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ABSTRACT
Stationarity is a very common assumption in time series analysis. A vector autoregressive process is stable if
and only if the roots of its characteristic equation lie outside the unit circle, constraining the autoregressive
coefficient matrices to lie in the stationary region. However, the stationary region has a highly complex
geometry which impedes specification of a prior distribution. In this work, an unconstrained reparameter-
ization of a stationary vector autoregression is presented. The new parameters are partial autocorrelation
matrices, which are interpretable, and can be transformed bijectively to the space of unconstrained square
matrices through a simple mapping of their singular values. This transformation preserves various structural
forms of the partial autocorrelation matrices and readily facilitates specification of a prior. Properties of
this prior are described along with an important special case which is exchangeable with respect to the
order of the elements in the observation vector. Posterior inference and computation are described and
implemented using Hamiltonian Monte Carlo via Stan. The prior and inferential procedures are illustrated
with an application to a macroeconomic time series which highlights the benefits of enforcing stationarity
and encouraging shrinkage toward a sensible parametric structure. Supplementary materials for this article
are available online.
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1. Introduction

Denote by {yt} a time series of equally spaced m-variate obser-
vations. A stochastic process is said to be strictly stationary if
its properties are unaffected by a shift in the time origin and
weakly stationary if the mean E(yt) = μ remains constant
over time and the autocovariance function �i = cov(yt , yt+i) =
E{(yt − μ)(yt+i − μ)T} depends only on the lag i (i = 0, 1, . . .),
with �−i = �T

i . For Gaussian processes, the two are equivalent,
and we simply refer to a process as being stationary. As raw time
series often exhibit periodic variation and systematic changes in
the mean, stationarity is generally assumed only for the residuals
of a detrended series, the variables of a differenced process, or
those latent components of a state space model that are believed
to be mean-reverting. In these cases, stationarity prevents the
predictive variance of the transformed process from growing
without bound as the forecast horizon increases, moving either
forward or backward in time. This is a very reasonable assump-
tion in many applications, for instance where the inferential
objective is long-term forecasting or characterizing the long-run
behavior of linear dynamic systems.

All stationary Gaussian processes can be approximated arbi-
trarily well by a finite-order, vector autoregressive moving aver-
age (VARMA) model (Neusser 2016, chap. 12). Although we
focus on the more commonly used subclass of vector autore-
gressive (VAR) models, we discuss the extension to the more
general case in Section 6. Without loss of generality, assume
that the time series {yt} can be modeled as a zero-mean, order-
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p vector autoregressive, or VARm(p), process, yt = φ1yt−1 +
· · · + φpyt−p + εt , in which the errors {εt} form a sequence of
uncorrelated, zero-mean multivariate normal random vectors,
εt ∼ Nm(0, �). The parameters of the model therefore, com-
prise the autoregressive coefficient matrices φi ∈ Mm×m(R)

(i = 1, . . . , p), and the error variance matrix � ∈ S+
m , where

Mm×n(V) denotes the set of m × n matrices with entries in V
and S+

m denotes the set of m × m symmetric, positive definite
matrices. Henceforth, we refer to the collection of φi as �. VAR
processes are a widely used class of time-series model which find
application in a broad range of fields, such as macroeconomics
(Koop and Korobilis 2009), neuroscience (Chiang et al. 2017),
and genomics (Abegaz and Wit 2013). In most cases, priors
for (�, �) are based on either the conjugate matrix normal
inverse Wishart distribution (Bańbura, Giannone, and Reichlin
2010) or the semi-conjugate variant in which � and � are
independent a priori (Karlsson 2013). Variations include priors
that fix the error variance at an estimate, such as the Minnesota
prior (Doan, Litterman, and Sims 1984), or hierarchical priors
which are typically designed to allow data-informed shrinkage
toward a sparse parameterization (Ghosh, Khare, and Michai-
lidis 2019). Another class of priors arises in the context of
graphical VARs where the idea is to learn the contemporaneous
and lagged relationships over time (Corander and Villani 2005;
Paci and Consonni 2020). In this case, a prior is first placed
on the graph underpinning the process and then a (typically
vague) prior is placed on the parameters that are unrestricted
after conditioning on that graph. In this literature, although
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stationarity is often stated as an assumption to derive properties
of the process, it is not enforced as a constraint.

It is common to write the VARm(p) process as εt = (Im −
φ1B − · · · − φpBp)yt = φ(B)yt where B is the backshift
operator, that is Byt = yt−1, Im is the m × m identity matrix
and φ(u) = Im − φ1u − · · · − φpup, u ∈ C, is termed the
characteristic polynomial. The process is stable if and only if all
the roots of det{φ(u)} = 0 lie outside the unit circle. Because all
stable processes are stationary and unstable stationary processes
are not generally of interest, this subset of Mm×m(R)p is often
referred to as the stationary region, denoted by Cp,m.

When m = 1 and p = 1 or p = 2, the stationary region
is simple, with C1,1 representing the interval (−1, 1), and C2,1
a triangle in the (φ1, φ2)-plane. However, increasing m or p
further increases the complexity of the polynomial equation
det{φ(u)} = 0 and hence the geometry of the stationary
region. This causes two main problems for Bayesian inference.
First, because there are no standard distributions on Cp,m, it
is not generally possible to directly specify a prior over this
space which encodes genuine beliefs. Second, designing efficient
Markov chain Monte Carlo (MCMC) samplers with state space
constrained to Cp,m is very challenging. In the univariate (m =
1) case, Chib (1993) addresses the latter difficulty by assigning
a multivariate normal prior to �, truncated to the region Cp,1.
For p > 1, the normalizing constant cannot be evaluated in
closed form and so the prior density is known only up to pro-
portionality. A sampler is described which updates � in a block
in which the proposal is the full conditional distribution when
the constraints are ignored; proposals that fall outside of Cp,1 are
rejected in the Metropolis acceptance step. However, this will be
efficient only if the proposal density is concentrated over Cp,1.
In the univariate case, Piccolo (1982) calculates the volume of
the stationary region for the parameters of autoregressive (AR)
models. In the special case where the autoregressive coefficient
matrices φi are diagonal, a trivial corollary of this result is that
the volume of the stationary region is equal to Um

p , in which
Up = (M1M3 · · · Mp−1)

2 for p even and Up = Up−1Mp for
p odd, where Mi = 2i [{(i − 1)/2}!]2 /i!. This region becomes
vanishingly small as p increases and is likely to render an infer-
ential scheme that is not tailored to the geometry of the problem
highly inefficient. A natural way around both of these problems
is to find an interpretable reparameterization of the VARm(p)
model which maps � ∈ Cp,m to a space which has simpler
constraints and allows prior specification to be carried out in
a meaningful way.

As a result of their ubiquity in time series analysis, there is a
large literature on reparameterizations of univariate AR mod-
els. Barndorff-Nielsen and Schou (1973) establish a bijection
between � ∈ Cp,1 and the first p partial autocorrelations ρ =
(ρ1, . . . , ρp) of a stationary, pth order autoregression. Monahan
(1984) provides an alternative derivation of the mapping and
explicit recursive formulas for its inverse. The new parameter-
ization has the advantage that the partial autocorrelations ρ

are interpretable and only constrained to lie in the Cartesian
product space (−1, 1)p. Marriott et al. (1996) and Barnett, Kohn,
and Sheather (1996) present prior distributions for the par-
tial autocorrelations and MCMC algorithms for computational
inference. The latter suggest a uniform prior over Cp,1 which

induces a closed form for the density of ρ due to the analytical
tractability of the Jacobian term. The former use spike-and-
slab priors for the ρi in which the slab is uniform over (−1, 1)

and the spike is an atom of probability at zero, which allows
for uncertainty in the model order. Marriott and Smith (1992)
and Huerta and West (1999) describe reparameterizations based
on a representation of the characteristic equation in factorized
form, that is, φ(u) = ∏p

i=1(1 − ηiu). In this case, the condition
for stationarity reduces to |ηi| < 1 (i = 1, . . . , p). Huerta and
West (1999) also allow uncertainty in the model order p, and
the balance of real and complex (reciprocal) roots ηi, by placing
priors on the real roots and the moduli of the pairs of complex
roots with atoms of probability at zero.

Extensions of these reparameterizations of univariate AR
models to the general vector case, especially with a focus on
prior specification, are surprisingly scarce in the literature.
Huerta and Prado (2006) extend the ideas of Huerta and West
(1999), but only in the special case where the φi are diagonal.
He, She, and Wu (2013) describe a sparsity-inducing penalized
maximum likelihood algorithm for frequentist model-fitting.
However, it is not fully flexible, constraining inference to a
subset of the stationary region where the spectral norm, rather
than spectral radius, of the companion matrix is less than
one. Morf, Vieira, and Kailath (1978) generalize the results of
Barndorff-Nielsen and Schou (1973); for every error variance
matrix �, a bijection is established between � ∈ Cp,m and the
first p partial autocorrelation matrices P1, . . . , Pp of a stationary
VARm(p) process. Denoting by Vm the subset of matrices
in Mm×m(R) whose singular values are all less than one, in
terms of the new parameters, the stationary region reduces to a
simple Cartesian product space (P1, . . . , Pp) ∈ Vp

m. Ansley and
Kohn (1986) build on the earlier work in Ansley and Newbold
(1979) by generalizing the construction of Monahan (1984) and
explicitly providing recursive formulas for the inverse mapping.
A second bijective mapping between (P1, . . . , Pp) ∈ Vp

m and
(A1, . . . , Ap) ∈ Mm×m(R)p is described along with a maximum
likelihood estimation procedure. Although the new parameters
A1, . . . , Ap are unconstrained, the reparameterization is not
immediately amenable to Bayesian inference because the Ai
are difficult to interpret. Roy, McElroy, and Linton (2019)
derive an alternative reparameterization of stationary and
invertible VARMA models. The new parameters comprise a
set of p symmetric, positive definite matrices and a set of p
orthogonal matrices. From an inferential perspective, the space
in which the new parameters lie is almost as problematic as the
stationary regionCp,m. As we discuss further in Section 3.5, prior
specification is difficult because the orthogonal matrices lack
a meaningful interpretation, whilst computational inference
remains challenging because the constraints that define the
space of orthogonal matrices complicate sampling by MCMC.
In this article we propose a different reparameterization and
prior for the parameters of a stationary VAR process. Like in
Ansley and Kohn (1986), the new parameters are constructed
through two mappings: first to a set of (interpretable) partial
autocorrelation matrices P1, . . . , Pp and then to a set of uncon-
strained square matrices A1, . . . , Ap. Our reparameterization
differs, however, by facilitating the preservation of certain
symmetries in the first mapping and the interpretability of
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the partial autocorrelation matrices in the second mapping.
This allows construction of prior distributions for (A1, . . . , Ap)
which encourage shrinkage toward meaningful parametric
structures. In particular, we describe a prior that is exchangeable
with respect to the order of the elements in the observation
vector. This is likely to be a useful representation of prior
beliefs in a variety of applications where the modeler does
not have information, a priori, to distinguish between the m
time series. We also present an inferential scheme that allows
computational inference to be carried out using Euclidean
Hamiltonian Monte Carlo, implemented by the probabilistic
programming software Stan (Carpenter et al. 2017). This
facilitates straightforward extension and adaptation by users
in the wide-variety of fields in which vector autoregressions
are used. The main contributions of the article are therefore,
2-fold: first, a reparameterization and prior for stationary VARs
that allows the incorporation of meaningful initial beliefs; and
second, routine implementation of computational inference
using standard probabilistic programming software.

2. Reparameterization Over the Stationary Region
2.1. Reparameterization via Partial Autocorrelation

Matrices
Ansley and Kohn (1986) establish a one-to-one correspondence
between the parameters of a stationary VARm(p) process
(�, �) ∈ S+

m × Cp,m and the parameter set {�, (P1, . . . , Pp)} ∈
S+

m × Vp
m in which Ps denotes the sth partial autocorrelation

matrix. In essence, the (s + 1)th partial autocorrelation matrix
Ps+1 is a conditional cross-correlation matrix between yt+1
and yt−s given yt , . . . , yt−s+1. More precisely, the matrices
P1, . . . , Pp are defined as follows. For each s = 1, . . . , p let

yt+1 =
s∑

i=1
φsiyt−i+1 + εs,t+1, yt−s =

s∑
i=1

φ∗
siyt−s+i + ε∗

s,t−s

(1)
in which the m × m matrices φsi and φ∗

si are the coeffi-
cients of the ith terms yt−i+1 and yt−s+i, respectively, in
the conditional expectations E(yt+1 | yt , . . . , yt−s+1) and
E(yt−s | yt−s+1, . . . , yt). It follows that φpi = φi (i =
1, . . . , p) and �p = �. Equivalently, because the multivariate
normal distribution is defined by its first two moments, the
φsi and φ∗

si are the values of the coefficients, say αi and
α∗

i , in the autoregression of yt+1 on its s predecessors or
successors, respectively, that minimize the mean squared
error E{(yt+1 − ∑s

i=1 αiyt−i+1)
T(yt+1 − ∑s

i=1 αiyt−i+1)}
or E{(yt−s − ∑s

i=1 α∗
i yt−s+i)

T(yt−s − ∑s
i=1 α∗

i yt−s+i)}; see,
for example, chap. 3 of Christensen (1991). We define the
corresponding conditional variances as �s = var(εs,t+1) =
var(yt+1 | yt , . . . , yt−s+1) and �∗

s = var(ε∗
s,t−s) = var(yt−s |

yt−s+1, . . . , yt) (s = 1, . . . , p) and let �0 = �∗
0 = �0 where

�i = cov(yt , yt+i) = E(ytyT
t+i) is the ith autocovariance of

yt . Now, express the conditional variance matrices through a
matrix-square-root decomposition, �s = SsST

s and �∗
s =

S∗
s S∗ T

s . Although any unique matrix-square-root could be used,
we take the symmetric matrix-square-root factorization in this
paper, and so Ss = �

1/2
s and S∗

s = �
∗ 1/2
s are symmetric

and positive definite. A different reparameterization, defined by
Ansley and Kohn (1986), is based on the Cholesky factorization,

in which case Ss and S∗
s are lower triangular. However, as we

discuss in Section 3.2, we prefer the symmetric factorization
as it facilitates construction of a prior that is closed under
orthogonal transformation of the observation vectors. Finally,
let z0,t+1 = S−1

0 yt+1 and z∗
0,t = S∗−1

0 yt be standardized
versions of the forward and reverse time series and, for each
s = 1, . . . , p − 1, let zs,t+1 = S−1

s εs,t+1 and z∗
s,t−s = S∗−1

s ε∗
s,t−s

be standardized versions of the forward and reverse error series.
We can now define the partial autocorrelation matrix Ps+1,
(s = 0, . . . , p − 1), as

Ps+1 = cov(zs,t+1, z∗
s,t−s)

= S−1
s cov(yt+1, yt−s|yt , . . . , yt−s+1)(S

∗−1
s )T

= S−1
s φs+1,s+1S

∗
s

in which the final equality is demonstrated in the supplementary
materials. This simplifies to the well-known result ρs+1 =
φs+1,s+1 in the univariate case.

The (recursive) mapping from (�, �) ∈ S+
m × Cp,m to

{�, (P1, . . . , Pp)} ∈ S+
m × Vp

m and its inverse are described in
the Appendix with proofs in the supplementary materials. Use
of symmetric matrix-square-roots, rather than Cholesky factors,
complicates the reverse map and precludes use of Lemma 2.3
from Ansley and Kohn (1986) to perform the calculation. This
is remedied through a novel recursion which allows computa-
tion of the stationary variance matrix �0 from the new set of
parameters.

The constraints on the p-fold Cartesian product spaceVp
m are

substantially simpler than those on the stationary region Cp,m.
Indeed, for each Ps ∈ Vm, the constraint can be expressed as
an inequality for the spectral norm, ‖Ps‖2 < 1, and so it may
be possible to apply the spherical augmentation technique (Lan
and Shahbaba 2016), designed for handling norm constrains,
to sample from probability distributions over Vm. However,
though the partial autocorrelation matrices are a very natural set
of quantities about which to elicit prior beliefs, there are no stan-
dard distributions defined over Vm. Further, any distribution
on Mm×m(R) that was simply truncated to Vm would have an
intractable normalizing constant, making its properties difficult
to assess. This makes direct specification of a meaningful prior
over Vp

m untenable. We therefore, choose to apply a second
reparameterization which maps the partial autocorrelations to
unconstrained Euclidean space.

2.2. Reparameterization via Unconstrained Square
Matrices

In the second reparameterization, each P ∈ Vm is mapped to an
unconstrained square matrix A ∈ Mm×m(R). Generalizing the
one-to-one mapping defined by Ansley and Kohn (1986) so that
it involves arbitrary matrix-square-roots, the forward mapping
is defined as follows. Let

B−1B−1 T = Im − PP T (2)

be a matrix-square-root factorization of Im − PP T. Then write
A = BP . Similarly, for the inverse mapping, let

BBT = Im + AAT (3)

be a matrix-square-root factorization of Im + AAT, then write
P = B−1A. Although Ansley and Kohn define the mapping
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in terms of the Cholesky factorization, we, instead, propose
use of symmetric matrix-square-roots because it gives the new
parameters a more natural interpretation. Specifically, denote
the singular value decomposition of P by P = URV T in
which the diagonal matrix R = diag(r1, . . . , rm) contains the
m singular values. These satisfy 1 > r1 ≥ r2 ≥ · · · ≥ rm ≥ 0.
It is straightforward to show that if symmetric square-roots are
used, the corresponding singular value decomposition of A is
A = UR̃V T in which R̃ = (Im − R2)−1/2R is a diagonal
matrix whose ith diagonal element is r̃i = ri/(1 − r2

i )
1/2 ≥ 0.

It follows that P and A share the same singular vectors and that
the singular values of A are a strictly increasing function of the
singular values of P . Clearly, the same functional relationship
connects their spectral norms, r1 = ‖P ‖2 and r̃1 = ‖A‖2 and
so the relative sizes of ‖As‖2 across lags s can be interpreted as
indicating the relative magnitudes of the partial autocorrelations
at each lag. If the symmetric matrix-square-root factorization
is used in (2) and (3) we can therefore think of this second
reparameterization as an orientation-preserving transformation
from P to A which simply maps the singular values from [0, 1)

to the positive real line. As a direct consequence, the transfor-
mation preserves various meaningful parametric forms whose
singular vectors only depend on the elements of the matrix
through the requisite ordering of the singular values. Specific
examples are detailed below.

From the singular value decomposition of a diagonal matrix
it is clear that P ∈ Vm is diagonal, with jth diagonal element
pjj = pj ∈ [0, 1), if and only if A is diagonal, with jth diagonal
element ajj = pj/(1 − p2

j )
1/2 ∈ R (j = 1, . . . , m). A corollary

is that P is a scaled identity matrix if and only if the same is
true of A. As a special case, when this scaling constant is equal
to zero, P = 0m if and only if A = 0m, where 0m denotes an
m × m matrix of zeros. This is a particularly useful theoretical
result because it follows directly from the definition of the partial
autocorrelation matrix that for k < p, Pk �= 0m and Pk+s = 0m
for s = 1, . . . , p − k if and only if φk �= 0m and φk+s = 0m for
s = 1, . . . , p−k. The order of the VAR model is therefore, k < p
if and only if Ak �= 0m and Ak+s = 0m for s = 1, . . . , p − k. We
return to this point in Section 6.

Now, consider a two-parameter exchangeable matrix defined
by (b − c)Im + cJm where Jm = 1m1T

m and 1m is an m-vector of
1s. This is the most general form for a m × m square matrix
which is invariant under a common permutation of the rows
and columns. It is straightforward to show that a matrix of this
form has a singular value decomposition whose singular vectors
depend only on m and the ordering of the singular values, |b−c|
and |b+ (m−1)c|, which have multiplicity m−1 and 1, respec-
tively. It follows that P ∈ Vm is a two-parameter exchangeable
matrix if and only if the same is true of A. The necessary and
sufficient condition for P = (p1 − p2)Im + p2Jm to lie in Vm
can be expressed as |p′

1| <
√

2/2 and |p′
2| <

√
2/m where

p′
1 = (p1 − p2)

√
2/2, p′

2 = {
p1 + (m − 1)p2

}√
2/m. (4)

It is then straightforward to show that the corresponding
unconstrained square matrix A = (a1 − a2)Im + a2Jm, with
a1, a2 ∈ R, is such that

ai = a∗
i

[
m

{(
2 − m2p′2

2
) (

1 − 2p′2
1
)}1/2]−1

, (5)

where

a∗
i =

{√
2mp′

1
(
2 − m2p′2

2
)1/2}

(2 − i)

− √
2p′

1
(
2 − m2p′2

2
)1/2 + mp′

2
(
1 − 2p′2

1
)1/2 .

3. Prior Distributions over the Unconstrained Space

3.1. General Form

Let vec(·) denote the vectorization operator. Conditional on a
set of unknown hyperparameters, we construct a prior distribu-
tion with joint density

π(�, A1, . . . , Ap) = π(�)

p∏
s=1

π{vec(AT
s )} (6)

in which � is assigned a distribution over S+
m and vec(AT

s )
(s = 1, . . . , p), is assigned a multivariate normal distribution.
Predominantly, our focus in this article is specification of a prior
for the latter.

3.2. Exchangeable Prior Distribution

Consider any m × m orthogonal matrix H . Assuming that
symmetric matrix-square-roots are used in both parts of the
reparameterization of a stationary VARm(p) model for yt
(t = 1, 2, . . .), we show in the supplementary materials that
the parameters of the stationary VARm(p) model for ỹt =
Hyt are �̃ = H�H T and Ãs = HAsH T (s = 1, . . . , p).
It follows that if � and As (s = 1, . . . , p) are assigned a
prior from the same distributional family as that of H�H T

and HAsH T (s = 1, . . . , p), then the prior induced for
(�, �) over S+

m × Cp,m will be closed under orthogonal
transformation of the observation vectors. Priors for � over
S+

m possessing this closure property include the inverse Wishart
distribution and the multivariate normal distribution for the
matrix logarithm, log � (Leonard and Hsu 1992). For vec(AT

i ) ∈
R

m2 , a multivariate normal prior meets this requirement. It is
important to note that if Cholesky factors were used in the first
and second part of the reparameterization, such a prior would
not be available because the partial autocorrelation matrices
P̃s and associated unconstrained Ãs would not be orthogonal
similarity transformations of Ps and As.

In the analysis of multivariate stochastic processes, we often
do not have information, a priori, to distinguish between the m
components of yt . In this case it is reasonable to assign (�, �) a
prior which is exchangeable with respect to the ordering of the
elements in the observation vector. Because of its closure under
orthogonal transformation, we can obtain an exchangeable prior
by restricting our attention to distributions for � and As that
would be exactly the same as the distributions for H�H T and
HAsH T for any permutation matrix H . That is, distributions
for � and As which are invariant under a common permutation
of the rows and columns. Given certain choices of their hyper-
parameters, the (conjugate) inverse Wishart distribution and
the multivariate normal distribution for the matrix-logarithm
can yield an exchangeable prior for �. For instance, we could
assign � an inverse Wishart prior with a (positive definite) two-
parameter exchangeable scale matrix.
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Now, suppose we wish to assign an exchangeable prior to
As = (as,ij) (s = 1, . . . , p). Given the potential for the model
to contain a very large number of parameters, suppose further
that we want to specify a prior that allows borrowing of strength
between the diagonal elements and between the off-diagonal
elements of each As. To this end, we can adopt a prior in which
the diagonal and off-diagonal elements are given hierarchical
distributions. At the top-level, we choose

as,ii | μs1, ωs1 ∼ N(μs1, ω−1
s1 ), (i = 1, . . . , m), (7)

as,ij | μs2, ωs2 ∼ N(μs2, ω−1
s2 ), (i, j = 1, . . . , m with i �= j).

(8)

The mean and precision at the bottom level of the hierarchy can
then be assigned priors on R and R

+, such as

μsi ∼ N(esi, f 2
si ), ωsi ∼ Gam(gsi, hsi), (i = 1, 2). (9)

Marginally, E(as,ii) = es1, var(as,ii) = f 2
s1 + hs1/(gs1 − 1)

(for gs1 > 1) and cor(as,ii, as,jj) = f 2
s1(gs1 − 1)/{f 2

s1(gs1 −
1) + hs1} with similar expressions for the moments of the
off-diagonal elements. Therefore, given specifications for the
common diagonal elements and off-diagonal elements in Ps, one
can calculate corresponding values for the common diagonal
and off-diagonal elements in As through (4)–(5). These can be
taken as values for es1 = E(as,ii) and es2 = E(as,ij). Uncertainty
in these central values, and the proportion of this which is
shared among all the diagonal or all the off-diagonal elements,
can be reflected through choices of the other hyperparameters.
Clearly, specifications which make the marginal variances small
and the marginal correlations large will shrink the posterior so
that it is more concentrated over the space of two-parameter
exchangeable structures.

3.3. Prior Distribution Centered on a Diagonal Matrix

Let yi:j = (yT
i , . . . , yT

j )
T. For each j = 1, . . . , m, suppose

it is believed a priori that once yt:(t−s+1) is known, yt−s,j is
the only element in yt−s which provides further information
about yt+1,j. This is tantamount to a conjecture that the partial
autocorrelation matrix Ps, and hence As, is diagonal; see
Section 2.2. To represent this belief we choose a prior in which
(as,11, . . . , as,mm)T ∼ Nm(es, Fs) for the diagonal elements.
Alternatively, if there was nothing in our prior beliefs to
distinguish among the diagonal elements, and we wanted to
allow borrowing of strength between them, we might adopt the
hierarchical prior in (7) and (9) when i = 1. For the off-diagonal
elements as,ij (i �= j), we can center our prior around zero, whilst
allowing the data to influence the degree of shrinkage toward
zero, by adopting a special case of the hierarchical prior defined
by (8) and (9) in which the distribution for μs2 is a point mass at
zero. Alternatively, as we discuss further in Section 3.4, the off-
diagonal elements could be assigned a sparsity-inducing prior.

3.4. Prior Distribution Encouraging Sparse As Matrices

A VARm(p) model is highly parameterized with O(m2) param-
eters. Indeed, particularly when m is large, it is entirely plausible
for there to be fewer observations in the data than there are
parameters in the model. In a Bayesian analysis, this can lead

to a diffuse posterior distribution for (�, �), making predic-
tive distributions imprecise and complicating model interpre-
tation. When stationarity is not enforced, this issue is often
addressed by inducing sparsity amongst the elements of the
(unconstrained) autoregressive coefficient matrices φ1, . . . , φp,
either through graphical modeling or zero-mean shrinkage pri-
ors (George, Sun, and Ni 2008; Billio, Casarin, and Rossini
2019). The nonzero structure can then be associated with a
directed graph representing a network of interactions because
a zero in position (i, j) of φs implies conditional independence
between yt,i and yt−s,j given (yt−1, . . . , yt−s,−j, . . . , yt−p) where
yt−s,−j = (yt−s,1, . . . , yt−s,j−1, yt−s,j+1, . . . , yt−s,m)T. In princi-
ple, sparsity-inducing priors could also be chosen for the ele-
ments of A1, . . . , Ap in our parameterization, where stationarity
is enforced. Among the partial autocorrelation matrices, a zero
in position (i, j) of Ps implies conditional independence between
yt,i and yt−s,j given y(t−1):(t−s+1). Transforming from Ps to As, an
individual zero in position (i, j) of Ps does not give an individual
zero in position (i, j) of As or vice versa and so sparsity in As
does not have a clear structural interpretation as it would for
Ps or φs. However, the overall size of As is strongly linked to
the overall size of Ps through the strictly increasing relationship
that connects their spectral norms; see Section 2.2. Therefore,
although the justification for a sparsity-inducing prior for the
As is weaker from an explanatory perspective, there is still an
argument for their use as a means of regularizing the variance
of predictive distributions.

A sparsity-inducing, zero-mean scale-mixture of normals
prior would take the form as,ii | ψs,ii ∼ N(0, ψs,ii) with
ψs,ii ∼ F1, independently for i = 1, . . . , m, and as,ij | ψs,ij ∼
N(0, ψs,ij) with ψs,ij ∼ F2, independently for i, j = 1, . . . , m
with i �= j. Here F1 and F2 are mixing distributions which
can either be discrete, as in spike-and-slab priors (Mitchell and
Beauchamp 1988; George and McCulloch 1993), or continuous,
as in the horseshoe (Carvalho, Polson, and Scott 2010; Piironen
and Vehtari 2017).

3.5. Vague Prior via the Parameterization of Roy, McElroy,
and Linton (2019)

Denote by O(m) the space of m × m orthogonal matrices.
Roy, McElroy, and Linton (2019) establish a bijective map-
ping between the parameters of a stationary VARm(p) process
(�, �) ∈ S+

m × Cp,m and the parameter set {�, (V1, . . . , Vp),
(Q1, . . . , Qp)} ∈ S+

m × S+ p
m × O(m)p for any fixed choice

of a pseudo error variance matrix M ∈ S+
m . It relies on a

characterization in terms of positive definite block Toeplitz
matrices, like that describing the variance of the joint stationary
distribution of p consecutive time points. For the special case
when M = �, we show in the supplementary materials that Vi
represents the difference in conditional variances, Vi = var(yt |
yt−1, . . . , yt−i+1) − var(yt | yt−1, . . . , yt−i) (i = 1, . . . , p), and
the orthogonal matrix Qi arises from the polar decomposition
of an affine transformation of the partial autocorrelation matrix
Pi. Unfortunately, this makes the orthogonal matrices difficult
to interpret which impedes specification of a meaningful prior.
Moreover, computational inference is challenging because the
constraints that define O(m) complicate sampling by MCMC.
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For example, attempts to provide a general reparameterization
of Q ∈ O(m) in terms of unconstrained parameters, such as the
Givens representation (Pourzanjani et al. 2021) or Cayley trans-
form (Jauch, Hoff, and Dunson 2020), are typically frustrated
by the pathological effects of mapping between two topologi-
cally distinct spaces. Indeed, as explained in the supplementary
materials, the modified Cayley transform suggested by Roy,
McElroy, and Linton is not bijective, which makes the posterior
of their real-valued parameterization multimodal and can cause
inefficient MCMC simulation. These geometric problems can be
avoided by using Geodesic Monte Carlo (Byrne and Girolami
2013) which is able to sample efficiently from O(m) by tailoring
the Hamiltonian Monte Carlo method to embedded manifolds.
However, there is currently no methodology for automatic tun-
ing of its parameters, nor any modular software for imple-
mentation. This makes it difficult to put into practice through
bespoke MCMC programs and impossible to implement using
probabilistic programming software. Fortunately, in the sup-
plementary materials we present a simple reparameterization
of the parameter set {(V1, . . . , Vp), (Q1, . . . , Qp)} in terms of p
unconstrained square matrices which circumvents the sampling
issue. We show that this is equivalent to assigning independent
uniform distributions over O(m) to the Qs and independent
Wishart distributions to the Vs, with m degrees of freedom and
identity scale, and so it can be regarded as a vague, stationary
prior distribution. This might be attractive to some modelers as
a default choice of prior.

3.6. Choice of Prior Variance

Using the simple example of a VAR2(1) model, we show in
the supplementary materials that the prior for the partial auto-
correlation matrix P1 can become multimodal when the prior
variance for the elements of the unconstrained square matrix A1
becomes too large. For most problems, a multimodal prior for a
partial autocorrelation matrix P is unlikely to be representative
of prior beliefs. To avoid this, care is clearly needed in the choice
of prior variance for the elements of the unconstrained square
matrices.

As discussed in Section 2.2, a partial autocorrelation matrix
P is constructed from the corresponding unconstrained matrix
A = (aij) through a simple mapping of its singular values
from the positive real line to the unit interval. It is reasonable,
therefore, to conjecture that the multimodality that can occur
in the prior for the partial autocorrelations, but not in the
multivariate normal prior for the unconstrained matrices, arises
through this mapping of the singular values. For any m, under
the simple prior aij ∼ N(0, s2) (i, j = 1, . . . , m), we show
in the supplementary materials that the singular values and
right and left singular vectors of P are independent a priori.
Moreover, we show that the singular vectors are distributed as
independent, normalized Haar measures, and derive an analytic
expression for the joint prior density of the singular values.
Arguing that multimodality arises when the singular values have
a local maximum in the interior of their parameter space, we
find the smallest prior standard deviation s of the aij at which
this occurs for various values of m. The conclusion is that a prior
standard deviation of s = 1 should prevent multimodality for
m ≥ 5. Guidance on an upper limit for s when m = 1, . . . , 4 can
be found in the supplementary materials.

4. Posterior Inference through MCMC

Consider observations y1:n modeled as realizations from a
stationary VARm(p) process. The likelihood function can be
expressed as

p(y1:n | �, �) = p(y1:p | �, �)

n∏
t=p+1

p(yt | y(t−p):(t−1), �, �)

in which Y t | y(t−p):(t−1), �, � ∼ Nm
(∑p

i=1 φiyt−i , �
)

and
the initial distribution is (YT

1, . . . , YT
p)

T | �, � ∼ Nmp(0, G)

where G is a positive definite block Toeplitz matrix with �j−i as
the block in rows {m(i−1)+1} to mi and columns {m(j−1)+1}
to mj (i, j = 1, . . . , p) and �−k = �T

k (k = 1, . . . , p − 1). For the
purposes of evaluating the likelihood, the stationary variance �0
and covariances �1, . . . , �p−1 are available as a by-product of the
reverse mapping detailed in the Appendix.

Treating the likelihood as a function of the new parameters
and combining it with the prior (6) through Bayes’ theorem
yields the posterior distribution as

π(�, A1, . . . , Ap, ϑ | y1:n)

∝ π(�)π(ϑ)

p∏
i=1

π{vec(AT
i ) | ϑ}p(y1:n | �, A1, . . . , Ap),

in which ϑ denotes any unknown hyperparameters in the
prior for the As. As each of the autoregressive coefficients
φs is a complicated function of the complete set of new
parameters, {�, (A1, . . . , Ap)}, this posterior distribution
neither has a standard form, nor admits any simple factorization
that would arise from conditional independence amongst
{�, (A1, . . . , Ap)}. As a consequence, it is ill-suited to MCMC
methods that are based on Gibbs sampling. Indeed, our experi-
ence suggests that Metropolis-within-Gibbs samplers, which
iterate through random-walk updates of (� | A1, . . . , Ap),
(A1 | A2, . . . , Ap, �), . . ., (Ap | A1, . . . , Ap−1, �), perform
very poorly as soon as p > 1. It is therefore, beneficial to use
a sampler such as Hamiltonian Monte Carlo (HMC) (Girolami
and Calderhead 2011; Neal 2011) which uses information on
the slope of the logarithm of the posterior density to generate
global proposals that update all parameters simultaneously. We
use rstan (Stan Development Team 2020), the R interface
to the Stan software, to implement the HMC algorithm. Stan
requires users to write a program in the probabilistic Stan
modeling language, the role of which is to provide instructions
for computing the logarithm of the kernel of the posterior
density function. The Stan software then automatically sets up a
Markov chain simulation to sample from the resulting posterior.
This includes calculation of the gradient of the logarithm of the
posterior density, random initialization of the chains, and the
tuning of the sampler.

5. Application

In this section, we illustrate use of our exchangeable prior and
inferential methods by applying them to a quarterly time series
of U.S. macroeconomic data. The complete dataset comprises
measurements on 168 variables, running from quarter 1 of 1959
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to quarter 4 of 2007. The variables are transformed to station-
arity by differencing, sometimes after applying a log transfor-
mation, and then standardized, so it is reasonable to model
the data as arising from a zero mean stationary process. A
full description of the data and transformations can be found
in Koop (2013). Following analyses of the same data in Koop
(2013) and Koop and Korobilis (2009), interest lies primar-
ily in forecasting the first three variables: real GDP, the con-
sumer price index, and an interest rate (Federal funds). Like
these original analyses, we consider a small VAR3(4) model and
two larger VAR10(4) and VAR20(4) models, where the original
three variables are supplemented by an additional 7, then a
further 10, which are thought to have forecasting value. A list
of these variables can be found in the supplementary materials.
In order to assess the forecasting properties of the models,
we fitted the models using data y1:n where n = 156 and
held back the last 40 observations y(n+1):(n+40) in all analyses.
This allowed us to base our measures of forecasting perfor-
mance on the posterior predictive distribution of the held-back
data.

When it is reasonable to assume that a process is stationary,
one of the problems of fitting an unconstrained VAR model is
that some posterior mass often lies outside the stationary region.
Typically, this is due to a combination of model misspecification
and epistemic uncertainty in the parameter values that cannot
be resolved by the data that have been observed. Therefore, to
demonstrate the practical benefits of using our stationary prior,
we additionally consider two commonly used priors that do
not constrain inference to the stationary region. Specifically, we
compare (i) the exchangeable, stationary prior from Section 3.2
to: (ii) a Minnesota prior; (iii) a semi-conjugate prior, which
takes the form π(�, �) = π(�)π(�), where vec(φk) ∼
N(uk3, Wk3) independently for k = 1, . . . , 4 and � ∼ IW(m +
4, Im). Clearly, for the latter two analyses, the time series cannot
be initialized at the stationary distribution, and so we simply
condition on the first p = 4 observations in the time series.
For the exchangeable, stationary prior, we choose correlations
of 0.7 between diagonal and between off-diagonal elements to
facilitate borrowing of strength between elements. Under the
Minnesota prior, the autoregressive coefficients are assigned
a multivariate normal distribution, vec(φk) ∼ N(uk2, Wk2)
independently for k = 1, . . . , 4, and the error variance matrix
� is replaced by an estimate �̂ = diag(s2

1, . . . , s2
m), where s2

j is
the ordinary least-squares estimate of the error variance in the
(univariate) autoregression for variable j. The prior mean uk2 is
chosen so that E(φk,ij) = 0 if i �= j and the prior variance Wk2 is
taken to be diagonal; generally different variances are chosen for
the φk,ii and the φk,ij for i �= j and the variances decrease as the
lag k increases. The idea is to encourage shrinkage toward a sim-
ple set of low order univariate AR models with the objective of
reducing the epistemic component of the forecast variance. The
complete prior specifications are provided in the supplementary
materials.

Even when inference is constrained to the stationary region,
without appropriate borrowing of strength between parameters,
posterior predictive distributions can still be overly diffuse,
especially when m is large. We therefore demonstrate the useful
regularization effect that our exchangeable prior can provide by
considering two further analyses where stationarity is guaran-

teed, but where there is no shrinkage toward a sensible para-
metric structure. In particular, we consider: (iv) the modified
reparameterization of Roy, McElroy, and Linton (2019), and its
associated vague prior, described in Section 3.5; (v) a frequentist,
maximum likelihood analysis using the partial autocorrelation
reparameterization of Ansley and Kohn (1986) that is based on
Cholesky factors rather than symmetric matrix-square-roots.

To fit the model under the exchangeable, stationary prior,
the semi-conjugate prior and the vague, stationary prior we
used HMC implemented by Stan. For all three datasets and all
three priors, we used the rstan interface to the Stan software
to run four chains, initialized at different starting points, for
2000 iterations, half of which were discarded as burn-in. The
usual graphical and numerical diagnostics gave no evidence
of any lack of convergence and, after pooling the chains, the
effective sample size was at least 1262 for every parameter. The
Minnesota prior is conjugate and so the posterior distribution
can be computed analytically; see, for example, chap. 2 of Koop
and Korobilis (2009) for its closed form. We generated 4000
independent draws from this distribution to allow calculation
of the sample-based statistics described below. Model-fitting
by maximum likelihood was also carried out using Stan which
implements numerical maximization of the log-likelihood func-
tion by the quasi-Newton algorithm L-BFGS. We note that when
m = 20 the algorithm repeatedly failed to converge when
initialized randomly and convergence was only achieved after
initializing at the posterior mean deduced from the analysis
under the exchangeable, stationary prior. The four Stan pro-
grams are given in the supplementary materials.

To assess the forecasting performance of the various model-
prior combinations we consider a variety of forecast horizons:
h = 1, 2, 4, 8, ranging from short-term, one-quarter-ahead
forecasting (h = 1) to longer-term, two-year-ahead forecasting
(h = 8). For the comparison of h-step-ahead predictions, we
use a number of proper scoring rules (Gneiting and Raftery
2007), and the posterior for the empirical mean squared fore-
cast error (MSFE) for each variable of interest. The MSFE is
designed to measure the accuracy and precision of point fore-
casts, being based on the mean squared deviation between yt
and its expectation given y1:(t−h) across the hold-out period,
t = n + h, . . . , n + 40. Proper scoring rules compare the
whole forecast distribution with the observation that arises;
by assigning a numerical score, this allows competing forecast
distributions to be ranked. At every t = n + h, . . . , n + 40
these scores are based on the h-step-ahead posterior predictive
distribution at time t, which is then averaged across the hold-out
period. We chose two widely used scores to assess forecasting
performance for the three variables of interest, individually: the
continuous rank probability score (CRPS) and the logarithmic
score. We additionally compare joint forecasts of the three vari-
ables of interest by computing the energy score (ES), which
is a multivariate generalization of the CRPS. In all cases, the
scores are negatively oriented so that small values indicate better
forecasting performance. Further details on the calculation of
the MSFE and the proper scoring rules, along with their adap-
tation for the maximum likelihood analysis, can be found in the
supplementary materials. For each value of m and each prior, the
values of the one-step-ahead (h = 1) CRPS, ES and posterior
mean MSFE are shown in Figure 1, along with approximations
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Figure 1. For each value of m and each prior: one-step-ahead CRPS for variable k (CRPSk ); one-step-ahead ES; posterior mean one-step-ahead MSFE for variable k (MSFEk );
posterior probability that � ∈ C4,m (Pr(Stat.)). The priors are: exchangeable and stationary (•); Minnesota (�); semi-conjugate (�); vague and stationary prior (+). Also
shown are analogous statistics based on the stationary MLE (Ansley and Kohn 1986) (�).

of the posterior probability that � ∈ C4,m. Analogous plots for
the one-step-ahead logarithmic scores, which showed similar
patterns to the CRPS, and for all metrics at the other horizons
h = 2, 4, 8 can be found in the supplementary materials.

For each value of m, and under all metrics, it is noticeable
from Figure 1 that the exchangeable, stationary prior performs
consistently well, especially when m = 20, where it is ranked
as best by all criteria. The Minnesota prior also forecasts well
in this one-step-ahead setting. The frequentist forecasts appear
successful in terms of the MSFE, but their performance is ranked
worst by the proper scoring rules. Since these forecasts ignore
epistemic uncertainty in the parameter values, it is likely that
this is because the forecast distributions are overly concentrated.
The semi-conjugate prior and the vague, stationary prior per-
form poorly according to all metrics, which is likely because of
the lack of structure imposed by modeling assumptions, in the
former case, or encouraged by the prior, in the latter case, lead-
ing to very diffuse predictive distributions. Additional figures
in the supplementary materials reveal how the performance of
the various predictive distributions changes moving from one-
quarter-ahead forecasts to up to two-year-ahead forecasts. Over
longer time horizons h, the exchangeable, stationary prior is the
only one whose performance is consistently strong according
to all metrics, especially when m = 10 and m = 20 where

differences to other forecasts are most apparent. The perfor-
mance of the frequentist forecasts continue to appear successful
in terms of the MSFE, but less so under the proper scoring rules.
In contrast, the performance of the Minnesota prior deteriorates
rapidly as h increases, possibly due to its use of a fixed diagonal
error variance matrix. As the forecast horizon increases, it is
interesting to observe how the behavior of the forecasts under
the priors which do and do not enforce stationarity change
with m. Under the stationarity-enforcing prior distributions,
performance is generally similar, and sometimes better, going
from m = 10 to m = 20. However, under the priors which
do not enforce stationarity, there is a marked deterioration in
forecasting performance. As m increases from 10 to 20, the
approximate posterior probability that � lies inside the station-
ary region decreases from 0.8125 to 0.0000 under the Minnesota
prior and from 0.8413 to 0.0000 under the semi-conjugate prior.
At least in part, this is likely to be due to epistemic uncertainty
spilling outside the stationary region, whose volume becomes
vanishingly small when p or, in this case, m become large;
see Section 1. When the parameters of a VARm(p) model lie
outside the stationary region, the forecast variance increases
without bound into the future. Therefore, one might reason-
ably conjecture that it is this greater concentration of poste-
rior mass outside the stationary region that leads to the more
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noticeable deterioration in forecasting performance when infer-
ence is not constrained to the stationary region. This suggests
that using a constrained prior distribution may be even more
important in problems where m or p are large. Moreover, the
better performance of the exchangeable, stationary prior over
the vague, stationary prior illustrates the benefits of adopting a
prior which encourages shrinkage toward sensible parametric
structures.

6. Discussion

It is straightforward to extend the reparameterization and prior
presented here to VARMA models. Consider the model of order
(p, q), or the VARMAm(p,q) model, θ(B)εt = φ(B)yt , where
θ(u) = Im+θ1u+· · ·+θquq, u ∈ C, is the characteristic moving
average polynomial, in which θi ∈ Mm×m(R) (i = 1, . . . , q).
As for VARm(p) models, the process is stable if and only if
all the roots of det{φ(u)} = 0 lie outside the unit circle.
It is invertible if and only if all the roots of det{θ(u)} = 0
lie outside the unit circle, and hence the invertible region is
Cq,m. We can therefore, constrain inference to the stationary
and invertible regions simultaneously by reparameterizing the
model in terms of two sets of matrices with singular values less
than one. In other words, we can apply the recursions described
in the Appendix twice; once as if we had a pure VARm(p)
model with coefficients φ1, . . . , φp and variance � to get
P1, . . . , Pp, and again as if we had a pure VARm(q) model with
coefficients −θ1, . . . , −θq and variance � to get, say, R1, . . . , Rq.
Unfortunately, interpretation of the new parameter sets is a little
less clear; the Ps represent the partial autocorrelation matrices
of the autoregressive part of the process, and the Rs represent
a multivariate analogue of the inverse partial autocorrelation
function (Bhansali 1983) for the moving average part of the pro-
cess. In each case, the second transformation from Section 2.2
can be used to map the parameters to unconstrained Euclidean
space. Details on inference are given in the supplementary
materials.

The ideas discussed in this article can also be extended to
VAR models of unknown order. This might be useful when there
is little prior information to guide the choice of p. At least in
theory, allowing for uncertainty in the model order is easy to
handle in the Bayesian framework. Suppose we are prepared
to consider models where the order does not exceed pmax. We
can then make the model order, say k, unknown and assign it a
prior over {0, . . . , pmax}. As discussed in Section 2.2, the vector
autoregression is of order k < pmax if and only if Ak �= 0m
and Ak+s = 0m (s = 1, . . . , pmax − k) and so the models of
different orders are nested. Various transdimensional MCMC
samplers have been developed for problems like these, where
the dimension of the parameter space is itself unknown. In the
context of univariate autoregressions, this includes reversible
jump MCMC (Green 1995) and birth-death MCMC (Stephens
2000), with samplers that both do, and do not, enforce station-
arity (e.g., Vermaak et al. 2004; Philippe 2006). The advantages
of tackling this problem with our reparameterization of the
VARm(p) process is that it allows stationarity to be enforced
whilst maintaining the nested structure of the models from the
original parameterization. We defer further consideration of
this interesting challenge to future work.

Supplementary Materials

Supporting information: Proofs of the forward and reverse mappings,
additional plots, simulations and text illustrating properties of the prior,
full details of the modified parameterization of Roy, McElroy, and Lin-
ton (2019) and its vague prior, a complete description of the extension of
the reparameterization and prior to VARMA models and further details
on the application to macroeconomic data. (.pdf file)

Data, R code and Stan programs: The macroeconomic data and R scripts
for preprocessing and running Stan, four Stan programs for fitting
the VARm(p) models in the application, and a fifth for fitting a
VARMAm(p,q) model with a prior that constrains inference to the
stationary and invertible regions. (.zip archive file)
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