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Power fluctuations in sheared amorphous materials: A minimal model
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The importance of mesoscale fluctuations in flowing amorphous materials is widely accepted, without a clear
understanding of their role. We propose a mean-field elastoplastic model that admits both stress and strain-rate
fluctuations, and investigate the character of its power distribution under steady shear flow. The model predicts
the suppression of negative power fluctuations near the liquid-solid transition; the existence of a fluctuation
relation in limiting regimes but its replacement in general by stretched-exponential power-distribution tails; and
a crossover between two distinct mechanisms for negative power fluctuations in the liquid and the yielding
solid phases. We connect these predictions with recent results from particle-based, numerical microrheological
experiments.
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Amorphous solids lack the translational order of crystals,
but have more complicated viscoelastic responses than simple
liquids. Examples include foams, gels, emulsions, granular
materials, and glasses [1–3]. Although mechanically speaking
these materials are solids at rest, they still have the ability to
deform, and flow under a large enough external stress. Differ-
ent flow behaviors can occur depending on the amplitude of
the imposed stress or strain rate, and on internal properties of
the system [4–6].

The macroscopic characterization of such flow regimes is
well studied [1–3,7]. A more recent, contrasting theme is the
important role of fluctuations [8,9] and avalanches [10,11]
in large-scale flow. Advanced numerical simulations [12–14]
have shown that rare dynamical events have significant im-
pacts on mechanical behavior [15,16], contrary to common
intuition. Importantly, the experimental sensitivity to mea-
sure temporal fluctuations of such flows has been achieved
recently [10,17–21], offering a new testing ground for the
ideas of stochastic thermodynamics [22]. These capabilities
in numerical and laboratory experiments have delivered many
novel observations, motivating detailed comparisons between
these experiments and mesoscopic mean-field models. The
latter provide idealized but nontrivial mechanistic accounts of
the transition from fluid to yielding solid in terms of a few
phenomenological parameters.

Despite their inevitable simplifications, such mean-field
models have had remarkable successes [3,23,24]. However,
none have fully addressed the rich phenomenology of fluc-
tuations in dissipated power, including rare events in which
the local stress and strain rates have opposite signs so that
their product, the local power, becomes negative. Crucially, to
capture these fluctuations both above and below jamming, the
stress and the strain rate must both be able to fluctuate [25].

Among mesoscopic models, those based on elastoplastic
concepts have a long history [3,13,26–33], and some are
equipped to deal with rheological fluctuations, particularly the

Hebraud-Lequeux (HL) model, which treats the local stress as
a stochastic process subject to constant shear and mechanical
noise [23] (Fig. 1). The noise captures at the mean-field level
(without spatial information) avalanches of stress elsewhere in
the system [30,34]. The soft glassy rheology (SGR) approach
also assumes a uniform strain rate, with a locally stochastic
stress proportional to elastic deformation [24]. Thus HL and
SGR both lack the key feature of independent fluctuations in
local shear rate and local stress.

Such fluctuations are restored in models of elastoplastic
elements coupled by explicit dynamical rules, in two or more
dimensions [11,35–39]. However, while these models usefully
bridge between first-principles studies and mean-field models
such as HL and SGR, they generally defy analytic progress,
limiting their explanatory power.

In this Letter, we propose a minimal, mean-field elastoplas-
tic model, in which HL-type stress elements are grouped into
M sets of members k ∈ {1, . . . , N} with a common strain rate
γ̇ . Below, we use our model to study fluctuations in the local
power, an interesting observable in flowing amorphous ma-
terials, focusing particularly on negative power fluctuations.
Importantly, we show that the model captures an intriguing
crossover in the dominant mechanism for such fluctuations
whereby they are carried primarily by local reversals in stress
when the system is well below its jamming transition, but
in strain rate when well above it [25]. Besides this, we find
that the power distribution has power-law tails, and discuss
the extent to which it exhibits fluctuation relations analogous
to those seen in thermal driven systems [22,40–43]. Overall,
our minimal model offers a tractable framework to rationalize
the generic character of power fluctuations in a broad class of
sheared amorphous materials.

We shall refer to our minimal model as the N-element HL
model, or NHL. A geometrical interpretation (Fig. 1) is to
suppose that γ̇ varies in the velocity-gradient direction only,
and then impose by force balance the same macroscopic stress
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FIG. 1. (a) Fully resolved, lattice-based M × N system of ele-
mental stresses σi, j and strain rates γ̇i, j , with external shear applied
at boundaries. (b) The zero-dimensional HL model discards any
notion of space at the mean-field level [23]. (c) Our extended model
homogenizes strain rate γ̇ along, but allows stochastic variation
between, streamlines [44]. Each streamline j ∈ {1, . . . , M} carries a
set of N stress elements σk with no further spatial structure, creating
an effectively 1D model with translational symmetry along the flow
direction.

on all the M streamlines, each carrying N fluctuating stress
elements, without further spatial structure. This geometrical
construction of NHL follows that for the SGR-based model
developed in Ref. [44] to discuss aging in shear bands. Stan-
dard HL is recovered as N → ∞, whereas finite N might
reflect a finite coherence length along streamlines, beyond
which elements no longer share a common strain rate.

HL model [23]. In the HL model, the probability distribu-
tion f (σ, t ) for elemental stresses evolves as

∂t f = −γ̇ ∂σ f + D(t )∂2
σ f − r(σ ) f + D(t )

α
δ(σ ), (1)

D(t ) = α

∫
r(σ ′) f (σ ′, t )dσ ′. (2)

Here, each element is statistically identical, so no spatial index
arises. The terms on the right-hand side in (1) originate as
follows. The first is the advective distortion of stress elements
at shear rate γ̇ : The material responds elastically (with mod-
ulus unity) in the absence of plastic events. The second term
encodes the local presence of mechanical noise, resulting from
plastic events elsewhere, in an effective diffusivity D [31]. The
final two terms describe a resetting mechanism, which causes
stress elements to relax to a completely unstressed state. For
simplicity, its rate is chosen as r(σ ) = H (|σ | − σc)/τ , with
H the Heaviside function, so that resetting occurs only when
|σ | exceeds a threshold σc. The global rate of these jumps then
sets the noise level D via (2). In what follows, we choose units
such that τ = σc = 1.

HL captures the transition from liquid to yielding solid on
varying the parameter α: At small γ̇ the average stress 〈σ 〉
scales as γ̇ for α > αc = 1/2 (the liquid phase) but converges
to a yield stress σy for α < αc (the solid).

Note that the diffusivity D does not vanish at γ̇ → 0 in
the liquid phase. This feature is counterintuitive, as noted in
Ref. [26], since D is related to the rate of stress resetting
events, which should not occur in the absence of shearing.
The HL liquid thus requires energy input, e.g., from the aging
of unresolved degrees of freedom. However, this quasithermal
process does not interfere with the stress and strain energetics
considered here.

Setup of NHL model. In contrast with standard HL, we now
promote the shear rate γ̇ to a fluctuating quantity alongside the
stochastic stress variable σ . To achieve this, we can impose a
spatial force balance in the direction(s) perpendicular to the
shear. Consider in d = 2 a subvolume of M × N elastoplastic
sites, each endowed with a coarse-grained stress σi, j and local
shear rate γ̇i, j , where i, j are spatial indices. Here, the shear
rate is the local value seen by an element, which is not uniform
in general. For simplicity, however, we assume it remains
uniform along streamlines, whose direction is set by boundary
shearing, so that γ̇i, j = γ̇ j for all i.

This assumption effectively segments the subvolume into
M separate streamlines, each containing N elements (see
Fig. 1). Moreover, because in HL the flow curve (steady-
state macroscopic stress versus strain rate) is monotonic —a
feature shared by NHL as we show in the Supplemental Mate-
rial [45]—we can exclude macroscopic inhomogeneities such
as shear banding in the steady state [46]. All streamlines then
have identical statistics for the fluctuating shear rate (γ̇ j = γ̇ )
as well as for the N elemental stresses {σ1 . . . σk, . . . σN }; the
value of M (as the index j) plays no further role. The dynamics
for each elemental stress σk on any chosen streamline should
obey (1) and (2) but with advection now controlled by the
instantaneous local shear rate γ̇ (t ).

Neglecting inertia, we now add a Newtonian background
fluid of viscosity η. Force balance then requires that the total
shear stress 	 is independent of streamline:

	 = 1

N

N∑
k=1

σk + ηγ̇ . (3)

This use of force balance [44] is standard, e.g., Ref. [46].
Equation (3) means the local shear rate adapts instantaneously
to the random realizations of the stresses σk in N ele-
ments, each equipped with its own mechanical noise. Clearly,
therefore, γ̇ is now a stochastic variable. Indeed, between
successive resettings, the stresses σk and shear rate γ̇ follow
coupled stochastic equations [45],

dσk = γ̇ dt +
√

2DdWk, ηd γ̇ = −γ̇ dt −
√

2D

N

N∑
k=1

dWk,

with dt the time step, and dWk a set of N independent,
unit-variance Wiener processes: dWidWj = δi jdt [47]. The
diffusivity D is set by the total jump rate within our set of
N elements, coupling these together. In stochastic simula-
tions we evaluate D = D̃ ≡ α

∑
k r(σk )/N directly, whereas

our mean-field analyses use (2). Note that alternatively one
might evaluate D as D = 〈D̃〉M averaged across M stochastic
samples from the same distribution, representing different
streamlines. This choice reintroduces M as a parameter,
couples otherwise independent streamlines, and increases
sampling costs M-fold; we parsimoniously reject it.

The joint distribution P(σ, γ̇ , t ) can be obtained explic-
itly, although its form is unwieldy. To simplify matters,
we now take P to be separable. This assumption is exact
as N → ∞ and also captures the physics at large finite
N [45], as we confirm by direct stochastic simulations be-

L052601-2



POWER FLUCTUATIONS IN SHEARED AMORPHOUS … PHYSICAL REVIEW E 105, L052601 (2022)

FIG. 2. (a) The log ratio of the power distribution is plotted for HL (N → ∞), and for NHL at various finite N . The straight line for HL
follows from the fluctuation relation (7), which breaks down at finite N . Common parameters for the lines at finite N are α = 0.8, 	 = 0.2,
and η = 0.1. The N = ∞ curve is produced with α = 0.8, and γ̇ = 0.07, which is the common mean shear rate for the NHL models. (b)–(e)
Power distribution on either side of the yielding transition. In the fluid regime [(b), (c) α = 0.70], the decays could be mistaken for a two-sided
exponential. In the yielding solid regime [(d), (e) α = 0.37], there is a clear departure from the two-sided exponential. The right panels are
fit-free plots of P against p2/3 to test (8) which predicts linear behavior as a function of p2/3. The remaining parameters are η = 0.1, 	 = 0.2,
N = 210. (f) The probability P (p < 0) of negative injected power is nonmonotonic in α. The inset decomposes this into (σ+, γ̇ −) (green dots
and dashes) and (σ−, γ̇ +) (red dashed line) for 	 = 0.2, showing the crossover on moving from afluid to solid phase. Same parameters as in
(b)–(e). Lines are from numerical solutions of (4) and (5) and circles are stochastic simulations of the full NHL dynamics. As N increases, the
minimum deepens and moves to the right, and it vanishes for N → ∞.

low. The marginal distributions f (σ, t ) = ∫
P(σ, γ̇ , t )d γ̇ and

g(γ̇ , t ) = ∫
P(σ, γ̇ , t )dσ then evolve as

∂t f = −〈γ̇ 〉∂σ f + D(t )∂2
σ f − r(σ ) f + D(t )

α
δ(σ ), (4)

∂t g = ∂γ̇

[
γ̇ − 〈σ r(σ )〉

η
g

]
+ ∂2

γ̇

[
2D(t ) + 〈σ 2r(σ )〉

2η2N
g

]
, (5)

where averages 〈·〉 are taken over P(σ, γ̇ , t ). The equation for
f is exactly that of the HL model (1) under the action of the
average shear 〈γ̇ 〉; the local shear rate γ̇ is a mean-reverting
process, whose fluctuations depend on the dynamics of the N
elements.

Standard HL is recovered in the limit N → ∞, when all
elements in a bulk system share a common shear rate γ̇ . In that
limit, force balance gives γ̇ = (	 − 〈σ 〉)/η, since the average
of N stresses in (3) converges to the ensemble average 〈σ 〉.
Accordingly the shear rate does not fluctuate, although the el-
emental stress values still do so, sampling the HL steady-state
stress distribution f (σ ) whose support (for γ̇ > 0) includes
negative σ values.

For finite N , fluctuations in γ̇ allow a much richer picture
as explored below. Nonetheless, many macroscopic features
of standard HL remain intact. Specifically, the fluid-solid
transition still occurs at αc = 1/2 and, because the NHL
stress equation (4) recovers HL on setting 〈γ̇ 〉 → γ̇ , the
macroscopic stress σM = 〈σ 〉 behaves the same way. Thus
NHL’s flow curves σM (γ̇ ), as those of HL, show Newtonian,
power-law fluid, and Herschel-Bulkley behaviors for α > αc,
α = αc, and α < αc, respectively [23]. One difference is that
in NHL the formal control parameter is 	 rather than 〈γ̇ 〉
as usually chosen in HL. However, for a bulk system under
uniform flow, these two quantities are related by the flow

curve, and the two ensembles should give similar distributions
for fluctuating element stresses. Note that this breaks down
when considering coupling between streamlines.

Power distribution. We consider the distribution P (p, t ) of
power injected into elements, p = σ γ̇ (Fig. 2):

P (p, t ) =
∫

δ(p − γ̇ σ )P(σ, γ̇ , t )dσd γ̇ . (6)

Power injected directly into the background fluid, ηγ̇ 2, is ex-
cluded. In the HL limit (N → ∞), the steady-state distribution
reduces to P (p) = (1/γ̇ ) fHL(p/γ̇ ), where fHL is the stress
distribution of (1), with known form [23,26,45]. This gives
rise to the fluctuation relation (FR)

ln
P (p)

P (−p)
= p

D
, (7)

where D is the steady-state diffusivity from (2). The FR
indicates that negative power fluctuations, where stress and
strain rate have locally opposite signs, are exponentially
rarer than their positive counterparts, P (−p) = P (p) e−p/D,
and they vanish altogether as D → 0. For HL, this relation
is a direct consequence of the distribution’s tails decaying
exponentially [45]. For thermal stochastic processes, FRs re-
sembling (7) hold in a broader context, without relying on
any specific form of distribution, and they have been linked
to microscopic reversibility [22,40–43]. Such relations have
also been reported in other nonequilibrium contexts [48–53],
in some cases defining an effective temperature [54].

Numerical evidence for the linear p dependence in (7) was
presented in Ref. [25]. However, an analysis of (4) and (5)
suggests this result is far from universal for rheological fluc-
tuations in amorphous materials. First, we find that even in the
HL limit, N → ∞, (7) breaks down if one chooses a resetting
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rule asymmetric in σ , such as r(σ ) = H (|σ − σ0| − 1) [55],
as might encode the structural memory of past flow [56].
Second, even with symmetric resetting, the FR (7) is not only
inexact for N < ∞, but quite inaccurate for N � 1000. This is
clear from ln[P (p)/P (−p)] as calculated from (4) and (5) and
plotted in Fig. 2(a). Strikingly, for our NHL model, the decays
of the distribution are no longer exponential: Figs. 2(b)–2(e)
show the full P (p) found by stochastic simulation. More-
over, from (4) and (5) we obtain the cumulative function
P (p > pl ) = ∫ ∞

pl
P (p)d p for large pl [45], which reveals

stretched-exponential tails,

logP (±p) ∼
|p|→∞

−c±|p|2/3, (8)

with c± parameter-dependent constants for positive and nega-
tive power [45]. These vanish as N → ∞ recovering the HL
result; for finite N , we show in the Supplemental Material [45]
that the asymptotes obeying (8) emerge for |p| � √

Var(γ̇ ),
where Var(γ̇ ) decreases with N .

Mechanisms for negative power. To get further insight
from our minimal NHL model, we consider the probability
to observe negative power, P− = ∫ 0

−∞ P (p)d p. This follows
from (6) as

P− = 1

2
− 1

2
erf

( 〈γ̇ 〉√
2Var(γ̇ )

)∫
f (σ )

|σ |
σ

dσ, (9)

where erf(z) = 2√
π

∫ z
0 e−t2

dt is the usual error function. We
predict analytically, and confirm by stochastic simulations, a
nonmonotonic behavior of P− on varying the distance from
the fluid-solid transition point αc − α [see Fig. 2(f)]. Nega-
tive power fluctuations are enhanced deep in both the fluid
(αc � α) and yielding solid (αc � α). Although the mini-
mum lies close to the transition point for the case shown,
this positioning is not universal but depends on a nontrivial
combination of model parameters, crucially including N , with
the consequence that the upturn of P−(α) in the yielding solid
phase moves to ever larger αc − α as N → ∞. Our finding of
a minimum in NHL is consistent with the first-principles sim-
ulations of Ref. [25], but our calculations do not support any
claim that this lies universally at α = αc. Another difference
is that generically our minimum is shallow whereas Ref. [25]
reports P− close to zero there.

Further insight can be gained by noting that a negative
realization of the local power p = σ γ̇ is achieved when either
σ > 0 and γ̇ < 0 (σ+, γ̇ −), or σ < 0 and γ̇ > 0 (σ−, γ̇ +).
Since these classes are mutually exclusive, one can consider
them as separate mechanisms contributing to the negative
power probability P−. The inset in Fig. 2(f) shows how P−
decomposes into these contributions. Crucially, we observe
a crossover from the (σ−, γ̇ +) channel in the fluid phase to
the (σ+, γ̇ −) channel in the yielding solid. This agrees with
Ref. [25], where these channels are respectively linked to
collisions of deformable particles across and along the com-
pression direction. Within NHL, this crossover is a physically
natural consequence of variations in the width of the shear
rate distribution g(γ̇ ). Deep in the fluid regime, the ratio of
the mean shear rate 〈γ̇ 〉 to its standard deviation

√
Var(γ̇ ) is

large, so that g is peaked at γ̇ = 〈γ̇ 〉 > 0 with little weight at

γ̇ < 0. In contrast, deep in the yielding regime, this ratio is
much smaller, so that instantaneous reversals of the shear rate
are much more likely.

Discussion. It is remarkable that the features of P−(α)
mentioned above, including its decomposition into two
distinct mechanisms, are explicable in outline within a mean-
field approach, with no appeal to fully nonlinear many-body
fluctuations or critical phenomena [57], even if these may
also be present. Success of the mean-field model depends
on allowing fluctuations in the shear rate as well as stress;
this is achieved in NHL, but suppressed in the HL limit
(N → ∞). Strikingly, these same shear rate fluctuations are
directly responsible for violations of the FR (7). Accord-
ingly, we expect such violations to be most easily detectable
in the yielding solid phase, rather than in relatively dilute
fluid systems or other conditions with a negligible shear rate
variation.

Concluding remarks. In this Letter, we proposed an elasto-
plastic model, called NHL, of microrheological fluctuations,
focusing on power fluctuations. It represents a minimal ex-
tension of the Hebraud-Lequeux (HL) model [23], allowing
stress and strain rate to fluctuate on similar terms. An open
question is the origin of the parameter N . We said this could
relate to a streamwise coherence length for the flow, but
NHL itself contains no such spatial information: The number
N of stress elements that share a common γ̇ is undeter-
mined. However, the more relevant physical observable is
Nn, with n the number of primary particles defining a stress
element. This n is similarly undetermined in mesoscopic mod-
els [23,24,31,56]. Plausibly, N could depend on macroscopic
flow conditions, or proximity to the jamming transition, but
not on the power p in a given local fluctuation. Accordingly
our main predictions for the power distribution P (p) should
be robust. These predictions comprise a generic violation of
the FR (7), stretched-exponential tails (8), and a minimum in
P (p < 0) near the fluid-solid transition, caused by a crossover
between fluctuations with negative local stress and negative
local shear rate [Fig. 2(f)].

As possible extensions of our work, one could build anal-
ogous models using other elastoplastic frameworks, such as
SGR [24], investigate the effects of noise distributions with fat
tails [28,34], or address the coupling between streamlines to
explore how instabilities such as shear banding [46] influence
power fluctuation statistics. It would be interesting to inves-
tigate other amorphous systems in a similar way. Previous
numerical studies have looked at the detailed statistics of
other fluctuating observables with both molecular dynamics
simulations and spatial elastoplastic models [11,15,34,38].
Therefore adapting to the study of the injected power ob-
servable instead is likely to be straightforward. Furthermore,
experimental setups now exist which can measure local stress
tensor fluctuations at millisecond resolution [10].
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