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1 Introduction

In recent years, there has been exciting progress in adapting methods for computing scatter-
ing amplitudes, which probe physics at its shortest distances, to cosmological observables,
which probe physics at its largest distances. In the latter, we have in mind boundary corre-
lators in four dimensional de Sitter space (dS4), which provides an approximate description
of the early Universe according to the inflationary paradigm [1–4]. The cosmological ob-
servables we focus on are known as coefficients of the wavefunction of the universe [5].
They are computed via a Wick rotation of Witten diagrams in Anti de Sitter (AdS) and
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can be treated like conformal field theory (CFT) correlators in the future boundary of
dS [6–12]. In-in correlators [13] can then be computed by squaring of the wavefunction and
computing expectation values [7]. Recent developments in this direction include geometric
approaches [14, 15], methods based on factorisation [16–20] and unitarity [21–28], Mellin-
Barnes representations [29, 30], color/kinematics duality [31–38], the double copy [39–42],
and the cosmological scattering equations (CSE) [43, 44]. See also [45–48] for other recent
work adapting amplitude ideas to (A)dS correlators.

Here we focus on the double copy and the CSE. In flat space, the double copy relates
graviton amplitudes to the square of gluon amplitudes [49, 50], and the scattering equations
of Cachazo, He, and Yuan (CHY) [51, 52] provide a universal framework for describing
scattering amplitudes in terms of worldsheet integrals [53–55]. They uncover a vast web of
relations among quantum field theories such as the non-linear sigma model (NLSM), Dirac-
Born-Infeld (BDI), and special Galileon (sGal) theories, extending the scope of the double
copy [56–58]. The CSE represent an extension of the flat space scattering equations to de
Sitter momentum space. They were initially proposed to describe massive φ4 theory as a
toy model of inflation, building on earlier work on bi-adjoint scalar theory in AdS position
space [59, 60]. One of the key properties of this proposal is an operatorial integrand
built out of conformal generators in the future boundary of dS which acts on a contact
diagram. An important open question was how to extend this structure to more general
scalar theories, and here we take the first steps to address it.

Towards this goal, we will extend the CSE framework to the NLSM, scalar DBI, and
sGal theories in dS space. When lifting derivative interactions to curved background, new
subtleties arise. First of all, the spacetime Lagrangians receive curvature corrections whose
coefficients cannot be fixed by the flat space limit. At four points, we find that such
corrections can be described using simple building blocks at the level of the worldsheet
integrand. We can also deform the integrand to describe bulk scalar fields with arbitrary
mass. The other class of subtleties is related to more technical aspects of the problem.
Becasue of derivative interactions in the curved background, the worldsheet formulae may
have ordering ambiguities involving differential operators with nontrivial commutators.
Such ambiguities can arise in the NLSM at six points and the DBI and sGal theories at
four points, although we use a simple prescription for avoiding them at four points.

Our worldsheet formulae give rise to four-point wavefunction coefficients in terms of
boundary conformal generators acting on contact diagrams. We also identify a simple
prescription for mapping the NLSM wavefunction coefficient into the DBI and sGal wave-
function coefficients at the level of the worldsheet integrand, which we refer to as a gener-
alised double copy. After specifying a prescription for evaluating the worldsheet integrals
to avoid ordering ambiguities, this provides a systematic way to implement the double copy
of four-point wavefunction coefficients in these theories. Finally, we study the soft limits
of the four-point wavefunction coefficients and find that they can once again be written in
terms of boundary conformal generators acting on certain three-point contact diagrams. In
the flat space limit, the scattering amplitudes of these theories are well-known to exhibit
vanishing soft limits [61, 62] as a result of underlying hidden symmetries [63–65]. In our
treatment, the coefficients of curvature corrections are left unfixed and the soft limits we
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derive are completely general. Lagrangians for the DBI and sGal theories with certain hid-
den symmetries in dS were recently proposed in [66]. It would be interesting to compute
their four-point wavefunction coefficients in terms of the building blocks we derive in this
paper and check if their soft limits exhibit any additional simplicity. Soft limits of flat
space wavefunction coefficients in these theories were also recently analysed in [67].

This paper is organised as follows. In section 2 we review the NLSM, DBI, and sGal
theories in flat space and the CHY representation for their amplitudes. In section 3, we then
discuss how to lift these theories to dS space up to four-point interactions, and compute
their four-point wavefunction coefficients in terms of Witten diagrams. In section 4, we
then propose worldsheet formulae for these wavefunction coefficients in terms of CSE, and
a generalised double copy which maps the NLSM wavefunction coefficient into the DBI and
sGal wavefunction coefficients, including curvature corrections and mass deformations. In
section 5, we analyse the soft limits of these four-point wavefunction coefficients and show
that they can be written in terms of boundary conformal generators acting on certain three-
point contact diagrams. We present our conclusions in section 6. We also have a number
of appendices in which we compute wavefunction coefficients for the six-point NLSM in dS
using Witten diagrams and worldsheet methods, and provide more details on four-point
wavefunction coefficients.

2 Effective field theory amplitudes

In this work we focus on certain scalar effective field theories (EFT), namely the non-
linear sigma model (NLSM), scalar Dirac-Born-Infeld theory (DBI), and special Galileon
theory (sGal). Their scattering amplitudes take a particularly simple form in the CHY
approach [56].

2.1 Lagrangians

We start with a quick review of the scalar EFT Lagrangians.
The NLSM Lagrangian is given by

LNLSM = 1
8λ2 Tr(∂µU †∂µU),

=−Tr
[

1
2∂µΦ∂µΦ+λ2Φ2∂µΦ∂µΦ+λ4

(
Φ4∂µΦ∂µΦ+ 1

2Φ2∂µΦΦ2∂µΦ
)

+. . .
]
,

(2.1)

where U = (I+λΦ)(I−λΦ)−1, Φ is in the adjoint representation of SU(N), and the ellipsis
denotes higher-point interactions. For the DBI theory we have

LDBI = 1
λ

(√
1− λ (∂φ)2 − 1

)
,

= −1
2∂φ · ∂φ−

λ

8 (∂φ · ∂φ)2 + . . . .

(2.2)

Finally, in d = 4 the special Galileon theory is given by [64]

LsGal = −1
2 (∂φ)2 − λ

8 (∂µ∂νφ)2 (∂φ)2 . (2.3)
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Theory Integrand
NLSM PT(Pf ′A)2

DBI PfX(Pf ′A)3

sGal (Pf ′A)4

Table 1. A summary of CHY integrands for a selection of scalar EFTs.

Note that the four-point interactions in the DBI and sGal theories contain four derivative
and six-derivatives, respectively. They are unique up to integration by parts and equations
of motion. Their lift to curved backgrounds, however, is not unique because covariant
derivatives no longer commute and there are curvature corrections, as we describe later on.

2.2 Worldsheet formulae

The CHY formulae express tree-level scattering amplitudes as integrals over the Riemann
sphere, which localise onto solutions of the scattering equations (SE),

Sa =
∑
a 6=b

2 ka · kb
σab

= 0, σab ≡ σa − σb, (2.4)

where σa is the holomorphic coordinate of the a-th puncture, and the punctures are in one-
to-one correspondence with the external legs of the amplitude. The details of the theory
appear only in the worldsheet integrand, and a generic n-point tree level amplitude takes
the form

An =
ˆ
γ

n∏
a=1

a 6=b,c,d

dσa (Sa)−1 (σbcσcdσdb)2 In, (2.5)

where {b, c, d} are fixed punctures. The integration contour is defined by the intersection
γ = ⋂

a 6=b,c,d γSa , where γSa encircles the poles of Sa.
The CHY integrands for the scalar EFTs of interest are defined using simple building

blocks, with various operations to transform between different theories [56]. They are
summarised in table 1 and we will briefly review their construction.

The integrand for color-ordered amplitudes of the NLSM is

INLSM(α1, α2, . . . , αn) = PT(α1, α2, . . . , αn)(Pf ′A)2, (2.6)

where α = (α1, α2, . . . , αn) denotes a specific ordering, and PT is the Parke-Taylor factor

PT(α1, α2, . . . , αn) = (σα1α2σα2α3 · · ·σαnα1)−1 . (2.7)

In practice we will use the canonical ordering, i.e. PT(1, 2, . . . , n), so for simplicity we
introduce the notation

PT ≡ PT(1, 2, . . . , n). (2.8)
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The reduced Pfaffian Pf ′A is given by

Pf ′A = (−1)c+d
σcd

PfAcdcd, (2.9)

PfAcdcd =
εr1s1...rp−1sp−1(Acdcd)r1s1 · · · (Acdcd)rp−1sp−1

2p−1(p− 1)! , (2.10)

where the matrix Acdcd is obtained from the n× n matrix

Ars =


2kr · ks
σrs

, r 6= s,

0, r = s,
(2.11)

by removing any pair of rows and columns {c, d}, with n = 2p. Alternatively the Pfaffian
can be computed from the square root of the determinant.

For the scalar DBI theory, the worldsheet integrand is given by

IDBI = PfX(Pf ′A)3, (2.12)

where

Xrs =


1
σrs

, r 6= s,

0, r = s.
(2.13)

The X-matrix arises from dimensional reduction of the CHY formula for Yang-Mills am-
plitudes [56]. These reason for this will be further explained below. Finally, the integrand
for the sGal theory is given by

IsGal = (Pf ′A)4. (2.14)

Observe that the integrands of both DBI and sGal can be obtained from NLSM via
the following substitutions, respectively:

PT→ PfX(Pf ′A), (2.15)

PT→
(
Pf ′A

)2
, (2.16)

which encode the double copy structure of these theories. Roughly speaking, sGal =
NLSM2 and DBI = NLSM × YM, where YM corresponds to the dimensional reduction
of Yang-Mills theory. More precisely, PfX(Pf ′A) can be written as a linear combination
of (n − 2)! Parke-Taylor factors, where the coefficients are the Yang-Mills BCJ master
numerators after the identification εi · εj = 1 and εi · kj = 0 [54, 56, 58, 68–72].

3 de Sitter wavefunction coefficients from effective actions

In this section we review the computation of field theory observables in de Sitter. For
convenience, we use the Poincaré patch with radius set to one,

ds2 = 1
η2 (d~x2 − dη2), (3.1)
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where −∞ < η < 0 is the conformal time, and ~x denotes the boundary coordinate, with
individual components xi, i = 1, . . . , d. In practice, we set the dimension of the boundary
d = 3.

In-in correlators [13] can be computed from a cosmological wavefunction as follows [7]:

〈φ(~k1) . . . φ(~kn)〉 =
´
Dφφ(~k1) . . . φ(~kn) |Ψ[φ]|2´

Dφ |Ψ[φ]|2
. (3.2)

The scalars φ are taken to be in the future boundary, Fourier transformed to momentum
space. The functional Ψ[φ] is the cosmological wavefunction, which can be perturbatively
expanded as

ln Ψ[φ] = −
∞∑
n=2

1
n!

ˆ n∏
i=1

ddki
(2π)dΨn(~k1, . . . , ~kn)φ(~k1) . . . φ(~kn). (3.3)

The wavefunction coefficients Ψn can be treated as n-point CFT wavefunction coeffi-
cients in the future boundary. In momentum space, they can be expressed as

Ψn = δd(~kT )〈〈O(~k1) . . .O(~kn)〉〉, (3.4)

where ~kT = ~k1+. . .+~kn, and the double brackets denote a CFT correlator on the boundary.
The scalar operators O have scaling dimension ∆, and are dual to scalar fields φ in the
bulk with mass

m2 = ∆(d−∆). (3.5)

Note that ∆ = d describes minimally coupled scalars while ∆ = (d + 1)/2 describes
conformally coupled scalars.

The wavefunction coefficients Ψn satisfy conformal Ward identities (CWIs), which are
a consequence of the de Sitter isometries. The conformal generators are D (dilatation),
Pi (translations), Ki (special conformal transformations), and Mij (rotations). The CWIs
can be cast as

n∑
a=1

P iaΨn =
n∑
a=1

DaΨn =
n∑
a=1

Ki
aΨn =

n∑
a=1

M ij
a Ψn = 0, (3.6)

where a, b, . . . are particle labels and

P i = ki,

D = ki∂i + (d−∆),
Ki = ki∂

j∂j − 2kj∂j∂i − 2(d−∆)∂i,
Mij = (ki∂j − kj∂i) ,

(3.7)

with ∂i = ∂
∂ki

. Observe here that the conformal dimension of the scalars appear explicitly
in generators. Boundary vector indices will be freely raised and lowered here using a
flat metric.
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3.1 Witten diagrams

From a more traditional field theory perspective, the wavefunction coefficients can be com-
puted through Witten diagrams [7, 10, 11].

The scalar equation of motion is given by

[η2∂2
η + (1− d)η∂η − η2∂i∂i +m2]φ = 0. (3.8)

We will consider momentum eigenstates, such that φ = Kν(k, η)ei~k·~x, with Kν(k, η) denot-
ing the bulk-to-boundary propagator:

Kν(k, η) = Nkνηd/2Hν(−kη). (3.9)

Here, ν = ∆− d/2, k = |~k|, Hν is a Hankel function of the second kind, and we will leave
the normalisation N unspecified for now. Kν(k, η) satisfies (D2

k +m2)Kν = 0, with

D2
k ≡ η2∂2

η + (1− d)η∂η + η2k2. (3.10)

Contact diagrams are given by a product of bulk-to-boundary propagators integrated
over the bulk, expressed as

C∆
n ≡

ˆ
dη

ηd+1U1,n(η), (3.11)

Um,n(η) =
n∏

a=m
Kν(ka, η). (3.12)

More general Witten diagrams involve also bulk-to-bulk propagators, Gν(k, η, η̃), satisfying

(D2
k +m2)Gν = ηd+1δ(η − η̃). (3.13)

As it turns out, however, any tree level diagram can be obtained from contact diagrams
through certain differential operations.

In order to see this, let us first consider the action of the boundary generators in (3.7)
on bulk-to-boundary propagators. It can be expressed in terms of derivatives with respect
to conformal time

DKν = η ∂
∂ηKν , P iKν = kiKν ,

KiKν = η2kiKν , MijKν = 0.
(3.14)

Now consider the following operator

Da · Db = 1
2(P iaKbi +KaiP

i
b −Ma,ijM

ij
b ) +DaDb. (3.15)

Using (3.14) one finds that

(Da · Db)KaνKbν = η2[∂ηKaν∂ηKbν + (~ka · ~kb)KaνKbν ], (3.16)

with shorthand notation Kaν = Kν(ka, η). This observation can then be used to show that

(D2
1...pU1,p)Up+1,n = (D1 + . . .+Dp)2U1,n, (3.17)

– 7 –
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where in the left hand side D2
1...p is defined in (3.10) with k = |~k1+. . .+~kp| ≡ k1...p and p < n,

and the right hand side is built using the boundary conformal generators in momentum
space (3.7), satisfying Da · Da = −m2. In particular, we can derive the following identity,

[(D1 + . . .+Dp)2 +m2]−1C∆
n =

ˆ
dη

ηd+1
dη̃

η̃d+1Up+1,n(η)Gν(k1...p, η, η̃)U1,p(η̃), (3.18)

which can be easily demonstrated using (3.17) and the equation of motion of the bulk-
to-bulk propagator (3.13). Therefore, any tree level exchange diagram can be recast as a
differential operator given in terms of the boundary momenta acting on a contact diagram.

Finally, observe that acting with Da · Db on a pair of bulk-to-boundary propagators is
equivalent to acting with ∇a · ∇b, where ∇a is a bulk covariant derivative acting on leg a.
This identity will be very useful for computing Witten diagrams for derivative interactions
containing terms of the form ∇φ · ∇φ. Another useful identity is

[(Da · Db), (Db · Dc)]C∆
n = 2(Ka · Pc − Pa ·Kc)DbCn + cyc(abc),

= 0. (3.19)

The commutator is not zero but vanishes when acting on a contact diagram. This was first
derived in the embedding space formalism [34], and its generalization to momentum space
is straightforward. Using (3.14) we can easily show that the right hand side vanishes.

3.2 Four-point wavefunction coefficients

Our strategy in this section will be to lift the effective actions in section 2.1 to de Sitter
space up to four point interactions, use them to compute the four-point wavefunction
coefficients using Witten diagrams, and express the result in terms of boundary conformal
generators acting on a contact term. It will be convenient to define the following operators:

ŝ = D1 · D2, t̂ = D1 · D4, û = D1 · D3, (3.20)

which satisfy
ŝ+ t̂+ û = m2, (3.21)

when acting on contact diagrams. This can be seen using the CWIs in (3.6).
In de Sitter space, the expansion of the NLSM action up to four points can be cast as

SNLSM
4 = −

ˆ
d4x
√
−gTr

{
1
2∇Φ · ∇Φ + 1

2m
2Φ2 + λ2Φ2∇Φ · ∇Φ + 1

4CΦ4
}
, (3.22)

where we have included a mass term and a possible quartic interaction coming from a
curvature correction (recall we have set the dS radius to one). The mass is also proportional
to the curvature and vanishes in the flat space limit. Using the identity (3.16), it is
straightforward to show that the four-point wavefunction coefficient obtained from Witten
diagrams is given by

ΨNLSM
4 = δ3(~kT )

[
2λ2

(
ŝ+ t̂

)
− C

]
C∆

4 = −δ3(~kT )
(
2λ2û+ C

)
C∆

4 . (3.23)
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Up to quartic vertices and six-derivative interactions, the most general effective action
for a scalar field in (A)dS is given by [73]

S
(6)
4 =−

ˆ
d4x
√
−g
{

1
2∇φ·∇φ+ 1

2m
2φ2+ 1

8A(∇µ∇νφ)2∇φ·∇φ+ 1
8B(∇φ·∇φ)2+ 1

4!Cφ
4
}
,

(3.24)
where A, B, and C are undetermined numerical coefficients. Other possible interactions are
related by integration by parts or the free equation of motion ∇2φ = −m2φ. For the sGal
theory, the 6-derivative interaction is the naive uplift of the one in (2.3) while the lower-
derivative interactions correspond to curvature corrections and a mass term. In the flat
space limit, these are subleading and the action reduces to (2.3) for A = λ. Hence, (3.24)
represents the uplift of the special Galileon theory to a curved background, with unfixed
coefficients corresponding to curvature corrections. Additional data must be specified in
order to fix them, such as soft limits, and we will explore this section 5. For the DBI theory,
we set A = 0, B = λ, and there is a single curvature correction with unfixed coefficient C.
In the flat space limit, the action reduces to (2.2) up to quartic interactions.

The four-point wavefunction coefficient obtained from (3.24) is

Ψ(6)
4 = δ3(~kT )[A(ŝ3 + t̂3 + û3) + (dA−B)(ŝ2 + t̂2 + û2)− C]C∆

4 . (3.25)

We can illustrate this derivation using Witten diagrams. For example, let’s consider the
six-derivative interaction term

(∇µ∇νφ)2∇φ · ∇φ = η6ηµνηρσηκλ(∇µφ)(∇νφ)(∇ρ∇κφ)(∇σ∇λφ),
= η6(∂µφ∂µφ)ηρσηκλ(∂ρ∂κ − Γαρκ∂αφ)(∂σ∂λφ− Γβσλ∂βφ). (3.26)

The corresponding tree-level Witten diagrams are given byˆ 0

−∞

dη

η4 η
6
[
(~k1 · ~k2)2K1K2 + 2~k1 · ~k2K̇1K̇2 + K̈1K̈2

+ 1
η

(
2~k1 · ~k2(K1K̇2 + K̇1K2)− k2

1K1K̇2 − k2
2K̇1K2 + K̇1K̈2 + K̈1K̇2

)
+ 2
η2

(
~k1 · ~k2K1K2 + 2K̇1K̇2

) ] [
~k3 · ~k4K3K4 + K̇3K̇4

]
+ . . . ,

(3.27)

where Ka are bulk-to-boundary propagators, K̇a denotes a derivative with respect to con-
formal time, and the ellipsis denotes the t and u channels. If we recast this result in terms
of differential operators acting on a contact diagram we see that

− 1
8 (∇µ∇νφ)2∇φ · ∇φ→

[
ŝ3 + t̂3 + û3 + d

(
ŝ2 + t̂2 + û2

)]
C∆

4 . (3.28)

The other terms in (3.25) can be directly derived from (3.24) using (3.16). In appendix A
we evaluate a 6-point NLSM wavefunction coefficient using Witten diagrams.

4 de Sitter wavefunction coefficients from the worldsheet

In this section we will use the cosmological scattering equations introduced in [43] to
compute the four-point wavefunction coefficients obtained from Witten diagrams in the
previous section.
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4.1 Cosmological scattering equations

In order to lift the scattering equations to de Sitter space, we replace ka · kb in (2.4) with
differential operators acting in the future boundary, given by (3.15), and introduce a mass
deformation. The scattering equations then have an operatorial character,

Sa =
n∑
b=1
b 6=a

2 (Da · Db) + µab
σab

≡
n∑
b=1
b 6=a

αab
σab

, (4.1)

where µa a±1 = −m2 modulo n and zero otherwise. This mass deformation is analogous
to the flat space one in [74] and assumes canonical ordering of the external legs In =
(1, 2, . . . , n). These are referred to as cosmological scattering equations (CSE). The CWIs
in (3.6) can be recast as ∑

b 6=a
αabΨn = 0, (4.2)

where a is any external leg and we sum over b. This implies an underlying SL(2,C)
symmetry in the scattering equations, just like in flat space. This symmetry can be used
to fix the location of three punctures. For more details, see [44].

The worldsheet formula in (2.5) can then be lifted to de Sitter space as follows:

Ψn = δd(~kT )
ˆ
γ

n∏
a 6=b,c,d

dσa S−1
a (σbcσcdσdb)2 InC∆

n , (4.3)

where the integrand may also contain boundary conformal generators. For theories with
φn interactions, we are free to shuffle the CSE with other terms in the integrand In [44].
On the other hand, this may not be the case for derivative interactions, and we believe
this issue calls for a more systematic investigation in the future. In this work we fix the
ordering with CSE appearing to the left of the integrand.

The flat space integrands were constructed from Pfaffians defined in (2.9). Their
obvious uplift to de Sitter is through the matrix

Ars =


αrs
σrs

, r 6= s,

0, r = s.
(4.4)

As discussed previously, theories with higher-derivative interactions can have curvature
corrections that are absent in flat space. Therefore, we cannot simply lift the flat space
integrands in section 2.2 to dS by replacing kinematic invariants with differential operators.
This procedure has to be supplemented by curvature corrections and mass deformations,
which we will describe in the following subsections.

4.2 Building blocks

There are four basic building blocks for the four-point integrands. Here we will describe
each of them, explaining how to evaluate the corresponding worldsheet integrals.

The simplest building block is

Iφ4 = PT PfX|conn Pf ′A, (4.5)
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Figure 1. Graphic representation of PT PfX|conn. The circle refers to the PT factor while the
intersecting lines correspond to PfX|conn.

where the matrix X is defined in (2.13) and

Pf X = 1
σ12σ34

− 1
σ13σ24

+ 1
σ23σ14

, (4.6)

Pf X|conn = − 1
σ13σ24

. (4.7)

The integrand (4.5) describes a contact diagram for a φ4 interaction [43, 56]. Note that
at four-points, Pf X can be written as a sum of three terms which correspond to perfect
matchings and PfX|conn refers to the connected perfect matching with respect to the
ordering of the Parke-Taylor factor (see figure 1). Fixing legs {1, 2, 4} and deleting legs
{2, 4} from the A-matrix in the Pfaffian leads to the wavefunction coefficient

Ψφ4

4 = −δ3(~kT )
ˆ
γ3

dσ3 (σ41σ12σ24)2
[

1
σ12σ23σ34σ41

σ13σ23σ43

Ŝ3

α13

(σ13σ24)2

]
C∆

4 , (4.8)

where the contour γ3 encircles the pole arising from S3. The first term in the integrand is
the standard Jacobian associated with the SL(2,C) fixing, and we have rescaled the third
scattering equation to

Ŝ3 = α13σ23σ43 + α23σ13σ43 + α43σ13σ23. (4.9)

After some cancellations we see there is only a simple pole at σ13 = 0 so we wrap the
contour around this pole to obtain

Ψφ4

4 = δ3(~kT )
ˆ
γ3

dσ3

[
σ41σ12
σ13

1
Ŝ3
α13

]
C4 =−δ3(~kT )

ˆ
σ13

dσ3

[
σ41σ12
σ13

1
Ŝ3
α13

]
C∆

4 . (4.10)

Computing the residue then gives

Ψφ4

4 = −δ3(~kT )
[
σ12σ41

Ŝ3

∣∣∣∣∣
σ13=0

α13

]
C∆

4 = δ3(~kT ) C∆
4 . (4.11)

Next we consider the naive uplifts of the flat space integrands of section 2.2. Note that
these uplifts will not describe the full four-point wavefunction coefficients in dS because
they will be missing mass deformations and curvature corrections. We will explain how to
encode these additional terms in the worldsheet integrands in the next subsection. The
naive uplift of the NLSM integrand in (2.6) is given by

INLSM = PT
(
Pf ′A

)2
. (4.12)
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As before, we will fix legs {1, 2, 4} and delete legs {2, 4} from the A-matrix to obtain

ΨNLSM
4 = δ3(~kT )

ˆ
γ3

dσ3 (σ41σ12σ24)2
[

1
σ12σ23σ34σ41

σ13σ23σ43

Ŝ3

(
α13

σ13σ24

)2
]
C∆

4 . (4.13)

After simplifying the integrand there is once again a simple pole at σ13 = 0, so we wrap
the contour around this pole:

ΨNLSM
4 = −δ3(~kT )

ˆ
γ3

dσ3

[
σ12σ41
σ13

1
Ŝ3
α2

13

]
C∆

4 = δ3(~kT )
ˆ
σ13=0

dσ3

[
σ12σ41
σ13

1
Ŝ3
α2

13

]
C∆

4 .

(4.14)
Evaluating the residue of this pole finally gives

ΨNLSM
4 = δ3(~kT )

[
σ12σ41

Ŝ3

∣∣∣∣∣
σ13=0

α2
13

]
C∆

4 = −δ3(~kT )α13 C∆
4 . (4.15)

In appendix B, we generlise this computation to 6-points. This will illustrate a number
subtleties that can arise for worldsheet descriptions of theories with derivative interactions,
such as the presence of higher-order poles and potential ordering ambiguities.

Now we analyse the naive uplift of the DBI integrand,

IDBI = PfX
(
Pf ′A

)3
. (4.16)

Fixing legs {1, 2, 4} as above, we find

ΨDBI
4 = δ3(~kT )

ˆ
γ3

dσ3(σ14σ12σ24)2
[
PfX 1

S3

(
Pf ′A

)3] C∆
4 . (4.17)

Recall from (4.6) that PfX has three terms. To evaluate the worldsheet integral containing
the first term, it is convenient to choose (Pf ′A)3 = (PfA23

23)2(PfA24
24) such that

Ψ12,34
4 = δ3(~kT )

ˆ
γ3

dσ3
(σ14σ12σ24)2

σ12σ34

[
σ13σ23σ43

Ŝ3

(
α14

σ14σ23

)2 α13
σ13σ24

]
C∆

4 , (4.18)

where the superscript on Ψ4 denotes the contribution from the first term in (4.6). The
contour integral can be evaluated as above to obtain

Ψ12,34
4 = δ3(~kT )

[
σ12σ24

Ŝ3

∣∣∣∣∣
σ23=0

α2
14α13

]
C∆

4 = −δ3(~kT )α14α13C∆
4 , (4.19)

where we wrapped the contour around the pole σ23 = 0, evaluated the residue, and used the
CWI to cancel α23 in the denominator with α14 in the numerator. Note that the ordering
of α14 and α13 in the final result is not important due to (3.19). For the remaining two
terms in (4.17) we choose (Pf ′A)3 to be (PfA14

14)2(PfA12
12) and (PfA13

13)2(PfA12
12), respectively.

Using similar manipulations, we finally obtain

ΨDBI
4 = −δ3(~kT ) (α12α14 + α14α13 + α13α12) C∆

4 . (4.20)
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This choice of Pfaffians avoids higher-order poles in the worldsheet coordinates which are
more subtle to evaluate. We describe such an example in appendix C. It will also be useful
to consider the following integrand, whose corresponding wavefunction coefficient follows
trivially from the above calculation:

(Pf ′A)3 PfX|conn → −δ
3(~kT )α12α14C∆

4 . (4.21)

Finally, let us consider the naive uplift of the special Galileon integrand

IsGal =
(
Pf ′A

)4
. (4.22)

In this case, the four-point wavefunction coefficient is given by

ΨsGal
4 = δ3(~kT )

ˆ
γ3

dσ3 (σ14σ12σ24)2
[ 1
S3

(
Pf ′A

)4] C∆
4 . (4.23)

As in the DBI case, there are Pfaffian choices exclusively leading to simple poles. The
following choice leads to a permutation invariant result:

(Pf ′A)4 = 1
3

{ 1
σ2

34
(PfA34

34)2 (−1)
σ23

(PfA23
23) 1

σ24
(PfA24

24) + cyclic(2, 3, 4)
}
. (4.24)

Note that other choices can give different results due to non-trivial commutators which
only vanish in the flat space limit. Hence we must specify a choice of Pfaffian. Following
closely the computations above, we obtain

ΨsGal
4 = 1

3δ
3(~kT ) (α12α14α13 + α14α13α12 + α13α14α12) C∆

4 . (4.25)

Using (3.19), it is not difficult to see that the above expression is permutation invariant.

4.3 Generalised double copy

Using the building blocks in the previous subsection (in particular (4.11) and (4.15)), we
see that the four-point NLSM wavefunction coefficient (including a curvature correction)
in (3.23) follows from the following integrand:

INLSM
4 = λ2PT

(
Pf ′A

)2 + cPT PfX|conn Pf ′A, (4.26)

if we identify the unfixed parameter c with −C. Now consider the following shift of the
first term in (4.26):

λ2PT→ aPf ′A
(
Pf ′A+m2 PfX|conn

)
+ b

(
Pf ′APfX +m2PT

)
, (4.27)

where a and b are also free coefficients. We then obtain the following integrand:

I(6)
4 = a(Pf ′A)3(Pf ′A+m2 PfX|conn)+b(Pf ′A)2(Pf ′APfX+m2PT)+cPT PfX|conn Pf ′A.

(4.28)
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Using the prescription for evaluating worldsheet integrals described the previous subsection
(in particular (4.11), (4.15), (4.20), (4.21), and (4.25)), we see that the corresponding
wavefunction coefficient is

Ψ(6)
4 = δ3(~kT )

[
8
3a(s̃t̃ũ+ t̃ũs̃+ ũs̃t̃)− 4b(s̃t̃+ t̃ũ+ ũs̃) + c

]
C∆

4 , (4.29)

where s̃, t̃, and ũ are related to their hatted counterparts (3.20) as

s̃ = ŝ− 1
2m

2, t̃ = t̂− 1
2m

2, ũ = û− 1
2m

2. (4.30)

It is then straightforward to match (4.29) with (3.25) via the following identification
of unfixed coefficients:

A = 8
3a, B = 2a

(
m2 + 4

3d
)
− 2b, C = −1

3am
6 + bm4 − c. (4.31)

Hence, the worldsheet integrand (4.28) encodes the effective action in (3.24). More-
over, (4.27) can be thought of as a double copy procedure encoding mass deformations
and curvature corrections. In particular, it reduces to (2.16) and (2.15) in the flat space
limit for a 6= 0 and a = 0, respectively (recalling that the mass is measured in units of the
inverse dS radius). We therefore refer to this as a generalised double copy. Note that this
prescription leaves the curvature corrections and mass deformations unfixed. To fix these
coefficients, we must specify additional data beyond the flat space limit. We will suggest a
strategy for doing this in the next section.

5 Soft limits

In the previous section, we found the building blocks of four-point wavefunction coefficients
of scalar EFTs in dS to be:

C∆
4 , ûC∆

4 ,
(
ŝ2 + t̂2 + û2

)
C∆

4 ,
(
ŝ3 + t̂3 + û3

)
C∆

4 . (5.1)

For notational simplicity, we will leave out the delta function imposing momentum con-
servation along the boundary. The first one is a φ4 contact diagram, while the remaining
building blocks arise from the action on this contact diagram with the differential opera-
tors defined in (3.20). The first two terms contribute when lifting NLSM to dS, while the
last two arise when lifting the DBI and sGal theories. In this section, we will compute
these objects explicitly in the cases ∆ = 2, 3 and analyse their soft limits. In practice,
all the integrals we encounter will be of the form

´ 0
−∞ η

αe−iEηdη. To evaluate them, we
rotate the contour clockwise onto the complex plane so that the integrand is exponentially
damped as η → −∞ [10]. To simplify our expressions we will set the normalisation of the
bulk-to-boundary propagators in (3.9) to be N = (−1)ν−

1
2
√

2/π.
We will show that the soft limits of the building blocks in (5.1) are given in terms of

boundary conformal generators acting on certain three-point contact diagrams. Soft limits
play an important role in cosmology where they appear in constraints relating higher-point
functions to symmetry transformations of lower-point functions [7, 75–77] and allow one
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to deduce 3-point inflationary correlators from four-point dS correlators [16, 78–81]. Soft
limits of DBI and sGal wavefunction coefficients in flat space were recently analysed in [67].
Note that the soft limit of the four-point wavefunction coefficients in (3.23) and (3.25)
can be obtained from linear combinations of soft limits we derive in this section. By
appropriately choosing the coefficients of curvature corrections in the corresponding EFTs
in (3.22) and (3.24) we can set many of these terms to zero, which may signal the existence
of hidden symmetries.

5.1 Contact diagram

Let us first consider the four-point contact diagram. For conformally coupled scalars,
we find

C∆=2
4 =

ˆ
dη

η4

( 4∏
i=1
Ki1/2

)
= 1
E
. (5.2)

It is trivial to see that the soft limit of this quantity corresponds to a three-point contact
diagram for conformally coupled scalars with a time-dependent interaction:

lim
~k1→0

C∆=2
4 = C∆=2

3,η , (5.3)

where

C∆=2
3,η =

ˆ
dη

η4

(
η

4∏
i=2
Ki1/2

)
= 1
E
. (5.4)

This three-point contact diagram will also arise in the soft limit of more complicated four-
point wavefunction coefficients of conformally coupled scalars. In particular, we will obtain
conformal generators acting on (5.4).

For minimally coupled scalars, the integrals need to be regulated. We will use the
prescription d → d + 2ε, ∆ → ∆ + ε, which leaves the spectral parameter ν = ∆ − d/2
unchanged [82–85], such that

C∆=3+ε
4 =

ˆ
dη

η4+2ε

4∏
i=1
Ki3/2,

= 1
E2ε

{
E3[Γ(−2 + 2ε) + Γ(−3 + 2ε)] + Γ(2ε)(k1k2k3 + . . .) (5.5)

+ Γ(−1 + 2ε)E (k1k2 + . . .) + k1k2k3k4
E

Γ(1 + 2ε)
}
,

where the ellipsis inside each parenthesis denotes all permutations involving the four legs.
We then find the following soft limit:

lim
~k1→0

C∆=3+ε
4 = 1

E2ε {E
3[Γ(−2 + 2ε) + Γ(−3 + 2ε)] + Γ(2ε)k2k3k4

+ Γ(−1 + 2ε)E(k2k3 + k2k4 + k3k4)}. (5.6)

We can now compare this with the three-point contact diagram of minimally coupled
scalars:

C∆=3+ε
3 =

ˆ
dη

η4+2ε

4∏
i=2
Ki3/2. (5.7)

– 15 –



J
H
E
P
0
8
(
2
0
2
2
)
0
5
4

Unlike the contact diagram in (5.4), this contact diagram does not contain a time-dependent
interaction. After performing the integral in (5.7) and changing ε → 2ε, we finally ob-
tain (5.6):

lim
~k1→0

C∆=3+ε
4 = C∆=3+2ε

3 , (5.8)

which, for clarity, can be easily expanded in ε:

C∆=3+ε
3 = k3

2 + k3
3 + k3

4
3

(1
ε
− γE − lnE + 1

)
+ 1

9E
3 − k2k3k4 +O(ε), (5.9)

where γE is the Euler-Mascheroni constant. As we will see, (5.7) will continue to play a
role in the soft limit of more complicated four-point wavefunction coefficients of minimally
coupled scalars.

5.2 Two derivatives

Next, we will analyse the soft limit of ûC∆
4 . In the conformally coupled case, it can be cast as

ûC∆=2
4 = − 2

E3 [~k1 · ~k3 − k1k3 − E
2 (k2 + k4)], (5.10)

with soft limit
lim
~k1→0

ûC∆=2
4 = 1

E
− k3
E2 . (5.11)

We recognise this expression as the dilatation operation:

D3

( 1
E

)
= 1
E
− k3
E2 . (5.12)

Hence, we find that the soft limit of (5.10) can be obtained by acting with a dilatation on
the three-point contact diagram of (5.4):

lim
~k1→0

ûC∆=2
4 = D3 C∆=2

3,η . (5.13)

In the minimally coupled case, we find

ûC∆=3
4 =

~k1 · ~k3
E

−E2 +
∑
i<j

kikj + k1k2k3k4
E

( 1
k1

+ 1
k2

+ 1
k3

+ 1
k4

+ 2
E

)
− 2k

2
1k

2
3

E

(
1 + k2 + k4

E
+ 2k2k4

E2

)
,

(5.14)

where requires dimensional regularisation in intermediate steps but has a finite output.
Taking the soft limit then gives

lim
~k1→0

ûC∆=3
4 =

~k1 · ~k3
E

(
k2

2 + k2
3 + k2

4 + k2k3 + k3k4 + k4k2 −
k2k3k4
E

)
, (5.15)

which can be obtained by acting with a conformal boost on the three-point contact diagram
in (5.7):

lim
~k1→0

ûC∆=3
4 = (~k1 ·K3) C∆=3

3 . (5.16)

Note that the divergences in (5.9) are removed by the action of conformal generators so we
set ε = 0. This will continue to hold for higher-derivative wavefunction coefficients so we
will set ε = 0 in those cases as well.
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5.3 Four derivatives

We now consider the term (ŝ2 + t̂2 + û2)C∆
4 . For conformally coupled scalars, we obtain

(ŝ2 + t̂2 + û2)C∆=2
4 = 24

E5 [(~k1 ·~k2−k1k2)(~k3 ·~k4−k3k4)+cyc(234)]− 8
E3

∑
i<j

kikj+ 4
E
. (5.17)

In this case the soft limit is simply

lim
~k1→0

(ŝ2 + t̂2 + û2)C∆=2
4 = 4

E3 (k2
2 + k2

3 + k2
4), (5.18)

which can be recast as a second order combination of dilatation operators acting on the
three-point contact diagram of (5.4):

lim
~k1→0

(ŝ2 + t̂2 + û2)C∆=2
4 = 2(D2

2 +D2
3 +D2

4)C∆=2
3,η . (5.19)

In the minimally coupled case, we obtain

(ŝ2+ t̂2+û2)C∆=3
4

= 24k1k2k3k4
E5 (~k1 ·~k2−k1k2)(~k3 ·~k4−k3k4)

+ 2
E3 (~k1 ·~k2)(~k3 ·~k4)

E2+E
∑
i<j

kikj+
∑
i<j<l

kikjkl


− 2
E4

[
(~k1 ·~k2)k2

3k
2
4 (E+2(k1+k2))+(~k3 ·~k4)k2

1k
2
2(E+2(k3+k4))+cyc(234)

]
. (5.20)

We then find that the soft limit is given by

lim
~k1→0

(ŝ2+ t̂2+û2)C∆=3
4 =

~k1 ·~k2
E3

[
4k2

2k3k4+k2E(k3k4+2k2(k3+k4))

+E2(2k2
2 +k2k3+k3k4+k4k2)−E4)

]
+cyc(234),

(5.21)

which corresponds to applying the following quadratic combination of conformal generators
to a three-point contact diagram:

lim
~k1→0

(ŝ2 + t̂2 + û2)C∆=3
4 = −2

[
D2(~k1 ·K2) + cyc(234)

]
C∆=3

3 . (5.22)

In practice, the soft limits in (5.19) and (5.22) are most easily derived at the level of the
integrand. In particular, this requires taking the soft limit of bulk-to-boundary propagators
and their derivatives, and then using equations of motion to remove derivatives acting on
the bulk-to-boundary propagator for the soft leg as well as factors of k2

a. For example, in
the conformally coupled case we have

lim
~k1→0

(ŝ2 + t̂2 + û2)C∆=2
4 =

ˆ
dη

(1
η

(−k2
2K̇1K2 + K̇1K̈2)− 1

η2 K̇1K̇2

)
K3K4 + cyc(234),

=
ˆ
dη

η3 [2η2K̈2 − ηK̇2 − 2K2]K3K4 + cyc(234),

= 2
(
D2

2 +D2
3 +D2

4

) ˆ dη

η3K2K3K4. (5.23)
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The analogous construction in the minimally coupled case is given by

lim
~k1→0

(
ŝ2 + t̂2 + û2

)
C∆=3

4 = (~k1 · ~k2)
ˆ
dη

(2
η
K1K̇2 + 1

η2K1K2

)
K3K4 + cyc(234),

= −2[D2(~k1 ·K2) + cyc(234)]
ˆ
dη

η4K2K3K4.

(5.24)

Using this method, one can also derive the soft limits in (5.13) and (5.16).

5.4 Six derivatives

Finally we consider the six derivative interaction (ŝ3 + t̂3 + û3)C∆
4 . In the conformally

coupled case we obtain

(ŝ3+ t̂3+û3)C∆=2
4

=
{

90
E7 [(~k1 ·~k2)+(~k3 ·~k4)−k1k2−k3k4]3+ 156

E5 [(~k1 ·~k2)−k1k2][(~k3 ·~k4)−k3k4]

− 54
E5 (k1k2+k3k4)[(~k1 ·~k2)+(~k3 ·~k4)−k1k2−k3k4]− 79

E3 (k1k2+k3k4)+cyc(234)
}

+ 93
4E ,

(5.25)

with soft limit

lim
~k1→0

(ŝ3 + t̂3 + û3)C∆=2
4 = −108

E4 k2k3k4 + 52
E3 (k2k3 + k3k4 + k4k2)− 12

E
. (5.26)

Using the methods described above, we can obtain this by acting with the following com-
bination of conformal generators on a three-point contact diagram:

lim
~k1→0

(ŝ3 + t̂3 + û3)C∆=2
4 =

(
6(D3

2 +D3
3 +D3

4)− 22(D2
2 +D2

3 +D2
4) + 20

)
C∆=2

3,η . (5.27)

In the minimally coupled case, the expression for the integrated wavefunction coeffi-
cient can be found in appendix D. The soft limit is given by

lim
~k1→0

(ŝ3 + t̂3 + û3)C∆=3
4

= (~k1 · ~k2)
E4

[
3k5

2 + 12k4
2(k3 + k4) + k3

2(k2
3 + 36k3k4 + k2

4)

− k2
2(k3 + k4)(11k2

3 + 21k3k4 + 11k2
4)− 4k2(k3 + k4)2(k2

3 + k3k4 + k2
4)

− (k3 + k4)3(k2
3 + k3k4 + k2

4)
]

+ cyc(234). (5.28)

This expression can also be recast in terms of conformal generators acting on a three-point
contact diagram. For example, we can write

lim
~k1→0

(ŝ3 + t̂3 + û3)C∆=3
4 = [2(3D2

2 − 11D2)(~k1 ·K2) + cyc(234)]C∆=3
3 . (5.29)

Observe that these expressions are not unique. For example, the operators K2 and D2
do not commute and so we could choose to order them differently and pick up different
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coefficients. Note also that unlike (5.27), the term in brackets in (5.29) contains no constant
term. This comes from the different behavior of the soft limits for different values of ∆.
The constant term in (5.27) arises from D2 +D3 +D4 and the equivalent term in the case
of massless scalars would be a sum over ~k1 ·Ki. We can rewrite this using CWI to get a
contribution of order k2

1 which we then drop as it is subleading.
Let us close this section with some general comments. Overall, we find that soft limits

require both special conformal and dilatation operators acting on a contact diagram. In
the conformally coupled case, it is always possible to express them exclusively in terms of
dilatation operators but at the level of the integrand this is not the whole story. When
considering how the integrand behaves in the soft limit we find that both types of conformal
generators appear. Another interesting point is that we can obtain particularly simple soft
limits by tuning coefficients in the effective action in (3.24). For example, if we choose
the mass to be that of a conformally coupled scalar and set the coefficients {A,B,C} =
λ {1,−8,−20}, then the soft limit of the corresponding four-point wavefunction coefficient
in (3.25) is simply given by

lim
~k1→0

Ψ(6)
4 = 6λ(D3

2 +D3
3 +D3

4)C∆=2
3,η . (5.30)

It would be interesting to look for possible hidden symmetries in the corresponding EFT.
We could perform a similar set of steps for ∆ = 3, but in this case there is an ambiguity
in how to fix the coefficients since the commutators between the operators Di and Ki are
given by lower order contributions so different orderings might lead to different preferred
choices for {A,B,C}.

6 Conclusion

The study of correlation functions in (Anti) de Sitter space using curved-space analogues of
the scattering equations is still an ongoing endeavour. Prior to this paper, they have only
been formulated for scalar theories with polynomial interactions, notably φ3 [59, 60] and
φ4 [43, 44]. We have now initiated the study of scalar theories with derivative interactions
using this framework. In particular, we study the wave function coefficients of the NLSM,
DBI, and sGal theories in dS using the cosmological scattering equations. These effective
scalar theories are of particular interest in flat space since their scattering amplitudes have
a very elegant description and are related to each other in a simple way in terms of CHY
formulae [56].

In this paper we have proposed new formulae for four-point wavefunction coefficients
of different scalar EFTs in the form of worldsheet integrals which encode both curvature
corrections and mass deformations. We showed that the DBI and sGal integrands can
be obtained from the NLSM integrand by replacing a Parke-Taylor factor with a linear
combination of simple building blocks involving Pfaffians of certain operatorial matrices.
Because the integrands are constructed from differential operators which do not generally
commute, this leads to potential ordering ambiguities that are absent in theories with
polynomial interactions. Such ambiguities can occur in the DBI and sGal theories at four
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points and the NLSM at six points. At four points we introduced a simple prescription
for defining the worldsheet integrals such that the final results are permutation-invariant.
We have also studied the soft limits of the resulting four-point wavefunction coefficients
and derived formulae in the form of differential operators acting on three-point contact
diagrams. For conformally coupled scalars, the three-point contact diagrams involve a
time-dependent interaction, while for minimally coupled scalars the contact diagram is
divergent and needs to be regulated. However, all divergences cancel out after acting with
the appropriate combinations of boundary conformal generators.

There are a number of directions for future investigation. For example, it would be of
interest to generalise our formulae to any number of points. In order to do so, there are sev-
eral technical questions that need to be addressed. First of all, we need to develop a system-
atic classification of higher-derivative corrections to scalar EFTs analogous to the one in [73]
beyond four-points, which to our knowledge has not been carried out yet. It would then be
interesting to see if there is a simple generalisation of the double copy prescription in (4.27)
which encodes such corrections at higher points. Secondly, we need a systematic under-
standing of ordering ambiguities that could arise in the corresponding worldsheet integrals
and a prescription for removing them. A natural starting point along these lines would be
to analyse potential ordering ambiguities in the six-point NLSM calculation in appendix B.

It would also be of great interest to apply our approach for computing wavefunction
coefficients to the EFTs recently constructed in de Sitter space based on hidden symme-
tries [66]. Note that the effective actions we consider in this paper have general massess and
curvature corrections up to four-points, so the actions derived in [66] should correspond to
a particular choice of these parameters. It would then be interesting to compute the corre-
sponding four-point wavefunction coefficients and their soft limits in terms of the building
blocks derived in this paper and investigate the interplay of hidden symmetries with soft
limits. Note that our double copy prescription does not fix massess or coefficients of cur-
vature corrections, but these can be constrained by imposing simplicity of the soft limits,
as we illustrate in the end of section 5. It would also be interesting to relate our results to
those recently obtained in flat space [67] using the methods recently developed in [22].

Finally, it is important to extend the techniques of this paper to more realistic models
by considering different worldsheet integrands encoding more general interactions and the
breaking of conformal symmetry by inflation [86–88]. Moreover inflationary three-point
correlators can be obtained by giving a small mass to one of the legs of a four-point
function in de Sitter space (proportional to the slow-roll parameter) and then taking a soft
limit [16, 78–81]. Our results in section 5 should be useful in this regard.
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Figure 2. Witten diagrams for the six-point NLSM amplitude. The exchange diagram is summed
over the three inequivalent cyclic permutations.
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ϕLAL =

Figure 3. Four-point vertex appearing on the left-hand-side of a 6-point NLSM exchange diagram.

A Six-point NLSM wavefunction coefficients from Witten diagrams

In this appendix we extend the calculations in section 3.2 to six-points for the NLSM. At
this level, we have the following Lagrangian,

L6-pt
NLSM = Tr

[
−1

2∂Φ · ∂Φ− 1
2m

2Φ2 − λ2Φ2∂µΦ∂µΦ− 1
4CΦ4

−λ4
(

Φ4∂µΦ∂µΦ + 1
2Φ2∂µΦΦ2∂µΦ

)
− 1

6FΦ6
]
,

(A.1)

where m is the mass, and C and F are free coefficients coming from possible curvature
corrections. For simplicity, we will set m = C = F = 0. We will write the result in terms
of the boundary differential operators in (3.15) acting on a contact diagram, which we will
compare against the results of a worldsheet calculation in appendix B. The final result will
be free of ambiguities since all the differential operators which appear commute. A similar
formula was previously derived in [34] using AdS embedding coordinates.

The wavefunction coefficient is given by a sum of exchange and contact diagrams
shown in figure 2. To obtain the desired form, we must write the four-point vertices
in the exchange diagrams in such a way that derivatives only act on bulk-to-boundary
propagators. Let us consider the four-point vertex appearing on the left-hand-side of an
exchange diagram, illustrated in figure 3. Using the Feynman rules derived from (A.1) and
the identity in (3.16) we find

AL =
ˆ

dη

ηd+1 η
2{K1K2K3KL[(~k1 · ~k2) + (~k2 · ~k3) + (~k3 · ~kL) + (~kL · ~k1)]

+ K̇1K̇2K3KL +K1K̇2K̇3KL +K1K2K̇3K̇L + K̇1K2K3K̇L
}
,

(A.2)
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where KL is associated to the bulk-to-bulk propagator and K̇ = ∂ηK. Using integration by
parts to remove the derivatives acting on KL gives

AL =
ˆ

dη

ηd−1KL
[
− 2~k1 · ~k3K1K2K3 − 2K̇1K2K̇3 − k2

1K1K2K3 − k2
3K1K2K3

−K1K2K̈3 − K̈1K2K3 + 1− d
η

(
K̇1K2K3 +K1K2K̇3

) ]
,

(A.3)

where we have also used momentum conservation at the vertex, such that ~kL = −(~k1 +
~k2 + ~k3). Using the equations of motion for K1 and K3, we are left with

AL = −2
ˆ

dz

zd+1

[
K2KLη2

(
~k1 · ~k3K1K2K3 + K̇1K2K̇3

)]
. (A.4)

Performing similar manipulations on the other four-point vertices, we finally obtain

ΨNLSM
6 = λ4δ3(~kT )

[
(α13α

−1
123α46 − α24) + cyc(i→ i+2)

]
C∆

6 (A.5)

where αijk = (Di +Dj +Dk)2. Note that the first term comes from the exchange diagrams
and the second term is from the contact diagram. These can be seen from the Witten
diagrams in figure 2. This is manifestly free of any ordering ambiguities since the products
of operators that appear can be written in any order. Note that this result can be obtained
from flat space Feynman diagrams simply by replacing 2(ki · kj) with αij . Similarly, the
flat space limit of (A.5) is equivalent to the result given in [89].

B Six-point NLSM from the worldsheet

In this appendix we will compute the six-point wavefunction coefficient of the NLSM in dS
using the CSE. For simplicity, we will set the mass and curvature corrections to zero as we
did in the previous appendix. The worldsheet calculation turns out to be very intricate and
we obtain an expression involving boundary differential operators which do not commute,
in contrast to the result of the previous appendix. It is easy to match the two expressions if
these commutators are ignored. We therefore expect that the additional terms coming from
commutators should cancel out although we have not verified this due to the complexity of
the expression. We leave a systematic study of such commutators and potential ordering
ambiguities to future work.

By lifting the flat space formula in (2.6) to dS, as explained in section 4, the six-
point NLSM wavefunction coefficient in the CSE framework can be written as ΨNLSM

6 =
δ3(~kT )ANLSMC∆

6 where

ANLSM =
ˆ
γ

4∏
i=2

dσi (Si)−1 (σ15σ56σ61)2 PT 1
σ2

15
(PfA15

15)2. (B.1)

Here we have fixed legs 1, 5, 6 and removed the rows and columns {1, 5} from the A-
matrix. The contour encircles the poles corresponding to the CSE for legs 2, 3, 4, i.e.
γ ≡ γS2 ∩ γS3 ∩ γS4 .

– 22 –



J
H
E
P
0
8
(
2
0
2
2
)
0
5
4

In the following we will focus our attention on ANLSM, which is understood to act on
the contact diagram, and impose momentum conservation along the boundary. In order to
evaluate the worldsheet integral, we expand (PfA15

15)2 as

(PfA15
15)2 = αa

σ2
23σ

2
46

+ αb
σ2

24σ
2
36

+ αc
σ2

26σ
2
34
−PT(2,3,6,4)αd−PT(2,3,4,6)αe−PT(2,4,3,6)αf ,

(B.2)

where

αa ≡ α2
23 α

2
46 , αb ≡ α2

24 α
2
36 , αc ≡ α2

26 α
2
34 , αd ≡ α23 α46 α24 α36 + α24 α36 α23 α46 ,

αe ≡ α23 α46 α26 α34 + α26 α34 α23 α46 , αf ≡ α24 α36 α26 α34 + α26 α34 α24 α36 , (B.3)

and evaluate the integral for each term separately.
Therefore, ANLSM is recast as

ANLSM = A(a)αa +A(b)αb +A(c)αc −A(d)αd −A(e)αe −A(f)αf , (B.4)

where we have denoted

A(i) =
ˆ
γ

4∏
i=2

dσi (Si)−1 (σ15σ56σ61)2 I(i), i ∈ {a, b, c, d, e, f}, (B.5)

and defined the integrands

I(a) = PT 1
σ2

15 σ
2
23 σ

2
46
, I(b) = PT 1

σ2
15 σ

2
24 σ

2
36
, I(c) = PT 1

σ2
15 σ

2
26 σ

2
34
,

I(d) = PT PT(2, 3, 6, 4)
σ2

15
, I(e) = PT PT(2, 3, 4, 6)

σ2
15

, I(f) = PT PT(2, 4, 3, 6)
σ2

15
. (B.6)

We will evaluate the worldsheet integrals using the graph representation and integra-
tion rules introduced in [43, 44]. The graphs corresponding to each term in ANLSM are
shown in figure 4. The chords in each circle encode the poles in worldsheet coordinates not
contained in the Parke-Taylor factor. For example, A(a) contains double poles σ15, σ23, and
σ46 so we draw double lines between these points on the circumference. When evaluating
contour integrals, the worldsheet will factorise when a subset of punctures collide. We then
draw closed loops around the punctures that collided and refer to them as factorisation
cuts. There is a simple set of rules for determining which factorisation cuts contribute:

• Rule I. All factorization cuts with fewer than two fixed marked-points (labels with
underlines) vanish.

• Rule II. If the factorization cuts more than four lines in the corresponding graph
then, this contribution vanishes.

In practice, these rules make calculations much more efficient.
Let us illustrate in detail how to evaluate the first diagram in figure 4. From the

integration rules, it is simple to see that there are two factorisation contributions for this
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Figure 4. All diagrams for ANLSM.
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Figure 5. Factorization contributions for A(a).

diagram, which are illustrated in figure 5. The contribution (I), is given when σ2 → σ3 →
σ4 → σ6. To perform this computation, we use the parametrisation, σa = εxa + σ6, with
a = 2, 3, 4, 6, x4 = constant, x6 = 0, σ6 = σL, and expand around ε = 0,

dσ2 ∧ dσ3 ∧ dσ4 = ε2 x46 dx2 ∧ dx3 ∧ dε

(σ15σ56σ61)2 PT 1
σ2

15 σ
2
23 σ

2
46

= 1
ε6

(σ15σ5LσL1)2

(σ2
L1 σ

2
5L σ

2
15)

1
(x2

23 x34 x2
46) +O(ε−5), (B.7)

and

S2 = 1
ε

[
Ŝ2+O(ε)

]
, S3 = 1

ε

[
Ŝ3+O(ε)

]
, S4 = 1

ε

[
Ŝ4+O(ε)

]
,

Ŝ2 = α23
x23

+α24
x24

+α26
x26

+α2R
x2R

, Ŝ3 = α32
x32

+α34
x34

+α36
x36

+α3R
x3R

, Ŝ4 = α42
x42

+α43
x43

+α46
x46

+α4R
x4R

,

(B.8)
where xR = ∞, and αaR = αa1 + αa5, a = 2, 3, 4. Now we can deform the contour
γ = γŜ2+O(ε) ∩ γŜ3+O(ε) ∩ γŜ4+O(ε) into γ̃ = γε ∩ γŜ2+O(ε) ∩ γŜ3+O(ε), where γε = {|ε| = δ}.

After integrating over γε, the full integral is split into two parts: one with {σ1, σ5, σL}
and the other with {x2, x3, x4, x6, xR}. Moreover, using the identity

PT(4, 6, R) Ŝ4+PT(3, 6, R) Ŝ3+PT(2, 6, R) Ŝ2 = PT(6, R) (α23+α24+α26+α34+α36+α46),
(B.9)

we find that on the support of γŜ2
∩ γŜ3

, Ŝ4 reduces to

Ŝ4
∣∣∣
γŜ2
∩γŜ3

= PT(6, R)
PT(4, 6, R) (α15), (B.10)

where we have used the CWI. Putting everything together, the contribution (I) for A(a)

is given by

A(a)
∣∣∣
(I)

= (σ15σ5LσL1)2

(σ2
L1σ

2
5Lσ

2
15) (α15)−1

ˆ
γ̂

3∏
i=2

dxi(Ŝi)−1(x46x6RxR4)2 PT(2, 3, 4, 6, R)
x2

23 x46 x6R xR4

= (α15)−1
ˆ
γ̂

3∏
i=2

dxi(Ŝi)−1(x46x6RxR4)2 PT(2, 3, 4, 6, R)
x2

23 x46 x6R xR4
, (B.11)

with γ̂ = γŜ2
∩ γŜ3

.
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Figure 7. Factorization contributions for the five-point diagram obtained in A(a)
∣∣∣
(I)

.

The expression in (B.11) is depicted in figure 6. This diagram has two factorisation
contributions which are illustrated in figure 7. The contribution (I A) arises when x2 →
x3 → x4. In this case we use the parametrisation xa = ε ya + x4, a = 2, 3, 4, y2 =constant,
y4 = 0 and x4 = xL. We then have

dx2 ∧ dx3 = ε y24 dε ∧ dy3

(x46x6RxR4)2 PT(2, 3, 4, 6, R)
x2

23 x46 x6R
= 1
ε4

(xL6x6RxRL)2

(xL6x6RxRL)2
1

(y3
23 y34) +O(ε−3), (B.12)

and

Ŝ2 = 1
ε

[
S̃2 +O(ε)

]
, Ŝ3 = 1

ε

[
S̃3 +O(ε)

]
,

S̃2 = α23
y23

+ α24
y24

+
α2R̂
y2R̂

, S̃3 = α32
y32

+ α34
y34

+
α3R̂
y3R̂

, (B.13)

where yR̂ = ∞, and αaR̂ = αa1 + αa5 + αa6, a = 2, 3. By the GRT, we deform the
contour γ̂ = γS̃2+O(ε) ∩ γS̃3+O(ε) into γ′ = −γε ∩ γS̃3+O(ε). Thus, integrating around ε = 0,
the five-point integral breaks into two parts: one with {x6, xR, xL} and the other with
{y2, y3, y4, yR̂}. Using the identity

PT(2, 4, R̂) S̃2 + PT(3, 4, R̂) S̃3 = PT(4, R̂)
[
(D2 +D3 +D4)2 +m2

]
, (B.14)

we find that on the support of γS̃3
, S̃2 reduces to

S̃2
∣∣∣
γS̃3

= PT(4, R̂)
PT(2, 4, R̂)

[
(D2 +D3 +D4)2 +m2

]
. (B.15)

The contribution (I A) is therefore given by

(I A) = (xL6x6RxRL)2

(xL6x6RxRL)2

[
(D2 +D3 +D4)2 +m2

]−1̂

γS̃3

dy3(S̃3)−1(y24y4R̂yR̂2)2 PT(2, 3, 4, R̂)
y2

23 y
2
4R̂

=
[
(D2 +D3 +D4)2 +m2

]−1̂

γS̃3

dy3(S̃3)−1(y24y4R̂yR̂2)2 PT(2, 3, 4, R̂)
y2

23 y
2
4R̂

. (B.16)
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The contribution in (B.16) is represented in figure 8. Since the four-point diagram
in figure 8 has a double pole, it can potentially give rise to ambiguities associated with
the ordering of non-commuting differential operators. In appendix C, we compute this
contribution in detail and show that it is well defined. In particular, we find that

ˆ
γS̃3

dy3(S̃3)−1(y24y4R̂yR̂2)2 PT(2, 3, 4, R̂)
y2

23 y
2
4R̂

= (α23)−1 (α23 + α34) (α23)−1 . (B.17)

Plugging this into (B.16) then gives

(I A) =
[
(D2 +D3 +D4)2 +m2

]−1
(α23)−1 (α23 + α34) (α23)−1 . (B.18)

Similarly, we find the (I B) contribution in figure 7 to be

(I B) = (α1235 − α15)−1 (α23)−1 (α23 + α34 + α36) (α23)−1 (B.19)

where α1235 ≡ α12 +α13 +α15 +α23 +α25 +α35. Hence, the factorization contribution (I)
in figure 5 is given by

A(a)
∣∣∣
(I)

= (α15)−1
{[

(D2 +D3 +D4)2 +m2
]−1

(α23)−1 (α23 + α34) (α23)−1

+ (α46 − α15)−1 (α23)−1 (α23 + α34 + α36) (α23)−1
}
. (B.20)

The computation for the contribution (II) in figure 5 is completely analogous and we obtain

A(a)
∣∣∣
(II)

=(α46)−1
{[

(D1 +D2 +D3)3 +m2
]−1

(α23)−1(−α13) (α23)−1

+ (α15 − α46)−1 (α23)−1 (α23 + α34 + α36) (α23)−1
}
. (B.21)

Putting it all together, we finally obtain the following formula for the first diagram in
figure 4:

A(a) = A(a)
∣∣∣
(I)

+A(a)
∣∣∣
(II)

=
[
(D1 +D2 +D3)2 +m2

]−1
(α46)−1 (α23)−1 (−α13) (α23)−1

+
[
(D2 +D3 +D4)2 +m2

]−1
(α15)−1 (α23)−1 (α23 + α34) (α23)−1

+ (α15)−1(α46)−1 (α23)−1 (α23 + α34 + α36) (α23)−1 . (B.22)
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Figure 9. (a) Computing the A(b) diagram. (b) Computing the A(c) diagram. (c) Computing the
A(d), A(e), and A(f) diagrams.

The other diagrams in figure 4 can be computed using similar methods, so we just
state the final results:

A(b) = −
[
(D2 +D3 +D4)2 +m2

]−1
(α15)−1(α24)−1 − (α15)−1(α24)−1(α36)−1,

A(c) =
[
(D3 +D4 +D5)2 +m2

]−1
(α26)−1 (α34)−1 (−α15) (α34)−1

+
[
(D2 +D3 +D4)2 +m2

]−1
(α15)−1 (α34)−1 (α23 + α34) (α34)−1

+ (α15)−1(α26)−1 (α34)−1 (α23 + α34 + α36) (α34)−1 ,

A(d) =
[
(D2 +D3 +D4)2 +m2

]−1
(α15)−1 (α23)−1 ,

A(e) = −
[
(D2 +D3 +D4)2 +m2

]−1
(α15)−1

{
(α23)−1 + (α34)−1

}
,

A(f) =
[
(D2 +D3 +D4)2 +m2

]−1
(α15)−1 (α34)−1 . (B.23)

The factorisation cuts from which these were derived are illustrated in figure 9. The
complete result is then obtained by combining (B.22) with (B.23). Neglecting commutators,
it is not difficult to see that this agrees with (A.5).

C Four-point diagram with double pole

In this appendix, we will illustrate how to evaluate a worldsheet integral with a double
pole. This integral arises in the 6-point NLSM computation as explained in the previous
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Figure 10. Four-point diagrams with double pole and its factorisation contribution.

appendix. Non-simple poles can also appear in four-point worldsheet formulae of higher-
derivative theories like DBI and sGal, as explained in section 4, although they can be
avoided using an appropriate choice of Pfaffians. Let us consider the integral

A4 =
ˆ
γSd

dσd (Sd)−1(σabσbcσca)2 PT(a, b, c, d) 1
σ2
abσ

2
cd

, (C.1)

where
Sd = αda

σda
+ αdb
σdb

+ αdc
σdc

, (C.2)

and αda + αdb + αdc = 0 when acting on a four-point contact diagram with D2
a 6= D2

b 6=
D2
c 6= −m2 (see section 6.2 of [44] for a discussion of how CWI and SL(2,C) symmetry are

realised in this context).
In the following, it will be understood that A4 acts on a contact diagram and that

momentum in conserved along the boundary. In figure 10, we give the graph representation
for A4 and its factorisation contribution after applying the integration rules reviewed in the
previous appendix. This factorisation contribution is given when σd → σc. To carry out
this computation we use the parametrisation σi = εxi + σc, with i = c, d, xd = constant,
xc = 0, σc = σL, and expand around ε = 0:

dσd = xdc dε

(σabσbcσca)2 PT(a, b, c, d) 1
σ2
ab σ

2
cd

= 1
ε3

(σabσbLσLa)2

(σ3
ab σbL σLa x

3
cd)

(
1 + ε

xcd
σLa

+O(ε2)
)
, (C.3)

and

Sd = 1
ε

[
Ŝd(ε) +O(ε2)

]
, Ŝd(ε) ≡

αdc
xdc

+ ε

(
αda
σLa

+ αdb
σLb

)
. (C.4)

Using the global residue theorem, the integral becomes an integration around ε = 0, i.e.

A4 =
ˆ
γε

dε
ε

[
Ŝd(ε) +O(ε2)

]−1 σbL
(σab xcd)

+
ˆ
γε

dε
ε2

[
Ŝd(ε) +O(ε2)

]−1 (σbLσLa)
(σab x2

cd)
. (C.5)

The first term has a simple pole and is simple to evaluateˆ
γε

dε
ε

[
Ŝd(ε) +O(ε2)

]−1 σbL
(σab xcd)

= −σbL
σab

(αdc)−1. (C.6)

Since the second term in (C.5) has a double pole, we must compute the derivative
d[(Ŝd(ε))−1]

dε , which must be done with care since Ŝd is a differential operator. Using the
identity

Ŝd(ε) [Ŝd(ε)]−1 = I, (C.7)
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it is straightforward to arrive at the following result:
d[(Ŝd(ε))−1]

dε
∣∣∣
ε=0

= −[Ŝd(0)]−1Ŝ′d(0) [Ŝd(0)]−1 = −x2
dc (αdc)−1

(
αda
σLa

+ αdb
σLb

)
(αdc)−1.

(C.8)
Therefore, the second integral in (C.5) is given byˆ

γε

dε
ε2

[
Ŝd(ε) +O(ε2)

]−1 (σbLσLa)
(σab x2

cd)
= 1
σab

(αdc)−1 (σLb αda + σLa αdb) (αdc)−1. (C.9)

Finally, we obtain

A4 = 1
σab

(αdc)−1 (σLb αdc + σLb αda + σLa αdb) (αdc)−1

= −(αcd)−1(αdb)(αcd)−1

= (αcd)−1(αad + αcd)(αcd)−1, (C.10)

where we have used the CWI in (C.2) in the last two lines.

D Six-derivative results

For minimally coupled scalars we find that

(ŝ3 + t̂3 + û3)C∆=3
4

= 360
E7 k1k2k3k4k

µ
1 k2,µk

ν
3k4,ν (kσ1 k2,σ + kσ3 k4,σ)

1 + E

6

4∑
i=1

1
ki

+ E2

30k1k2k3k4

∑
i<j

kikj


+ 60
E6k1k2k3k4

(
(k3 + k4)(kµ1 k2,µ)2 + (k1 + k2)(kµ3 k4,µ)2

)
+ 24
E5

10k1k2k3k4k
µ
1 k2,µk

ν
3k4,ν

+ 1
2
∑
i<j

kikj
(
2k1k2k3k4 (kµ1 k2,µ + kµ3 k4,µ − k1k2 − k3k4)− 2k2

3k
2
4k

µ
1 k2,µ

− 2k2
1k

2
2k

µ
3 k4,µ + 2(k1k2 + k3k4)kµ1 k2,µk

ν
3k4,ν + k3k4(kµ1 k2,µ)2

+ k1k2(kµ3 k4,µ)2
)

+

1 +
∑
i 6=j

ki
kj

 k1k2k3k4~k1 · ~k2~k3 · ~k4

− (k2
1k

2
2 + k2

3k
2
4)~k1 · ~k2~k3 · ~k4 + k2

3k
2
4
~k1 · ~k2

(
−k2

1 − k2
2 + 2(k1k2 + k3k4)

)
+ k2

1k
2
2
~k3 · ~k4

(
−k2

3 − k2
4 + 2(k1k2 + k3k4)

)
− 1

2
(
4k2

1k
2
2k

2
3k

2
4 + k2

1k
2
2 + (~k3 · ~k4)2 + (~k1 · ~k2)2

)
+ 6
E4

k1k2k3k4

4∑
i=1

1
ki

+
∑
i 6=j

kik
2
j

~k1 · ~k2~k3 · ~k4

− 2k2
3k

2
4(k3 + k4)~k1 · ~k2 − 2k2

1k
2
2(k1 + k2)~k3 · ~k4


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+ 2
E3

(
2~k1 · ~k2~k3 · ~k4(~k1 · ~k2 + ~k3 · ~k4)−

∑
i<j

kikj~k1 · ~k2~k3 · ~k4

+ 2k2
3k

2
4
~k1 · ~k2 + 2k2

1k
2
2
~k3 · ~k4

)

+ 4
E
~k1 · ~k2~k3 · ~k4 + Cyc.[234], (D.1)

where kµi kj,µ = ~ki ·~kj−kikj . This expression mixes different types of dot products in order
to obtain a more compact form.
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