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Error measurements for a quantum annealer using the
one-dimensional Ising model with twisted boundaries
Nicholas Chancellor 1,9✉, Philip J. D. Crowley1,10, Tanja Durić1,11, Walter Vinci1,12, Mohammad H. Amin2,3, Andrew G. Green 1,
Paul A. Warburton1,4 and Gabriel Aeppli5,6,7,8✉

A finite length ferromagnetic chain with opposite spin polarization imposed at its two ends is one of the simplest frustrated spin
models. In the clean classical limit the domain wall inserted on account of the boundary conditions resides with equal probability
on any one of the bonds, and the degeneracy is precisely equal to the number of bonds. If quantum mechanics is introduced via a
transverse field, the domain wall will behave as a particle in a box, and prefer to be nearer the middle of the chain rather than the
ends. A simple characteristic of a real quantum annealer is therefore which of these limits obtains in practice. Here we have used
the ferromagnetic chain with antiparallel boundary spins to test a real flux qubit quantum annealer and discover that contrary to
both expectations, the domain walls found are non-uniformly distributed on account of effective random longitudinal fields present
notwithstanding tuning carried out to zero out such fields when the couplings between qubits are nominally zero. We present a
simple derivation of the form of the distribution function for the domain walls, and show also how the effect we have discovered
can be used to determine the strength of the effective random fields (noise) characterizing the annealer. The noise measured in this
fashion is smaller than what is seen during the single-qubit tuning process, but nonetheless qualitatively affects the outcome of the
simulation performed by the annealer.
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INTRODUCTION
The low energy states of natural systems can correspond to the
solutions of computationally difficult problems1. Experiments
suggest that these low energy states can be accessed and
measured by taking advantage of quantum mechanics, using a
technique known as quantum annealing2–4. Here, the “difficult”
problem is converted to an equivalent problem of finding the
ground state of an Ising Hamiltonian, and that classical ground
state is approached via the introduction and subsequent removal
of quantum fluctuations, typically imposed via transverse fields. It
is suspected but by no means universally agreed that quantum
annealing could provide an improvement over other methods for
certain classes of interesting problems5,6. To harness the power of
quantum annealing, machines must be constructed to faithfully
implement the relevant transverse field Ising Hamiltonian (TFIM),
and to do so represents a major challenge in quantum information
science and engineering. We refer to such machines as annealers.
While the eventual outputs of annealers usually take discrete
binary values, the control parameters, which are the coupling
constants in the TFIM, must be chosen from a continuous set of
values. An annealer should therefore be considered an analog
rather than a digital computer. For a review of adiabatic quantum
computing and quantum annealing see7 and for a forward looking
perspective on the field see8.
Quantum annealing has attracted considerable experimental

attention recently9–16, which is understandable given the wide
variety of applications, from traditional computer science

problems15,17, to more exotic uses such as aiding genetic
algorithms to calculate radar waveforms16, search engine rank-
ing18, graph isomorphism13, and portfolio optimization19. In
addition, sampling using a quantum annealer, which is effectively
the topic of the current paper, is highly relevant to many machine
learning and statistical inference tasks20–26.
Precision of control parameters is a fundamental issue in analog

computing, not present in its digital counterpart27. It is therefore
important to ask what new complications these errors may add.
One could hope, for example, that small uncorrelated control
errors simply average out, leading to no noticeable effect as long
as they are below a threshold28. Long time-scale noise should also
be considered a source of control error; this noise will be
indistinguishable from the TFIM being mis-specified by the device.
We demonstrate here that the effects of control errors can be
counter-intuitive, giving nonuniform distributions within a degen-
erate manifold even for uncorrelated errors. We further argue that
this effect captures error-causing noise that would be missed if we
try to measure the errors with a different protocol.
There is a growing literature on error correction in quantum

annealing. Most of the studies focus upon the effect of coupling to
an external bath rather than control errors29–34. The work in28,35,36

does mention techniques that can reduce the effect of control
errors, at the cost of some overhead, but cannot completely
eliminate them. For the purposes of this study there are two kinds
of relevant noise processes, the dissipation which occurs on a time
scale comparable or faster than the system dynamics, and slower
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noise which appears fixed with respect to these time scales and
acts as effective random-field terms. The role of the faster noise is
to hasten relaxation to a thermal distribution, while the slower
noise (referred to as control errors) is what is directly measured in
the experiments we report.
While the present study is dedicated to the consequences

rather than the physical origins of the noise in flux qubit quantum
annealers, we note other literature describing this noise as due to
interactions of the qubit with magnetic defects in the chip
substrate37. It typically takes a profile with a 1

f type frequency
dependence, meaning that the noise contains both high and low
frequency components. The low frequency components can be
treated as effectively static control errors, and are responsible for
the effects that we report here.
We examine experimentally the effect of control errors on the

annealer constructed by D-Wave Systems, which mimics an Ising
spin system. Our experiment shows a nonuniform distribution
within a ground state manifold that can be explained by classical
Boltzmann distributions under the influence of field control errors,
demonstrating that even small errors affect the solution to
strikingly simple problems. The fact that such a simple system
subject to uniform noise can produce a nonuniform, but regular
and predictable distribution, is an interesting mathematical result
on its own, and to the best of our knowledge has not been
previously reported in the literature.
We find that even a domain wall in a one-dimensional system

subject to uncorrelated field control errors yields a nontrivial
U-shaped domain-wall distribution. An effective potential for
the domain walls is generated by combinatoric effects in the
averaging over disorder in the Hamiltonian. In this sense the
phenomenon that we observe is due to an entropic potential.
While the average domain-wall energy is the same at every site;
there are more field configurations where the lowest energy spin
configuration has the domain wall near the ends, the probability
of observing it in such positions is higher. This is a finite size effect
distinguishable from order-by-disorder which occurs in infinite
systems, where the term was originally used38 to describe entropic
effects in the thermodynamic limit. We further demonstrate that
this distribution can be used to measure noise in the device and
discuss the advantages over the conventional method of
examining single-qubit autocorrelation.
The hardware that we use implements a transverse field Ising

model with a time-dependent Hamiltonian of the form,

HðtÞ ¼ �AðtÞ
X
i¼ 1

σx
i þ BðtÞHprob; (1)

where Hprob is a user-specified Ising Hamiltonian, which is diagonal
in the z basis, and A(t), B(t) are the annealing schedule, the time
dependences that control the relative strength of each term.
The specific problem that we choose to study is a ferromagnetic

chain with opposing fields at either end as shown in Fig. 1. As long
as hj j> J > 0, Hprob will have an ðN � 1Þ-fold degenerate ground
state manifold consisting of all states with a single-domain wall;
"## ¼ #j i, ""# ¼ #j i… "" ¼ "#j i. This same system has been
shown in39,40 to be an effective method to encode discrete
variables, and has been shown experimentally to improve
performance in optimization41,42. In our experiments, we use

h= 2 J with a Hamiltonian of the form

Hprob ¼ J
XN
i¼ 1

� σz
i σ

z
iþ 1 þ h σz

1 � σz
Nþ 1

� �
: (2)

It is worth briefly noting that by keeping only the degenerate
ground state subspace of Eq. 2, with the Hamiltonian in Eq. 1, we
obtain a discretised particle-in-a-box Hamiltonian

Hdeg ¼ �AðtÞ
X
i¼ 1

aia
y
iþ 1 þ ayi aiþ 1

� �
; (3)

where ai (a
y
i ) is an operator which annihilates (creates) a domain

wall at location i. While in principle quantum effects within this
manifold could be observed, we find that control errors dominate
in our experiment.
We focus on control errors arising from stray magnetic fields

from free spins and dangling bonds within the materials that
make up the quantum processing unit (QPU). This could be
considered equivalent to adding a term of the form,

Hfields ¼
X
i

ζ iσ
z
i ; (4)

to the overall Hamiltonian, where ζ i are uncorrelated and
Gaussianly distributed with a standard deviation σζ � J and
zero mean ζ i ¼ 0. The overline indicates an ensemble average.
Random-field terms such as those in Eq. 4 appear naturally in
implementations of the transverse field Ising model, including for
example the dipole-coupled magnet LiHoxY1−xF443. Because the
coupling between the qubits and the substrate is likely to change
with bias, ζ i will generally be time-dependent, however as we
show later the system remains in thermal equilibrium until very
late in the anneal, so it may be treated as static for the purpose of
these experiments.
One can also consider coupler control errors of the form

H ¼ P
i ζ

ðJÞ
i σz

i σ
z
iþ 1, where ζ

ðJÞ
i satisfy the same conditions as ζ i

with a standard deviation σJ � J. This type of control error
produces an uncorrelated potential for the domain walls, and
therefore has no effect upon the shape of the mean thermal
domain-wall distribution. We demonstrate this in Supplementary
Section 2.1. It is worth noting briefly that11 describes a similar
experiment, but with the goal of demonstrating quantum
tunneling, as had been done previously for a disordered
magnet44. A qualitatively similar domain-wall distribution to the
one that we see can be found in the Supplementary Material of
ref. 11, although there is no discussion of this finding and its
possible origins.
One concept that helps explain the behavior of these systems is

freeze time, which is the time at which the dynamics of the QPU
effectively stop and the spins are effectively fixed. Because the
device appears to be reaching thermal equilibrium, we can think
of these experiments as measuring the ratio of the noise level to
the device temperature at the freeze time. Since the susceptibility
of flux qubits to external noise will, in general, be different at
different points in the experiment, the freeze time is an important
(but not directly measurable) parameter.
Beyond control parameter errors, there is the quantum

mechanical effect of zero point fluctuations which could be
frozen out in a sufficiently fast read-out of the annealer; in the 1D
problem considered by ourselves, the domain wall behaves as a
“particle in a box” whose mass is regulated by the transverse field,
implying a distribution of possible domain-wall positions with a
peak in the middle of the chain, unlike the flat distribution
expected for the ideal classical limit. Therefore, quantum
fluctuations can cause quantum annealers to sample—in inter-
esting ways—ground states unfairly45–49, and such effects can
sometimes be used in a beneficial way50,51). However, we
conclusively demonstrate that the effect observed here is classical

-J
Fig. 1 Illustration of the Hamiltonian showing one of the ground
states assuming that h > J and the qubits at the ends satisfy the
applied fields. Numbers indicate domain-wall sites.
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in origin, both through numerical simulation and experiments
using different runtimes. The reason that this system is dominated
by classical rather than quantum effects is that it equilibrates
quickly through thermal barrier hopping, as has been indepen-
dently observed for one-dimensional chains in quantum annealers
in52.

RESULTS
Theoretical analysis
There is a vast literature on the one-dimensional Ising model
dealing with issues ranging from random fields in the classical
limit53 through disordered couplers and transverse fields54, to
twisted boundary conditions in the clean quantum limit (see e.g.,
ref. 55). Nonetheless, we could not locate a paper which specifically
addresses the domain-wall distribution for the one-dimensional
Ising model with twisted boundary conditions and a longitudinal
random field, and what is relevant for quantum simulators, the
evolution of this distribution with a transverse field. While such
domain-wall distributions can be easily obtained through
numerical sampling as we describe below, we provide in this
section an analytical calculation in the classical limit, followed by
some remarks on what could happen during the quantum
annealing process.
Let us start by considering the energy contribution from the field

control errors in the case of a single-domain wall on the nth coupler in
the chain, En ¼ PN

i¼ 1 signðn � i þ 0:5Þ ζ i: The difference in energy
between two domain-wall positions is therefore En � Em ¼
2
Pn

i¼mþ 1 ζ i where n>m.
Assuming that ζ i ¼ 0 and ζ

2
i ¼ ζ

2
, we note that

En � Em ¼ 2
Pn

i¼mþ 1 ζ i ¼ 0, but

ðEn � EmÞ ðEn � EkÞ
¼ 4ζ2min n � kj j; n � mj jð ÞΘ ðn � kÞðn � mÞ½ �;

(5)

where Θ is a Heaviside theta. Note that this formula explicitly
demonstrates that the domain-wall energies are correlated, even
for uncorrelated fields. Also note that for a Gaussian distribution

ζ
2 ¼ σ2

ζ . The probability of finding a domain wall at site n in a
thermal ensemble averaged over noise is given by

Pn ¼ Z�1e�βEn ¼ 1 þ P
m≠ n e

�βðEm � EnÞ
� ��1

.
Let us now consider a high-temperature approximation to

obtain an analytical formula. By expanding this probability to
second order in β ¼ 1

kBT
and applying Eq. 5 we obtain

Pn � ~P þ β2ζ2
2
N2 n � N þ 1

2

� 	2

(6)

where ~P ¼ 1
N � β2

N3 ζ
2 5

4N
3 þ N2 þ 1

6N þ 1
� �

. This demonstrates
that even small field control errors create a parabolic (U-shaped)
distribution of domain walls. Simple, uncorrelated errors can have a
strong effect on the equilibrium behavior of a simple domain-wall
system. Note that this calculation relies upon the assumption that
the system is in thermal equilibrium. We justify this assumption
numerically in Supplementary Section 2.2. We also demonstrate
other derivations at finite and zero temperature in Supplementary
Sections 2.3, 2.4. The expansion used in Eq. 6 is only guaranteed to
be valid for temperatures much higher than the maximum
difference in domain-wall energies, βζ

ffiffiffiffi
N

p � 1. We therefore
expect that this approximation will breakdown for long chains,
and experimentally demonstrate this breakdown in the paper. While
the high-temperature expansion provides valuable intuition, we
perform all analysis by comparing to computer aided numerical
calculations.
The phenomenon of Eq. 6 is interesting as an experimental tool,

because it provides a way of directly measuring the effect of the
control errors on the evolution of a nontrivial Hamiltonian

(i.e., with nonzero interactions between qubits). Therefore, we
expect that the control errors measured in this way should give a
more accurate portrayal of the errors experienced in a real
computation than in single-qubit methods where interactions
between qubits have been set to zero.
We conclude—to motivate future research—with considera-

tions of what might happen during genuine (T= 0) quantum
annealing and quenches. Most noteworthy is that for the twisted
boundary conditions represented by Eqs. 1, 2, we have a domain
wall which can be thought of as a particle whose mass approaches
zero and size (uncertainty in position) diverges as the quantum
critical point where A= J is approached (see ref. 44 and references
therein). For a finite system, the wall is a particle in a box, which is
more likely in its ground state to be found at the center of the box
than at the edges. As we lower the transverse field below J, we
expect the random fields to cause localization to occur as this is a
one-dimensional system, i.e., in a chain of length L the domain
wall should be localized as soon as its quantum mechanically
defined size is smaller than L. What this means is that for a
quantum annealer which is truly at zero temperature, the system
can become trapped in a configuration which does not minimize
energy. Furthermore, the random longitidinal fields would
produce a distribution of wall positions (read out via projection
of of individual spins onto the z axis) broader than expected for
the clean limit.

Experimental results
Experiments were performed on a D-Wave Processor as described
in “Methods” (and in more detail in the Supplementary Material),
and we describe the key findings here. Firstly consider an
individual instance of the Hamiltonian shown in Fig. 1 used in a
quantum annealing protocol. Figure 2 demonstrates such an
experiment, in particular annealing on the same chain run
repeatedly over time with no averaging either over different
definitions of 0 and 1 on the qubits (gauge averaging), or over
different physical chains. As with most other experiments reported
here each anneal took 20 μs. The distribution of domain walls is
nonuniform, as expected for local random fields even though we
have tuned the qubit controls in an effort to eliminate such
random fields.
We now check whether the simple classical considerations of

the previous section can account for our experimental observa-
tions. To avoid effects due to local variations in qubits and
couplers, we average over different chains and gauges. Figure 2
also shows that the deviation between runs is much larger than
expected for identical samples drawn from the same distribution,
which can be seen by comparing the actual spread of the points

Fig. 2 Experimentally observed domain-wall counts for a single
embedding and gauge choice versus sample time for a 10-qubit
chain (domain wall sites are color coded in cartoon). Time scales
are different for (a, b). Error bars in the bottom frame are standard
error, and are suppressed in the top frame for clarity. Dashed lines in
the top figure represent times when the system updates an internal
self correction of biases.
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with the standard error depicted in the error bars in the lower
frame. This indicates that the control error has components that
are faster than the time between samples. Fast errors are more
difficult to detect, as well as to remove. For more discussion on
this subject, see Supplementary Section 2.6.
The difference in domain-wall probabilities in Fig. 2 is due to a

combination of control errors, of the form given in Eq. 4, and
coupler control errors. However, as we described in Supplemen-
tary Section 2.1, measuring the average domain-wall distribution
removes the effect of coupler errors, allowing us to measure only
the field errors.
Figure 3 displays the results from running the QPU with the final

Hamiltonian corresponding to the chain configuration shown in
Fig. 1, while averaging over many embedding and gauge choices.
An embedding corresponds to mapping a problem on a QPU such
that every variable of the problem is represented by a subset of
the qubits on the QPU. Note that chains can always be embedded
in a one-to-one fashion, where every logical variable corresponds
to one physical qubit; this is not true for more complicated graphs
for which embedding is a more involved process56. Gauge choices
arise due to an invariance of the target Hamiltonian under flips in
the sign of a particular spin and the corresponding local field and
couplings between it and other spins. This averaging is explained
in the “Methods” section and Supplementary Section 1.1.
The experiment now yields a U-shaped distribution, with the

probability for the domain wall to be located at the very end of
the chain suppressed. The suppression is predicted from well
understood rf-SQUID background susceptibility effects57, and can
be removed by applying a simple linear correction; for more
details see Supplementary Section 1.2. Figure 4 shows the

behavior of the experiments when performed on a longer chain,
where the distribution deviates from parabolic due to the
breakdown of the assumptions underlying Eq. 6. For longer
chains it is natural to ask whether Griffiths-McCoy-Wu singularities
may be playing a role in the dynamics (such effects have recently
been observed in two dimensional systems using quantum
annealers58). However, these would manifest themselves as
unusual configurations such as multiple domain walls with regular
spacings between them, rather than the distribution of single-
domain walls present in the ground state of a frustrated chain. In
our experiments we predominantly observed the single-domain-
wall state indicating that these effects were not playing a crucial
role.
Although the theoretical predictions provide a good fit to the

data, it is important to establish whether we are really justified in
treating the output as a classical thermal distribution, and whether
any residual quantum effects remain. It has been shown that
performing quantum simulations on spin chain systems using
D-Wave annealers is difficult due to the fact that a very fast
quench is required to capture the dynamics. In fact simulations
performed on unfrustrated spin chains in52 suggest that a quench
would need to be of order 105 times faster than currently
available. As Supplementary Section 2.2 shows, we find the same
result. The simulations in52 also suggest that the scaling of the
experiments is not favorable with system size, indicating that it
will actually be more difficult to observe quantum effects in longer
chains than the short ones we have simulated. To further confirm
that the system is very close to thermal equilibrium, we perform
annealing at two very different annealing times, as depicted in
Fig. 5. In this figure we see that making the run time orders of
magnitude longer makes only a small difference in that the
minimum of the distribution is slightly more pronounced at longer
runtimes.
We next examine the effect of the weak transverse fields which

are still present at the freeze time, and whether this can lead to
interesting quantum effects. We assume that the freezing occurs
when AðtÞ ¼ 0:1GHz, which is reasonable based upon previous
work11, and then compare the thermal distribution with or without
the transverse field present, assuming a noise of σζ

T ¼ 0:24 which
can be extracted by fitting our experimental data as described
later. Assuming a temperature of T ¼ 15mK ¼ 0:31GHz, we find
the distributions in Fig. 6. The transverse field has very little effect,
aside from a slight suppression of terminal site probabilities. We
therefore conclude that the dominant effects observed in these
experiments are indeed classical, and perform our remaining
analysis from the perspective of classical thermodynamics.
Returning to analysis of the 10-qubit chain, the experimental data

match the numerical data obtained by Boltzmann sampling over
field noise of the type in Eq. 4 with σζ

T ¼ 0:24ðσζ � 0:074GHzÞ.
This fitting was performed against numerical sampling results rather
than Eq. 6 to allow for higher-order corrections. Specifically, the

Fig. 3 Domain-wall probability distributions for 10-qubit fru-
strated chain. Crosses are raw experimental data. Asterisks are the
same with a correction applied for background susceptibility. Circles
are numerically calculated data from sampling Boltzmann distribu-
tions with field noise of the form Eq. 4 with σζ

T ¼ 0:2363. Lines
joining points are a guide to the eye.

Fig. 4 Domain-wall distribution for a 50-qubit chain using the
same experimental setup as Fig. 3 (including background
susceptibility corrections). Dashed line is a parabolic fit. Error bars
represent standard error.

Fig. 5 Domain-wall distribution for a 12 qubit chain with two
different anneal times. Standard error error bars are smaller than
the depicted symbols. Background susceptibility corrections are not
included.
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fitting was performed by numerically sampling over disorder
realizations and varying the parameter σζ

T until the least squares
error with respect to the experimental distribution was minimized.
By contrast, a naive estimate made by sampling uncoupled qubit
polarization yields σζ

T ¼ 0:13ðσζ � 0:040GHzÞ.
The result that a naive single decoupled qubit measure of local

random fields is substantially below the random fields needed to
generate the nontrivial “U” distribution of domain walls for
coupled qubits is a key outcome of our study. One possible
explanation is that each sample is averaged over many annealing
runs (each of which use the same annealing time as the domain
wall experiments) and is therefore blind to any errors with a time-
scale less than the time to collect all the samples, which is ~1 s. A
more sophisticated analysis based upon calculating autocorrela-
tion via the Fourier transform (FT) of the single-qubit results yields
σζ
T ¼ 0:35ðσζ � 0:11GHzÞ (see Supplementary Section 1.3 for
details) and so together with the outcome of the polarization
sampling technique, brackets the result obtained from the
domain-wall distribution for the Ising model with interacting
qubits. As with the polarization calculation, the FT experiments are
performed with the coupling turned off. This method is expected
to be sensitive to a wider bandwidth of errors than the naive
measurement, but should still be blind to any noise faster than the
Nyquist interval, which in this case is about 178 μs . A summary of
the different noise measurements can be found in Table 1.
Autocorrelation (FT), which has the fastest time scale, measures

more error than the domain-wall technique or longer term
sampling, which means that there are short-term fluctuations in
uncoupled qubits which do not matter when we are dealing with
the coupled qubits in the domain-wall problem.
Methods based on measuring the U-shaped distribution can

further be used to address questions about the source of the
control error. For example, we can measure the coupling
dependence of the field control error by fixing the gauge of the
chain and averaging over only embeddings. With a fixed gauge,

we must use a different embedding strategy to reduce correla-
tions in the control errors caused by embedding to qubits in the
same unit cell, see Supplementary Section 1.1. As Fig. 7
demonstrates, the depth of the U is different depending upon
the gauge, which represents strong evidence that how the
couplers are set influences the local random fields. This result is
consistent with measurements performed by others that indicate
that ferromagnetic couplers should couple more strongly to
noise59. Our method of measuring the coupler-dependent portion
of the control error does not require operation of the control lines
outside of the preprogrammed annealing schedule of the device,
while the method employed by59 does.
For the U-shaped distribution to be useful to measure field

control errors requires the underlying assumption that the errors
are uncorrelated. Most types of correlation between nearby qubits
will be removed by the process of gauge averaging. However,
coupler-mediated errors from a shared coupler may depend on
the state (ferro or anti-ferro) of the coupler59, and therefore may
contain some correlations that survive gauge averaging. We
suspect that this part of the error should be relatively small
because these correlations will only come from one of the 5 or 6
couplers connected to a given qubit, and only a fraction of the
error from each coupler is state dependent59,60.
We also have checked experimentally whether state-dependent

errors have a significant effect. Figure 8 demonstrates that the
depth of the distribution does not change within statistical error
when the strength of the coupling is reduced by a factor of 2. If
there were a strong component of the control error which
depended on the state of the couplers, we would expect a
substantial difference between the depth of these two distribu-
tions. This result is consistent with the mild dependence of the
outcomes on gauge choice, and reinforces the concept that

Fig. 6 Top: Numerically calculated domain-wall distribution
assuming thermal equilibrium in the presence or absence of a
transverse field for experimentally realistic parameters. Bottom:
same as top but with mid-point value subtracted to allow direct
comparison, inset is difference between the two curves. Both data
were taken using the same 105 random noise realizations. Error bars
are standard error, and this plot uses experimentally realistic
parameters σζ

T ¼ 0:24 and T ¼ 15mK ¼ 0:31GHz.

Table 1. Summary of different noise measurement techniques and
the results obtained from them.

Measurement
technique

Coupling on? Sensitive to
minimum
time scale

σζ
T σζðGHzÞ

Domain wall Yes N/A 0.2363 0.074

Naive sampling No 1 s 0.13 0.040

Fourier transform No 178 μs 0.35 0.11

Fig. 7 Domain-wall distribution with different gauge choices. X
represents data taken in the gauge which all couplers are
antiferromagnetic. Asterisks are averaged over random gauges.
Circles are data for the gauge in which all couplers are
ferromagnetic. All data in this figure have been corrected for
background susceptibility.

Fig. 8 Difference between domain-wall probability on site i from
the probability that domain wall is found on site 5 for two scales
of the coupling. Note that background susceptibility corrections
have not been performed.
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dynamical effects at the longest time and smallest energy scales
are responsible for the discrepancies between the effective
random fields seen for interacting and non-interacting qubits.
To validate the calibration of the random fields measured via

the domain-wall technique relative to the single-qubit methods,
we use the field controls of the chip to insert Gaussian control
errors with a width σext. Assuming that the original control error is
not affected by the additional error that we insert artificially, the
two errors will be independent, and the total error will be

σtot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
ζ þ σ2

ext

q
. The strength of the inserted control errors,

σext is dependent on t, in the annealing schedule specified by A(t)
and B(t) and therefore the time at which the qubits become
effectively “frozen”. It is important to note that σζ can also depend
upon the freeze time, so different freeze times with the couplings
on versus off can potentially explain the deficit in the errors
measured by the chain method. For our analysis we assume that
the system freezes when AðtÞ ¼ 0:1GHz, which is reasonable
based upon previous work11. Figure 9 shows the measured value
of σext versus the programmed value. From this figure we see that
within generous errors the domain-wall distributions agree with
this model of the error, for which the results should appear on the
diagonal indicated by the dashed blue line, while local
autocorrelation measures an excess of error from the phenomen-
ological result.

DISCUSSION
We consider the performance of a real annealer for one of the
simplest illustrations of magnetic frustration, namely that of a
magnetic domain wall in an Ising chain constrained to have
opposite spin at either end. In the absence of random fields, the
wall resides on any bond with equal probability. When quantum
fluctuations are present, the wall behaves as a particle in a box,
which is in its ground state will have maximum probability
amplitude in the middle of the chain. On the other hand, when
classical random fields dominate, the distribution function for the

wall becomes “U” shaped, with a minimum at the middle of the
chain. We demonstrate this result with a simple analytical
calculation, and then proceed to observe that it is also the generic
result for the D-Wave quantum annealer. Based on the fact that we
see these effects even though local random fields are zeroed with
couplings between qubits tuned to zero, new random fields may be
induced when the couplers are turned on to implement interacting
qubit Hamiltonians. Annealers are meant to solve optimization
problems, e.g., in logistics or machine learning, with many degrees
of freedom. The appearance of random fields as coupling terms are
turned on after zeroing local random fields acting on individual
qubits can produce the usual pathologies associated with random
fields in statistical physics. Most notable among these are the
pinning of “domain walls”61,62. The possibility that the couplings
introduce noise should not come as a surprise given that we are
after all, dealing with an analog computer. It is also not
unprecedented in realizations of quantum annealers: for example,
local longitudinal random fields can be induced by transverse fields
in magnetic systems (see ref. 43 and references therein). We can
turn a problematic but interesting effect (bug) into a benefit
(feature) by using measurements of the “U” distribution to directly
measure control errors for quantum annealers.
This method has several advantages which makes it a useful tool

for understanding control errors in quantum annealing. It allows
measurements to be made when couplers are active, therefore
providing a more realistic estimate of the effects of control errors
when solving real problems. Furthermore, the tests require no
special access beyond the ability to submit problems to the device,
so will be applicable for cases where users with limited access to
the controls want to characterize noise in the controls. The relative
ease of performing the measurements coupled with the fact that
the measurements are performed in a fundamentally different way
than the standard single, decoupled qubit measurements will also
make running the 1D domain-wall problem a simple method for
characterizing new devices. The errors detected for coupled qubits
are important to characterize because it has been shown that if left
unchecked, errors in the problem specification can have cata-
strophic effects on the result63.
Our method runs with the standard annealing protocol,

requiring no privileged access to the control lines, and measures
the component of the noise which acts as control error by
construction, with no frequency cutoff that depends on the
annealing time. The second point means that the method could
be used for arbitrarily long annealing times to observe deviations
from the user-specified fields during the annealing process. On
the other hand, should a processor be claimed to be a quantum
simulator with a sufficiently rapid quench and read out, the
domain-wall problem will yield a distribution with a maximum
rather than minimum at the center of the chain, thus providing a
qualitative test as to whether the device is classical random-field
or quantum fluctuation- dominated. The cross-over between
random field and quantum fluctuation-dominated regimes has
been observed for model magnets64, and we look forward to
seeing a demonstration for properly programmable quantum
simulators such as arrays of Josephson junctions or ion traps.

METHODS
Experimental methods
The data in all figures except Fig. 2 were taken on the USC Information
Sciences Institute Vesuvius 6 D-Wave QPU. Except where otherwise stated,
these data were averaged over gauges, as well as over ways of embedding
on the QPU. For more details about the embedding see Supplementary
Section 1.2. Data in Fig. 2 were taken using a QPU intermediate between
the Vesuvius and Washington QPU generations made available by D-Wave
Systems Inc. Unless otherwise stated all data were taken using an
annealing time of 20 μs. All individual data sets are taken with 10,000
annealing runs.

Fig. 9 Plot of measured values of σext, where the local random
fields measured in the absence of the imposed local fields σext, are
subtracted according to the quadrature formula in text, versus its
actual value, assuming the system freezes when AðtÞ ¼ 0:1GHz.
The effective random-field strength we have used is the same as
before, σζT ¼ 0:24, so that T= 15mK ¼ 0:31GHz and J ¼ 1:80GHz,
we obtain σζ

J ¼ 0:041. Blue circles are from comparing the “depth”
of the U with numerical sampling. Red squares are from comparing
autocorrelation with the results of numerical sampling. Dot-dashed
line is a locus where measured and applied σext are equal. For this
plot we define the “depth” as the ratio of the probability to find the
domain wall in the middle site over the sum of all probabilities
excluding terminal sites. The terminal sites are excluded to avoid
having to compensate for the background susceptibility effect seen
in Fig. 3.
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