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ABSTRACT

The observed magnifications and light curves of the quadruply imaged iPTF16geu supernova (SN) offers a unique opportunity to study
a lens system with a variety of independent constraints. The four observed positions can be used to constrain the macrolens model. The
magnifications and light curves at the four SN positions are more useful to constrain microlensing models. We define the macrolens
model as a combination of a baryonic component that traces the observed light distribution, and a dark matter halo component. We
constrained the macrolens model using the positional constraints given by the four observed images, and compared it with the best
model obtained when magnification constraints were included. We found that the magnification cannot be explained by a macrolens
model alone, and that contributions from substructures such as microlenses are needed to explain the observed magnifications. We
considered microlens models based on the inferred stellar mass from the baryonic component of the macrolens model, and used the
observed magnification and light curves to constrain the contribution from microlenses. We computed the likelihood of a variety of
macro and micro lens models where we varied the dark matter halo, baryonic component, and microlens configurations. We used
information about the position, magnification, and, for the first time, the light curves of the four observed SN images. We combined
macrolens and microlens models in order to reproduce the observations; the four SN positions, magnifications, and lack of fluctuations
in the light curves. After marginalizing over the model parameters, we found that larger stellar surface mass densities are preferred.
This result suggests that the mass of the baryonic component is dominated by its stellar component. We conclude that microlensing
from the baryonic component suffices to explain the observed flux ratios and light curves.
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1. Introduction

In 2016, supernova (SN) iPTF16geu became the first confirmed
multiply lensed type Ia SN (Goobar et al. 2017). These types
of SNe are of particular interest, not only for their possibilities
as cosmological tools, but also to study gravitational lenses in
greater detail. The standard candle nature of type Ia SN allows
one to estimate the magnification of the underlying model at
the positions of the lensed SNe images. The large magnification
factors from the macromodel can be exploited to study the SN
in greater detail (Johansson et al. 2021). The magnification esti-
mates can also be used to improve the lens model, or to reveal
discrepancies that could be due to substructures in the lens plane,
or along the line of sight. One of the most common types of sub-
structures invoked to explain discrepancies between predicted
and observed magnifications (of small background objects, such
as quasars) is microlensing by stars or remnants in the lens
plane. As these types of microlenses are ubiquitous in the lens
plane, the probability that the Einstein radius of one of these
microlenses intersects the line of sight to the background lensed
object is not negligible. For small sources such as SNe, and for
a relatively low number density of microlenses, and/or small
to moderate magnification factors, the probability of intersect-
ing a microcaustic is small during the first days after explosion
(Suyu et al. 2020). On the other hand, if the number density of

stars at the position of the lensed image is sufficiently high, or
the total magnification is large enough, intersecting a microlens
is unavoidable (Diego 2019).

Earlier work has studied iPTF16geu in detail. In the initial dis-
covery paper by Goobar et al. (2017), the authors present an ini-
tial spectral analysis and light curves for the four images, together
with the redshifts of the lens (z = 0.216), and SN (z = 0.409).
The velocity dispersion of the lens is also estimated to be σv =
16341

−27 km s−1. Keck and HST (Hubble Space Telescope) images
reveal four images of the same SN in an almost perfect symmet-
ric configuration, forming a ring with a radius ≈0.3′′. One of the
images is significantly brighter than the other three. An initial
estimation of the total magnification rendered µ ≈ 53 (equiv-
alent to a 4.3 mag boost), although with relatively large uncer-
tainty (≈0.4 mag). After fitting the four images with an isother-
mal ellipsoid lens model, the authors estimated a mass within
the estimated critical curve of M = (1.69 ± 0.06) × 1010 M�.
Based on the anomalous flux ratio, the authors point to possible
microlensing or millilensing effects. More et al. (2017) present
lens models that fits the four SN positions. All lens models pre-
dict significantly less magnification, especially for the brightest
image where the model predictions range between 5.2 and 8.2,
a factor at least four times discrepant with the estimated mag-
nification of image 1. The authors suggest also that microlens-
ing could be responsible for this discrepancy. This conclusion
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is challenged by Yahalomi et al. (2017) that argue that the dis-
crepancy is too large to be explained by microlensing. Accurate
magnifications and time delays are presented in Dhawan et al.
(2020) and the analysis of the background source and lens based
on spectroscopic information is presented in Johansson et al.
(2021). In Dhawan et al. (2020), the authors estimate the mag-
nification of the four individual images and correct for redden-
ing. They updated the estimate of the magnification to 67.8+2.6

−2.9.
They also measure the time delays from the light curves and find
a relative delay of order 1 day, confirming earlier expectations.
In Johansson et al. (2021), the authors measure the expansion
velocity based on the SiII line, from which one can estimate the
size of the photosphere as a function of time. They conclude
that iPTF16geu can be classified as a high-velocity SN with a
velocity of 11 950 ± 140 km s−1 at the peak emission, and veloc-
ity gradient −110.3 ± 10.0 km s−1. The authors provide also an
improved estimate for the velocity dispersion of the lens galaxy,
σv = 129 ± 4 km s−1. The same team presents a new lens model
in Mörtsell et al. (2020), where they find consistent results with
earlier work, maintaining the discrepancy between the observed
and model predicted magnifications for the brightest image (and
to a lesser degree also in the other images). However, their lens
model predicts higher magnifications for the brightest image, but
still a factor ≈2 below the observed value, even after correcting
for reddening in the lens. In the same work it is found that dust
extinction due to the lens is negligible for images 1 and 2, but
it is more important for images 3 (E(B−V)lens = 0.42 mag) and
image 4 (E(B−V)lens = 0.94 mag). For the host, the assumed
extinction was the same (E(B−V)host ≈ 0.29 mag) in all four
images, since their paths are similar. After comparing with real-
izations of the microlensing effect, the authors conclude that
microlensing may be responsible for the discrepant magnifi-
cation. In particular, they find that the probability to obtain
the observed flux in all images is 12% when accounting for
microlensing effects and for a halo model with slope α = 1.2
(equivalent to η = 3 − α = 1.8 in Mörtsell et al. 2020, see
Sect. 3.2 below for definition of α). These results are derived,
however, under the simplifying assumption that all microlenses
have the same mass (0.3 M�). The fraction of stars is estimated
from the light in the i and z bands, and adopting a mass-to-light
ratio. This work also constrains the Hubble constant from the
estimated time delays, although the small time delays relative to
its uncertainties (and possible systematic effects in the time delay
estimation from microlensing) prevents the authors from estab-
lishing strong limits on H0. In a recent work (Williams & Zegeye
2020), a two component lens model is adopted to fit the position
of the four images. This model has the advantage of allowing
for asymmetries by introducing a relative shift between the two
components. Interestingly, the predicted magnification for the
most discordant image 1 agree better with the observed value.
Regarding the lens models in earlier work, one common feature
is that all previous lens models are based on simple analytical
models. To the best of our knowledge, no attempt has been made
to include the galaxy itself, which shows a bulge and an extended
halo around it, as part of the lens model. In this work we try to
remedy this situation by incorporating the baryonic component
in the lens model. Adding the baryon component has the added
benefit that we can estimate directly the surface mass density of
microlenses (assuming most of the baryon mass is in the form of
stars and remnants).

In this work we also pay special attention to the role of
microlenses (as it has been done in earlier work, for instance in
Mörtsell et al. 2020; Weisenbach et al. 2021). Since the redshifts
of both, the lens and background source, are relatively small,

the critical curve appears at relatively short distances from the
center of the lens. At this distance, the surface mass density of
stars is high and microlenses are ubiquitous around the critical
curve. In the case of iPTF16geu, where four images form near
the critical curves, and the background source is smaller or com-
parable in size to the size of the microcaustics, the role of these
stars cannot be ignored. For typical QSOs, where microlensing
effects have been studied in detail, the high redshifts of the QSOs
results in critical curves forming at typically 5−10 kpc from the
center of the lens. At these distances, dark matter usually dom-
inates over the stellar component in terms of surface mass den-
sity in the lens plane. For the particular case of iPTF16geu, the
critical curve forms at an exceptionally small radius of ≈1 kpc
from the center of the galaxy. At these very small radii, the
contribution to the projected mass from stars is expected to be
comparable, if not higher than, the contribution from the smooth
component (dark matter). One then expects microlensing to play
a very significant role in this system. In the context of QSO
microlensing, an exception can be found in OGLE Q2237+0305,
for which the lens galaxy is at very low redshift (z = 0.0394),
and the critical curves form very close to the center of the
lens galaxy at ≈1 kpc (Wyithe et al. 2000; Anguita et al. 2008).
In this case, the surface mass density of microlenses is also
relatively high. In addition, the large surface mass density of
microlenses expected for the images of iPTF16geu is amplified
by the magnification factor. At the large magnification factors,
µ, estimated for iPTF16geu, an area A in the image plane gets
mapped into a much smaller area A/µ in the source plane, result-
ing in overlapping microcaustics in the source plane (see for
instance Kayser et al. 1986; Paczynski 1986; Wambsganss et al.
1990; Wyithe & Turner 2001; Kochanek 2004; Diego et al.
2018; Diego 2019).

The microlenses can be stars and remnants from the galaxy
but also more exotic microlenses such as the hypothesized
primordial black holes (or PBH). Although numerous studies
show that PBH cannot account for all dark matter, in the mass
regime of a few tens of solar masses, PBH can still account
for a few percent of the total mass budget. Even a small frac-
tion of dark matter in the form of PBH could account for the
rate of binary black hole merger observed by LIGO/Virgo (see
for instance Carr et al. 2017; Liu et al. 2019a,b; Chen & Huang
2018; Raidal et al. 2019). Whether or not LIGO/Virgo is observ-
ing a population of PBH with masses around 30 M� is still an
open question. Microlensing can constrain the fraction of PBH
in the universe (see for instance Diego et al. 2018; Oguri et al.
2018). Strongly lensed type Ia SNe offer an alternative way of
constraining the abundance of PBHs through their microlens-
ing signatures. The direct estimation of the magnification, com-
bined with accurate measurements of the light curve can be used
to reduce degeneracies in the macro+micro model. Earlier work
has found sufficient evidence about the presence of microlenses
and their influence in the observed magnification. In this work
we focus on these microlenses. We exploit the first observations
of a lensed type Ia SN to extract information on the population
of the microlenses lurking around the lens galaxy.

The structure of this paper is as follows. In Sect. 2 we
present a brief summary of the iPTF16geu data used in this
work. Section 3 describes the macrolens model used to fit the
observed positions (and magnification) of iPTF16geu. Section 4
discusses the model selection and shows the best models for the
cases where only the position of the four SNe images are used
to constrain the lens model, and the case where both position
and magnification information is used. The anomalous flux of
image 1 (and to a lesser degree the other images) and the role
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Fig. 1. Observations. Left panel: four SN images of iPTF16geu on HST
images taken in October 2016 (P.I.: Ariel Goobar). The red, green,
and blue bands correspond to the F814W, F625W, and F475W fil-
ters, respectively. Right panel: same lensing system but ≈2 years later
in F814W, and F625W bands. The SN is not visible anymore but the
host galaxy can be seen more clearly, forming a nearly perfect Einstein
ring around the center of the lens.

of microlenses is discussed in Sect. 5. Finally, we discuss our
results in Sect. 7 and present our conclusions in Sect. 8.

Throughout the paper we use different definitions and param-
eters, which for the sake of clarity are summarized here. We refer
to the smooth lens model of the galaxy as the macromodel or
macrolens model. The galaxy creates critical curves in the lens
plane and caustics in the source plane. The magnification pre-
dicted by the macromodel is referred to as macromodel magni-
fication, or simply µmacro. Microlenses are assumed to be stars
and remnants in the lens plane and they form microcaustics in
the source plane. A given position in the source plane can pro-
duce multiple images in the lens plane. In particular, iPTF16geu
consists of four multiply lensed images, which we refer to as
macroimages. Two of these images have positive parity (minima
points in the time delay surface), and two have negative parity
(saddle points in the time delay surface). A fifth image (max-
imum in the time delay surface) is expected in most elliptical
lens models but not observed (likely due to the very compact
nature of the lens at its center, see for instance the discussion
in Mörtsell et al. 2020). The lens is at redshift zl = 0.2163, and
the background source at redshift zs = 0.409. At the redshift
of the lens, 1 arcsec corresponds to 3.615 kpc, which becomes
5.609 kpc at the redshift of the source. We adopt the same Planck
flat cosmological model as in Mörtsell et al. (2020) (h = 0.678,
Ωm = 0.308), for which the angular diameter distances to the
lens, to the source, and between the lens and the source are
Dd = 745.8 Mpc, Ds = 1157 Mpc, and Dds = 513.2 Mpc,
respectively.

2. Observations of iPTF16geu

SN iPTF16geu was discovered in 2016. HST/WFC3 observa-
tions of iPTF16geu were carried out through the ToO program
(14862 P.I.: Goobar), 10 visits for high-spatial imaging, from
Oct. 20, 2016, through Nov. 26, 2016, covering in the optical
filters F390W, F475W, F625W, F814W, and with worse angu-
lar resolution in the IR filters F105W, F110W, and F160W.
Reference images for the same filters were acquired using three
orbits in 2018, that is, after the supernova had faded. (GO 15276,
P.I.: Goobar). The SN light curves, after galaxy subtraction,
were presented in Dhawan et al. (2020). Grism spectroscopy
was also obtained while the SN was active, as discussed in
Johansson et al. (2021). The data was used to study the lensed
SN, model the lens, infer relative time delays, and magnifica-
tions at the four positions of the lensed SN (Dhawan et al. 2020;
Mörtsell et al. 2020; Johansson et al. 2021).

Fig. 2. Residual between the observed flux and the light-curve model
in Goobar et al. (2017), Dhawan et al. (2020), Johansson et al. (2021),
Mörtsell et al. (2020). The x-axis shows the days since the maximum of
the light curve. Only a subset of the entire data set is shown. HST data
(F814W and F625W) is available only ≈30 days after the maximum.
Prior to this date, the observations cannot resolve the four individual
images so the residual corresponds to the sum of all four images. The
dashed line marks the adopted ±0.1 mag upper limit, for the allowed
range of variability in the light curves.

In this work we rely on the high-resolution HST images.
Figure 1 shows the four SN images (left panel) as observed
in October 2016 with Hubble, while Fig. 2 shows the resid-
ual flux after a SN light curve is fitted to the observations.
Since the time delay between images is estimated to be of order
1 day (Dhawan et al. 2020), the difference in flux observed in
the image is mostly due to differences in the underlying magni-
fication. The images from 2016 reveal a nearly perfect Einstein
ring formed by the host galaxy of the SN with a quad configu-
ration typical of elliptical potentials. The brightness of the SN
images hides some of the details of the host galaxy. The deep
images taken in 2018 (P.I.: Ariel Goobar) reveal more detail in
the host galaxy, since the SN is no longer visible. In particu-
lar, a bright region on the NE sector between images 1–4 can
be clearly appreciated, presumably a bright feature in the host
galaxy that is crossing a caustic from the macromodel in the
source plane. Also, the flux in the host galaxy has two minima
between images 1–2 and 2–3, and a less prominent one between
images 3–4. These minima can be better appreciated in Fig. 1,
panel e of Dhawan et al. (2020). The deeper images allow also
to get a better picture of the lens. Figure 3 shows a larger area
around the lens. The contours tracing the light of the lens clearly
indicates an extended halo stretching in the NE–SW direction,
and up to ≈13 kpc form the center. We note that at radii ≈1′′,
the orientation of the contour is nearly orthogonal to the orien-
tation of the contours at larger radii. This is an important point,
since this misalignment introduces a feature in the gravitational
potential that cannot be captured by classic analytical elliptical
potentials.

In earlier work (Goobar et al. 2017; More et al. 2017;
Mörtsell et al. 2020), it was found that the best lens models are
elliptical potentials with orientations similar to that of the galaxy
in large scales (and close to the red ellipse shown in the figure).
This is not surprising as one expects the baryons and dark matter
halo to orient almost in the same direction, especially in isolated
galaxies such as this one, where the closest visible galaxy is a
small one found at ≈55 kpc away (in projection). The alignment
found in earlier work could also be indicating that the baryonic
component plays a significant role in defining the lensing poten-
tial. This is also not surprising as rotational curves of galaxies
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Fig. 3. Lens galaxy. Contours and gray image show the lens in the
F160W band. The gray image shows the square root of the flux, to bet-
ter show the details at large radii. The large blue circle has a radius
of 4 arcsec and marks the extent of the of the visible baryons while
the small black circle has a radius of 0.3 arcsec, roughly the radius of
the Einstein Ring. The galaxy is at an angle of ≈−51◦ with respect to
the north. The red ellipse represents an elliptical dark matter halo. It is
inclined by an angle of ≈−56◦ and has an ellipticity of 0.4. The red dot
near the center of the galaxy marks the position of the DM halo, that is
slightly shifted in the NE direction by 0.23 ± 0.15 kpc with respect to
the galaxy. This shift is discussed in Sect. 4.

indicate that the potential in the central part of galaxies is dom-
inated by the baryonic component (and in particular the stellar
part, with the gas component playing a more important role in
the outer parts). For the particular case of iPTF16geu, this is
even more true than for more ordinary lenses, since the relative
proximity of the background SN to the lens results in the lensed
images to form much closer to the center of the lens, where
baryons are expected to contribute more significantly (in terms
of projected mass). Our lens model incorporates the baryons
up to the visible boundaries of the lens galaxy (≈14.5 kpc from
its center). Even though the galaxy is much larger than the size of
the Einstein ring (see Fig. 3), it is important to include the galaxy
shape up to the largest radii in order to capture the external shear
contribution from these more distant regions. Figure 3 shows
how the galaxy extends up to a radius of ≈4′′ = 14.5 kpc, while
the Einstein radius can be approximated by a circle of radius
≈0.3′′ = 1.1 kpc. The relatively small size of the Einstein radius
compared with the size of the galaxy makes this system even
more appealing since it probes the densest part of the lens. High
surface mass density corresponds also to the high surface mass
density of microlenses, which combined with the large magni-
fication factors makes microlensing especially relevant in this
case. Microlensing effects are studied in more detail in Sect. 5.

3. Macrolens model

In this section we present the model used to describe the
macrolens. The full model contains also microlenses, but these

are discussed in Sect. 5. As mentioned in the previous section,
a robust lens model of this system must include the baryonic
component as well as a dark matter halo. Including the bary-
onic component is trivial since the projected baryonic mass is
expected to trace closely the observed light (as most of the bary-
onic mass is expected to be in the form of stars). While in this
section we describe the baryonic part of the model as a contri-
bution that is derived directly from the data, alternatively one
could describe the baryonic component as an analytical profile.
This second option is discuseed in Appendix C. In addition to the
baryonic component, the lens model includes also a dark mat-
ter halo that is parameterized as an elliptical potential. Below,
we discuss briefly these two components (baryonic and dark
matter).

3.1. Baryonic component

The baryonic component is mostly composed of stars, especially
in the central region, and is assumed to trace the light distribu-
tion. We make a model of the baryonic component from a com-
bination of images taken in the F160W and F814W bands. By
construction this model assumes that the mass-to-light ratio is
the same in these two filters. The F160W image traces better
the light distribution at larger radii (beyond 0.3′′ radius from
the center of the lens) while the F814W band has better reso-
lution in the central region (at radii below 0.3′′). The improved
resolution of F814W enables a better removal of the lensed
image. As shown in the left panel of Fig. 4, at radii ≈0.3′′, the
observed light is dominated by the lensed background galaxy.
In order to get a model for the light distribution of the lens at
this radius, the background galaxy needs to be subtracted. This
is done in two steps; (i) the first step is to merge the F814W
image with the F160W image in order to produce a map of
the light distribution where the outer region is given by the
deeper F160W image, while the inner region is given by the shal-
lower, but higher resolution F814W image. The two images are
merged between radii 0.36′′ and 0.81′′ from the center. Between
these two radii, a composite image is formed as the combina-
tion w(r) × F814W + (1 − w(r)) × F160W, where w(r) = 1 if
r < 0.36′′ and w(r) = exp[−(r − ro)2/b2] if r > 0.36′′, with
ro = 0.36′′ and b = 0.12′′. The Gaussian weights guarantee
a smooth transition between the F814W image and the F160W
image. The merged image is shown in the middle panel of Fig. 4.
The two radii at 0.36′′ and 0.81′′ are shown as two yellow circles.
At radii above ≈0.6′′ the merged image is mostly given by the
F160W image. At radii below 0.4′′ the merger image is mostly
given by the F814W image. (ii) The next step is to remove the
background galaxy from the merged image. We apply a high-
pass filter (an á trous wavelet) to the merged image to isolate the
ring. The ring is later smoothed and subtracted under the con-
straint that the residual under the ring must be comparable to
the surface brightens outside the masked region. These residuals
still contain substructure from the ring. To reduce their contribu-
tion, the resulting image is smoothed again to produce a locally
interpolated map in the masked region. The smoothing results
in a shallower baryon model, but given the fact that there is no
central image, our results are insensitive to the central slope. For-
mally, smoothing is not the same as an interpolation but produces
similar results by substituting the value in a given pixel with a
Gaussian weighted local average value, that takes into account
the surface brightness of neighboring pixels. The FWHM of the
smoothing Gaussian is set to 0.12′′ in order to guarantee that
areas outside the masked region have significant weight. The
masked region is then substituted with this smooth version that
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Fig. 4. Baryon model. Left panel: 2018 HST data in the F814W band (slightly smoothed and to the power 1/2 to increase the detail at larger radii).
The circle on top of the Einstein ring has 0.3′′ radius. Middle panel: merged F814W + F160W image. The yellow circles mark the region where
the two images are weighted and combined. Right panel: baryon model based on a combination of images in the F160W and F814W bands and
after subtracting the background galaxy. For reference, we overlay the 0.3′′ radius circle marking the position of the Einstein ring.

has all small scale fluctuations removed. A final smoothing of
FWHM = 0.03′′ is applied in order to remove discontinuities
at the edges of the masked region and also to reduce additional
small scales fluctuations (noise) elsewhere in the baryon model.
The final result is shown in the right panel of Fig. 4. This map
constitutes our baryon model. We note that Fig. 4 shows only the
central 5.4′′ but we consider a larger field of view of 8.1 arcsec
as shown in Fig. 3. Also, as shown in Fig. 3, and in order to
eliminate edge effects, the mass of the baryon model beyond the
radius 4.05′′ is set to zero. We tested our results against an alter-
native baryon model that was built by substituting the region
under the Einstein ring by a power law fit to both the F814W
and F160W observed profiles outside the Einstein ring region.
Using this alternative baryon model renders similar results. The
process described above avoids fitting the galaxy with symmet-
ric models, usual in galaxy fitting algorithms, and retains any
possible asymmetries in the light distribution.

3.2. Dark matter component

For the dark matter component, we assume an elliptical halo. In
order to facilitate an easier comparison with earlier models, we
follow Mörtsell et al. (2020) and adopt a generalized ellipsoid
(often referred to as Softened Power-Law Elliptical Mass Distri-
bution or SPEMD), for which the convergence is:

κ(x, y) =
ρo[

r2
o + (1 − e)x2 + (1 + e)y2

]1−α/2 (1)

where e is the ellipticity, ro a core radius, and α a slope parame-
ter. For α = 1 and e = 0 one recovers the standard cored isother-
mal profile. In Mörtsell et al. (2020), the authors establish an
upper limit for ro based on the absence of a central image. For the
different models they consider, they find that ro must be smaller
than 0.08′′ = 290 pc. In the same work, and after fitting the Hub-
ble constant to h = 0.7, they find evidence for a slope α > 1
from the observed time delays. Our model includes also a bary-
onic component based on the light distribution. For this model,
and at the position of the Einstein ring, the circularly averaged
light profile falls with radius as r−1. At twice the Einstein radius,
the circularly averaged light profile falls as r−2, and at four times
the Einstein radius it falls as r−3. We have tested the case where

a central SMBH is added near the center of the galaxy, but found
that the improvement in the lens model was very small. Based
on this small improvement and the Akaike information criterion,
we do not include a central SMBH in our macrolens model. In
addition, due to the lack of central image, the mass of the SMBH
is degenerate with the radius ro. In other words, the small radius
ro plays a role similar to a possible central SMBH. The possi-
bility that central SMBH contribute to the small magnification
of the central image has been tested in earlier work with quasar
central images (Winn et al. 2004).

3.3. Joint macromodel

Combining the baryon and dark matter (DM) models we form
the macrolens model by simply adding the convergence of the
baryon model with the convergence of the DM halo. During the
lens optimization process, we explore a model with six param-
eters. For the baryon model, since its shape and orientation are
fixed, there is only one parameter that corresponds to the mass
of the galaxy, Mgal. For the DM model we fit for its mass, MDM,
halo ellipticity, e, orientation with respect to the north direc-
tion, ψ, and its relative position with respect to the center of the
galaxy, dx, and dy. We fix the core radius, ro, of the DM halo
to a value smaller than the upper limit derived by Mörtsell et al.
(2020) and check that values smaller than this upper limit have
no impact on the derived best fitting models. This is expected
since the lack of a central image prevents us from constraining
the inner slope and only an upper limit can be derived as dis-
cussed in Mörtsell et al. (2020). The slope is fixed to the isother-
mal value α = 1. Other profiles, similar to the classic NFW
(Navarro-Frenk-White, Navarro et al. 1997) can be explored as
well, but given the relative proximity of the lensing constraints
to the central part of the halo, where the baryonic component is
expected to dominate, the halo component cannot be constrained
with accuracy. Nevertheless, we study the impact of varying α
in Appendix B. The parameters dx and dy defining the relative
position of the DM halo with respect to the galaxy play a dou-
ble role. On one hand, they allow us to consider models where
a real shift exists between the DM and baryonic distributions,
as predicted by some models where DM is allowed to scatter
(i.e., self-interacting models). More importantly, by introducing
an offset between the galaxy and DM halo, we can account for
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Fig. 5. Profile of the galaxy after projecting along the major axis. The
center of the profile is taken at the maximum of the observed flux, in
the center of the galaxy. The map is divided in two sectors, NE and SW.
The profile of the SW sector is marked with a red curve and the profile
for the SW sector is shown in blue. We note an excess in the NE sector
with respect to the SW sector at ≈0.4′′ (or ≈1.6 kpc). The small black
solid line is equal to the size of the displacement (0.23 kpc) along the
major axis in the NE direction applied to the dark matter halo in Fig. 3.

an asymmetric distribution of DM, since the lens model will con-
tain more DM in the direction of the offset than in the opposite
direction. We compute the light profile in the NE and SW sectors
by masking the NE sector when computing the SW sector profile
and vice versa. The profiles of the NE and SW sectors are shown
in Fig. 5. The two profiles look very similar, suggesting a high
degree of symmetry in the galaxy between the NE and SW parts,
but a small excess can be appreciated in the NE side with respect
to the SW side at ≈1.6 kpc from the center. This excess can be
also reinterpreted as a relative displacement of ≈0.23 kpc along
the major axis as shown in Fig. 5. Since the light distribution
presents a small asymmetry between the NE and SW sectors, one
would naively assume that a similar asymmetry (or displacement
of the DM halo with respect to the galaxy) may be also present
in the DM halo.

Once the convergence of the macromodel is simulated κ =
κgal + κDM, we compute the deflection field in Fourier space as
the convolution of the convergence with the two lensing kernels,
one for the deflection in the direction-x and the other one for
the deflection in the y-direction. To minimize edge effects intro-
duced by the periodicity of the FFT, we consider a field of view
twice as large as the targeted region and centered in the lens,
with the mass in this buffer zone area set to zero.

4. Macrolens model optimization

As mentioned earlier, iPTF16geu offers the unique opportunity
of providing reliable magnification measurements at four posi-
tions in the image plane. In principle, this extra information
can be used to further constrain the macrolens model. How-
ever, as pointed out in earlier work, but also from the anoma-
lously large signed sum of the magnifications, it is likely that
the magnification values are affected by microlensing effects.
Selecting the best model when adding magnification constraints
in the presence of microlensing requires a special treatment,
since microlensing can have a significant effect on magnifica-
tion. On the other hand, the position of the SN is not affected
by microlensing (changes in the position of the SNe images due
to microlensing are much smaller than the positional accuracy
of the observations). Due to the influence of microlensing in the
magnification of the SN images, we consider two scenarios to

derive the macromodel. In the first one, we derive the macrolens
model ignoring the inferred magnification in the four images of
the SN, and using only their position as constraints. In the sec-
ond scenario we use both the position and magnification at the
four SN images to derive the macrolens model. Since microlens-
ing is likely affecting the magnification, and images with neg-
ative parity (images 1 and 3) are in general more affected by
microlensing than images with positive parity (see for instance
Diego et al. 2018; Diego 2019), in the second scenario we use
magnification constraints only from the two images with posi-
tive parity (images 2 and 4), since they are the most reliable in
terms of magnification (i.e., where microlensing effects can be
more safely ignored). These two scenarios are explored in the
next subsections.

4.1. Positional constraints only

We assume that δβxi and δβyi are the relative distances in the
source plane between the model predicted positions of the four
SN images (i = 1, 2, 3, 4) and the real (unknown) source posi-
tion, βt

x, and βt
y. The true position is unknown, but for a valid

lens model the true position is approximated by the average of
the four reconstructed positions. That is,

βt
x =

∑4
i βxi

4
, (2)

and

βt
y =

∑4
i βyi

4
, (3)

and subtract it from the predicted positions, that is, δβxi = βxi−β
t
x

where βxi are the predicted positions by the model (and similarly
for the predicted βy positions).

Then, for an ideal lens model, δβxi = δβyi = 0 and the disper-
sion

∑4
i (δβxi )

2 + (δβyi )
2 must be also zero. Since the lens model

can never be perfect (for instance, due to unmodeled substruc-
tures in the lens plane, or asymmetries in the lens), instead of a
vanishing dispersion, we should expect a small value for the dis-
persion between the four predicted positions in the source plane.
One can then define the likelihood of the lens model as follows,

−2 ln(L) =

4∑
i

δβ2
xi

+ δβ2
yi

σ2
i

(4)

where σi is the positional error for image i in the source plane.
The likelihood in Eq. (4) optimizes the model in the source

plane. This is a convenient choice since it is significantly faster
than optimizing in the image plane. Also, there is no need to fit
for the unknown source position (see discussion above), hence
reducing the number of free parameters. Instead, the source posi-
tion is derived a posteriori from Eqs. (2) and (3). In this work we
do not explicitly fit for the lensed galaxy as a whole (except in
Appendix C), but features such as the position of the gaps, and
bright features such as the nucleus are naturally reproduced by
the best lens models, and a simple toy model for the source.

For the error in the position of the SN, we adopt a conserva-
tive value of σi = 5 mas. This value is smaller than the positional
accuracy of HST (≈12 mas), but larger than the correspond-
ing (demagnified) accuracy in the source plane. In principle, σi
should be different for each image and should be on the order of
the positional accuracy in the lens plane divided by the square
root of the magnification from the macromodel (since a unit area
in the source plane is a factor µmacro times smaller in the source
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Fig. 6. Marginalized probability in the Mhalo−Mgal plane. The best
model (black dot) is at Mhalo = 7.2× 1010 M� and Mgal = 5.5× 1010 M�.
It has a likelihood value of ln(L) = 0.2642. The marginalized proba-
bility favors models with a lower halo mass. The ellipticity of the best
model is e = 0.4, and the orientation is −56◦ anticlockwise with respect
to north. (Shift X =−19 and Shift Y = +20 3 mas pixels or 0.23 kpc NE
from the center of the galaxy at (−9,0)).

plane), that is σi ≈ 3−4 mas if one adopts µmacro ≈ 10, as found
in earlier work. However, since any modeling effort inevitably
misses real features in the lens plane, insisting on a perfect
reproduction of the observed positions with imperfect models
results in systematic biases, with respect to the true underlying
mass distribution in the model (this was beautifully illustrated
for a galaxy cluster scale lens in Ponente & Diego 2011). These
biases can be reduced if one relaxes the positional constraints by
increasing the error in the fit. Since the real magnification from
the macromodel is also unknown (due to microlensing distor-
tions), we hence assume a conservative value σi = 5 mas for all
SN images.

With this choice of likelihood, we explore the space of
parameters (e, ψ, dx, dy,Mgal,MDM). We fix the slope of the DM
halo to α = 1 and refer to the best model derived with this
slope as the fiducial model. In Appendix B we show alternative
best models derived with different values of α. In particular, we
show how the likelihood of the best model improves slightly for
values of α slightly larger than α = 1. However, the improve-
ment in the likelihood is modest (ln(L) = 0.2642 for α = 1 vs.
ln(L) = 0.2072 for α = 1.2 and ln(L) = 0.1871 for α = 1.4).
Based on the Akaike information criterion (AIC = 2N − 2 ln(L),
where N is the number of parameters), models with smaller AIC
number are preferred (i.e., with the slope fixed to α = 1). How-
ever, we remind that models with varying α are discussed in
Appendix B. The remaining of this paper focuses on models with
α = 1, but we consider other values in the discussion section.
The reader is directed also to Appendix B for the specific results
derived with α < 1, and α > 1.

Based on the fiducial model, in Fig. 6 we show the marginal-
ized likelihood for the masses of the DM halo and galaxy
(the constraints on e, ψ, dx, and dy are weaker and not as
well defined). The best model with the maximum likelihood is
marked with a black dot.

The best model has comparable masses in the baryonic and
DM components (we note that the DM halo model is restricted
to the same aperture as the baryonic model so the mass of the
DM halo corresponds to the one enclosed in this aperture, while
the real DM halo will likely extend further). The orientation
of the best DM halo is similar (within a few degrees) to the
observed orientation of the galaxy on large scales. However, the

  
1 kpc0.5 kpc 0.1”0.1”

Source plane. Image plane.

Fig. 7. Caustics (left) and critical curves (right) for the model where
only position is used. A simple source with just three components,
nucleus (orange), halo (red) and SN (blue) is shown in the left panel
(source plane). The predicted image is shown in the right panel (image
plane). The yellow dots in the right panel mark the observed position of
the four SN images.

best DM halo is shifted with respect to the center of the galaxy
by 0.23± 0.15 kpc in the NE direction. The DM halo shape (and
its offset with respect to the galaxy) is shown as a red ellipse (and
a red dot) in Fig. 3. Interestingly, this displacement of 0.23 kpc
is similar to the offset between the NE and SW sector profiles
shown in Fig. 5, suggesting that the reason behind the appar-
ent asymmetry between the NE and SW sectors discussed in
Sect. 3.3 may be related to the 0.23 kpc offset between the DM
halo and the galaxy.

The critical curves, caustics, and predicted source (based on
a simple toy model) of the best model are shown in Fig. 7. The
critical curves (right panel) trace the shape and orientation of
the galaxy and DM halo. The corresponding caustics (left panel)
show the traditional diamond shape of elliptical potentials. The
radial caustic (external elliptical curve) is relatively far away
from the tangential caustic (diamond shape), as expected for a
lens with a very dense central region (possibly hosting a SMBH).
We model the source using a simple toy consisting of a small
nucleus, an elliptical halo and a point-like bright source, rep-
resenting the SN. The source model is shown in the right panel
with the nucleus (in orange) crossing the caustic and the SN posi-
tion (blue dot) north of it. The halo around the nucleus is repre-
sented in red. This simple model is able to reproduce the main
features in the observed image as shown in the left panel, where
we show the predicted image of the source model. The lensed SN
positions fall very close to the observed positions (yellow dots),
the lensed nucleus produces a bright feature between images 1–4
and fainter images between the other images, similar to the fea-
tures observed in the data. The gaps between the images are also
well reproduced. Due to the small core radius of the halo model,
and compact central configuration of the baryon model, the pre-
dicted fifth central image has very small magnification and is not
observed, as in the observations.

The marginalized probability for Mgal and Mhalo is shown
in Fig. 6. The contours correspond to the 68% and 95% inter-
vals and the black dot marks the position of the best model.
We note that the best model is outside the 68% region of the
marginalized probability. The N-dimensional likelihood near the
best model forms a shallow valley that extends toward the 68%
confidence region. The best models clearly prefer a relatively
narrow region in the Mgal−MDM space. An interesting result
from this figure, is that a baryon-only model (i.e., MDM =
0) does not perform much worse than a model with a DM
halo, although the data prefers a model with a DM halo. The
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Table 1. Magnification, total convergence, shear (for the lens and source
redshifts), and surface mass densities of the galaxy and DM halo at the
four SN positions, and for the model with the maximum likelihood.

Image µ κ γ Σgal

(
M�
pc2

)
Σhalo

(
M�
pc2

)
1 14.95 0.681 0.411 2467.6 965.6
2 11.64 0.551 0.340 2077.4 689.2
3 6.42 0.683 0.506 1962.1 1462.1
4 13.27 0.550 0.357 1999.9 765.3

Notes. The critical surface mass density for the redshifts of the lens and
source is 5025.6 M� pc−2.

relatively weaker dependence with the DM component may be
a consequence of the small size of the Einstein ring, since at
this radius the baryon component dominates the projected mass
(see Table 1 below). The inferred mass of the galaxy (baryons)
in the best model (5.4 × 1010 M�) is marginally consistent with
the estimated stellar mass derived from the velocity dispersion
– stellar mass correlation (Hyde & Bernardi 2009; Zahid et al.
2016; Cannarozzo et al. 2020). Assuming the velocity disper-
sion in Mörtsell et al. (2020), and the models in Zahid et al.
(2016), Cannarozzo et al. (2020), the predicted stellar mass is
≈2.5 × 1010 M�. This is about a factor two less than the stel-
lar mass inferred from the lens model. However, a factor two
uncertainty is typical in mass estimations from the velocity dis-
persion (see the references above). Since the galaxy and halo
masses are partially degenerate (see Fig. 6), it is possible that the
galaxy mass is lower than the one at the maximum of the like-
lihood. Another possibility is that the gas mass is similar to that
of the stars, increasing the baryonic mass by a factor two com-
pared with the stellar mass. This is in principle feasible based
on the gas to stellar mass ratios, which is close to 1 for early
type galaxies (similar to the lens considered in this work) and
stellar masses ∼1010 M� (Calette et al. 2018). However, in the
central part of the galaxy the stellar component is still expected
to dominate, especially if a bulge is present, as suggested by the
data. An alternative way of estimating the contribution from the
gas is by comparing with galaxies of similar morphological type.
According to Casasola et al. (2020), and considering a morpho-
logical type for the lens galaxy between Sa and Sb, the gas frac-
tion for this type of galaxy is ≈20%. In Schruba et al. (2011),
gas and molecular surface densities as high as O(100) M� pc−2

can be found in areas with large star formation rates. In the most
extreme cases of star formation rates, gas surface densities of
≈1000 M� pc−2 can be found. However, even at these extreme
star formation rates, the contribution from the gas to the baryonic
mass is still subdominant with respect to the stellar contribution
from our fiducial model.

For each model we compute the magnification in each of the
four SN positions. The models are then marginalized to com-
pute the marginalized posterior probability distribution of the
magnification at each of the four positions. Figure 8 shows the
marginalized probability (solid lines) as a function of magnifica-
tion, at each of the four SN positions, with a different color being
used for each SN image. The horizontal bars labeled with num-
bers 1–4 show the range of observed magnification for each SN
image as estimated in Dhawan et al. (2020). The peak of proba-
bility from the lens models agrees well with the observed mag-
nifications for images 2 and 3 but not so well but images 1 and 4,
with image 1 having the largest deviation between the model pre-
diction and the observation. The predicted magnifications from

Fig. 8. Marginalized probability distribution of the magnification
obtained when only the four positions of the SNe images are used as
constraints. The curves show the marginalized probability for each of
the four SNe images. The horizontal colored lines show the inferred
range of magnification from observations.

Fig. 9. Circularly averaged integrated mass profiles of the best model for
the case where only positional constraints are used. The profile of the
galaxy is shown in red and the profile of the halo is shown in blue. The
profile of the total mass is shown as a black curve. The black dot at 1 kpc
is the estimated mass in the original lens model of Goobar et al. (2017).
The dotted line is the new estimate by Mörtsell et al. (2020) using a
circular aperture. An isothermal profile scales its integrated mass as the
radius.

the best model at the four SN positions are listed in Table 1,
together with the values of the convergence, shear and surface
mass densities of the galaxy and DM halo at the same positions.

It is interesting to compare the best model with earlier esti-
mates. In Fig. 9 we show the integrated mass as a function of dis-
tance from the center of the galaxy. We show the profiles for both
components, the baryon (red curve) and dark matter (blue curve).
The total mass is shown as a black line. The original model
by Goobar et al. (2017) estimated a mass of ≈1.7 × 1010 M�
within the critical curve. This estimate is shown as a black
circle in Fig. 9. The same team produced a new lens model
in Mörtsell et al. (2020). Using the parameters of their model,
where α = 1.2, we compute the integrated mass as a func-
tion of circular aperture. The result is shown as a dotted line in
the same figure. We note that the slope of this model is very
similar around the Einstein radius to the slope of our model.
An additional estimate, compatible with the ones above, is pre-
sented in Appendix C. In Table 1, the magnifications of image 1
(the most discrepant with earlier estimates) is predicted to be
14.95. This is comparable to the value predicted by the model in
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Mörtsell et al. (2020) with slope α = 1.2 (see their Table 4) that
predicts µ1 = 14.21.

In More et al. (2017), several models are produced using two
different algorithms. The magnification of image 1 from these
models is in the range µ1 = 5.2−8.2. A larger magnification for
image 1 of µ = 18.41 is predicted by the recent M3 model in
Williams & Zegeye (2020) (model M3 is selected by the authors
as the best in terms of predicting the magnification of the first
image). In this work, the authors use a model that resemble ours
since the lens model is composed of two components. How-
ever, in contrast with our lens model, none of the components
is required to trace the light of the observed galaxy.

In order to compare our best models with recent indepen-
dent estimates, we select 50 random models among the ones
having the best likelihoods from Eq. (4), with likelihood val-
ues at least 0.25 times the maximum likelihood. The values of
κ and γ for these 50 models is shown in Fig. 10, for the posi-
tions of the four images. The best model in Table 1 is high-
lighted with black circles surrounding the colored dots. In the
same plot, we show the corresponding values for the best model
in Mörtsell et al. (2020), and model M3 in Williams & Zegeye
(2020). Remarkably, our best models are comparable, in terms
of κ and γ, with these earlier models, despite being derived
under different assumptions. The largest disagreement appears
in image 3 with the model in Williams & Zegeye (2020), which
predicts a larger value for the convergence, probably due to a dis-
placement of one of the two halos in Williams & Zegeye (2020)
toward the position of image 3. In contrast, our model predicts a
larger value for the shear at the position of image 3. We also find
a similar direction and offset of the mass asymmetry in the mass
distribution as in Williams & Zegeye (2020). In that work, the
second mass component is displaced from the center of light by
about 0.2−0.25 kpc in the NE direction, which is consistent with
our findings (0.23 kpc in the NE direction) using an alternative
approach. This coincidence in results supports the idea that the
centers of baryonic and dark matter are offset. Finally, in both
lens models, the total density (DM+baryons) flattens near the
center (r < 0.5 kpc), and steepens toward an isothermal profile
at larger radii (see Fig. 9).

The larger macromodel magnification at the position of
image 1 predicted by our model, helps to alleviate the tension
with the observed value (µ1 > 30), but is not enough to explain
it. As pointed out by other authors, we expect microlensing
(or millilensing) to be responsible for this discrepancy. Before
studying the impact of microlenses, it is interesting to explore
the second scenario where we use the observed magnification of
images 2 and 4 as additional constraints, and explore the range of
models that could reproduce the observed magnifications with-
out the need of microlensing.

4.2. Positional and magnification constraints

Because of the relatively small angular size of the SN, the lensed
images can be affected by microlensing effects. Due to the rela-
tively low redshift of the SN, the critical curves form relatively
close to the center of the lens, where microlensing effects are
expected to be more considerable. The saddle points (images
1 and 3) are more likely to be affected by microlensing than
the minima points (Paczynski 1986; Wambsganss et al. 1990).
At the saddle points, demagnification by large factors (>3) are
more likely than at the minima points where only more modest

1 Mörtsell et al. (2020) uses η, a different definition for the slope, but
the two slopes are related by α = 3 − η.

Fig. 10. Range of convergence and shear for the best models. The col-
ored disks show the values of κ and γ for 50 models which are randomly
selected among the best likelihoods according to Eq. (4). Different col-
ors are used for each image position. The disks surrounded by the thick
black circles correspond to the best model in Table 1. The triangles are
the model M3 in Williams & Zegeye (2020), while the diamonds are the
model in Mörtsell et al. (2020).

demagnification factors are possible. In this section we consider
the magnification of images 2 and 4 as additional constraints,
since they are expected to be the least affected by microlens-
ing. Based on the four observed positions (contributing with two
constraints each) and the two constraints on the magnification of
images 2 and 4, we redefine the likelihood as follows,

−2 ln(L) =
(µ2 − 15.7)2 + (µ4 − 9.1)2

σ2
µ

+

4∑
i

δβ2
xi

+ δβ2
yi

σ2
i

(5)

where 15.7 and 9.1 are the observed magnifications at posi-
tions 2 and 4, respectively. The second term in Eq. (5) is the
same as in Eq. (4). For the error in the magnification, σµ, we
adopt the uncertainty in the observed magnification found by
Dhawan et al. (2020) which quotes σµ = 1.1. We emphasize
again that Eq. (5) assumes no microlensing effects in images 2
and 4, which is likely an unrealistic scenario, but the results
obtained in this section are illustrative of the existing problems
when the magnification information from the lensed SN images
is used to constrain the macromodel.

We use Eq. (5) to find the best model, and the marginalized
probabilities, for the case where the magnification in images 2
and 4 are used as extra constraints. The best model in this case is
slightly different. Small change in the masses, ellipticity, and ori-
entation of the best model (shown in Fig. 11) result in small, but
non-negligible changes, in the predicted magnification of images
2 and 4. In terms of critical curves, and caustics, the changes are
almost imperceptible as shown by comparing Figs. 7 and 11.
The tangential critical curve is now closer to image 2, bring-
ing its magnification closer to the observed value. As a result,
image 1 is also closer to the critical curve. The magnifications
predicted by the best model are 33.1, 15.7, 7.6, and 10.0 from
images 1,2,3 and 4, respectively. The source model is similar to
the one presented in the previous subsection (with small adjust-
ments in position). Overall, the main observed features are repro-
duced well with the exception of the SN positions which are sig-
nificantly offset, especially for images 1 and 4.

In terms of marginalized probabilities, DM halos having
masses higher than the ones found in the previous subsection
than are preferred (see Fig. 12). The marginalized probabilities
for the magnification show a better agreement with the observed
values, as shown in Fig. 13. For images 2 and 4 the probabil-
ities concentrate around the values used as constraints (dashed
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Fig. 11. Caustics (left) and critical curves (right) for the model where
both position of the four SNe and magnification of images 2 and 4
are used as constraints. A simple source with just three components,
nucleus (orange), halo (red) and SN (blue) is shown in the left panel
(source plane). The predicted image is shown in the right panel (image
plane). The yellow dots in the right panel mark the observed position of
the four SN images. This model fails at reproducing the position of the
SNe images 1 and 3.

Fig. 12. Marginalized probability in the Mhalo−Mgal plane.

lines). Even though the magnification of images 1 and 3 are not
used as constraints, this model reproduces the observed mag-
nification of these images relatively well. These models would
in principle not require the existence of microlensing to explain
the observed magnifications, but as shown in Fig. 11, the suc-
cess in reproducing the magnification comes at the expense of
degrading the overall performance of the model, in particular
at reproducing the positions of the four SN images. The gen-
eral morphology of the lensed arc is also reproduced worse than
in the positional-constraints-only case, with wider gaps between
multiple images than observed. Since the SN positions should
be unaffected by microlensing, one should trust more the model
derived with the positional constraints only, that is able to repro-
duce well the observed SN positions. A similar result is found
in Mörtsell et al. (2020), which concluded that independently
of the assumed lens model (in particular its slope), the posi-
tions and flux ratios could not be reproduced simultaneously.
Hence substructures that are not included in the model are prob-
ably responsible for the flux discrepancy. In the next section,
we study if the discrepancy in magnification of the best model
derived with positional constrains only (previous subsection)
can be explained with microlensing, which must be ubiquitous
given the proximity of the critical curve to the center of the
galaxy.

Fig. 13. Same Fig. 8 but when both position plus magnification (of
images 2 and 4) are used as constraints. The curves show the marginal-
ized probability for the magnification at the position of the four SNe
images. The horizontal colored lines show the inferred range of magni-
fication from observations. The two dashed lines indicate the magnifi-
cation values used to constrain the lens model in images 2 and 4.

5. Microlensing

In this section we explore the role that microlenses play on the
magnification of the four lensed SN images. For smooth ellipti-
cal macromodels and quadruple images, one expects the signed
sum of the magnifications (i.e., the sum of the magnifications
µi weighted by their parity pi = ±1), to be relatively small
(typically between 1 and 3 Witt & Mao 2000). Adopting the
observed values of the magnification in iPTF16geu (from the
fiducial model in Dhawan et al. 2020; Mörtsell et al. 2020) one
obtains

∣∣∣∑i piµi

∣∣∣ ≈ 18, far from the expected small values. This
discrepancy suggests that some level of substructure, or depar-
ture from symmetry is expected in the lens plane. For compari-
son, the best model for the case where only positional constraints
are used, results in a signed sum of 3.54, close to the expected
value for smooth lenses. Also for comparison, using the values of
the model in Mörtsell et al. (2020, see their Table 4), one obtains
a signed sum of 3.1.

A simple explanation for the discrepancy with the observed
magnification, is that stars in the lens are acting as microlenses.
As discussed in the introduction, this hypothesis has been
explored in earlier work for this particular lens. Since SNe are
relatively small, their photospheres can be completely contained
within the caustic regions of microlenses with stellar masses. For
instance, a microlens with a mass of 1 M� would form a caustic
of size ≈10−2 pc, or about an order of magnitude larger than the
typical photosphere size of a SN, one month after explosion. In
this section, we revisit the role played by microlenses, but sub-
ject to the constrain on their abundance imposed by the baryonic
component in our macrolens model. Our aim is to test if a stan-
dard model for the stellar population, and that is consistent with
the lens model, is able to reproduce the observed magnifications
and light curves. We follow Diego et al. (2018), Diego (2019)
to compute the combined deflection field of the microlenses
plus smooth component (macrolens). A brief description of the
microlensing simulations is given in Appendix A.

We estimate the probability of magnification in the presence
of microlenses by adding a distribution of stellar microlenses
(stars and remnants) in the lens plane and around the line of
sight of the four SN images. For the macromodel, we adopt
the best model obtained with the positional constraints only.
The values for the convergence, shear, and stellar surface mass
densities used for the simulations are listed in Table 1. The
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Fig. 14. Caustics corresponding to position 1. The yellow circle near
the center has a radius of ≈10−3 pc at the redshift of the SN. The
blue colored numbers indicate typical magnifications at those positions.
Although this image represents the microcaustics around position 1, the
SN is sensitive to the superposition of the four caustic planes shown in
(Fig. A.1).

combined deflection field is used to compute the magnification
in the source plane by inverse ray tracing (details are provided in
the appendix). Figure 14 shows the caustics in the source plane in
one of our simulated fields. In particular, this case corresponds to
the caustics produced by the stars at the position of image 1. The
stars in the line of sight of the other three images produce addi-
tional caustics, which would overlap in the same source plane,
but these micolenses would have no impact on the magnifica-
tion of image so they are not included in this figure. The average
magnification in the area shown in Fig. 14 is 15.05, very close to
the magnification predicted by the macromodel (µmacro = 14.95).
The small mismatch between the mean magnification and µmacro
is due to the limited area of the simulated region. The aver-
age magnification computed in a larger simulated area would
be closer to the macromodel value. For illustration purposes, we
mark some positions in the image with numbers (in blue) indi-
cating the magnification in that particular region. We note a large
fluctuation in magnification values, ranging from a few to almost
a hundred. The yellow dot near the center is placed in an area
with magnification ≈30−40, similar to the observed magnifica-
tion of image 1. The size of the yellow dot is comparable to the
expected size of the photosphere of a typical SN one month (in
the rest frame) after the explosion, that is, R ≈ 10−3 pc, assuming
typical expansion velocities v ≈ 10 000 km s−1 (Pan 2020).

In order to account for the size of the expanding pho-
tosphere, we convolve the magnification in the source plane
with Gaussians of varying width. As discussed in, for instance,
Pierel & Rodney (2019), a Gaussian distribution is a simple
approximation to the flux distribution of the SN photosphere.
The resulting magnification distribution for image 1 is shown

Fig. 15. Probability of magnification (dN/dµ) at the position 1 and with
microlensing from stars. The surface mass density of stars is the one
corresponding to the baryon model in position 1 listed in Table 1.
The IMF is a Salpeter model with a cutoff in 0.1 M� and includes
remnants. The dashed vertical line marks the predicted magnification
from the macromodel (without microlensing) at position 1. The black
horizontal line marks the range for the observed magnification from
Dhawan et al. (2020). Each curve represents the magnification expe-
rienced by a source modeled as a Gaussian with different FWHM
(expressed in pc). For typical expansion velocities of the photosphere,
the smallest FWHM represents the size of an expanding photosphere
after a few days the initial explosion. After two months, the photosphere
is expected to have expanded up to a radius R ≈ 2 × 10−3 pc (orange
curve).

in Fig. 15, for different values of the FWHM of the Gaussian
(expressed in parsecs in the legend of the figure). In the absence
of microlensing, and assuming the macrolens model is correct,
one would expect to observe image 1 with the magnification
indicated as a dashed line, that is, µ = 14.95. Microlenses per-
turb the magnification pattern in a manner shown in Fig. 14. The
average magnification in the simulated region is very close to
the magnification from the macromodel. Hence, a source that
is several parsecs across in size, and that is homogeneous in
flux, would be virtually insensitive to the fluctuations in the
magnification at small scales. However, sources that are suffi-
ciently small are capable of probing only small regions in the
source plane, where fluctuations in the magnification can be
significant. As the small source moves relative to the lens and
the observer, it crosses multiple microcaustics. An observer will
measure fluctuations in the flux that depend on the strength of the
microlens and the size of the background source. Equivalently,
if the source expands over time, such as a SN, the growing pho-
tosphere intersects microcaustics and regions of different mag-
nifications. Also, as the photosphere grows, the observed flux is
the convolution of the surface brightness of the source with the
magnification map. For photosphere radii much larger than the
ones considered in this work the convolved signal would con-
verge to the macromodel magnification. The effect of a changing
photosphere size on the probability of magnification is shown
in Fig. 15 as different curves, one curve for a different size
(shown in parsecs). A reduction in the probability of magni-
fication factors larger than µ = 45 can be appreciated as the
radius increases. For the estimated velocity of iPTF16geu pre-
sented in Johansson et al. (2021), we estimate that one month
after the explosion of the SN, the photosphere reaches a radius
of R = 1.2×10−3 pc, increasing to R = 2.1×10−3 pc two months
after the explosion. In Fig. 15 we see that if the SN is initially
located in a region in the source plane with magnification larger
than µ = 50, after the first month, the typical magnification
stars to decline. This is the average expected behavior, but for
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Fig. 16. Probability of magnification at the four image positions
when microlenses are added. Each color corresponds to one of the
positions. The horizontal bars show the observed magnification from
Dhawan et al. (2020) (after correcting for extinction) with its uncer-
tainty. The four vertical lines in the bottom of the plot mark the pre-
dicted magnification from the macromodel (i.e., without microlenses).
The curves show the probability of the magnification when microlenses
are included. The curves are computed assuming the source is a
Gaussian with FWHM = 5.6×10−4 pc. This size is similar to the extent
of the photosphere of a typical SN during its peak emission.

particular positions in the source plane near microcaustics, the
magnification could first grow and later decline. Also from the
same plot, we can appreciate that the change in magnification
is not substantial (typically less than a factor 2) during the first
month after the explosion. However, changes in magnification as
the photosphere expand do occur, and they can be used to con-
strain the microlens model as we discuss below.

One can use results similar to Fig. 15 (at the different SN
positions, and for different macro- and micro- models) to esti-
mate the probability that the observed magnification can be
reproduced by a combination of a macromodel model such as
the ones presented in Sect. 4.1, and a microlens model simi-
lar to the one presented in this section (and the Appendix A).
Considering image 1, and based on the probability of magnifica-
tion shown in Fig. 15, we can compute the relative probability of
a background source to have magnification between 30 and 40
(i.e., the observed magnification of image 1). Despite the rapid
decline of probability at higher magnifications, this probability
is found to be only a factor 2.5 times smaller than the proba-
bility of having magnification between 12 and 17, which is the
range predicted by the macromodel without microlensing. If we
compare the probabilities above and below 15 (i.e., the value
predicted by the macromodel), We find that P(µ < 15)/P(µ >
15) = 1.6, indicating that microlensing is more likely to demag-
nify image 1 (with respect to the case without microlensing)
but the probability of relative magnification is not significantly
smaller.

Similar estimations can be done for the remaining three posi-
tions. Figure 16 shows the probability of magnification for the
best macromodel in Sect. 4.1 when microlenses are added. From
this plot, the observed magnification of image 4 is at the max-
imum of the expected probability, while for the other images
the probabilities are smaller, with image 1 showing the largest
deviation. However, when compared with the case where no
microlenses are present (see Fig. 8), the probability of being
magnified by a value similar to the observed value increases
by approximately an order of magnitude. In the next section we
combine the available observables on iPTF16geu to constrain the
combination of macro+micro lens model.

6. Joint macro+microlens model optimization

In the previous sections we have shown how a macrolens model
can explain the observed positions of the four SN images but not
the magnifications. When the macromodel is required to explain
also the observed magnification in two of the images (the ones
where microlensing effects are expected to be smaller), the error
in the predicted positions degrades significantly, especially for
images 1 and 4. The likelihood of the best model is also apprecia-
bly worse (∆[ln(L)] ≈ 6.6). When microlenses with the surface
mass density of the fiducial model are included, the positional
accuracy remains unchanged but there is a notable improve-
ment in the probability of reproducing the observed magnifica-
tions. On the other hand, when the microlenses are added, one
expects changes not only in the magnification of the four images,
but also in the light curve for a fraction of the simulated light
curves. As the photosphere increases in size, parts of its sur-
face intersect microcaustics, introducing small, but measurable
changes in the magnification (or observed flux). Using the light
curves as a way to constrain the microlensing component of the
macro+micro model has not been explored in earlier work. In
this section we combine the macrolens and microlens models.
We explore a range of macrolens models, (all reproducing the
observed configuration of the lensed galaxy and SN images), and
add microlensing models with varying amounts of stellar sur-
face mass density. The different amounts of microlensing encode
our relative ignorance on the contribution of the stellar mass to
the total mass. We combine all the available information from
the four SN images. Namely the four SN positions, magnifi-
cations, and lack of relative (to the model) fluctuations larger
than 0.2 mag in the light curves. By comparing the predictions
with the observations we aim at extracting information about the
amount of microlensing, and the stellar component.

First, we use macro+micro lensing simulations to study the
relative change in time of the light curves. In Fig. 17 we show
examples of distortions in the light curves induced by microlens-
ing for image 1, as a function of photosphere size. The curves
are normalized to the size 0.0012 pc, or approximately the time
when the SN reaches maximum luminosity. Relative to this
moment, the average flux of all realizations, marked as thick
solid line, increases by ≈10% due to microlensing between the
moment of maximum luminosity and ≈2 months after explosion
(or FWHM ≈ 0.004 pc). This trend is expected since image 1
has negative parity and the SN is more likely to begin expanding
in a region of relative demagnification with respect to the macro-
model. As the photosphere expands, the average magnification
converges to the larger macro-model magnification. The green
colored interval marks the region containing 68% of all simu-
lated expanding photospheres. By setting a limit of 0.2 mag on
the amount of relative variability due to microlensing (allowed in
the observed light curves as shown in Fig. 2), we can quantify the
fraction of simulated light curves that would exceed this limit.
Figures 18 and 19 show the percentage of simulated light curves
with deviations of 0.2 mag due to microlensing for images 1,2
and 3,4, respectively, and for different stellar mass fractions.

We find that the percentage of light curves that get distorted
by microlensing is largest for stellar surface densities that make
the effective optical depth τeff ' 1 (see Eq. (A.11) for a definition
of τeff). In order to compare different models with varying stellar
mass fractions, we define F∗ as the relative stellar mass fraction,
with F∗ = 1 corresponding to models with the same stellar mass
fraction of the fiducial model (see Table 1). For the values of the
total and radial magnification at position 1 in our fiducial model,
τeff ≈ 10.5. From Fig. 18 the fraction of curves with distortions
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Fig. 17. Photosphere weighted magnification distortion acting over the
light curves, computed at the position of image 1. The distortion is plot-
ted as a function of the FWHM of the expanding photosphere, and each
realization has been re-scaled to the moment where the SN reaches max-
imum luminosity (FWHM ≈ 1.2 × 10−3 pc). The green region marks
the 68% confidence interval from over 7 million simulated distortion
curves. The colored dotted curves show 35 individual random realiza-
tions out of the 7 million. The thick black curve corresponds to the
average of the 7 million curves.

Fig. 18. Percentage of light curves with deviations above 0.2 mag as
a function of photosphere size. Each color represents a different frac-
tion of the stellar component with F∗ = 1 corresponding to the fiducial
model and F∗ = 0.1 with a model having ten times less microlens sur-
face mass density. The solid lines are for the image 1 and the dashed
lines are for image 2. Note how, especially for image 1, reducing the
mass in the microlens model can result in more frequent distortions in
the light curve. The vertical dotted line marks the FWHM 65 days after
the explosion (FWHM = 2 ∗ R = 4.31 × 10−3 pc, in the SN rest frame,
see Appendix D).

larger than 0.2 mag is maximum for F∗ = 0.1 and F∗ = 0.25
which would have τeff ≈ 1 and 2.5, respectively. Interestingly,
models with larger stellar fractions predict smaller distortions,
and hence are favored by the lack of distortion in the observed
LCs. This is a counter-intuitive result but can be explained by
the increased level of caustic overlapping that is created in the
source plane, once the saturation regime (τeff ≈ 1), is surpassed.
Larger values of τeff result in larger overlapping of relatively low
magnification regions with large magnification caustics. At posi-
tion 2, see Fig. 19, both the macromodel magnification and Σ are
smaller, reducing the value of τeff . We find τeff ≈ 7. In this case,
the maximum percentage of LC with distortion >0.2 magnitudes
is found for F∗ = 0.25, with τeff ≈ 1.7, while for smaller values,
such as F∗ = 0.1, the fraction is now clearly smaller.

In the remaining of this section we select the best combi-
nation of macro+micro lens models by combining all available

Fig. 19. Same as Fig. 18 but for images 3 (solid lines) and 4 (dashed
lines).

observables at the position of the four SN images; (i) the posi-
tions of the four SN images (constraining the macrolens model),
(ii) the magnification of the four images (constraining both the
macrolens and microlens model), and (iii) the apparent lack of
features in the light curves of the four images (which constrains
also the combination macro+micro model). In order to satisfy
the positional constraint, the values of the convergence, κ, and
shear, γ are taken from the models studied in Sect. 4.1. The frac-
tion of stellar mass is varied in order to explore the role played
by microlenses, which are parameterized by the stellar surface
mass density.

We start by defining the magnification probability of a cer-
tain macro+micro model M as:

P(M|µobs) =
[
ΠiP(µobs|M)i

]
× P(M), (6)

where P(M) is a prior for model M, and P(µobs|M)i is the proba-
bility of observing µobs for the model M at position i. The prior is
given by Eq. (4), that is determined by the constraints on the four
positions of the SN. In other words, we assume a flat prior for the
microlensing part of the model and the prior is based solely on
how well the macrolens model is able to reproduce the four SN
image positions. Equation (6) can be more easily understood if
we consider the case of the fiducial model shown in Fig. 16. For
this model the probability P(M|µobs) corresponds to the product
of the values of the four colored curves at the observed values
of the magnification (middle points in the four horizontal bars),
multiplied by P(M), as given by Eq. (4).

In addition to the magnification probability, we define a light
curve probability. For the definition of this probability, we con-
struct a function that penalizes models that predict light curves
with significant changes in the flux during the first two months
after the explosion, as the photosphere expands. To first order,
one can model this penalty function as a Heaviside function,
with models showing variability in a significant percentage of
the simulated light curves having zero probability (as this is not
observed), and models with little or no variability having prob-
ability 1. A smooth version of the Heaviside function is more
adequate since it is not clear what fraction of the light curves
should show no variability. We set this fraction to 25% based on
the fact that none of the four images shows significant variability
(i.e., more than 0.2 mag).

For the penalty function we use a form inspired on the logis-
tic function,

CM( f ) = 1 −
1

1 + e−A( f−b) · (7)
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Fig. 20. Probability of the 50 randomly selected macro+micro models
as a function of the macromodel magnification in image 1. The prob-
ability is the product of Eqs. (6) and (7). The probabilities are color
coded based on the amount of microlensing. The fiducial macro model
is highlighted by larger symbols for the four different values of F∗.

The parameter b is such that C( f = b) = 0.5 (with 0 < f < 1).
The parameter A controls the rate at which the transition takes
place between C = 0 and C = 1. For b = 0.4 and A = 20, and
at the desired fraction of 25% ( f = 0.25), we have CM(0.25) =
0.95. That is, the models M that predict a fraction f < 0.25,
are penalized very little. For values f > 0.25, CM( f ) decreases
rapidly toward zero. The final probability for a given model is
given by the product of Eqs. (6) and (7).

After combining these two equations, we can compute the
total probability for every possible combination of macro+micro
models. Since estimating the probability for every model consid-
ered in the previous sections is computationally prohibitive, we
restrict the calculation to 50 macromodels selected among the
best ones in terms of the likelihood given in Eq. (4). All selected
50 models are within a factor 3.9 times the maximum likelihood
according to Eq. (4) (these 50 models are also shown in Fig. 10).
The first model within this sample is the fiducial model described
in Sect. 4.1, which is also the model with the maximum likeli-
hood in Eq. (4). For the microlensing model we adopt the fiducial
values of the stellar surface mass density listed in Table 1, and
also models with a smaller fixed fraction of stellar masses rela-
tive to the fiducial model. These are parameterized by the con-
stant F∗. The fiducial model presented in Table 1 corresponds to
a stellar fraction with F∗ = 1, and models with smaller stellar
masses have F∗ < 1.

The resulting probability of the 50 selected models is shown
in Fig. 20, where we represent the final probability, as a function
of the macrolens model magnification at the position of image 1.
Each dot corresponds to one of the 50 models. Different col-
ors are used for different stellar fractions, or F∗. The fiducial
model, for the four considered values of F∗, is marked with a
thick black circle. As expected, macrolens models which predict
a smaller magnification for image 1 have a smaller likelihood.
Interestingly, macrolens models that predict larger magnifica-
tions for image 1 have also smaller probability. This is due to
the prior, which penalizes more these models since they cannot
reproduce the four positions as well. Another interesting result
is that the models that have the largest probabilities have either
F∗ = 1 or F∗ = 0.1 (red and blue points). The dependency
with F∗ is better appreciated in Fig. 21, where we marginalize
over all 50 macro models. We find that models with small val-
ues of F∗ are least favored by the data. These models result in

Fig. 21. Marginalized probability as a function of F∗. We show the
marginalized probability for three macromodel slopes, the fiducial α =
1.0 is shown in blue, while the shallower profiles with α = 1.2, and
α = 1.4 are shown in yellow and red, respectively. In all cases, larger
values of F∗ are favored.

values of τeff ≈ 1, where microlensing effects are expected to
be largest. In Fig. 21 we show also the resulting marginalized
probabilities for two shallower DM halo profiles, with exponent
α = 1.2 and α = 1.4. The marginalized probability is normal-
ized to the maximum overall probability, that in this case cor-
responds to the model with α = 1.4 and F∗ = 1. As shown
in Appendix B, these shallower DM models are able to repro-
duce the four SN positions slightly better, mostly images 2 and
3. The models with α = 1.2 and α = 1.4 predict also larger
macromodel magnifications in all four images, a feature that is
characteristic of shallower profiles. Interestingly, this increase
in magnification from the macromodel results in an increase
in the marginalized probability in Fig. 21, except for values of
F∗ = 0.1, for which the effective optical depth is now larger,
and closer to the saturation regime. But most importantly, our
main conclusion remains the same whether α = 1.0, α = 1.2 or
α = 1.4; models with larger F∗, and consistent with the values of
the fiducial model are preferred over models with smaller stellar
masses.

7. Discussion

The result from the last section suggests that the baryonic com-
ponent in our fiducial lens model helps explain the observed
magnifications in the four images of iPTF16geu. The baryons
in the galaxy accomplish this in two ways. First, by introduc-
ing an additional degree of freedom in the distribution of mass,
especially inside the Einstein ring, where the baryonic com-
ponent dominates over the dark matter. The small misalign-
ment in the lens model between the baryonic component and
dark matter halo helps boost the magnification from the macro-
model in image 1. Second, we find evidence that the abundance
of microlenses from the baryonic model at the position of the
four SN images helps explain both the magnification of the four
images and the apparent lack of variability in the light curves.
Our results show how a less numerous population of microlenses
(i.e., a value of F∗ < 1) would introduce larger fluctuations in the
magnifications and light curves, which are not observed. This
counter-intuitive result can be understood after realizing that the
amount of microlensing predicted by the fiducial lens model
results in an effective optical depth of mcicrolensing larger than
1, that is, we are in the optically thick regime. In this regime,
multiple microcaustics are usually overlapping in any given
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position in the source plane. As a moving (or expanding) back-
ground source moves in the source plane, it can cross one of
these microcaustics from one of the microlenses. In the opti-
cally thick regime, the microcaustic being crossed is surrounded
by other microcaustics that are also contributing to the magni-
fication. The sudden increase in flux due to the crossing of one
microcaustic is smaller in relative terms (typically a 10%–30%
increase in total flux, depending on the number of overlapping
microcaustics) than in a situation where the microcaustics do
not overlap. In this case, in the optically thin regime, one caus-
tic crossing can result in relative flux changes of order 100%.
The situation in the optically thick regime is similar to the con-
ceptually easier to understand case of microlensing of a back-
ground globular cluster. This case was recently studied in detail
in Dai (2021), where a single microcaustic may simultaneously
act over a number of background stars from a globular cluster.
At any given time there is some probability that one of the stars
is crossing the microcaustic increasing the flux of that star by
a factor of order 10 in a period of days, but the observed flux
from the entire cluster changes only slightly at the percent level
since the rest of the stars are not varying their flux significantly
over the same period. In our case, we have a single source and
multiple microcaustics but the explanation of why there is a rel-
atively small change in flux is analogous to the globular cluster
case studied in Dai (2021).

We find that the smallest distortions in the light curve corre-
spond to F∗ = 1 (beyond the saturation regime) and F∗ = 0.1
(below the saturation regime). However, for F∗ = 0.1, the total
stellar mass would be ten times smaller than for the fiducial
model and in tension with the stellar mass derived from the
velocity dispersion. On the other hand, the fiducial model is able
to reproduce the observed magnification, lack of noticeable fluc-
tuations in the light curve, and is consistent with (although larger
by a factor ≈2 than) the stellar mass inferred from the velocity
dispersion. In contrast, the model with F∗ = 0.5 which would
correspond to stellar masses similar to those derived from the
velocity dispersion is not favored by our analysis. Our results
favour models with a larger stellar mass fraction (see Table 1).
Our result can be reconciled with the velocity dispersion anal-
ysis if one adopts a bottom-heavy initial mass function for the
stellar population in the lens, which would increase the num-
ber of small mass microlenses, without affecting the photometric
observations.

Our results demonstrate how lensed SNe can be used to
constraint the amount of microlensing. This opens the possibil-
ity of using strongly lensed SNe to study a candidate of dark
matter, primordial black holes. In particular, primordial black
holes in the mass regime probed by LIGO would act as power-
ful microlenses, adding to the perturbation in magnification and
light curves studied in the previous sections. It is estimated that
a fraction of dark matter as small as 1% is sufficient to explain
the LIGO observations with primordial black holes. However, in
the case of iPTF16geu (where 1% of dark matter represents less
than 1% the stellar mass) no useful limits to the fraction of dark
matter in the form of primordial black holes can be obtained,
given the large optical depth from stellar microlenses, which
overwhelms the signal and impedes to constrain the fraction of
primordial black holes to better than the percent level (the cur-
rent upper limit on their abundance). In order to exploit lensed
SNe as dark matter probes, one needs to observe high redshift
SNe, for which the multiple images form further away from the
negative influence of stellar microlenses and where the surface
mass density of dark matter dominates clearly over the baryonic
surface mass density.

8. Conclusion

iPTF16geu is the first observed multiply lensed type Ia super-
nova, and for which magnification, time delays, and light
curves have been measured. In this work we attempt to explain
the observed position, flux and light curves with a realistic
lens model that includes a baryonic component that traces the
observed light distribution, and a dark matter halo. We test the
hypothesis that stars in the baryonic component are responsible
for microlensing effects, needed to explain the anomalous flux
ratios between the counterimages.

Since the observed magnification values in the four SN posi-
tions are expected to be distorted by microlensing, we constrain
the macrolens model using the position of the four SN images
only, which are insensitive to microlensing. We consider a two-
component model for the macrolens model. The spatial distribu-
tion of one of the components (baryons) is fixed by the observed
distribution of light and we fit only for its amplitude (or total
mass). The second component, a dark matter halo, is allowed to
vary in mass, orientation, ellipticity and centroid position with
respect to the baryonic component. We find that the best model
shifts the centroid of the dark matter halo by ≈0.23 kpc with
respect to the peak of the light distribution. The ellipticity and
orientation of the dark matter halo is similar to that of the bary-
onic component (on the largest scales). We find that lens models
that incorporate the baryonic component are able to reproduce
well the positions of the four observed SNe images. Within the
relatively small Einstein radius of the lens, the mass is domi-
nated by the baryonic component. As in previous work, the best
macrolens models cannot reproduce the observed magnification
at the four SN positions.

In order to reproduce the observed fluxes, we consider a
model that includes also microlensing. The number density of
microlenses is given by the stellar surface mass density inferred
from the baryonic component in the macrolens model, and after
assuming that most of the baryonic mass in the central region of
the lens is in stellar form. In addition to magnification and posi-
tion constraints, we use also information form the light curves.
In particular, we require that models that include microlensing
must not produce distortions in the light curve of the SN which
are greater than 0.2 mag. Such distortions are not present in the
observed light curves.

We find that models that include a level of microlensing that
is consistent with the stellar mass fraction from the macrolens
model baryonic component, explains the observed positions,
magnifications, and the apparent lack of fluctuations in the light
curves. Stellar mass fractions which are four times smaller are
not favored by our results, since they would produce distortions
in the light curves, which are not observed. Our results favour
bottom-heavy initial mass functions for the stellar component,
that can simultaneously reproduce the unusual flux ratios while
keeping the light curves relatively undisturbed.

Future observations of type Ia SNe at higher redshift can
be used to constrain exotic models of dark matter. In particular
the abundance of primordial black holes can be constrained with
strongly lensed type Ia SN. These constraints must be obtained
at larger distances from the central region of the lens than those
considered in this work and where the negative impact of stellar
microlenses can be diminished.
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Appendix A: Microlensing simulations

In this section we describe the microlensing simulations, and
review briefly the lensing formalism for microlenses embedded
in the macromodel potential. This topic has been widely cov-
ered in the literature (Chang & Refsdal 1979, 1984; Kayser et al.
1986; Paczynski 1986). For simplicity, we consider only a very
small area around the positions where the lensed SN images
form. In this case, the macromodel can be described with just
two parameters, the macromodel magnification factors in the
radial and tangential direction, or µr and µt, respectively. Equiv-
alently, one can describe the macromodel with the convergence
κ and shear γ, since they are related through µ−1

r = 1− κ+ γ, and
µ−1

t = 1 − κ − γ. Without loss of generality, we assume that the
main direction of the shear, γ, is oriented in the horizontal direc-

tion, that is γ2 = 0 and γ =

√
γ2

1 + γ2
2 = γ1. For a given choice

of κ, and γ, the lens equation (β = θ − α(θ)) of the macromodel
can be expressed as

β = θ − α(θ) =

(
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

)
θ, (A.1)

where the positions in the source plane are given by the coordi-
nates β = (βx, βy) and the positions in the image plane are given
by the coordinates θ = (θx, θy).

The lensing potential of the macromodel, φ, is given by

φ(θx, θy) =
κ

2
(θ2

x+θ
2
y )+

γ1

2
(θ2

x−θ
2
y )−γ2θxθy =

κ

2
(θ2

x+θ
2
y )+

γ

2
(θ2

x−θ
2
y )

(A.2)

where we remind the reader that γ2 = 0 in our reference system,
θx and θy are given in radian, and we ignore a constant additive
term (i.e., the potential is identically zero at the origin of coordi-
nates of θ). The deflection field from the macromodel is obtained
from the derivatives of the lensing potential

αx(θx, θy) = S x
κ,γθx (A.3)

αy(θx, θy) = S y
κ,γθy, (A.4)

where S x
κ,γ and S y

κ,γ are the slopes of the deflection field in the x
and y direction, respectively. For sufficiently small regions, one
can approximate these slopes to their first order expansion,

S x
κ,γ = (κo + γo) +

∂(κ + γ)
∂x

∣∣∣
o∆x = (κo + γo) + sx

o∆x (A.5)

S y
κ,γ = (κo − γo) +

∂(κ − γ)
∂y

∣∣∣
o∆y = (κo − γo) + sy

o∆y (A.6)

where κo and γo are the values of the convergence and shear in
a reference point (for instance the central pixel in the simulated
region), the derivatives of (κ + γ) and (κ − γ) are computed at
that point, and ∆x and ∆y are the relative distances to that point
in the x and y directions, respectively. Since near critical curves,
it is satisfied that (κ + γ) ≈ 1, and only small changes in (κ + γ)
result in significant changes in the magnification, one can simply
ignore the derivative of (κ − γ) in Eq. A.6, and focus on sx

o, the
derivative of (κ+γ), where for typical macromodels, and near the
critical curves, sx

o is (in absolute value) in the range 0.01 to 0.1
(when expressed in arcseconds−1)2. When the reference point is

2 For the spherical isothermal model, this derivative evaluated at the
critical curve is θ−1

E , where θE is the Einstein ring in arcseconds.

at the critical curve, one can relate sx
o with the magnification in

the image and source plane;

µ(θ) =
1

(1 − κ + γ)
1

sx
oθ

(A.7)

with θ being the distance in the image plane to the critical curve,
and

µ(β) =
1

(1 − κ + γ)
1
√

sx
oβ

(A.8)

with β being the distance to the caustic in the source plane.
Since both the deflection field and lensing potential are lin-

ear with the addition of new masses, if a population of N point
masses are present, the deflection, αPS (θ), and potential, φPS (θ),
from the distribution of point masses can be added to the above
equations with;

αPS (θ) =

N∑
i

4GMiD(zl, zs)
c2

δθi

|δθi|
2 , (A.9)

and,

φPS (θ) =

N∑
i

4GMiD(zl, zs)
c2 ln(|δθi|), (A.10)

where δθi = θ − θi is the distance to the point mass i at θi
and with mass Mi, D(zl, zs) is the geometric factor D(zl, zs) =
Dls(zl, zs)/(Dl(zl)Ds(zs)) with Dls(zl, zs), Dl(zl) and Ds(zs) the
angular diameter distances between the lens and the source,
between the observer and the lens, and between the observer and
the source, respectively.

A quantity of interest, is the effective optical depth, τeff intro-
duced by

τeff = (4.2 × 10−4)Σ
µ

µr
(A.11)

where the total magnification (µ) is the product of the tangential
and radial magnifications (i.e., µ = µt × µr), and Σ (expressed in
units of M�/pc2 in the expression above) is the microlens surface
mass density. When τeff ≈ 1, the saturation regime is reached. In
this regime, caustics constantly overlap in the source plane, and
any source moving across a field with τeff > 1 will always be
experiencing microlensing (Diego et al. 2018; Diego 2019).

For each one of the four observed lensed positions, we simu-
late an area 0.3×0.3 mas2 in the lens plane. The pixel scale is set
to 10 nanoarcsec (nas). Inverse ray tracing is used to compute the
caustic region. In general, the usable caustic region is reduced by
a factor µ, where µ is the macromodel magnification at that par-
ticular position. We use the values in Table 1 for the total conver-
gence, κT , and shear of the macromodel. The convergence of the
microlenses, κ∗, is obtained from the baryon surface mass den-
sity in the same Table, and after dividing by the critical surface
mass density. The convergence from the smooth component is
then obtained as κs = κt − κ∗. To simulate the microlenses, we
adopt a late Salpeter initial mass function (IMF), that includes
remnants. This mass function is similar the usual Salpeter mass
function, but at the high end stars are substituted by their rem-
nants Spera et al. (2015). We set a cutoff in the IMF at 0.1 M�.
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Fig. A.1. Portion of the simulated region for each one of the four SN positions (labeled in the top-right corner of each panel). The magnification
maps have been smoothed with a Gaussian of FWHM = 2.8 × 10−4 pc (or roughly, the extension of a typical SN photosphere around the time of
peak emission). The area and color scale are the same for all panels. The region shown in the left panel is the same as the one in Figure 14.

Fig. B.1. Marginalized probability distribution of the magnification for
the case α = 0.8. Only the four positions of the SNe images are used
as constraints. The curves show the marginalized probability for each
of the four SNe images. The horizontal colored lines show the inferred
range of magnification from observations.

Appendix B: Macromodels with varying α

In this appendix we show the marginalized probabilities for two
alternative models where we vary the slope of the macromodel,
α, in Eq. 1. In addition to the fiducial case with α = 1, in this
appendix we explore the cases with α = 0.8, α = 1.2, α = 1.4. In
all cases, we use only the four positional constraints of the four
SN images in order to compute the marginalized likelihoods.
The slope plays an important role in determining the magnifi-
cation at a given separation from the critical curve. In general,
shallower profiles (larger α) predict larger magnifications, since
the magnification scales with the distance to the critical curve,
δθcc, as µ(δθcc) = Ao/δθcc, and Ao is inversely proportional to
the derivative of the potential (see Eq. A.7). Having larger mag-
nifications relaxes the need for microlenses especially for image
1. On the other hand, the constrain on the observed magnifi-
cation of images 3 and 4 limits the degree of shallowness of
the potential. In addition, large magnification factors from the
macromodel increase the effective optical depth of microlensing,
so smaller stellar surface mass densities can mimic the effect of
larger stellar surface mass densities.

Fig. B.2. Same as Figure B.1 but for the case with α = 1.2.

Fig. B.3. Same as Figure B.1 but for the case with α = 1.4.

We observe that as the slope increases, so does the typical
magnification from the macromodel at the position of the four
SN. The case with α = 0.8 has a very small probability of repro-
ducing the magnification of image 1 (see Figure B.1). On the
contrary, the model with α = 1.2 increases the probability for
image 1 but at the expense of reducing the probability of image 4,
that in this case is predicted to have a magnification ≈ two times
larger than the observed value (see Figure B.2). For a model with
α = 1.4 (see Figure B.3), the magnification increases further,
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1 kpc0.5 kpc 0.1”0.1”

Source plane. Image plane.

Fig. B.4. Caustics (left) and critical curves (right) for the best model
with α = 1.2, where only the four SN positions are used as constraints.
A simple source with just three components, nucleus (orange), halo
(red) and SN (blue) is shown in the left panel (source plane). The pre-
dicted image is shown in the right panel (image plane). The yellow dots
in the right panel mark the observed position of the four SN images.
The predicted position for images 2 and 3 overlap with the yellow dots.
Note the additional fifth image behind the center of the galaxy.

Fig. B.5. Marginalized probability in the Mhalo–Mgal plane for the case
α = 0.8. The best model is marked with a black dot and has a likelihood
value of ln(L) = 1.2076.

Fig. B.6. Marginalized probability in the Mhalo–Mgal plane for the case
α = 1.2. The best model is marked with a black dot and has a likelihood
value of ln(L) = 0.2072.

with the peak of the probability for image 1 above µ = 20. How-
ever, in this case image 4 is more in tension with the observa-
tions, with the most likely magnification for image 4 being a
factor more than two times larger than the observed value. In
terms of the positional constraints only, the best model in the
case where α = 1.2 has a likelihood value of −2ln(L) = 0.2072

Fig. B.7. Marginalized probability in the Mhalo–Mgal plane for the case
α = 1.4. The best model is marked with a black dot and has a likelihood
value of ln(L) = 0.1871.

(see Eq. 4), that should be compared with the best likelihood for
our fiducial model (α = 1), −2ln(L) = 0.2642. However, this
difference is small, and the effect on the macromodel is smaller
than in Mörtsell et al. (2020) because the baryonic component
has a fixed slope. The likelihood improves a bit more if α is
increased. For α = 1.4, we find a best model with a likelihood
−2ln(L) = 0.1871. Similar to the case with α = 1.2, the improve-
ment in likelihood is mostly due to a better match with positions
2 and 3 as shown by comparing Figure 7 and Figure B.4. Since
these positions were already the ones that where best reproduced
by the fiducial model (Figure 7), the gain in the model is not as
relevant as if the improvement would have taken place in images
1 and 3, which are the ones with the larger deviation between
model and observed positions.

In terms of the halo and baryonic masses, we observe that
the constraint on the baryonic mass is almost independent of the
value of α as shown in Figures B.5, B.6 and B.3. On the contrary,
the mass of the DM halo shows a strong dependence with α, with
the shallower halos (greater α) having the larger masses.

Appendix C: Surface brightness constraints

An alternative approach to fit the macro model is to fit the
extended surface brightness emission of the lensed source and
lens galaxy. Here, the lens model is constrained by hundreds of
image-pixels containing the lens galaxy’s and lensed source’s
emission in the HST images, which in principle offers more
information to constrain the lens model than the twelve data
points provided by the positional constraints. However, the mod-
eling process now includes the effects of the HST Point Spread
Function (PSF) and has to make assumptions regarding the
source’s morphology. Furthermore, the low Einstein radius of
iPTF16geu means there is significantly less extended source
emission observed than is typically available in most strong
lenses (e.g., Bolton et al. 2008).

We fit the surface brightness using the open-source lens mod-
eling software PyAutoLens3 (Nightingale et al. 2018, 2021a).
We perform fits to the F814W HST image taken in Novem-
ber 2018 which therefore does not include the emission of the
supernovae. All model fits use the nested sampling algorithm
dynesty (Speagle 2020). Fits assuming the following source
models are compared: (i) a single Sersic light profile; (ii) two
Sersic light profiles and; (iii) a pixelized source reconstruc-

3 https://github.com/Jammy2211/PyAutoLens
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Table C.1. Convergence κ and shear γ at the four multiple image loca-
tions of iPTF16geu. Each value is that of the maximum likelihood
model inferred via surface brightness modeling. We note how the parity
of the images cannot be recovered properly. This is however expected
since the position of these images are not used as constraints.

Image κ (PowLaw) γ (PowLaw) κ (stars+DM) γ (stars+DM)

1 0.700 0.460 0.791 0.261
2 0.570 0.390 0.606 0.339
3 0.555 0.353 0.543 0.336
4 0.652 0.439 0.698 0.352

tion (Nightingale & Dye 2015). The single Sersic model has
the highest Bayesian evidence, consistent with iPTF16geu’s low
Einstein Radius meaning that even after lensing magnification
the source’s detailed structure is not resolved. The macro model
results presented therefore use the single Sersic source, how-
ever the models inferred for fits assuming these more com-
plex source parameterizations are consistent with these results.
Bayesian model comparison was also used to determine the lens
light model, with two Sersic light profiles having center posi-
tions left as free parameters or forced to be the same. We find that
when the centers are the same, the Bayesian evidence is higher.

The first mass model fitted is an elliptical power-law
(PowLaw) mass distribution of the form ρ(r) ∝ r−α
(Tessore et al. 2016) with an external shear. The Einstein mass
inferred for this model is (1.79 ± 0.09) × 1010 M�, consistent
with the position-based constraints shown in Figure 9. For the
slope of the power law, we find an exponent α ≈ 1.9 ± 0.005.

For microlensing, the only relevant quantities are the κ and γ
values at the locations of the multiple image positions. Columns
1,3 in Table C.1 show the values of κ and γ at each multiple
image location for the PowLaw model.

We next perform model-fits assuming a stars plus dark
matter lens model, following the approach described in
Nightingale et al. (2019) (deflection angle calculations follow
Shajib 2019). We assume two Sersic profiles for the stars, rep-
resenting a bulge plus disk, and a spherical NFW dark matter
halo profile (Navarro et al. 1997) where the mass of the halo is
set via the relation of Ludlow et al. (2016). The Sersic’s centers
are forced to be aligned and the NFW profile’s center is a free
parameter (these choices were informed via model comparison).
This model infers an Einstein mass of (1.67 ± 0.09) × 1010 M�,
6.7% lower than that of the PowLaw model, but still consistent
with it. Table C.1 gives the values of κ and γ at the multiple
images for the stars plus dark matter model in columns 3 and 4,
respectively.

By comparing with the values of κ and γ presented in
Figure 10, we find good agreement at positions 1 and 2, but not
so much at positions 3 and 4, indicating that different modeling
techniques can result in substantial changes in the inferred val-
ues of κ and γ at the observed SN positions. Interestingly, PyAu-
toLens also finds a similar relative shift of 0.31 kpc between the
luminous and dark matter components.

Given the low resolution of the data, the extended surface
brightness lens model does not necessarily infer a lens model
that is more precise than the SN position based model, despite
containing many more data points. The low Einstein radius of
iPTF16geu means that only a small fraction of its lensed source’s
emission is resolved and there is insufficient detailed structure
to constrain the lens model (contrast this to the three strong
lenses fitted by Nightingale et al. 2019, where distinct star form-

ing clumps and spiral arm structures are resolved by the source
reconstruction).

Appendix D: Expanding photosphere

Fig. D.1. Expanding photosphere. The blue diamond symbols are the
estimated velocities from Johansson et al. (2021). The red square shows
the estimated velocity by the same authors at the time of maximum
luminosity. The solid line is a model with the standard exponent of 0.22,
vexp ∝ t−0.22 (see text). The small inset plot in the top right shows the
radius of the photosphere for this model of the velocity expansion.

To model the expansion velocity, we follow the exponential form
in Piro & Nakar (2014),

Vexp(td) = 1.8 × 104 t−0.22
d + 2.8 × 103 km s−1, (D.1)

where td is the time since explosion expressed in days and
in the source frame of the SN. The constant velocity floor of
2.8 × 103 km s−1 is added to reproduce the shallower shape of
the velocity curve during the last days. In Fig. D.1 we show the
observed values from Johansson et al. (2021), together with an
extrapolated estimation at the time of maximum luminosity. The
model in the above equation is shown as a solid line. The corre-
sponding radius of a photosphere expanding with this velocity is
shown in the smaller inset plot. The maximum in the light curve
of iPTF16geu is observed ≈ 20 days (or ≈ 15 days in the SN rest
frame) after the first observation. Assuming that first observa-
tion is within a day of the explosion time of the supernova, the
photosphere radius at the time of maximum is ≈ 6.27 × 10−4 pc.
Observations of SN iPTF16geu span ≈ 95 days in the observer
frame. This corresponds to ≈ 65 days in the SN rest frame. The
last observation is ≈ 70 days in the observer frame after the peak
in the luminosity, or ≈ 50 days in the SN rest frame. At this time,
the photosphere radius is ≈ 2.16 × 10−3 pc, based on the model
for the expansion velocity in Eq. D.1 (see Fig. D.1).

Appendix E: Software citations

This work uses the following software packages:
– Astropy (Astropy Collaboration 2013, 2018)
– Colossus (Diemer 2018)
– corner.py (Foreman-Mackey 2016)
– dynesty (Speagle 2020)
– matplotlib (Hunter 2007)
– numba (Lam et al. 2015)
– NumPy (van der Walt et al. 2011)
– PyAutoFit (Nightingale et al. 2021b)
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https://github.com/astropy/astropy
https://bitbucket.org/bdiemer/colossus/src/master/
https://github.com/dfm/corner.py
https://github.com/joshspeagle/dynesty
https://github.com/matplotlib/matplotlib
https://github.com/numba/numba
https://github.com/numpy/numpy
https://github.com/rhayes777/PyAutoFit
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– PyAutoLens (Nightingale & Dye 2015; Nightingale et al.
2018, 2021a)

– PyLops (Ravasi & Vasconcelos 2020)
– pyquad (Kelly 2020)

– Python (Van Rossum & Drake 2009)
– scikit-image (Van der Walt et al. 2014)
– scikit-learn (Pedregosa et al. 2011)
– Scipy (Virtanen et al. 2020)
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https://github.com/Jammy2211/PyAutoLens
https://github.com/equinor/pylops
https://github.com/AshKelly/pyquad
https://www.python.org/
https://github.com/scikit-image/scikit-image
https://github.com/scikit-learn/scikit-learn
https://github.com/scipy/scipy
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