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Abstract— Retinal optical coherence tomography (OCT) images 

are widely used in diagnosis of ocular conditions. However, 

random shift and orientation changes of the retinal layers in OCT 

B-scans yield to appearance variations across the scans. These 

variations reduce the accuracy of the algorithms applied in the 

analysis of OCT images. In this study, we propose a preprocessing 

step to compensate these variations and align B-scans. At first, by 

incorporating total variation (TV) loss in the well-known Unet 

model, we propose a TV-Unet model to accurately detect the 

retinal pigment epithelium (RPE) layer in each B-scan. Then we 

use the detected RPE layer in the alignment method to form a 

curvature curve and a reference line. A novel window 

transferring-based alignment approach is applied to force the 

curve points to form a straight line, while preserving the shape and 

size of the pathological lesions. Since detection of RPE layer is a 

crucial step in the proposed alignment method, we utilized various 

datasets to train and test the TV-Unet and provided a multimodal, 

device-independent OCT image alignment method. The TV-Unet 

localizes the RPE layer in OCT images with low boundary error 

(maximum of 1.94pixels) and high Dice coefficient (minimum of 

0.98). Quantitative and qualitative results indicated that the 

proposed method can efficiently detects the RPE layer and align 

OCT images while preserving the structure and size of the retinal 

lesions (biomarkers) in the OCT scans. 
 

Index Optical coherent tomography (OCT), RPE detection, 

alignment, TV-Unet, Device-independent 

I. INTRODUCTION 

Optical Coherence Tomography (OCT) is an indispensable 

supplementary tool for ophthalmologists in detection and 

treatment of the retinal disorders [1]. Till now, automatic 

algorithms have been proposed for OCT image processing. 

However, one of the main issues in these algorithms is random 

shift and curvature changes of the retinal layers in OCT images 

(B-scans) caused by anatomical structures and acquisition 

distortions [2]. For example, in myopic eyes, the macula might 

have an aberrant shape due to the presence of strongly curved 

concave staphylomata. Patients with a higher myopic spherical 
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equivalent, a longer axial length, or an elevated lesion such as 

a choroidal tumor, retinal detachment, or retinoschisis are more 

likely to have alterations in the curvature of the retina and 

retinal pigment epithelium (RPE) [3]. An alignment method for 

preprocessing is, therefore, necessary to reduce the curvature 

variation across scans to improve further clinical 

measurements. The importance of image alignment as a 

preprocessing step in OCT image processing has been declared 

in segmentation [4]–[7], registration algorithms [8] and 

classification [9]–[12]. Given the importance of this 

preprocessing step in the accuracy of analysis and 

measurements, before explanation of proposed method, we 

review some recent OCT curvature alignment techniques. 

Several methods have already been proposed for OCT image 

alignment. Liu et al. [13] aligned retinal regions by fitting a 

second-order polynomial to the whole retinal OCT image. They 

applied this method on the normal, macular edema (ME), 

macular hole (MH), and age-related macular degeneration 

(AMD) B-scans. However, the effectiveness of their method 

was reduced in elevated lesions. Baghaie et al. [14] used sparse 

and low-rank decomposition of vectored image data for batch 

alignment and denoising of the OCT images. Sun et al. [11] 

proposed a method that used linear or second-order polynomial 

fitting method to flatten the retina region and to reduce the 

variations between OCT images in morphology. They 

employed cropped images in training a sparse dictionary and 

used feature descriptors to classify the AMD, normal, and 

diabetic macular edema (DME) data. Duan et al. [15] proposed 

a group-wise curve alignment-based method to segment retinal 

layers. This method was applied to normal and abnormal B-

scans for segmentation of retinal layers. Pan et al. [8] proposed 

a novel design-detection-deformation mechanism and a feature-

based registration method to align OCT B-scans. They 

evaluated their method in registration of longitudinal OCT 

images from healthy subjects and subjects diagnosed with 

serious Choroidal Neovascularization (CNV). 

Given that the initial step in our proposed method is to detect 
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the retinal pigment epithelium (RPE) in each B-scan, we also 

reviewed several RPE segmentation techniques that were used 

for purposes other than alignment. Kafieh et al. [16] presented 

an OCT curvature correction algorithm using graph-based 

geometry detection to localize the hyper-reflective complex 

(HRC). They examined the efficiency of their method in 

alignment of normal and abnormal HRC layers. Chen et al. [17] 

used highly reflective and locally connected pixels located 

below the retinal nerve fiber layer (RNFL) to segment RPE 

layer. They applied their algorithm on AMD B-scans for drusen 

segmentation. Srinivasan et al. [9] aligned retinal regions by 

fitting a second-order polynomial to RPE layer and then 

flattened the retina. Aligned images were applied in the 

classification task to discriminate AMD and DME cases from 

normal ones. However, their approach was confirmed only for 

moderately deformed RPE layers in order to fix the curvature 

of the retina's RPE border. Rashno et al. [4] used 1D linear 

interpolation which led to aligning RPE layer in OCT images. 

They applied this method for segmentation of three types of 

fluids including intra-retinal fluid (IRF), sub-retinal fluid (SRF) 

and pigment epithelial detachment (PED) in OCT B-scans of 

subjects with AMD and retinal vein occlusion (RVO) or 

diabetic retinopathy by utilizing a convolutional neural 

network. Thomas et al. [12] extracted the RPE layer and the 

baseline from OCT B-scans to find the height of abnormalities 

in the RPE layer and classify AMD B-scans from normal ones. 

For this purpose, the randomly selected points of the RPE layer 

were used to estimate the baseline using iterative polynomial 

fitting over the chosen points. Then, they obtained the 

difference between the RPE layer and baseline and used it to 

estimate the drusen heights as discriminative features.  

In this work, we proposed a deep learning-based OCT 

alignment method consisting of two main steps: At first, we 

begin by detecting the RPE layer in each B-scan with a deep 

learning model called TV-Unet, which is made up of Unet with 

the total variation (TV) added to its loss functions. TV is a 

measure of spatial continuity in the image and can improve the 

connectivity requirements to predict segmentation maps [18], 

[19]. The concept of employing TV-Unet in computerized 

tomography (CT) image segmentation tasks has also been 

investigated [20]–[22]. In the second step, we flatten the B-

scans along the RPE layer by aligning a set of small windows. 

In a simple transfer-based alignment approach, each window is 

translated up or down to force the curve points to form a straight 

line. One of the challenges in such approach is that regarding 

differences in various equipment, OCT data from distinct 

devices exhibit appearance disagreement, resulting in 

performance fluctuations in the alignment process. Therefore, 

we propose a device-independent OCT alignment approach to 

address this issue. This method is successfully trained and 

tested with combination of different datasets acquired from 

several OCT devices. The results show acceptable performance 

of the method in the test phase. Our contribution can be 

summarized into three folds:  

(I) in this work, we present a deep learning-based framework 

for alignment of the retinal OCT images regarding the benefits 

of adding TV regularization to the ordinary Unet network. 

(II) We develop a robust, shape-preserving and effective 

alignment method, successfully tested in a large OCT dataset 

acquired from several OCT platforms.  

(III) We will publicly share our dataset as a benchmark for 

other researchers. 

In addition, our work brings additional advances attributable 

to independency of alignment method from OCT device and 

demonstrates the performance improvement compared to other 

approaches. The proposed method can also be utilized to locate 

drusen using the same mentioned method [12]. Overall, 

consequent OCT image analysis such as automatic 

measurements of biomarkers can be effectively performed by 

using the trained TV-Unet as the preprocessing step. 

The rest of this paper is organized as follows: in Section II, 

we provide detailed description of the proposed method and 

implementation approach. In section III, we introduce the 

datasets and report experimental results. Section IV provides a 

brief conclusion. 

II. METHOD AND MATERIALS 

A. Dataset 

In this study, we used a dataset of 3173  OCT images from 

healthy and abnormal subjects Images acquired using different 

OCT devices. We divided these images into six subsets as 

described in Table I. Subset I consisted of 1568 images from 

healthy subjects and patients with multiple sclerosis (MS) 

obtained by the Heidelberg OCT platform (Heidelberg 

Engineering, Heidelberg, Germany). This subset has been 

presented in [23]. Subset II  is composed of 116 images from 

abnormal cases (AMD pathology).This dataset has been 

acquired from the spectral domain (SD-OCT) imaging system 

from Bioptigen, Inc (Research Triangle Park, NC) and has been 

utilized in [24]. Subset III is acquired from a Custom-made 

swept-source OCT (SS-OCT) imaging system designed and 

built in Department of  Biomedical Engineering, University of 

Basel. This dataset consists of 45 subjects without eye 

pathologies collected in Didavaran eye clinic, Isfahan, Iran. 

This subset has been used in [25], [26]. Subset IV  has also been 

used in [27] and contains thirteen 3D macular SD-OCT images 

obtained from eyes without pathologies using Topcon 3D OCT-

1000 imaging system in Ophthalmology Department, Feiz 

Hospital, Isfahan, Iran. Subset V consists of 63 images with a 

resolution of 1024x960 pixels obtained at the Farabi Eye 

Hospital's Retinal Service Center in Tehran, Iran from 30 

patients with a variety of eye pathologies. This subset has been 

used in [28]. Subset VI is studied in [29] and consists of 193 

OCT images from 19 DME patients. This dataset has been 

acquired from the Heidelberg system version 5.1. The dataset 

will be available at https://github.com/narges-sa/Multi-center-

multi-device-Retinal-OCT-dataset-with-RPE-deliniation 

B. Unet architecture 

The Unet CNN model was first presented by Ronneberger et 

al. [30] for biomedical image segmentation. It consists of two 

main parts: an encoder and a decoder. However, one difference 

between Unet and ordinary auto-encoders is skipped 
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connections between layers of the encoder to the decoder. 

These connections provide better capturing of the details. In our 

proposed Unet network, the encoding path consists of 3×3 

convolutions which are repeatedly applied. Each convolutional 

layer is followed by a rectified linear unit (ReLU), a batch 

normalization, a 2×2 max pooling operation for down sampling, 

and a drop-out equal to 0.2. At each down-sampling step, the 

number of feature channels is doubled, and the dimension of the 

input image is halved. Each step in the decoding path is 

composed of a) a transposed convolutional layer, b) a 

concatenation of cropped features from the corresponding 

contracting path, c) a drop-out equals 0.2, and d) two 3×3 

convolutional layers, each followed by a ReLU activation 

function and batch normalization. The final layer consists of a 

1×1 convolution to map feature vector to the desired number of 

classes with a sigmoid activation function. Figure 1 illustrates 

the architecture of the proposed TV-Unet. 

A. TV regularization 

The traditional loss function utilized for training U-Net 

architecture is a weighted cross-entropy loss defined as follows. 

ℒ𝑈𝑛𝑒𝑡 = ∑ 𝑤(𝑋)𝑙𝑜𝑔 (𝑝𝑙(𝑋)(𝑋))

𝑋𝜖Ω

 (1) 

where 𝑤(𝑋) is a weight for pixel 𝑋. The weights are pre-

computed for each ground truth segmentation by assigning 

higher values to challenging boundary pixels based on a 

distance map [30]. 𝑙 ∶ 𝛺 →  {1, . . . , 𝐾} is true label of each 

pixel, K denotes the total number of classes and 𝑝𝑘(𝑋)  is a pixel-

wise soft-max that is defined as: 

𝑝𝑘(𝑋) =
𝑒𝑥𝑝(𝑎𝑘(𝑋))

∑ 𝑒𝑥𝑝(𝑎𝑖(𝑋))𝑘
𝑖=1

 
(2) 

where 𝑎𝑘(𝑋) is the activation in feature channel 𝑘  at the pixel 

position 𝑋 ∈  𝛺 with Ω ⊂ 𝑍2. Various regularization terms can 

be added to the loss function for different purposes such as 

reduction of overfitting of the network. One of these 

regularization terms is total variation (TV) which has been 

widely used in image restoration studies such as [31], and 

segmentation studies such as [32], [33]. TV is defined as (3) 

where ∇(.) denotes the gradient operator.   

𝑇𝑉 (𝑢) = ∫|∇𝑢(𝑥)|𝑑𝑥

 

Ω

 
 

            (3) 

In 2D discrete domain (𝑌 = [𝑌𝑖,𝑗]) the TV regularization can 

be depicted by anisotropic version of TV as (4). In applications 

such as segmentation where spatial continuity must be 

preserved, TV regularization can be added to the loss function 

to incorporate a meaningful relationship between neighboring 

pixels to the weights of the neural network. 

𝑇𝑉(𝑌) = ∑|𝑌𝑖+1,𝑗 − 𝑌𝑖,𝑗|

𝑖,𝑗

+ |𝑌𝑖,𝑗+1 − 𝑌𝑖,𝑗| (4) 

In other words, using TV as a regularization term forces the 

neighboring pixels to have similar values except for small 

number of positions, where it might make sudden jumps. These 

sudden jumps occur in the edges of the image which are critical 

in image segmentation. In TV-Unet, to promote connectivity, 

the total variation is added to the loss function of Unet. 

Therefore, the loss function of TV-UNet is defined as: 

ℒ𝑇𝑉−𝑈𝑁𝑒𝑡= ℒ𝑈𝑛𝑒𝑡 + 𝜆 𝑇𝑉(𝑀(𝑋)) 

𝜆 =
1

255 × 𝑁
 

 
(5) 

 where λ is a regularization coefficient, 𝑁 is the number of 

pixels in each image, and ℒ𝑈𝑁𝑒𝑡  is the binary cross-entropy loss 

defined in (1), 𝑇𝑉(𝑀(𝑋)) is the total variation of predicted 

binary mask for RPE pixels.  

A. Alignment of OCT images 

The OCT image is represented by a 2D matrix 

𝐼(𝑥, 𝑦) where 𝑥 ∈ [1, 𝑀], 𝑦 ∈ [1, 𝑁]. Having the RPE layer 

coordinates, whole shape can be aligned to straighten this curve. 

Suppose that (𝑥𝑅𝑃𝐸 , 𝑦𝑅𝑃𝐸) indicates a point on the RPE layer 

and 𝑦𝑃𝑅𝐸 = 𝑓(𝑥𝑅𝑃𝐸) where 𝑓 indicates the RPE curve (Fig. 2 

(a)).  In order to preserve RPE curvatures created by some 

pathological effects (such as drusen, fluid-filled regions or sub-

retinal mass), which are informative curvatures, we proposed 

using the estimated coordinates of the RPE layer to form an 

auxiliary curve so called curvature curve (Fig. 2 (a)). The 

curvature curve follows the estimated RPE coordinates in the 

areas without informative curvatures, but, it follows the straight 

line in informative areas. 

 
Fig. 1. An overview of the detailed structure of the proposed TV-Unet 
network. 

TABLE I 

DETAILS OF THE UTILIZED DATASET 

Dataset Data type Number of images Subjects Imaging system Image size Resolution (𝝁𝒎𝟑) 

Subset I Normal 686 14 Heidelberg (SD-OCT) 1024×496 5.8×3.9×123.6 

Abnormal (MS) 882 18 

Subset II Abnormal ( AMD) 116 50 Bioptigen (SD-OCT) 1024×496 3.87×6×124 

Subset III Normal 45 45 Custom-made (SS-OCT) 1024×300 10×20×12 

Subset IV Normal 1188 11 Topcon (SD-OCT) 650×512 13.67×4.81×24.41 

Subset V Abnormal  63 30 Optovue (EDI SD-OCT) 1024×960 8 × 12 × 3.8 

Subset VI Abnormal (DME) 193 19 Heidelberg (SD-OCT) 875×656 6×6×3.8 

This goal was attained by linear interpolating the RPE points through the running minimum filter. Given an input sequence 
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of size 𝑊, (𝑥𝑖 , 𝑓(𝑥𝑖)), (𝑥𝑖+1, 𝑓(𝑥𝑖+1)), … , (𝑥𝑀 , 𝑓(𝑥𝑊)), 1 ≤

𝑖 ≤ 𝑊 we define the response of the minimum filter as follows. 

�̂�𝑊 = 𝑎𝑟𝑔𝑙𝑜𝑐𝑎𝑙𝑚𝑖𝑛𝑥(𝑓(𝑥))  𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑊 (6) 

In fact, a running minimum filter is used to find the place, �̂�𝑊 

(local solutions), and minimum value, �̂�𝑊 = 𝑓(�̂�𝑊), of the RPE 

curve in neighboring window of size 𝑊 from each pixel. Hence, 

for each point (𝑥𝑅𝑃𝐸 , 𝑦𝑅𝑃𝐸) of the RPE layer curve, the location 

(𝑥, 𝐶(𝑥)) of a curvature curve is calculated by a linear 

interpolation as follows, where 𝑥𝑅𝑃𝐸 ≤ 𝑥 ≤ 𝑥𝑊. 

𝐶(𝑥) = �̂�𝑊 + (
𝑥 − 𝑥𝑅𝑃𝐸

�̂�𝑊 + 𝑊 − 𝑥𝑅𝑃𝐸

) (�̂�𝑊 − 𝑦𝑅𝑃𝐸)  (7) 

The width of running filter can be adjusted to cover all 

informative curvatures of the RPE layer. Here, we set 𝑊 = 15 

for our application. The curvature curve has crucial role in the 

correct estimation of the required transferring (Figure 2 (b)). 

Without curvature curve, the amount of required transfer is 

overestimated in informative area and the lesions are dislocated 

in the new aligned image as shown in Fig. 2 (c). After creating 

curvature curve, a straight line passing through its lowest height 

is considered as the reference alignment line (Fig. 2 (a)).  

For simple transfer-based alignment, the image is divided 

into windows of width equal to one pixel and the height from 

top to the bottom of the image (Fig. 3 (b)). The distance between 

curvature curve and the reference line is considered as amount 

of required transfer for each pixel inside the corresponding 

window. Therefore, new image of the transferred pixels, 

(𝑥, 𝑦𝑛𝑒𝑤) would be determined as follows (Fig. 3 (e)): 

𝐼(𝑥, 𝑦𝑛𝑒𝑤) = 𝐼 (𝑥, 𝑦 + 𝐶(𝑥) − 𝑚𝑖𝑛(𝐶(𝑥))) (8) 

 
Fig. 2. (a) The estimated RPE layer (red), curvature curve (blue), and 
reference alignment line (green) for a sample B-scan of dataset V. 
Correction is based on the distance between curvature curve (blue) and 
the reference line (green), (b) image aligned based on the proposed 
curvature curve, (c) image incorrectly aligned based on tracking the 
estimated RPE layer (red). 

B. Shape- preserving corrections 

The main drawback of simple transfer-based alignment 

method is that it cannot preserve the shape and size of the 

pathological lesions as well as the curvatures of them. 

Distortions and flattening in morphology of drusen can be 

widely seen in these methods. This point is more highlighted 

when the lesion area is asymmetric and has stretched to the left 

or right. To address this issue, we updated the algorithm in such 

a way that it can resolve these deformations in the alignment 

process. To accomplish this, in the curvature curve we 

determined the points that are inclined relative to the vertical 

axis and applied the geometric transform to their coordinates 

before final alignment in (8). Figure 3 (a) illustrates the vertical 

axis (yellow) and the calculated perpendicular line (red) to the 

pixel of the curvature curve. Suppose a point of the curvature 

curve with coordinates (𝑥1, 𝐶(𝑥1)). First, we calculated the line 

perpendicular to the curve at this point and extended it 

throughout the image as a line with following equation.  

𝑦𝑝 =
−1

𝐶′(𝑥1)
𝑥 + 𝑏 

(9) 

where 𝐶′(𝑥1) is the derivative of the curvature curve at point 

𝑥1 and 𝑏 denotes the value of line at 𝑥 = 0. Values of 𝑥 and 𝑦𝑝 

change in range  (0, 128). Then an intermediate window 𝐼𝑖𝑛𝑡 

(Fig. 3 (c)) is created as follows: 

𝐼𝑖𝑛𝑡(𝑥, 𝑦) = {
𝐼(𝑥, 𝑦)         𝜃 = 90

𝐼 (𝑥,
𝑦𝑝

𝑐𝑜𝑠𝜃
)   𝜃 ≠ 90

 
(10) 

where 𝜃 is the angle between perpendicular line, depicted in 

(9), and the vertical line 𝑥 = 𝑥1 and is calculated as follows:  

𝜃 = arctan (
−1

𝐶′(𝑥1)
) 

(11) 

The aligned image is then created using the following 

equation (Fig. 3 (f)). 

𝐼(𝑥, 𝑦𝑛𝑒𝑤) = 𝐼𝑖𝑛𝑡 (𝑥, 𝑦 + 𝐶(𝑥) − 𝑚𝑖𝑛(𝐶(𝑥))) (12) 

In this way, the real distance between oblique points and 

curvature curve are preserved during transferring the pixel to 

the objective image. Therefore, deformation of lesions is 

prevented in the proposed alignment method.  

 
Fig. 3.  (a) The estimated RPE layer (red), curvature curve (blue), and 
reference alignment line (green) for a sample B-scan of dataset V. 
yellow line and red line represent vertical axis, and prependicular line of 
a pixle respectively. (b)  windows of width equal to one pixel and the 
height from top to the bottom of the image, designed for simple transfer-
based alignment, (c) intermediate windows designed with the proposed 
alignement method, (d) blue-colored ground truth segmented fluid 
region and corresponding areas covered with windows in part (b) and 
part (c), (e) aligned b-scan with simple transfer-based alignment, (f) 
aligned b-scan with proposed shape preserving alignement method. 

 

Fig. 4. Results of alignments of sample B-scan of dataseta VI. (a) 
before supperesion of saw tooth artifacts. (b) after supperesion of saw 
tooth artifacts. 
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Fig. 5. Block diagram of proposed alignment method. 

Figure 3 (d) illustrates the sample B-scan of dataset V and 

the ground truth segmented fluid region. This image is aligned 

without the shape-preserving correction (Fig .3 (e)) and with the 

proposed correction method (Fig .3 (f)). The shape, size and 

area of the fluid area is clearly preserved in proposed shape 

preserving method (Fig .3 (f)) in contrast to ordinary alignment 

where the overlaid area is deformed and smaller than original 

area (Fig .3 (e)). 

C. Suppression of saw-tooth artifacts 

The interpolations applied in creating the curvature curve can 

cause saw-tooth artifacts in the intra-layer edges of the aligned 

image. This issue arises as a result of rounding decimal numbers 

in order to get integer pixel coordinates during the interpolation. 

A suitable option is to scale the height of the test image and any 

relevant values to a larger size before alignment, apply the 

alignment procedure, and then rescale the image height to its 

original size after alignment. For instance, suppose the 

rescaling is done with the factor of 10. In this way, the decimal 

point will move one place to the right and rounding will be done 

more accurately. Therefore, the saw tooth steps, created by the 

decimal numbers during the rounding process, will be 

eliminated. Figure 4 illustrates the aligned sample B-scan 

before and after the suppression of artifacts. 

III. RESULTS AND DISCUSSION 

The block diagram of the proposed alignment method is 

depicted in Fig .5 which will be described in this section. All 

the executable codes were implemented in Python, TensorFlow 

backend utilizing 12 GB NVIDIA K80 GPU, 324 MHz memory 

of the Google Colaboratory (Colab). The scratch TV-Unet 

network was trained here, and no pre-trained parts or transfer 

learning methods were used. 

A. Training details 

Whole dataset, in a subject-wise manner, with an 80/20 ratio 

was split for training and testing. In this way, 754 B-scans were 

parted to be used as test dataset. Since, in the 2419 remnant B-

scans there were more normal images than abnormal ones, in 

order to have a balanced dataset, abnormal data was augmented 

and 4089 B-scans were obtained to be applied in training and 

validation process in a balanced way. Given the variety of 

datasets used in this study, it was important to identify all B-

scans and their related masks (labels) prior to applying them to 

the network. To do this, we retrieved the RPE layer from each 

ground truth B- scan's layers and stored it as the appropriate 

mask. Eventually, B-scans and their matched labels were 

resized to 128 ×128 and applied in training and validation 

process. Since, images of various vendors had different range 

of intensity, we normalized the intensity range of training and 

test datasets to the [0, 1] values as well. The sample images of 

the dataset and their masks are illustrated in Fig. 6. 

B. Results of RPE detection 

We used the trained network to predict RPE layers in test B-

scans. Results of RPE detection for sample B-scans from 

different datasets are depicted in Fig. 7 for visual inspection. In 

addition, we calculated signed and unsigned (absolute) errors 

between the target RPE and predicted layer of test B-scans 

using a variety of datasets. 

 

 
Fig. 6. The sample images (top panel) and corresponding ground-truth 
(down panel) from different Datasets. 

 

Fig. 7. Results of RPE detection on sample B-scans from datasets: (a) 
I, (b) II, (c) III, (d) IV, (e) V, (f) VI. The blue and red lines represent the 
ground-truth and predicted RPE layer respectively. 
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Fig. 8.  The radar chart representing the logarithm of mean values of signed positioning error, unsigned positioning error, and Dice coefficients 
calculated for RPE layer versus different datasets.Results are acquired applying graph-based [27] , DP [34], and proposed TV_Unet method. 

TABLE II 

MEAN VALUES OF SIGNED AND UNSIGNED RPE DETECTION  

 Signed error Unsigned error 

Graph 

[27]  

DP 

[34] 

Proposed 

TV_Unet 

Graph 

[27] 

DP 

[34] 

Proposed 

TV_Unet 

I 1.328 6.989 0.014 6.726 8.508 0.243 

II 4.221 4.608 -0.008 7.3270 7.785 0.59 

III -3.441 -3.212 -0.214 18.191 18.470 1.943 

IV 4.540 4.498 0.613 5.348 5.333 1.754 

V 3.240 3.029 -0.179 12.158 12.049 0.692 

VI 1.089 4.213 0.054 38.188 18.149 0.306 

 
TABLE III 

MEAN DICE COEFFICIENTS FOR RPE DETECTION  

 I  II III IV  V VI 

Graph [27] 0.445 0.620 0.121 0.606 0.656 0.205 

DP [34] 0.304 0.716 0.184 0.675 0.691 0.109 

Proposed TV_Unet 0.997 0.992 0.987 0.988 0.985 0.997 

 

Unsigned errors are computed to avoid underestimating the 

total number of mistakes produced by the cancellation of 

positive and negative errors. Mean values of these errors (in 

pixel) for six datasets are reported in Table II and compared 

with a graph-based method [27], and a dynamic programming 

(DP) [34]. According to Table II, the proposed TV-Unet is 

capable of accurately detecting the RPE layer in images. For 

more analysis, the RPE detection of each method was analyzed, 

by calculating the Dice coefficient corresponding to the overlap 

of each segmented RPE compared with its annotations (Table 

III). High Dice coefficients indicate the outstanding 

performance of the proposed method in RPE detection. 

This satisfying performance has been provided by adding TV 

term to the loss function of the Unet network which helps 

accurate detection of the RPE layer and facilitate the following 

alignment step. Furthermore, we provided various training 

datasets from different capturing devices. This assisted the 

network in learning the requisite structural elements for 

detecting the RPE layer in a wide range of OCT images.  Radar 

chart of the logarithmic values of boundary detection errors and 

Dice coefficients are represented in Fig. 8 for more comparison.  

According to Fig. 8, lower boundary positioning errors and 

higher Dice coefficients than comparing methods indicates the 

ability of the proposed TV-Unet to operate as a device-

independent RPE-detection technique, and to be applicable for 

various datasets acquired from various vendors. 

C. Results of alignment and its application 

After indicating the coordinates of RPE, we aligned whole 

shape of each OCT image of the applied datasets to straighten 

this curve based on the method described in section II. Here, we 

devised and implemented a new quantitative evaluation 

approach for determining the efficiency of the alignment. To 

this purpose, we hypothesized that if the RPE layer's intensities 

are aligned horizontally, their first derivative must approach 

toward zero in locations devoid of pathologic curvature. In 

contrast, in the pathologic regions, we expect large variations in 

the values of derivatives which depend on the size and the shape 

of the curvature of lesions. Result of the derivative plots of a 

sample image before and after alignment is illustrated in Fig. 9. 

It can be seen that in the aligned image the derivatives have very 

small values (near zero) at non-pathologic areas and have large 

fluctuations in lesion areas. In addition, it can be seen from Fig. 

9 (d) that the proposed evaluation method can be used in exact 

localization of the lesion area as well (red lines). This hopefully 

indicates the application of the proposed alignment method in 

the future macular pathology detection. Numerous diagnostic 

biomarkers, including the size and shape of lesions, are 

quantified using OCT images and are commonly used in 

ophthalmology to detect retinal abnormalities. As a result, these 

biomarkers must remain stable throughout alignment. As 

described in section II. F, by adding the geometric modification 

to the sloped zones of the RPE layer, we adjusted the alignment 

algorithm to preserve the size and shape of the lesions during 

the alignment. 

 
Fig. 9. (a,c) The sample image before and after alignment, (b,d) plot of 
derivatives of the intensities of the pixels located in the RPE layer. (red 
line indicates the fluid region which is also detrminable in the derivative 
plot after alignment.  
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Fig. 10. Comparison of the proposed shape preserving alignments and simple transfer-based alignment on sample B-scan from datasets I, II, III, 
IV, V, VI from left to right, respectively. First row: Original image, Second row: corresponding aligned images with simple transfer-based alignment. 
Third raw: corresponding aligned version of image with proposed shape preserving and artifact supperession method. Yellow arrows indicate saw 
tooth artifacts and the red arrows show the change in lesions’ shape using simple transfer-based alignment. Both mntioned problems are shown to 
be solved in proposed shape preserving method. In the first row, blue curves indicate the calculated curvature curve. 0 ≤ 𝑋 ≤ 128 and 0 ≤ 𝑌 ≤ 128 
axis represent the location (X, Y) of each correspondent pixel in the X-Y plane.. 

 
Fig. 11. Results of alignments on challenging B-scan from different 
datasets. Top panel: Original image, down panel: aligned version of 
image. In the first row, blue curves indicate the calculated curvature 
curve. 0 ≤ 𝑋 ≤ 128 and 0 ≤ 𝑌 ≤ 128 axis represent the location (X, Y) 
of each correspondent pixel in the X-Y plane. 

Furthermore, we suppressed the saw tooth artifacts occurred 

during interpolation-steps of the alignment procedure by adding 

a fake super-resolution step before alignment of the images as 

described in section II F. In Fig. 10, the improvement in 

alignment of images after proposed shape preserving 

modifications are depicted for visual inspection (2nd and 3rd raw 

show the aligned images without and with shape preserving 

method, respectively). According to this figure, the proposed 

modifications, particularly in presence of big lesions, helped 

preserving the lesions’ shape and removing saw tooth artifacts, 

indicating the good performance of the proposed method in 

alignment of the OCT images. More results of alignment on 

sample challenging B-scans from different datasets are also 

provided in Fig. 11 to verify this feat. 

IV. CONCLUSION  

In this paper, a novel deep learning-based method is 

proposed to align retinal OCT B-scans by incorporating TV 

regularization in the Unet network. We reported visual and 

quantitative assessment of the TV-Unet network in detection of 

RPE layer to demonstrate the outstanding performance of the 

proposed method. When comparing with other methods, the 

RPE detection results showed noticeable performance for the 

TV-Unet method with Dice coefficients of 99.7%, and 99.2% 

in normal and abnormal datasets, respectively. The boundary 

errors of the proposed method has the lowest values among 

methods, with a difference of mean absolute error of 4 and 38 

pixels for the RPE layer in various datasets. It is worth noting 

the retinal layers are small in area, so changes of a few pixels 

may have a large impact on clinical measurements. Afterward, 

an interpolation-based method was utilized to remove unwanted 

curvatures caused by distortions occurred during image 

acquisition. To preserve the shape and size of the lesions in the 

pathologic B-scans, the geometric modification was proposed 

and incorporated in the alignment method. Extra modification 

was proposed to suppress the saw tooth artifacts which is a 

common issue in the interpolation-based methods by adding a 

fake super-resolution step to the alignment method. Visual 

assessments of the results indicated the outperformance of the 

proposed alignment method. In addition, we proposed a new 

derivative-based approach for quantitative assessment of 

alignment method which can be used as future approach and be 

applied in localization of the lesions in the pathologic scans. 

The proposed method have been evaluated for various datasets  

and different vendors and the results indicated that the proposed 

method can be used as a device-independent, shape preserving 

alignment method in the preprocessing step for OCT image 

analysis. 

However, the proposed alignment process may lead to 

inaccurate measurement of the retinal thickness due to creating 
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distortions in the actual morphology of retinal layers. 

Therefore, it is imperative to determine where the proposed 

alignment process could affect the measurements. It is expected 

that the thickness map is not affected for normal cases, 

however, the comparison of retinal thickness measurements of 

analyzed and original images, especially in images with 

macular pathologies, can be further studied in future works. 
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