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Abstract—Optical coherence tomography (OCT) images are 

widely used for clinical examination of the retina. Automatic deep 

learning-based methods have been developed to classify normal 

and pathological OCT images. However, lack of the big enough 

training data reduces the performance of these models. Synthesis 

of data using generative adversarial networks (GANs) is already 

known as an efficient alternative to increase the amount of the 

training data. However, the recent works show that despite high 

structural similarity between synthetic data and the real images, a 

considerable distortion is observed in frequency domain. Here, we 

propose a dual discriminator Fourier acquisitive GAN (DDFA-

GAN) to generate more realistic OCT images with considering the 

Fourier domain similarity in structural design of the GAN. By 

applying two discriminators, the proposed DDFA-GAN is jointly 

trained with the Fourier and spatial details of the images and is 

proven to be feasible with a limited number of training data. 

Results are compared with popular GANs, namely, DCGAN, 

WGAN-GP, and LS-GAN. In comparison, Fréchet inception 

distance (FID) score of 51.30, and Multi Scale Structural 

Similarity Index Measure (MS-SSIM) of 0.19 indicate superiority 

of the proposed method in producing images resembling the same 

quality, discriminative features, and diversity, as the real normal 

and Diabetic Macular Edema (DME) OCT images. The statistical 

comparison illustrates this similarity in the spatial and frequency 

domains, as well. Overall, DDFA-GAN generates realistic OCT 

images to meet requirements of the training data in automatic 

deep learning-based methods, used for clinical examination of the 

retina, and to improve the accuracy of the subsequent 

measurements.  

 
Index Terms—Optical coherence tomography, Generative 

Adversarial Network, Dual discriminator, Multi-task learning, 

Diabetic macular edema, Fourier analysis.  

I. INTRODUCTION 

Optical Coherence Tomography (OCT) is a noninvasive, 

high-resolution imaging technique which projects cross 

sectional images from the human retina. Since ocular 

pathologies generally cause changes in the retina, 2D OCT 
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images (B-scans) have been widely used by ophthalmologists 

for early detection of the pathology. OCT images can be used 

in computer aided diagnosis (CAD) systems for automatic 

classification of various disorders. For instance, diabetic 

macular edema (DME) is diabetes-related complication which 

causes central vision loss [1] and can be detected through OCT 

B-scans.  

Deep learning-based classification methods can 

automatically detect the discriminative features of pathological 

B-scans efficiently without any human supervision [2]. These 

methods need large, diverse, and well-balanced training 

datasets to be trained in order to work effectively. However, 

collecting and labeling of data can be time consuming and 

costly. In addition, sharing medical images is not allowed due 

to privacy regulations (E.G., the US Health Insurance 

Portability and Accountability Act.). As a result, availability of 

the training data is limited.   

To overcome the limitation of the training data, several 

augmentation strategies have been developed [3]. Data 

augmentation can increase the generality of the classifier 

model, help resolve the class imbalance problem and inhibit the 

model from over-fitting. Since distribution of the shape of the 

retinal layers is relatively fixed )because of anatomical 

constraints(, few classic image augmentation methods such as 

rotation, horizontal flip, shifting, adding white noise, adding  

multiplicative speckle noise, elastic deformation, and occluding 

patches could have been used to increase retinal data [4]. 

Recently, Generative adversarial networks (GANs) have been 

utilized for various applications [5], [6]. They learn patterns of 

a dataset and generate new examples resembling the input data. 

GANs have been widely used in various fields such as 

generating artificial fault signals in rolling bearing to improve 

classification results [7], or synthesis of magnetic resonant 

images (MRI) to improve segmentation results [8]. They can 

produce large and diverse retinal datasets with high quality and 

reduce the need for data acquisition, manual annotation, and 
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data augmentation steps [9]. Realistic synthesized OCT images 

can be used for educational purposes in the training of retinal 

specialists and can be successfully used for training of accurate 

deep learning-based methods for data analytics and biomarker 

measurements.  

However, despite the outstanding performance of GANs in 

synthesizing natural images, non-convergence, instability, and 

mode collapse are remained as common challenges. Several re-

engineered network architectures have been proposed to tackle 

these problems. Moreover, to improve learning the probability 

distribution of the data, the objective functions were modified 

in networks such as seep convolutional GAN (DCGAN) [10], 

Wasserstein GAN (WGAN) [11], WGAN with gradient 

penalized (WGAN-GP) [12],  and least square GAN (LS-GAN) 

[13]. To control the diversity of the generated images, 

conditional GAN [14] was proposed in which the class 

information is embedded in the training data. Info-GAN [15] 

and auxiliary classifier GAN (AC-GAN) [16] are other GAN 

architectures proposed to control the generated data. 

Progressive Growing GAN (PG-GAN) [17] is a new method for 

stable training of GANs and to generate large, high-quality 

images. The process starts with a very small image and blocks 

of layers are added to the generator to increase the output size. 

Meanwhile, these GANs often require large amount of data to 

learn the probability distribution of the real data and generate 

the realistic data. 

 Recently, GAN-based methods have been proposed for 

denoising [18] and super resolution of the OCT images [19]; 

but to the best of our knowledge, only a few studies have been 

conducted on the production of synthetic retinal data using 

GAN networks. Odaibo [20] augmented OCT B-scans up to 

500,000 images and used them to train a DCGAN to generate 

synthetic OCT B-scans. Liu et al. [9] utilized DCGAN and 

WGAN to synthesize new retinal fundus images. They utilized 

large amount of training data from Retina Image Bank (RIB) 

[21] to train the GANs. Yanagihara et al. [22] utilized 6875 

paired OCT B-scans to train and validate a conditional GAN to 

generate synthetic data. Burlina et al. [23] used 133,821 age-

related retinal fundus images to train a PG-GAN and provided 

a deep learning based classification method to show that 

synthetic images lead a classifier which performs as well as the 

real data. Zheng et al. [24] utilized 108,312 OCT B-scans to 

train a PG-GAN to generate high-resolution OCT images with 

urgent and non-urgent referrals. Sengupta et al. [25] applied a 

deep residual variational auto-encoder (RSVAE) to generate 

blood vessel annotation of fundus images. They used these 

annotations to train a pix2pix GAN [26] to generate a complete 

fundus image dataset. Using this, they could generate fundus 

images reducing the number of real training images to as low as 

twenty.  

However, despite structural similarity between synthetic data 

and the real images, a considerable distortion is observed in 

frequency information of the synthetic data produced by 

previous methods. Singh et al. [27] showed that Fourier 

components of real and synthetic fundus images are quite 

different especially at higher frequencies and this can be used 

to discriminate real and synthesized fundus images. 

On the other hand, there are studies to investigate the 

relationship between the image resolution and its Fourier 

transform details. Mizutani et al. [28] determined the spatial 

resolution of real X-ray micro tomography images using a 

logarithmic plot of the squared norm of their Fourier 

transforms. Wang [29] illustrated that quality of spatial image 

and its corresponding frequency domain are related to each 

other. He showed that in a blurred image the magnitude of high 

frequencies is much smaller than a sharp image which have 

more high frequency components spread along with the two 

central stripes.  

Motivated by these investigations and in order to fill in the 

existing gap of dissimilarity between real and synthetic images 

in the frequency domain, in this study we extend the GAN 

model with dual discriminators and propose a dual-adversarial 

GAN which can jointly learn both spatial and frequency domain 

characteristics of the OCT B-scans. To the best of our 

knowledge, this is the first GAN model which comprises 

frequency information of the OCT images in training the 

network. Since preserving the frequency components of images 

plays an important role in their quality, the ultimate goal of this 

study is to investigate the effect of contributing Fourier 

information in training GANs and to prove the feasibility of 

generating high resolution, more realistic DME and normal B-

scans with a limited number of training data. Thus, the main 

contributions of this study are: 1) A novel generative model, 

called dual-discriminator Fourier acquisitive GAN (DDFA-

GAN) is proposed that is jointly trained in an end-to-end 

manner with multi-task learning of both spatial and Fourier 

information of the OCT B-scans. 2) The advantages of 

variational auto-encoders (VAE), and auto-encoders (AE) are 

used by transfer learning to increase the stability of the GAN, 

to provide faster convergence, and to prevent mode collapse. 3) 

An evaluation method is proposed for the generated B-scans to 

measure their quality and validate their usefulness. Quantitative 

evaluation, examination of synthetic data for data 

augmentation, and ablation study confirmed that the proposed 

DDFA-GAN can resolve the distortions in frequency 

information and increase the diversity and quality of the 

generated normal and DME target images despite utilizing 

limited number of the training data. 

The rest of the paper is organized as follows. In section II, a 

brief background for GAN networks is presented. The details 

of the proposed network are expressed in section III. In section 

IV, the experiments and evaluation results of the proposed 

model are provided and discussed. In section V, some 

concluding remarks and future works are expressed.  

II. THEORETICAL BACKGROUND 

The original formulation of a GAN is a min-max game 

between the discriminator 𝐷(𝑥) and generator 𝐺(𝑧) which try 

to outwit each other. The generator 𝐺(𝑧) ∶  𝑧 →  𝑥, maps the 

noise vector 𝑧 to the data space. The discriminator, 𝐷(𝑥) →
[0,1], takes a point 𝑥 in data space and computes the probability 

that 𝑥 is either sampled from real data, 𝐷(𝑥), or generated by 

the generator, 𝐷(𝐺(𝑧)). This adversarial training process can be 
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formulated as min-max problem as depicted in (1) where 

𝑃𝑑𝑎𝑡𝑎(𝑥) is the distribution of real data [30]. 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺)

= 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)
[log (𝐷(𝑥))]

+ 𝔼𝑧~𝑝𝑧(𝑧)[log (1 − 𝐷(𝐺(𝑧)))] 

 

(1) 

𝑝𝑧(𝑧) is usually a Gaussian distribution 𝒩(0,1) that is used 

to draw the samples and  𝔼 is the expectation operation. The 

GAN training is performed through two iterative trainings of 

discriminator and generator. The goal of  discriminator training 

is to maximize the loss function expressed in the following [30]. 

ℒ𝐷 = 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)
[log (𝐷(𝑥𝑟))]

+ 𝔼𝑥𝐺~𝑝𝐺(𝑥)[log (1 − 𝐷(𝑥𝐺))] 

 

(2) 

where 𝑥𝑟  is a batch of real data randomly selected from the 

training set, and 𝑥𝐺  are the randomly selected batches from the 

generated images. The loss function is maximized through the 

gradient descent algorithm during the training process. 

The generator training contains updating the weights of the 

generator by minimizing the following loss function: 

ℒ𝐺 = 𝔼𝑥𝐺~𝑝𝐺(𝑥)[log (1 − 𝐷(𝑥𝐺))] (3) 

Several challenges such as mode collapse, vanishing 

gradient, and convergence failure may occur during training of 

GAN. One solution to overcome such ordinary defect of GANs, 

in particular mode collapse, is to contribute multiple adversarial 

losses in training a single generator through multiple 

discriminators [31]. Moreover, multi-task learning (MTL) 

algorithms can extract structure and similarities across different 

learning problems and force the GAN network to learn multiple 

tasks jointly [32], [33].  

As we have mentioned before, studies investigated the 

relationship between the image resolution and its Fourier 

transform details. By contributing Fourier domain information 

of OCT images in training of the GAN, Fourier components of 

generated data especially at higher frequencies, as well as, the 

details of the synthetic data greatly resemble the real data. Here, 

this is provided by employing dual task-specific discriminators 

to learn spatial and frequency tasks. In this way, the generator 

is forced to learn both spatial and Fourier domain information 

of data to minimize the prediction error of realistic data through 

dual discriminators. In the training process, after updating the 

weights of first discriminator, the weights of the generator are 

modified by second discriminator to improve the generated 

images. Since generator employs losses of two parallel 

complementing-task discriminator for updating its parameters 

at each iteration, it ultimately produces samples with minimum 

error and higher quality images. 

III. PROPOSED DDFA-GAN 

The overall architecture of the DDFA-GAN is depicted in Fig. 

1. The proposed model consists of single-generator and dual-

discriminator variants that attempt to better approximate max 

𝑉(𝐺, 𝐷𝑘  ) where 𝑘 = 𝑆, 𝐹 indicates the spatial and Fourier 

domain discriminations. Details of the structure of generator 

and discriminators are provided in the following. In the training 

process, the generator takes a random vector 𝑧 of size 128 and 

generates the fake OCT B-scan. Then the fake 𝐺(𝑧) and the real 

OCT images (𝑥) are applied to 𝐷𝑆 which minimizes the error in 

predicting fake images produced by the generator through the 

binary cross-entropy loss. 

 
 Block diagram of the proposed DDFA-GAN model. See text for 

details. 

In each iteration of the training process, the absolute value of 

the Fast Fourier transform (FFT) for both fake and real images 

are calculated and applied to the second discriminator (𝐷𝐹) to 

minimize the binary cross-entropy loss. After several iterations, 

the DDFA-GAN is trained to generate realistic normal and 

DME OCT images. The training process is formulated in 

Algorithm 1. 

A. Architecture of Generator  

As mentioned above, ordinary GAN networks suffer from 

instability and non-convergence challenges. For most cases, the 

bad learning performance originates from the non-stationary 

characteristics of the training data. In this study, normal 

distribution is considered for prior distribution of the latent-

space and this assumption is rather enforced due to the pre-

training step of the generator which is done by taking the 

advantages of VAEs. That is, the same structure of the decoder 

part of a pre-trained VAE is used for the generator. Then, the 

weights of the decoder were transferred to the generator for 

initialization. The VAE consists of an encoder and a decoder 

network [34]. The encoder network assumes that the 

distribution of the data 𝑥 is normal 𝒩(0,1) and samples the 

distribution 𝑧 of the data. The decoder network then 

reconstructs the data 𝑥 from the sampled distribution 𝑧. The loss 

of VAE consists of the prior regularization parameter and the 

reconstruction loss. The regularization parameter controls the 

distribution of the encoder 𝒩(0,1) through the KullbackLeibler 

(KL) divergence, and the pixel-wise binary Cross-entropy loss 

between real images 𝑥 and reconstructed images �̂� guarantees 

the similarity of 𝑥 and �̂�. The VAE is trained using variational 

inference to approximate the prior distribution. Because the 

prior distribution is a normal distribution, the approximated 

posterior distribution would also be normally distributed.  

In an ordinary GAN model, the generator tries to minimize 

errors between distributions of real and generated data. 

However, the generator does not know the distribution of the 

data from the beginning of the training and can be trained to 

approximate any distribution in particular for limited data. The 

variational decoder make the generative distribution be 

initialized with approximately the normal distribution. 

Therefore, the generator is inhibited from converging to a 

different distribution which prevents mode collapse. The VAE 

networks are stable and the pre-trained VAE can provide this 

stability for the GAN network as well [35]. The architecture of 

the utilized VAE is depicted in Fig. 2. The encoder part consists 

of two Conv2D layers of size 32×3×3, 64×3×3 and a dense 

layer of size 16.  
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Algorithm 1: DDFA-GAN for OCT image synthesis 

Input: Training samples 𝑺 𝒕𝒓𝒂𝒊𝒏: =  {𝒙𝟏 , 𝒙𝟐 , … ,  𝒙𝑵 } 

Output: Normal and DME synthesized images 

For number of iterations do: 

 Sample mini-batch from Gaussian noise 𝒛 ∶=
 {𝑧1, 𝑧2, . . . , 𝑧𝑁  }, 𝑧𝑖  ∼  𝑝𝑧(𝑧) 

Generate data from noise samples 𝒙𝑮 ∶=
 {𝑥𝐺1, 𝑥𝐺2 , . . . , 𝑥𝐺𝑁  }, 𝑥𝐺𝑖  ∼  𝑝𝐺(𝑧)(𝐺(𝑧)) 

Train 𝑫𝑺 

 Sample mini-batch from real data distribution 𝑥: =
 {𝑥1 , 𝑥2 , … ,  𝑥𝑁 }, 𝑥𝑖  ∼  𝑝𝑑𝑎𝑡𝑎 (𝑥) 

Sample mini-batch 𝑥𝐺  from generated data distribution 

𝑥𝐺: =  {𝑥1𝐺  , 𝑥2𝐺  , … ,  𝑥𝑁𝐺 }, 𝑥𝑖𝐺  ∼ 𝑝𝐺(𝑧) (𝑥𝐺)   

Update the 𝐷𝑆 as follows: 

 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝔼𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)
[log (𝐷𝑆(𝑥))]

+ 𝔼𝑥𝐺~𝑝𝐺(𝑧)(𝐺(𝑧))[log (1 − 𝐷𝑆(𝑥𝐺))] 

Calculate absolute FFT of each mini-batch 𝑥 to obtain samples 

𝑋: =  {𝑋1 , 𝑋2 , … ,  𝑋𝑁 }, 𝑋𝑖  ∼  𝑝𝑑𝑎𝑡𝑎𝐹𝐹𝑇
 (𝑋) 

Calculate absolute FFT of each mini-batch of generated images 

to obtain samples 𝑋𝐺: =  {𝑋1𝐺  , 𝑋2𝐺  , … ,  𝑋𝑁𝐺 }, 𝑋𝑖𝐺  ∼
 𝑝𝐺(𝑧)𝐹𝐹𝑇

 (𝑋𝐺) 

Train 𝑫𝑭 

 Sample mini-batch from distribution of Fourier transform  

of real data 𝑝𝑑𝑎𝑡𝑎𝐹𝐹𝑇
 (𝑋) 

Sample mini-batch from distribution of Fourier transform 

of generated data 𝑝𝐺(𝑧)𝐹𝐹𝑇
 (𝑋𝐺)   

Update the  𝐷𝐹as follows: 
 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝔼𝑋~𝑝𝑑𝑎𝑡𝑎𝐹𝐹𝑇

 (𝑋)[log (𝐷𝐹(𝑋))]

+ 𝔼𝑋𝐺~𝑝𝐺(𝑧)𝐹𝐹𝑇(𝑋𝐺)[log (1 − 𝐷𝐹(𝑋𝐺))] 

Train Generator 

 Sample  mini-batch from 𝑝𝑧(𝑧) 

Update the generator as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝔼𝑥𝐺~𝑝𝐺(𝑧)(𝑥𝐺)[1 − log(𝐷𝑆(𝑥𝐺))] 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝔼𝑋𝐺~𝑝𝐺(𝑧)𝐹𝐹𝑇
(𝑋𝐺))[1 − log(𝐷𝐹(𝑋𝐺))] 

End 

 

The architecture of the proposed generator is exactly the 

same as the decoder part. It consists of a dense layer of size 128, 

Conv2D of size 32×5×5, 64×5×5 each followed by the Leaky-

ReLU (α=0.1) activation functions. These layers are followed 

by two residual blocks. Residual blocks directly propagate the 

forward and backward signals from one block to any other 

block, using the skip connections and after-addition activation. 

[36]. It has been shown that these blocks accelerate the speed 

of training, reduce vanishing gradients and increase the 

performance of the network by learning more effective features 

of the data while keeping the network structure shallow. This is 

a very effective advantage in this study where we want to train 

the lightweight network with limited amount of data. 

Accordingly, two residual blocks are used each composed of a 

Conv2D layer of size 64×3×3 and a ReLU activation function 

following by an element-wise summation. 

B.  Architecture of 𝐷𝑆 

The first discriminator (𝐷𝑆) compares real and generated 

OCT images in spatial domain. The architecture of 𝐷𝑆  is 

depicted in Fig. 3. It consists of four blocks of plain 

convolutional layers with size 128× 5×5, and the last block with 

size 256×5×5. The first four blocks include a Leaky-ReLU 

(α=0.2) activation function. A Drop-Out layers with rate 0.3 are 

utilized in all plain convolutional blocks. 

C. Architecture of 𝐷𝐹  

The second discriminator (𝐷𝐹) compares the absolute value 

of Fourier transform between real and generated OCT images. 

To increase the speed of learning and to prevent instability, an 

AE network is first trained utilizing the absolute value of real 

images’ Fourier transforms. During the training, the encoder 

part of AE extracts low dimensional features and, accordingly, 

the encoder part of the pre-trained AE entails essential 

constructive Fourier features of data. The encoder can be frozen 

and be applied to 𝐷𝐹 . The architecture of the pre-trained AE, 

and 𝐷𝐹  are illustrated in Fig. 4. The encoder network of the AE 

consists of Conv2D with sizes 16×3×3, and 8×3×3 and the 

decoder part has three Conv2D layers with sizes 8×3×3, 

16×3×3, and 1×3×3. Eventually, 𝐷𝐹  is composed of the frozen 

pre-trained encoder followed by two Conv2D layers with size 

64×3×3, and 32×3×3, a dense layer with size one and a sigmoid 

activation function. 

IV. EXPERIMENTS 

A. Dataset 

The training dataset consisted of OCT retinal images from 50 

normal and 50 DME subjects obtained from Heidelberg SD-

OCT imaging system. These images were obtained from the 

Noor Eye Hospital in Tehran, Iran [37], [38]. In this dataset, the 

lateral and azimuthal resolutions vary in the subjects, but the 

axial resolution is 3.5µm with a dimension of 8.9×7.4 mm2. 

Therefore, the width of the B-scans varies among 512 or 768; 

and 19, 25, 31, or 61 B-scans were acquired per volume for 

different subjects.  

B. Implementation of DDFA-GAN  

To generate OCT B-scans with the proposed DDFA-GAN, 

three networks are implemented and trained utilizing the dataset 

of normal and DME images including 2200 B-scans of size 128 

× 128. First, VAE network (Fig. 2) is trained utilizing this 

dataset. During the training, both binary cross-entropy and KL 

loss are optimized. The VAE is trained for 200 epochs using 

batches of size 128. 

 
 The architecture of the generator which is the same as the 

decoder part of the pre-trained VAE. 
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 The architecture of the spatial domain discriminator (𝐷𝑆). 

 
 The architecture of the Fourier discriminator (𝐷𝐹). The frozen 

encoder of the pre-trained  auto-encoder is fine tuned in the 𝐷𝐹. 

The weights of the decoder part of VAE is then applied for 

initialization of the generator. The second network (the AE 

network (Fig. 4)) is trained utilizing the absolute value of FFT 

of the images in the dataset. It is trained for 200 epochs utilizing 

mean square error (MSE) loss, and batches of size 16. Then, the 

encoder part of the trained AE is frozen and applied in the 𝐷𝐹 . 

For both VAE and AE, the weights are updated utilizing the 

Adam optimizer with 𝑙𝑟 = 0.001 and 𝛽1 = 0.9. Finally, the 3rd 

network, DDFA-GAN, is trained after initialization of the 

weights of its generator with the pre-trained decoder of the VAE 

model. The binary cross-entropy loss is optimized by the Adam 

optimizer with 𝑙𝑟 = 0.002 and 𝛽1 = 0.5 for the generator, and 

both discriminators. The model is trained for 800 epochs, with 

batches of size 16. In addition, label smoothing is applied to 

improve the performance of the network by preventing the 

discriminators from enforcing large gradients to the generator. 

All the models are implemented in Python, TensorFlow 

backend utilizing 12 GB NVIDIA K80 GPU, 324 MHz memory 

clock and it took 13 hours to completely train the DDFA-GAN 

(the source code of this method will be publicly available at 

https://github.com/ OCT-synthesis/DDFA-GAN) 

C. Results 

To evaluate the performance of the DDFA-GAN, it is 

implemented to generate synthetic data. To perform robust 

visualization, principal component analysis (PCA) and t-

distributed stochastic neighbor embedding (t-SNE) scatter plots 

of real and synthetic data generated by DDFA-GAN are 

illustrated in Fig. 5. The generated data is following the pattern 

of original data closely. This indicates the ability of proposed 

method in generating realistic data despite using limited 

training data. Furthermore, by inspecting the t-SNE grid, it is 

observed that the distribution of generated data is not 

concentrated in a single region. This indicates that the mode 

collapse issue does not affect DDFA-GAN and its generator 

produces diverse and non-repeated outputs. Some samples of 

normal and DME images generated by DDFA-GAN, compared 

with results of the DCGAN [10], WGAN-GP [12], and LS-

GAN [13] are illustrated in Fig. 6 for visual inspection. It can 

be seen that the proposed DDFA-GAN generates more realistic 

images with higher resolutions than the comparing GAN 

networks. 

In order to evaluate whether the generated images of the 

DDFA-GAN have the same discriminative features as the real 

data, a simple AE network proposed in [39] is implemented to 

extract the features. The Euclidean distance between two 

feature vectors are then calculated [40]. For this purpose, 

utilizing the DDFA-GAN and mentioned comparing methods, 

four datasets with 2200 synthetic images are generated. Next, 

the AE is separately trained for each of the synthesized datasets 

and the real images. For each of the datasets, the feature vectors 

of the latent space of the AE with size of 32 ×32×4 are 

extracted. The Euclidean distances between normalized feature 

vectors of real images (𝒙) and generated images (𝒚) are 

calculated from equation (4) where 𝑁 denotes the number of the 

samples in the vector. 

𝑑(𝒙, 𝒚) = (∑|𝑥𝑘 − 𝑦𝑘|2

𝑁

𝑘=1

)
1
2 

 

(4) 

The calculated Euclidean distances are reported in Table I. 

According to this table, the DDFA-GAN produces more 

realistic images than compared method in terms of 

discriminative features due to lower Euclidean distance. 

Frechet Inception Distance (FID) is another widely used metric 

to evaluate the generative models [41]. It highly correlates with 

the visual quality of images and low FID-scores indicate the 

superiority of the generative model. The FID score is calculated 

for real and four mentioned synthetic datasets (Table I). The 

lower FID-scores of DDFA-GAN indicates the higher quality 

of its generated images compared to other methods. 

 In addition, multi-scale structural similarity metric (MS-

SSIM) scores of 100 randomly chosen pairs of images within 

each class (normal, DME) are also computed to assess the 

diversity of the images in the real data and generated data, as 

proposed in [16]. Higher (lower) diversity within a class, 

corresponds to the lower (higher) mean MS-SSIM score. 

Calculated results are reported in Table I. According to Table I, 

the DDFA-GAN generated more diverse images than other 

comparing methods due to lower value of the average MS-

SSIM. In addition, the synthesized images have diversity 

comparable to the training data which is useful in augmentation 

applications. More visula details related to the layers and 

textures of generated OCT images by DDFA-GAN and 

DCGAN are presented in Fig. 7. It can be seen that the DDFA-

GAN can produce more information of the layers and their 

textures. 

 
 Two-dimensional grid illustrating the distribution of 1000 real and 

generated synthetic images after applying t-SNE and PCA.
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 Illustration of sample normal and DME B-scans, (a) the applied dataset and generated images by (b) DCGAN [10], (c) WGAN-GP [12], (d) 

LSGAN [13], and (e) the proposed DDFA-GAN. The first row contains normal samples and the second row shows DME samples.

 
  Examples of two B-scans in  Hue, Saturation, Value (HSV) 

model. (a),(b) real images, (c), (d) DDFA-GAN generated. 

Furthermore, the autocorrelation (AC) values of the real 

dataset and synthetic datasets, generated by DDFA-GAN and 

comparing methods, were calculated and their cumulative 

distribution functions (CDF) are depicted in Fig.8 (a). It is 

evident that the CDFs are identical for real images and those 

generated by DDFA-GAN, while this is not true for images 

generated by the other comparing methods. The Kolmogorov 

Smirnov (K-S) test indicated that the AC of data generated by 

DDFA-GAN has the same distribution as real data (values of 

test statistics was less than critical value = 0.014 at the 99% 

confidence level). 

In addition, two individual DDFA-GANs were implemented 

for normal (DDFA-GAN-N) and DME (DDFA-GAN-DME) 

images. Evaluation metrics are then calculated to show how 

separated training dataset yield different generated images. 

According to this Table I, diversity of generated data in each 

group is decreased compared to diversity in real images (higher 

MS-SSIM). However, Euclidean distance for generated images 

using DDFA-GAN-N has lower value than DDFA-GAN. This 

implies that DDFA-GAN-N can generate more realistic normal 

B-scans than DDFA-GAN in terms of discriminative features. 

Furthermore, the quality of images generated by two separate 

DDFA-GANs is better than single DDFA-GAN, according to 

lower FID-scores. This analysis indicates the capability of 

DDFA-GAN in generating various type of images by being 

trained individually.  

D. Fourier analysis 

To analyze the differences between real and generated OCT 

images in the Fourier transform domain, the Fourier spectrum 

of the real and generated images and their AC values were 

calculated. CDFs of AC functions of spectrums of real and 

generated images are depicted in Fig. 8 (b). In real and 

generated data by DDFA-GAN, the CDFs are significantly 

close to each other (values of K-S test statistics are less than 

critical value = 0.0089 at the 99% confidence level). This 

underscores the ability of the proposed DDFA-GAN in 

acquisition of frequency information from real data. Figure 9 

shows the sample Fourier spectrum of the real images and 

generated data using DDFA-GAN and DCGAN. It can be 

inspected that the periodic structure of the Fourier spectrum in 

real images is learnt by the DDFA-GAN and preserved during 

the generation of new images, while this not true for DCGAN. 

In Fig. 10, illustration of the horizontal and vertical cuts of 

the Fourier spectrum (averaged over each dataset of real and 

generated images) is provided. The averaged components for 

both cuts overlay in real and generated images by DDFA-GAN 

in low and high frequencies (Analysis with t-test, P-value 

>0.05). In addition, the strength of these components decays 

exponentially (linear in log scale) as the frequency increases for 

both images. However, the vertical and horizontal cuts of the 

images generated by other comparing methods are further away 

from those of real images. 
TABLE I 

RESULTS OF EVALUATION METRICS COMPUTED FOR GENERATED IMAGES 

 MS-SSIM Euclidean 

distance 

FID 

score Normal DME 

Real Images 0.17 0.24 0 0 

DCGAN [10] 0.33 0.46 0.58 73.20 

WGAN-GP [12] 0.58 0.73 0.87 87.31 

LS-GAN [13] 0.41 0.55 0.64 82.65 

DDFA-GAN-N 0.21 ----- 0.32 50.08 

DDFA-GAN-DME ------- 0.31 0.41 51.00 

DDFA-GAN 0.19 0.27 0.34 51.30 

 

 
  (a) CDF of AC functions of  real and generated images by utilizing DCGAN [10], WGAN-GP, LSGAN, and DDFA-GAN. (b) CDF of AC 

functions of spectrum of  real and generated images by utilizing DCGAN [10], WGAN-GP [12], LSGAN [13], and proposed DDFA-GAN. 
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 sample Fourier spectrum of the (a) real image, and generated 

images by (b) DCGAN [10], (c)  proposed DDFA-GAN 

 
 Averaged log transformed Fourier components of both 

horizontal and vertical cuts of real image and generated images utilizing 
DCGAN [10], WGAN-GP [12], LSGAN [13], and DDFA-GAN. 

 This indicates that by training the frequency information 

through the proposed DDFA-GAN, distortions in the frequency 

domain, which is prevalent in the existing methods, are 

resolved. DDFA-GAN can generate images with similar 

frequency information, in particular for high frequency 

components, as real data.  

E.  Data Augmentation 

To confirm the advantages of the synthetic data for 

augmentation, data generated from the DDFA-GAN is used to 

augment the new dataset of normal and DME images in 

[42].Support vector machine (SVM) classifier is trained on 

1000 normal and DME images. Grid search is done to find the 

best parameters of SVM and RBF kernel is selected to achieve 

the best performance. Before training, PCA is used to remove 

redundant features and reduce the dimension of each image 

from 16384 to 100. Generated images are used for data 

augmentation and several augmentation steps are considered 

(namely, N250, N500, N750, and N1000). In each step 250 synthetic 

images are added to the training dataset. For example, N250 

stands for adding 250 synthetic data to the real dataset. The 

accuracy and F1-score of the classifier is recorded in each step 

and reported in Table II. It can be observed from this table that 

as the number of the synthetic dataset is increased, the 

performance of the classifier is improved, indicating the 

effectiveness of generate images for data augmentation. 
TABLE II 

RESULTS OF EVALUATION METRICS COMPUTED FOR ABLATION STUDY 

 Real N250 N500 N750 N1000 

Accuracy 86.33 87.73 88.81 90.28 90.16 

F1-score 86.50 88.72 89.17 90.13 91.23 

F. Ablation study 

The key components of the proposed method are: 1) The dual 

discriminator architecture which provided joint learning in 

spatial and Fourier domain, 2) The pre-trained VAE which 

helped with increasing the stability and preventing the mode 

collapse, 3) The residual blocks which provided more efficient 

performance of the generator in spite of limited training data. In 

order to verify the contribution of the mentioned key 

components, the proposed DDFA-GAN is evaluated with 

ablation experiments. To this end, three different modes are 

picked to train the model with 300 epochs. There were ‘NO-

FFT’ which denotes that the model does not contain the FFT 

module, ‘NO-RE’ which denotes that the residual blocks are 

removed, and ‘NO-VAE’, which denotes that the model does 

not contain pre-training with VAE. Table III shows the 

quantitative results of these modes. It can be clearly seen that 

these three modes obtain relatively higher MS-SSIMs, and FID-

scores than DDFA-GAN, demonstrating the effectiveness of 

key components in design of the DDFA-GAN as a powerful 

method for OCT image synthesis. 
TABLE III 

RESULTS OF EVALUATION METRICS COMPUTED FOR AUGMENTATION STUDY 

 MS-SSIM FID score 

Real image 0.15 0 

NO-FFT 0.41 70.81 

NO-RE 0.27 63.27 

NO-VAE 0.36 61.55 

DDFA-GAN 0.18 51.30 

V. CONCLUSION 

In this study, a dual discriminator GAN network, DDFA-

GAN, is proposed which can jointly learn spatial and Fourier 

domain information of the retinal OCT images. The close 

relationship between the high frequency components of the 

synthesized images and their resolution and quality, 

demonstrate that the proposed DDFA-GAN can generate more 

realistic OCT images by learning to preserve Fourier domain 

information. The stability advantage of the pre-trained VAE is 

used in the generator of the proposed network to increase the 

stability of the model and to prevent mode collapse. In addition, 

the residual blocks utilized in the generator provide more 

efficient performance of the generator in spite of limited 

training data and a relatively shallow generator structure. The 

ablation experiments verified the contribution of employed 

FFT, VAE, and residual blocks in the proposed method.  

The PCA, and t-SNE visualization of the generated B-scans 

demonstrate that that the mode collapse issue does not happen 

in DDFA-GAN and the generator produced diverse and non-

repeated outputs despite the limited amount of the training data. 

In addition, statistical analysis indicated the significant 

similarity between the distribution of ACs in generated images 

and real images. This significant similarity is confirmed in 

Fourier domain, as well. Results of the qualitative and 

quantitative evaluation proves that DDFA-GAN can generate 

images with higher quality, more reality and diversity than 

existing approaches and is feasible with limited amount of data. 

 Applying the synthesized images for data augmentation in a 

classification experiment, it is shown that generated images can 

be used in clinical applications to improve the performance of 

machine learning-based CAD systems. In addition, by training 

DDFA-GAN with images obtained from other imaging 

modalities or different pathological disorders, the proposed 

generative model can be extended to generate various synthetic 

OCT images. 
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