as the difference of monotone functions, where the decreasing
part is absolutely continuous on ð0,TÞ and can be extended to finite limits at the endpoints. By
monotonicity, the increasing part either has a finite limit at t¼T, or tends to positive infinity;
similarly, at t¼ 0 it either has a finite limit or tends to negative infinity. w

Definition A.5 (Weak traces). For any wT ,w0 2 C1
c ðM� R

dÞ, let
hwT , uTi :¼ lim

t!T�
hT t�TwT , ~uðtÞi, hw0, u0i :¼ lim

t!0þ
hT tw0, ~uðtÞi: (A.7)

These define linear maps from C1
c ðM� R

dÞ to R [ f�1g in the case of u0, and R [ fþ1g in the
case of uT.

We now suppose that, in addition to the weak Hamilton-Jacobi inequality in the interior
(A.2), u satisfies the following: for all non-negative test functions / 2 C1

c ðð0,T� �M� R
dÞ
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ðT
0

ð
M�R

d
u @t/þ divxðv/Þ½ � þ /Hðx, v,DvuÞ dx dv dt �

ðT
0

ð
M�R

d
b/ dx dv dt þ

ð
M�R

d
bT/T dx dv:

(A.8)

In our setting, we will have that bT 2 L1locðM� R
dÞ is a given function whose positive part satis-

fies ðbTÞþ 2 Ls0ðM� R
dÞ: In this case, we show below that the time trace uT, enjoys some

more properties.

Lemma A.6. If u satisfies (A.8) with bT 2 MðM� R
dÞ, then uT as defined in (A.7) is a bounded

linear functional on C1
c ðM� R

dÞ and uT � bT in the sense of distributions: that is, for all wT 2
C1
c ðM� R

dÞ non-negative,
hwT , uTi � hwT , bTi:

In particular, we have that hw, uTi ¼ þ1 does not occur for any w 2 C1
c ðM� R

dÞ:

Remark A.7. Since then bT � uT is a positive distribution, if bT 2 L1locðM� R
dÞ then we in fact

have that uT is represented by a signed Radon measure with absolutely continuous positive part.

Proof of Lemma A.6. In what follows, we will use the right continuous representative of u
constructed in Lemma A.1. By the abuse of notation, we write simply u for ~u: Fix wT 2
C1
c ðM� R

dÞ non-negative. For each e > 0 small consider a smooth, non-negative test function
ge : ½0,T� ! R, chosen such that gðtÞ ¼ 0 for all 0 � t � T � e and the derivative g0e satisfies

0 � g0e � e�1, g0eðtÞ ¼
0 t 2 0,T � e½ �
e�1 t 2 T � eþ e2,T � e2½ �:

(

Note that as a consequence of the fundamental theorem of calculus, one has lime!0 geðTÞ ¼ 1:
We define the following non-negative test function /e 2 C1

c ðð0,T� �M� R
dÞ :

/eðt, x, vÞ ¼ geðtÞwTðxþ ðT � tÞv, vÞ:
Substituting this choice of / into (A.8), we obtainðT

T�e
ge

0ðtÞ
ð
M�R

d
uðtÞwTðxþ ðT � tÞv, vÞ dx dv dt � geðTÞ

ð
M�R

d
bTwT dx dvþ a1ðeÞ: (A.9)

where

a1ðeÞ ¼
ðT
T�e

ð
M�R

d
b/e dx dv dt �

ðT
T�e

ð
M�R

d
/eHðx, v,DvuÞ dx dv dt:

Note that lime!0 a1ðeÞ ¼ 0, since b and Hðx, v,DvuÞ are locally integrable and /e are bounded in
L1, uniformly in e:

We exclude the possibility that hwT , uTi ¼ þ1: Indeed, if this occurs, then for any M> 0,
there exists e0 such that for any t 2 ½T � e0,T�,

M <

ð
M�R

d
uðtÞwTðxþ ðT � tÞv, vÞ dx dv:

Then by bounding the left hand side of inequality (A.9) from below we obtain that for any
e < e0,

Mð1� 2eÞ � geðTÞ
ð
M�R

d
bTwT dx dvþ a1ðeÞ:
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Taking the limit e ! 0 gives

M �
ð
M�R

d
bTwT dx dv:

Since this holds for any M> 0, we derive a contradiction. Thus—using also Lemma A.4—uT is in
fact a linear map from C1

c ðM� R
dÞ to R: We note also that the map

t 7!
ð
M�R

d
uðtÞwTðxþ ðT � tÞv, vÞ dx dv

extends to a function that is bounded and continuous (from the left) at t¼T.
Next, we show that uT � bT as functionals on C1

c ðM� R
dÞ: We have

1
e

ðT
T�e

ð
M�R

d
uwTðxþ ðT � tÞv, vÞ dx dv dt � geðTÞ

ð
M�R

d
bTwT dx dvþ a2ðeÞ, (A.10)

where

a2ðeÞ :¼ a1ðeÞ þ
ðT
T�e

ðe�1 � g0eÞ
ð
M�R

d
uwTðxþ ðT � tÞv, vÞ dx dv dt:

For the second term here we have����
ðT
T�e

ðe�1 � g0eÞ
ð
M�R

d
uwTðxþ ðT � tÞv, vÞ dx dv dt

����
�
����
ðT�eþe2

T�e
je�1 � g0ejjhuðtÞ,wTðxþ ðT � tÞv, vÞij dt

����
þ
����
ðT
T�e2

je�1 � g0ejjhuðtÞ,wTðxþ ðT � tÞv, vÞij dt
����

� 2ekhuðtÞ,wTðxþ ðT � tÞv, vÞikL1 T�e,T½ �,

which converges to zero as e ! 0 since the trajectory huðtÞ,wTðxþ ðT � tÞv, vÞi is bounded near
t¼T. Thus lime!0 a2ðeÞ ¼ 0:

Taking the limit e ! 0 in inequality (A.10), we conclude that

hwT , uTi � hwT , bTi:
Since bT � uT is a positive linear functional on C1

c ðM� R
dÞ, it is bounded, and therefore uT is

also a bounded linear functional on C1
c ðM� R

dÞ: w

Corollary A.8. If u satisfies (A.8) with bT 2 MðM� R
dÞ then, in the notation of equation (A.3),

the measure � extends to a finite Radon measure on ð0,T� �M� R
d given by �ðAÞ ¼ �ðA1ð0,TÞÞ:

Proof. We show that, for any non-negative test function / 2 C1
c ðð0,T� �M� R

dÞ,
h�,/1ð0,TÞi < þ1: (A.11)

It suffices to prove (A.11) for test functions of the form /ðt, x, vÞ ¼ hðtÞT twðx, vÞ, where h 2
C1
c ð0,T� and w 2 C1

c ðM� R
dÞ:

Then

d
dt

h/, uðtÞi ¼ h0ðtÞhT tw, ui þ h/,Hðx, v,DvuÞ þ � � bi � h0ðtÞhT tw, ui þ h/, � � CH � bþi:
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It follows that (once again using the right continuous version of u), for t<T,

h�,/1ð0, t� i � h/, uðtÞi �
ðt
0

ð
M�R

d
h0ðsÞhT sw, ui þ /ðCH þ bþÞ dx dv ds:

Taking the limit t ! T, by definition of uT,

h�,/1ð0,TÞi � h/, uTi �
ðT
0

ð
M�R

d
h0ðsÞhT sw, ui þ /ðCH þ bþÞ dx dv ds < þ1:

w

We now discuss the trace of u at t¼ 0: u0 as defined in Definition A.7. hw, u0i is defined for
all w 2 C1

c ðM� R
dÞ: Our aim is to give a meaning to the quantity hm0, u0i, which appears in

the definition of the functional ~A: In the case where m0 2 C1
c ðM� R

dÞ this is straightforward,
noting that we allow the possible value �1: We now consider the more general case
where m0 2 CðM� R

dÞ:

Lemma A.9. Assume that, for all / 2 C1
c ðfm0 > 0gÞ, h/, u0i 6¼ �1. Then u0 is represented by a

Radon measure on fm0 > 0g. Furthermore, the positive part ðu0Þþ has the property thatð
fm0>0g

m0 dðu0Þþðx, vÞ < þ1:

Proof. Let / 2 C1
c ðM� R

dÞ be non-negative. Since

d
dt

hT t/, ~uðtÞi � �hT t/,CH þ bþi,

we have

h/, u0i �
ðT
0
hT t/,CH þ bþi dt þ hT T/, bTi ¼: S/:

The right hand side is linear in / and satisfies����
ðT
0
hT t/,CH þ bþi dt þ hT T/, bTi

���� � k/kL1 kCH þ bþkL1ðK 0,T½ �Þ þ kbTkL1ðKTÞ
� 


;

here KT denotes the set

KT :¼ fðxþ vT, vÞ : ðx, vÞ 2 Kg,
where K is the support of /, and K½0,T� is the set

K 0,T½ � :¼ fðxþ vt, vÞ : ðx, vÞ 2 K, t 2 0,T½ �g:
Thus S defines a bounded linear functional on CcðM� R

dÞ: In particular it is a distribution;
moreover, it is represented by a signed Radon measure.

Observe next that S� u0 is a positive linear functional on C1
c ðfm0 > 0gÞ, and thus bounded

and a distribution. By positivity it is given by a Radon measure �0 on fm0 > 0g: We deduce that

u0 ¼ S� �0:

That is, u0 is a signed Radon measure.
Moreover, from the definition of the Hahn-Jordan decomposition we have the following esti-

mate for the positive part:

h/, ðu0Þþi �
ðT
0
hT t/,CH þ bþi dt þ hT T/, ðbTÞþi:
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Let /n 2 CcðM� R
dÞ be an increasing sequence of functions such that /n converges to m0 as

n ! 1: Since

sup
n
h/n, ðu0Þþi �

ðT
0
hT tm0,CH þ bþi dt þ hT Tm0, ðbTÞþi � CHTkm0kL1

þ T1=qkbþkLq0 km0kLq þ kðbTÞþkLs0 km0kLs ,

we conclude that hm0, ðu0Þþi is finite. w

Based on the previous lemma, we make the following definition.

Definition A.10. We define �hm0, u0i as follows:

(1) If there exists / 2 C1
c ðfm0 > 0gÞ such that h/, u0i ¼ �1, then we define

�hm0, u0i ¼ þ1:

(2) Otherwise, let /n 2 Ccðfm0 > 0gÞ be an increasing sequence of functions such that /n
converges to m0 as n ! 1, and define

�hm0, u0i ¼ � lim
n!1

h/n, u0i:

This is well-defined (allowing for the possible value þ1) by Lemma A.9.

Lemma A.11. Suppose that the assumptions of Lemma A.6 hold and suppose in addition thatðT
0

ð
M�R

d
u @t/þ divxðv/Þ½ � þ /Hðx, v,DvuÞ dx dv dt �

ðT
0

ð
M�R

d
b/ dx dv dt

þ
ð
M�R

d
bT/T dx dv�

ð
M�R

d
b0/0 dx dv,

(A.12)

holds for all / 2 C1
c ðUm0Þ, where b0 2 Mðfm0 > 0gÞ is also given. Then for the trace u0 of the

right continuous version of u we have

b0 � u0, in D0ðfm0 > 0gÞ,

and in particular hu0,wi 6¼ �1 for any w 2 C1
c ðfm0 > 0gÞ:

If in addition we suppose that b0 is such that hb0,m0i is meaningful and finite, then hu0,m0i is
finite and

hb0,m0i � hu0,m0i:

Proof. The proof of this result follows the same lines as the proof of Lemma A.6, so we point out
only the main differences. Let u stand for the right continuous representative constructed in Lemma
A.1. Fix w0 2 C1

c ðfm0 > 0gÞ non-negative. For each e > 0 small consider a smooth, non-negative test
function ge : ½0,T� ! R, chosen such that gðtÞ ¼ 0 for all e � t � T and the derivative g0e satisfies

�e�1 � g0e � 0, g0eðtÞ ¼
�e�1 t 2 e2, e� e2½ �,
0 t 2 e,T½ �:

(

Note that as a consequence of the fundamental theorem of calculus, one has lime!0 geð0Þ ¼ 1:
We define the following non-negative test function /e 2 C1

c ðUm0Þ :
/eðt, x, vÞ ¼ geðtÞwTðx� tv, vÞ:
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Substituting this choice of / into (A.12), we obtainðe
0
ge

0ðtÞ
ð
M�R

d
uðtÞwTðx� tv, vÞ dx dv dt � �geð0Þhb0,w0i þ a1ðeÞ:

where

a1ðeÞ ¼
ðe
0

ð
M�R

d
b/e dx dv dt �

ðe
0

ð
M�R

d
/eHðx, v,DvuÞ dx dv dt:

As before, we note that lime!0 a1ðeÞ ¼ 0: We exclude the possibility that hu0,w0i ¼ �1: For
this, we rewrite the previous inequality as

geð0Þhb0,w0i � a1ðeÞ � �
ðe
0
ge

0ðtÞ
ð
M�R

d
uðtÞwTðx� tv, vÞ dx dv dt,

and use the same arguments as when proving huT ,wTi 6¼ þ1 in the proof of Lemma A.6.
Therefore, u0 defines a linear map on C1

c ðfm0 > 0gÞ: Having this, we can show the inequality
hb0,w0i � hu0,w0i in the same way as corresponding inequality in Lemma A.6.

Now, using the Definition A.10, hu0,m0i is meaningful, having also the possibility that it is
�1: However, if the additional assumption that hb0,m0i is finite takes place, taking a an
increasing sequence of test functions, we find that hb0,m0i � hu0,m0i, so clearly, the latter term
cannot be �1: w

Through similar arguments it is possible to justify the existence of weak time traces for com-
petitors m in Problem 3.3, thereby giving meaning to the initial value problem

@tmþ v � Dxmþ divvw ¼ 0, in D0ðð0,TÞ �M� R
dÞ

mjt¼0 ¼ m0:

(

Recall that in Remark 3.4 we established that, in the cases of interest to us, there exists a function
V 2 Lr0ðm dx dv dtÞ such that w ¼ Vm, and so we may assume that m is a distributional solution
of the following equation:

@tmþ divxðvmÞ þ divvðVmÞ ¼ 0,

with jVjm 2 L1ð½0,T� �M� R
dÞ:

This setting is much more standard since here the time derivatives d
dt h/,mti will be in L1½0,T�

for any / 2 C1
c ðM� R

dÞ rather than measures, that is, we expect absolutely continuous rather
than right continuous trajectories. Moreover we can work on the whole space ½0,T� �M� R

d

rather than only the reachable set Um0 :
Deducing that m has a narrowly continuous representative is essentially an application of [56,

Lemma 8.1.2]. However, since we do not necessarily haveðT
0

ð
M�R

d
jvjm dx dv dt < þ1,

due to the unbounded drift v, we cannot immediately apply this lemma. Below we briefly sketch
the adaptation to our case.

Lemma A.12. (See [56, Lemma 8.1.2]). Let 0 � m 2 ðL1 \ LqÞð½0,T� �M� R
dÞ be a non-nega-

tive function satisfying

@tmþ divxðvmÞ þ divvðVmÞ ¼ 0

in the sense of distributions on ð0,TÞ �M� R
d, where V is given, such that jVjm 2

L1ð½0,T� �M� R
dÞ:

Then there exists a continuous curve ~m� : ½0,T� ! ðC1
c ðM� R

dÞÞ0 such that ~mt ¼ mt for almost
all t 2 ½0,T�. Thus ~m0 is well-defined as an element of ðC1

c ðM� R
dÞÞ0 (or in fact, by positivity, a

Radon measure).
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Furthermore, if ~m0 is a probability measure, then ~m� extends uniquely to a narrowly continuous
curve in the space of probability measures, i.e. ~m� 2 Cð½0,T�;PðM� R

dÞÞ:

Proof. Since m, jVjm 2 L1ð½0,T� �M� R
dÞ, for any compact set K 
 M� R

d we haveðT
0

ð
K
ðjvj þ jVjÞm dx dv dt < þ1:

It follows that, as in the proof of [56, Lemma 8.1.2], we may select a dense subset f/ngn2N of
C1
c ðM� R

dÞ and take a version ~mt of mt such that t 7!h/n, ~mti is continuous with respect to t
for all n and ~mt ¼ mt for almost all t 2 ½0,T�, and a define a unique weak-	 continuous exten-
sion of ~m� to ðC1

c ðM� R
dÞÞ0: Thus ~m0 is well-defined as the unique element of ðC1

c ðM� R
dÞÞ0

satisfying

h/, ~m0i :¼ lim
t!0

h/, ~mti for all/ 2 C1
c ðM� R

dÞ:

Moreover, since ~m is non-negative, in fact ~mt is a Radon measure on M� R
d for all t 2 ½0,T�:

Furthermore, it follows from the continuity of ~m� in the weak-	 sense of ðC1
c ðM� R

dÞÞ0, and
the fact that ~m is locally finite, that, for any (N.B. now time-dependent) / 2 C1

c ð½0,T� �M�
R

dÞ, the path t 7!h/ðt, �Þ, ~mti is continuous. Thus we may also use the final argument from
[56, Lemma 8.1.2] (similar to our argument for the time traces at the boundary in Lemma A.6)
to prove the following equality (c.f. [56, Equation (8.1.4)]): for any / 2 C1

c ð½0,T� �M� R
dÞ and

any 0 � t1 � t2 � T,

h/ðt2, �Þ, ~mt2i � h/ðt1, �Þ, ~mt1i ¼
ðt2
t1

h@t/þ v � Dx/þ V � Dv/, ~mti dt: (A.13)

Next we wish to show that, if ~m0 is a probability measure, then ~mt is a probability measure
for all t 2 ½0,T�: If this is the case, then we may apply [56, Remark 5.1.6]—if ~mtn ! ~mt in the
sense of distributions as n tends to infinity, then this convergence also holds in the narrow
sense—to deduce that ~mt is a narrowly continuous path in the space of probability measures,
as desired.

To do this we use the argument of Lemma A.4 to avoid the need for vm to be integrable.
First, fix a sequence fR 2 C1

c ðM� R
dÞ of smooth, compactly supported functions, approximating

the constant function 1 in a monotone limit as R tends to infinity—that is, let fR satisfy the
assumptions given in Equation (5.2). We note in particular that kDfRkL1 � C=R for some con-
stant C> 0 independent of R. Then, for each t	, consider the test function T t�t	fR (recall T
from Definition A.2), which satisfies

ð@t þ v � DxÞT t�t	fR ¼ 0, T t�t	fRjt¼t	 ¼ fR:

Using (A.13) with t1 ¼ 0, t2 ¼ t	 and / ¼ T t�t	fR, we find that

hfR, ~mt	 i ¼ hT �t	fR, ~m0i þ
ðt	
0
hDvðT t�t	fRÞ,V ~mti dt:

We observe that, for all t 2 ½0, t	�,

jDvðT t�t	fRÞj ¼ j ðt	 � tÞDx þ Dv½ �fRj � ð1þ t	ÞkDfRkL1 � Cð1þ t	Þ
R

:

Thus (since ~mt ¼ mt for almost all t)����
ðt	
0
hDvðT t�t	fRÞ,V ~mti dt

���� � Cð1þ t	Þ
R

ðT
0

ð
M�R

d
jVjmt dx dv dt:

The right hand side tends to zero as R tends to infinity, since jVjm 2 L1ð½0,T� �M� R
dÞ:

Moreover, since ~m0 is a probability measure and T �t	fR increases monotonically to 1 pointwise
as R tends to infinity, it follows that
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lim
R!0

hT �t	fR, ~m0i ¼ 1:

Finally, since ~mt	 is a Radon measure and limR!1hfR, ~mt	 i is a monotone limit,

~mt	 ðM� R
dÞ ¼ lim

R!1
hfR, ~mt	 i ¼ 1:

That is, ~mt	 is a probability measure for all t	 2 ½0,T�: This completes the proof. w

Appendix B.
Truncations and maxima

Given a distributional solution to the Hamilton-Jacobi inequality

� @tu� v � Dxuþ Hðx, v,DvuÞ � b, in D0ðð0,TÞ �M� R
dÞ

uT � bT , in D0ðM� R
dÞ

(B.1)

in the sense of Definition 3.9, we show that the truncations of u from below, that is, the func-
tions maxfu, lg for some l< 0, satisfy a similar inequality. In a similar vein, we also show that
given u1 and u2 both satisfying (B.1), their maximum satisfies the same inequality (B.1).

Lemma B.1. Let u 2 L1locðð0,TÞ �M� R
dÞ satisfy (B.1) in the sense of distributions. Assume

that b 2 L1locðð0,TÞ �M� R
dÞ and Dvu 2 Lrlocðð0,TÞ �M� R

dÞ: Then ul :¼ ðu� lÞþ satisfies

� @tul � v � Dxul þ Hðx, v,DvulÞ1fu>lg � b1fu>lg, in D0ðð0,TÞ �M� R
dÞ,

ðu� lÞþ
� �

T
� ðbT � lÞþ in D0ðM� R

dÞ:

A similar result holds for the truncation u�l ¼ ðu� lÞþ þ l: Moreover it suffices to consider
the case l¼ 0.

Lemma B.2. Let u1, u2 satisfy Assumption 3 and (B.1). Then u ¼ maxfu1, u2g also satisfies (B.1).

The result here is in the spirit of renormalization [60]. Bouchut [61, Theorem 1.1] proved a
chain rule for the kinetic transport operator, i.e. the identity

ð@t þ v � DxÞhðuÞ ¼ h0ðuÞð@t þ v � DxÞu (B.2)

that applies when h is a Lipschitz function and @tuþ v � Dxu 2 L1loc: However, since in our case
@tuþ v � Dxu may only be a measure, we are not able to use this result directly, or indeed prove
a chain rule with equality as in Equation (B.2). Nevertheless, the ideas of the proofs in [24, 61]
can be used to obtain the inequality that is sufficient for our case.

The argument proceeds in several steps.
B.1. Extension
We define the following time shift and extension of u on the time interval ð�2g,T þ 2gÞ for

g > 0 :

~uðt, x, vÞ ¼
uðt, x, vÞ, t 2 ð0,TÞ
0, t 2 T,T þ 2g½ �:

(

Then, defining

~bðt, x, vÞ ¼
bðt, x, vÞ, t 2 ð0,TÞ
Hðx, v, 0Þ, t 2 T,T þ 2g½ �,

(

~u satisfies the following inequality in the sense of distributions on ð0,T þ 2gÞ �M� R
d (see the

similar construction in [21, Section 6.3]):
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�@t~u � v � Dx~u þHðx, v,Dv~uÞ � ~b þ bT @t1 T,Tþ2g½ �, in D0ðð0,T þ 2gÞ �M� R
dÞ:

B.2. Fenchel’s inequality
Since L is the Fenchel conjugate of H, for any continuously differentiable vector field a 2 C1

b
we have

�@t~u � v � Dx~u � a � Dv~u � Lðx, v, � aÞ þ ~b þ bT @t1 T,Tþ2g½ �, in D0ðð0,T þ 2gÞ �M� R
dÞ:

B.3. Regularisation
Fix non-negative, symmetric, unit mass mollifiers v,w 2 C1

c ðRdÞ and h 2 C1
c ðRÞ: Assume

that h is supported on the set ½�1, 1�: Then define, for e, d, g > 0,

veðvÞ :¼ e�dv
v
e

	 

, wdðxÞ :¼ d�dw

x
d

	 

, hgðtÞ :¼ g�1h

t
g

	 

:

Then define the full mollifier u by

uðt, x, vÞ ¼ hgðtÞwdðxÞveðvÞ:
Then the regularization ug, e, d :¼ ~u 	 u satisfies the following inequality, in a pointwise sense on
ðg,T þ g� �M� R

d :

�ð@t þ v � Dx þ a � DvÞug, e, d � Lg, e, d þ bg, e, d þ uðt � T, �Þ	x, vbT þ Eg, e, d,

where bg, e, d :¼ ~b 	 u and Lg, e, d :¼ Lðx, v, � aÞ 	 u, while Eg, e, d denotes the commutator

Eg, e, d :¼ hg	t ve	vwd	xðv � Dx þ a � DvÞu� ðv � Dx þ a � DvÞve	vwd	xu½ �:
With the choice e ¼ d2 this error converges to zero in L1loc by Lemma 5.3 and [60].

B.4. The maximum function
We fix a smooth approximation of the functions xþ ¼ maxfx, 0g and maxfx1, x2g: First, for

each a > 0 we fix a smooth function caðxÞ approximating xþ in such a way that 0 � caðxÞ � xþ
and 0 � c0aðxÞ � 1 for all a > 0 and lima!0 caðxÞ ¼ xþ for all x and lima!0 c0aðxÞ ¼ 1 for x> 0.
Note in particular that then c0aðxÞ ¼ 0 for all a > 0 and x � 0, so that c0a converges pointwise to
the function 1fx>0g as a tends to zero.

We similarly define an approximation ha of the maximum function by

haðx1, x2Þ :¼ x2 þ caðx1 � x2Þ:
Observe that ha satisfies 0 � @xiha � 1 for i¼ 1, 2, and

@x1haðx1, x2Þ þ @x2haðx1, x2Þ ¼ 1:

B.5. Inequality for the truncations and maximum
Since c0a is non-negative,

�ð@t þ v � Dx þ a � DvÞug, e, d c0aðug, e, dÞ � bg, e, d þ Lg, e, d þ uðt � T, �Þ	x, vbT þ Eg, e, d
� �

c0aðug, e, dÞ:
(B.3)

Thus, since ca 2 C1 and ug, e, d is smooth in all variables, applying the usual chain rule

�ð@t þ v � Dx þ a � DvÞcaðug, e, dÞ � bg, e, d þ Lg, e, d þ uðt � T, �Þ	x, vbT þ Eg, e, d
� �

c0aðug, e, dÞ:

Similarly, given two subsolutions u1 and u2,
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� ð@t þ v � Dx þ a � DvÞhaðu1g, e, d, u2g, e, dÞ

� bg, e, d þ Lg, e, d þ uðt � T, �Þ	x, vbT þ E1
g, e, d

h i
@1haðu1g, e, d, u2g, e, dÞ

þ bg, e, d þ Lg, e, d þ uðt � T, �Þ	x, vbT þ E2
g, e, d

h i
@2haðu1g, e, d, u2g, e, dÞ:

Thus

� ð@t þ v � Dx þ a � DvÞhaðu1g, e, d, u2g, e, dÞ � bg, e, d þ Lg, e, d þ uðt � T, �Þ	x, vbT
þ E1

g, e, d@1haðu1g, e, d, u2g, e, dÞ þ E2
g, e, d@2haðu1g, e, d, u2g, e, dÞ:

B.6. Limits
We now take the limit as the smoothing parameters tend to zero in the previous inequalities.

This procedure yields the proofs of the Lemmas B.1 and B.2. We continue to choose e ¼ d2 to
ensure convergence of the commutator. We detail the procedure in the case of the truncation
(B.3); the case of the maximum function is similar.

Proof of Lemma B.1. We first test the inequality (B.3) with an arbitrary non-negative smooth
function f 2 C1

c ðð0,T� �M� R
dÞ: We fix an extension of f to a function f 2 C1

c ðð0,T þ 1� �
M� R

dÞ and consider integrating over ½0,T þ g� �M� R
d: For all g > 0 small enough that the

support of f is contained in ðg,T þ 1� �M� R
d,ðTþg

0

ð
M�R

d
caðug, e, dÞð@tfþ v � Dxfþ divvðafÞÞ dx dv dt

�
ðTþg

0

ð
M�R

d
bg, e, d þ Lg, e, d þ Eg, e, d
� �

c0aðug, e, dÞf dx dv dt

þ
ðTþg

T�g

ð
M�R

d
ca

0ðug, e, dðt, x, vÞÞhgðT � tÞve	vwd	xbTfðt, x, vÞ dx dv dt:

We have used that ug, e, dðT þ g, x, vÞ ¼ 0: Since 0 � c0a � 1, we may estimate the boundary term
from above to obtainðTþg

0

ð
M�R

d
caðug, e, dÞð@tfþ v � Dxfþ divvðafÞÞ dx dv dt

�
ðTþg

0

ð
M�R

d bg, e, d þ Lg, e, d þ Eg, e, d
� �

ca0 ðug, e, dÞf dx dv dt

þ
ð
M�R

d bTðx, vÞ½ �þu 	 fðT, x, vÞ dx dv:

Since ~u, ~b, Lðx, v, � aÞ 2 L1loc, ug, e, d, bg, e, d, Lg, e, d converge respectively to these strongly in L1loc
by standard results on convolutions. We have already noted that Eg, e, d converges to zero in L1loc:
We therefore also obtain pointwise convergence along a subsequence. Similarly, u 	 f converges
to f pointwise since f is smooth. From this we obtain convergence of all terms, by continuity of
ca and c0a and applying dominated convergence. Hence we obtain the following inequality:ðT

0

ð
M�R

d
caðuÞð@tfþ v � Dxfþ divvðafÞÞ dx dv dt �

ðT
0

ð
M�R

d bþ Lðx, v, � aÞ½ �ca0 ðuÞf dx dv dt

þ
ð
M�R

d bTðx, vÞ½ �þfðT, x, vÞ dx dv:

The convergences as a ! 0 all follow by dominated convergence: for example, since u 2
L1locðð0,T� �M� R

dÞ and f has support contained in ð0,T� �M� R
d, we have
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caðuÞð@tfþ v � Dxfþ divvðafÞÞ � jujjð@t þ v � DxÞfj 2 L1:

A similar argument is used for the term involving bT.
For the remaining term, use that jc0aj � 1 (the bound being uniform in a > 0), and both b

and Hðx, v,DvuÞ are in L1locðð0,T� �M� R
dÞ by assumption. ThenðT

0

ð
M�R

d
uþð@tfþ v � Dxfþ divvðafÞÞ dx dv dt �

ðT
0

ð
M�R

d bþ Lðx, v, � aÞ½ �1fu>0gf dx dv dt

þ
ð
M�R

d bT½ �þfT dx dv:

Finally, taking a sequence of vector fields a converging in Lr0ðð0,TÞ �M� R
dÞ to

�DpHðx, v,DvuþÞ, we conclude thatðT
0

ð
M�R

d
uþð@tfþ v � DxfÞ dx dv dt �

ðT
0

ð
M�R

d
b�Hðx, v,DvuþÞ½ �1fu>0gf dx dv dt

þ
ð
M�R

d bT½ �þfT dx dv,

that is, the following holds in the sense of distributions:

� @tuþ � v � Dxuþ þHðx, v,DvuþÞ1fu>0g � b1fu>0g, in D0ðð0,TÞ �M� R
dÞ

uþ½ �T � ðbTÞþ in D0ðM� R
dÞ:

w
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