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Abstract
Quantum annealing, a method of computing where optimization and machine learning problems are mapped to physically

implemented energy landscapes subject to quantum fluctuations, allows for these fluctuations to be used to assist in finding

the solution to some of the world’s most challenging computational problems. Recently, this field has attracted much

interest because of the construction of large-scale flux-qubit based quantum annealing devices. These devices have since

implemented a technique known as reverse annealing which allows the solution space to be searched locally, and algo-

rithms based on these techniques have been tested. In this paper, I develop a formalism for algorithmic design in quantum

annealers, which I call the ‘inference primitive’ formalism. This formalism naturally lends itself to expressing algorithms

which are structurally similar to genetic algorithms, but where the annealing processor performs a combined

crossover/mutation step. I demonstrate how these methods can be used to understand the algorithms which have already

been implemented and the compatibility of such controls with a wide variety of other current efforts to improve the

performance of quantum annealers.

Keywords Quantum annealing � Applied algorithms � Evolutionary algorithms � Unconventional computing

Mathematics Subject Classification 68W99

1 Introduction

The quantum annealing algorithm (QAA) (Finilla et al.

1994; Kadowaki and Nishimori 1998; Kaminsky and Lloyd

2002, 2004; Kaminsky et al. 2004) has been demonstrated

to be a promising candidate for a vast number of real-world

problems. The potential applications are too numerous to

list here, but include fields as diverse as aerospace (Coxson

et al. 2014), computational biology (Perdomo-Ortiz et al.

2012), neural networks (Amin et al. 2018; Benedetti et al.

2016, 2017; Adachi and Henderson 2015), pure computer

science (Chancellor et al. 2016), and economics (Marzec

2016). In this manuscript, I discuss a formalism which can

represent general control of quantum annealers. I demon-

strate how this formalism can be used to design new

algorithms based on multiple calls to a quantum annealer.

More generally, this formalism represents hybrid analog-

digital computation, but I restrict the discussion in this

paper to quantum annealing applications, except for a brief

discussion on how it can be related to classical Monte

Carlo algorithms. For a review of quantum annealing, and

the related field of adiabatic quantum computation, see

Albash and Lidar (2018). For an outlook on the opportu-

nities and challenges for quantum annealing, see Biswas

et al. (2017).

The QAA as it is usually structured starts from a

superposition state representing all possible solutions. The

system is then annealed and quantum fluctuations are

introduced through competition between a problem

Hamiltonian and a ‘driver’ Hamiltonian which does not

commute with the problem Hamiltonian

HðsÞ ¼ AðsðtÞÞHdriver þ BðsðtÞÞHproblem; ð1Þ

where 0� s� 1 is the annealing parameter which controls

the annealing schedule, A(s(t)), B(s(t)), which are chosen

such that
Að0Þ
Bð0Þ � 1 and

Bð1Þ
Að1Þ � 1, and both A and B behave
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monotonically with s. In traditionally formulated quantum

annealing, s is also a monotonic function of t, but to con-

struct the protocols here, I will consider cases where s is a

non-monotonic function of t, as was discussed in Chan-

cellor (2017). The problem Hamiltonian is usually chosen

to be an Ising model,

HProblem ¼ �
X

i

hir
z
i �
X

i;j2v
Jijr

z
ir

z
j ; ð2Þ

with field variables hi and coupler variables Jij. Ising

model-based annealing architectures were first proposed in

the context of closed quantum systems by Kadowaki and

Nishimori (1998) and later generalized to open quantum

systems by Kaminski et al. (2002, 2004). In this paper I

consider open system quantum annealing, where tunneling

mediated by these fluctuations is driven by a low temper-

ature thermal bath. One example of a driver Hamiltonian is

the transverse field driver which is currently implemented

on the annealers produced by D-Wave Systems

Inc. (2018).

Hdriver ¼ �
X

i

rxi ð3Þ

I also consider more general multi-body driver Hamilto-

nians of the form

Hdriver ¼
X

i

ci
Y

j2Ri

rð/iÞ
j ð4Þ

where, ci is a positive real number which determines the

strength of the coupling, Ri is a set of qubits, and

rð/Þj ¼ ðexpði/Þ aj þ expð�i/Þ ayj Þ;

where a ¼ 0 1

0 0

� �
is a lowering operator operator such

that rx ¼ aþ ay. The reason such drivers are of interest is

that they are able to introduce a sign problem in quantum

Monte Carlo simulations if no basis exists for which all off

diagonal terms are negative (Bravyi et al. 2008; Bravyi and

Tehral 2009). No other method is known for large scale

low temperature simulations of this class of Hamiltonians,

which is called non-stoquastic (Bravyi 2014) (conversely,

Hamiltonians where a basis exists with all negative off

diagonal elements is called stoquastic). Because of this

increased difficulty in simulation, it is widely suspected

that quantum annealing with non-stoquastic drivers is more

powerful than quantum annealing with stoquastic drivers.

However recent work has emphasized the computational

power of stoquastic drivers (Hastings 2020), and obstruc-

tions to complete emulation using quantum Monte Carlo

have been known for some time (Andriyash and Amin

2017; Hastings 2013).

Table 1 List of quantities and their definitions, I use piping symbols jHj to refer to the length of a list, so for instance |R| means the number of

elements in the list R

Quantity Definition Properties

R Set of list of bits involved in each cluster Ri ¼ fm : m 2 ZNbits
g, jRj �Nbits

S Inferred value for each bit Si 2 f�1; 1g, jSj ¼ Nbits; SðRiÞ ¼ fSm : m 2 Rig
P Uncertainty in the value of each cluster of bits mi Pi 2 ½0; 0:5�, jPj ¼ jRj
G List of solution candidates Gj ¼ fq : fqj 2 f�1; 1gg; jqj ¼ Nbitsg, jGj ¼ Nout

E Solution candidate energies Ej ¼ Gj j Hproblem j Gj

� �
, jEj ¼ Nout

G Set of different G Gk ¼ G, jGj ¼ Ninputs

E Set of different E Ek ¼ E, jEj ¼ Ninputs

~G ~G ¼
S

r Gr ¼ G1 [ G2 [ ::: j ~Gj ¼ Nflat ¼ Ninputs Nout,

~E ~E ¼
S

r Er ¼ E1 [ E2 [ ::: j ~Ej ¼ Nflat ¼ Ninputs Nout

~GðuÞ List of all unique solution candidates in ~G ~G
ðuÞ
i ¼ fq : fqj 2 f�1; 1gg; jqj ¼ Nbitsg, jGðuÞj ¼ Nu

~EðuÞ Unique solution candidate energies j ~EðuÞj ¼ Nu

F Map from G and E to P and S given R F : fG; E;Rg7!fP; Sg
U Inference primitive U : fP; S;Rg7!fG;Eg
W Weighting factor sometimes used to calculate P Eqs. 9, 10

Ŵ Energy dependent part of weighting factor W Eq. 10

�W Bit value dependent part of W Eq. 10

~GkðlÞ Notational shorthand used with ~G and ~GðuÞ ~GkðlÞ ¼ fxl : x ¼ ~Gkg
~Gj½Ri� Notational shorthand used with ~G and ~GðuÞ ~Gk½Ri� ¼ f ~GjðyÞ : y 2 Rig
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Recall that the QAA as it is usually formulated starts

from an equal superposition of all classical solutions,

meaning that there is no way to incorporate existing

knowledge about the solution, neither from previous

annealing runs nor from different algorithms. One way

around this deficiency is to use algorithms based on local

searches (Chancellor 2017; Amin and Johnson 2015)

around a candidate solution rather than global searches

which start from a superposition of all classical solutions.

In particular, Chancellor (2017) includes proof-of-principle

numerical experiments which demonstrated how such

techniques may assist in a search. Reverse annealing has

now been added as a feature of D-Wave devices which is

available to remote users (D-Wave Systems Inc. 2019).

Since the introduction of the reverse annealing feature,

there have been many promising proof-of-concept experi-

ments to demonstrate its computational power. For exam-

ple priming a reverse annealing algorithm with the result of

a gradient decent algorithm (Venturelli and Kondratyev

2019) found that portfolio optimisation problems could be

solved about 100 times faster. In Ottaviani and Amendola

(2018) it was found that using a simple iterative strategy

with reverse annealing D-Wave devices were able to solve

non-negative matrix factorization problems which were not

solved by simple forward annealing. A similar improve-

ment for the same problem has also recently been observed

in Golden and O’Malley (2020). Finally, it has been

observed that by using reverse annealing to aid with

mutation (as opposed to the methods discussed later which

perform both mutation and crossover), the performance of

a genetic algorithm in finding global optimum of spin

glasses can be improved (King et al. 2019). The algorithm

proposal have been called Quantum Assisted Genetic

Algorithms (QAGA) With the exception of the last

example, these are all incredibly simple applications of the

protocol, as I demonstrate later using the inference primi-

tive formalism developed in this paper. In spite of their

simplicity these still could yield a large improvement,

hinting at the potential power of more sophisticated algo-

rithms and more control.

There are also alternate formulations which pre-dates

the proposals in Chancellor (2017), Amin and Johnson

(2015) which allow an initial guess (Perdomo-Ortiz et al.

2011; Duan et al. 2013; Graß 2019) to be incorporated into

a closed system adiabatic quantum protocol. While proto-

cols based on these techniques can also be represented with

the inference primitive formalism, for this paper I will

restrict the discussion to the local search formulation in

Chancellor (2017). It also may be fruitful to explore con-

nections to recent work exploring the use of a reinforce-

ment algorithm (Ramezanpour 2017) in quantum

optimization, although such a study is beyond the scope of

this work.

In addition to representing the protocols in Chancellor

(2017), I show that the formalism demonstrated here rep-

resents a more generalized control strategy which includes

annealing the qubits independently. Such additional free-

dom allows for the annealer to accept individual uncer-

tainty values for each bit, or cluster of bits in the case of

multi-body drivers.

This formalism can be used to demonstrate a new way in

which a combined crossover mutation step for genetic-like

algorithms can be constructed using these individual

uncertainty values. Generic algorithms, originally proposed

by Holland (1975) are a powerful optimization tool based

on combining different solutions to difficult optimization

problems to obtain a solution with the best features of both.

For an overview of the field, see Vikhar (2016), Srinivas

and Patnaik (1994), MacKay (2003), and for some exam-

ples of applications see Deng and Fan (1999), Fogel

(1994).

The idea of using an annealer for genetic algorithms is

not new: in addition to the QAGA proposal in King et al.

(2019), Coxson et al. (2014) experimentally demonstrated

that a D-Wave device can successfully aid these algorithms

in finding radar waveforms before the development of

reverse annealing. The method I propose for genetic like

algorithms, however, is completely general, and only

requires that an annealer be able to realize a problem

Hamiltonian, rather than a potentially more complex

directed mutation Hamiltonian (the details of the methods

used in Coxson et al. (2014) were not published, so it is not

possible to know what the precise requirements would be).

The structure of this paper is as follows. In Sect. 2 I

discuss the inference primitive formalism, how it relates to

quantum annealers, and demonstrate how previously

known algorithms such as the traditional QAA and those

proposed in Chancellor (2017) may be represented using

inference primitives. I also discuss how the recent experi-

ments can be represented using this formalism. In Sect. 3 I

discuss how annealer based genetic-like algorithms may be

represented in this formalism and how it may be used to

add genetic components to the algorithms proposed in

Chancellor (2017). I also contrast my formulation (which

combines mutation and crossover as a call to the annealing

processor followed by post-processing) with traditional

genetic algorithms and the QAGA methods (King et al.

2019). This is followed by a discussion in Sect. 4 about

how the control represented in the inference primitive

formalism is compatible many other recent advances in the

field, including synchronization of freezing 4.1, higher

order drivers, including non-stoquastic drivers 4.2, and

belief propagation methods used to represent graphs larger

than the hardware 4.3. Finally in Sect. 5 I conclude with

some overall discussion.

Modernizing quantum annealing...
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2 Inference primitive

Consider a high level description of a subroutine U which

performs a guided search of an energy landscape based on

known information about likely solutions. I will call such a

subroutine an inference primitive, as it is designed to infer

the correct solution based on input information. The

inference primitive will be supplemented by information

processing which determines the parameters to give each

call to the primitive, I will call this the processing function

F . I will demonstrate later in this section that U can be a

high level description of a call to a quantum annealer, with

F representing classical information processing used

within a hybrid algorithms. I will also formally define both

U and F .

Before discussing the formalism further, I will motivate

the use of this formalism to represent control of quantum

annealers. It has recently been demonstrated in Chancellor

(2017), that global transverse fields can be used to control

the range of local search in solution space. Building on this

idea, application of different transverse fields locally will

cause an algorithm to search different ranges in different

directions in solution space. In this way, the strength of

local transverse fields can encode bitwise certainty of a

solution. In fact, algorithms based on an extreme version of

this have already been implemented (Karimi and Rosen-

berg 2017; Karimi et al. 2017), in which, based on previous

solution statistics, qubits are either treated as taking fixed

values (absolute certainty), or annealed using a traditional

protocol (absolute uncertainty). To implement a protocol

which incorporates local uncertainty, I generalize the

methods given in Chancellor (2017), to allow different

qubits to be annealed to different points s0i, as depicted in

Fig. 1.

In this paper, I will not focus on how to construct

heuristics which relate uncertainty to transverse field

strengths, but rather examine how algorithms can be

designed and represented, assuming a suitable heuristic has

been developed. I provide an example of a very simple

heuristic in appendix 1. This heuristic is only intended as

an example of how these quantities can be related, and may

be too simplified to perform well in the real world. Alter-

native heuristics could be based on experimental local

temperature estimates using the methods of Raymond et al.

(2016), or by adaptations of the methods to estimate a

global effective temperature used in Benedetti et al.

(2016). For the remainder of this work, I will assume that a

suitable heuristic, s0iðfPgÞ, where the set notation has been

used to emphasize that in general this parameter may also

depend on the uncertainty Pi 2 ½0; 0:5� of neighbouring

qubits as well.

I have motivated the high level description of a quantum

annealer as an inference primitive U, now I must further

motivate that suitably chosen processing functions F will

be able to appropriately extract uncertainty information

from the output data of a quantum annealer. To do this, I

consider the problem of finding the ground state of a

0

1
s

t

reprogram

s’(Pi)

s’(Pj)

Fig. 1 Annealing schedule for inference primitive protocol. This is

the same as in Chancellor (2017) except that individual qubits are

annealed back to different values of s. Qubits are annealed first with a

simple Hamiltonian to program an initial state, then the Hamiltonian

is reprogrammed to the problem Hamiltonian and each qubit (or

multi-qubit driver) is annealed back to s0ðPiÞ, where Pi is a measure of

the uncertainty of a qubit value. The qubits are then annealed back

toward s ¼ 1, each starting its anneal when the other bits reach the

same value of s. For s0i ¼ 0 (red, light gray in print), setting the initial

value is unnecessary, as no information about the qubit value is

known

Fig. 2 Historgam of Pi for spin values obtained by the ‘traditional’

QAA on 1500 instances of spin glass problems described by Eq. (6)

with n ¼ 17, (1500� ðn� 1Þ ¼ 24; 000 data points). Data are based

on PIQA runs with T ¼ 0:8246 and s ¼ 20 using the same numerical

methods as the proof of principle in Chancellor (2017). Blue (light

gray in print) bars are cases where Si found by Eq. (7) agrees with the

true ground state, red (dark gray in print) are cases where it does not,

and unfilled bars are total counts

N. Chancellor
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Sherrington-Kirkpatrick like spin glass (Sherrington and

Kirkpatrick 1975):

HSK ¼ �
Xn

i\j

Jijr
z
ir

z
j ; ð5Þ

where each Jij is selected uniformly randomly from the

range ½�1; 1�. All energy eigenstates of such Hamiltonians

will be at least two fold degenerate because of total spin

inversion symmetry. To break this symmetry I fix the last

spin to be in the down orientation. This transformation

results in the following effective n� 1 spin Hamiltonian.

H0SK ¼ �
Xn�1

i\j

Jijr
z
ir

z
j þ
Xn�1

i¼1
hir

z
i ; ð6Þ

where hi ¼ Jin. For the proof-of-principle I generate 1500

such Hamiltonians with n ¼ 17. I then run Path Integral

Quantum Annealing (PIQA) 1001 times for each such

Hamiltonian, following the methods used in Chancellor

(2017), which were adapted from those in Martonak et al.

(2002), but with T ¼ 0:8246, s ¼ 20 and P ¼ 30. For each

spin within each Hamiltonian, I compare the average value

of the annealer output to a simple certainty value Pi cal-

culated using

Si ¼ sgnð
XN

j¼1
GjÞ; ð7Þ

Pi ¼
PN

j¼1 dGj;�Si
N

; ð8Þ

where G consists of the list of the 1001 solutions returned

by PIQA (Gi 2 f1;�1g). I then break these spins up into

two categories, those where Si found by Eq. (7) agrees with

the true solution found by exhaustive classical search, and

those where it does not. As Fig. 2 clearly shows, the larger

the value of Pi becomes, the more likely it is that the bit

value is incorrect. Therefore the statistics of our simulated

quantum annealer outputs not only information about the

probable value of a bit in a given solution, but also about

the relative certainty of different bit values. How effec-

tively this information is used depends on the heuristic

used in F , I discuss a few examples of how F could be

constructed in Sect. 3.1.

2.1 Definitions

I now define a mathematical representation of the compu-

tational subroutine I have described earlier. Firstly I con-

sider a system of Nbits bits. To simplify some mathematical

definitions which I will give later and for consistency with

spin Hamiltonian definitions, I allow these bits to take

values f1;�1g, rather than f1; 0g. I further define clusters

Ri which each consist of a unique, non-empty set of these

bits, as represented in Fig. 3a.

I also define an inference primitive U, which takes as

inputs a list of guesses for the value of the bits, S, as well as

uncertainty values P for each cluster in R. An inference

primitive in turn outputs a list of solution candidates G, and

a list of associated energies for each candidate E. Each

solution candidate consists of Nbits numbers, each corre-

sponding to a bit value of f1;�1g. The energy value Ei ¼
Gi j Hproblem j Gi

� �
tells how optimal each solution value

is, where lower values indicate a higher level of optimality.

Lists G and E must have the same length, which I refer to

as Nout. Figure 3b represents an inference primitive visu-

ally. In practice, the role of U will be played by a call to an

analog computational element, in the case of this paper, a

quantum annealer.

In the absence of multi-bit clusters, S and P could be

defined as a single ‘mean’ bit value for each bit which

could be written as vi ¼ ð1� PiÞ Si 2 ½�1; 1�. However,

this notation does not easily generalize to include multi-bit

clusters, and therefore I represent S and P as distinct

quantities where jSj � jPj. Parametrizing in terms of S and

P is natural as these two quantities map to different control

parameters within an annealing protocol.

In addition to the inference primitive, I also define a

mathematical function which I call the processing function

F . This function takes as its input a list of lists G, each

element of which is a list G of solution candidates. This

function likewise takes E as an input, which is a list of lists

E of the associated energies for each solution candidate.

The lists G and E must have the same length which I call

Ninputs. Generally, G and E will be allowed to be empty

(Ninputs ¼ 0). This function outputs a list of guesses for the

Fig. 3 Visual explanation of functions used within an inference

primitive protocol. a Sets of one or more bits (black circles) fRg
represented by green ovals, b inference primitive U, c processing

function F . All quantities are defined in Table 1.

Modernizing quantum annealing...
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values of each of the bits S, and an uncertainty value P for

each cluster in R. A processing function is represented

visually in Fig. 3c.

I have now defined an inference primitive U, the outputs
of which can be used to construct the inputs of a processing

function F , in turn the outputs of F can be used as the

inputs of U. The mathematical functions and their associ-

ated inputs and outputs define the basic structure of the

inference primitive framework, these mathematical func-

tions can be expressed diagrammatically as depicted in

Fig. 3 and this diagrammatic representation can be used to

express sophisticated protocols as discussed in Sects. 2.2

and 3.2.

It is useful to give a few more definitions of mathe-

matical quantities which will become important in specific

examples which I will give later in this paper. In particular,

to define ways in which G and E can be reduced to lists,

rather than lists of lists. I first consider ‘flattened’ versions

of the lists G and E, ~G ¼ G1 [ G2 [ ::: and
~E ¼ E1 [ E2 [ :::, both will have length Nflat ¼ Ninputs Nout.

These flattened versions contain all of the information

within the original lists G and E except for information

about where each solution candidate came from. As I will

discuss later, many processing functions may be con-

structed for which information about where each solution

candidate originated is not important. A second pair of

useful quantities is the list of unique solution candidates in
~G, and their associated energies. I label these quantities

~GðuÞ and ~EðuÞ, with a new length Nu�Nflat.

As a convention, for ~G and ~GðuÞ, which are both solution

candidate lists, I use a subscript to refer to the solution

number and put the list of bits to be considered as a

functional argument. For instance ~GjðiÞ is the value of the

ith bit in solution candidate number j. Alternatively, ~Gj½Ri�
is the list of all of the bit values over the cluster Ri in

solution candidate number j. For S, which only has a bit

index, I use the subscript to refer to the bit cluster, so for

instance Si refers to the value of the inferred bit value of bit

i and while SRi
refers to the list of inferred bit values on the

cluster Ri, expressed mathematically SRi
¼ fSx : x 2 Rig.

For single bit clusters, the solution candidates can be

divided into two groups based on the value of the bit. For

multi-bit clusters the picture is more complicated, one

quantity which I will demonstrate later is convenient to

define is a weighting factor, Wð ~Ej; ~Gj½Ri�; SjÞ which

weights the importance of each state to calculating P for

the cluster. Based on these weighting factors, I define

Pi ¼ min

P
Mj\0 Wð ~Ej; ~Gj½Ri�; SRi

Þ
P
8j Wð ~Ej; ~Gj½Ri�; SRi

Þ
; 0:5

 !
; ð9Þ

where Mj ¼
P

k2Rj
Sk

~GjðkÞ
jRjj , and the minimum value is taken

to guarantee that Pi 2 ½0; 0:5�. Here, I use piping symbols

jHj to refer to the length of a list, so for instance |R| means

the number of elements in the list R. For simplicity, one

can further restrict this study to functions W which can be

decomposed into two parts, one which depends purely on
~E, and one which depends purely on S such that

Wð ~Ej; ~Gj½Ri�; SRi
Þ ¼ Ŵð ~EiÞ �Wð ~Gj½Ri�; SRi

Þ: ð10Þ

2.2 Examples with existing protocols

Let us now discuss in more detail how to construct algo-

rithms based on inference primitives from quantum

annealers. As an example, I will first explicitly demonstrate

how both the traditional QAA and the simplest local search

method of Chancellor (2017) can be re-expressed in terms

of inference primitives.

The traditionally formulated QAA is not biased toward a

particular state, we formulate a processing function F init

which takes no inputs and returns Pi ¼ 0:5 8i. For these

values of P, the values of S do not matter, so we set them to

be all 1 without loss of generality,

F init : ffg; fg;Rg7!ff0:5; 0:5; :::g; f1; 1:::gg ð11Þ

In general, the traditional QAA can be augmented by

sophisticated post processing, (Nishimura et al. 2016;

Douglass et al. 2017; Bian et al. 2014, 2016), and therefore

after the inference primitive, we should include a second

Fig. 4 Left: Traditional QAA or reverse annealing initialised based on

the outcome of a classical algorithm formulated in terms of inference

primitives and processing functions, where F init is defined in

Eq. (11). Right: local search protocol formulated in terms of inference

primitives and processing functions, the general for F ls is given in

Eq. (12)

N. Chancellor
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processing function F postðG;E;RÞ to include all of these

possibilities. This representation is depicted on the left of

Fig. 4. This diagram can also represent more sophisticated

initialization, such as choosing a classical state to bias

toward, as was done in Venturelli and Kondratyev (2019),

this would only require the substitution of a more com-

plicated F init which produces the initial guess. The hybrid

methods used in Douglass et al. (2017), Bian et al.

(2014, 2016) actually use multiple runs with changing

problem definitions to solve a problem, and therefore

constitute many repeated runs of the protocol depicted on

the left of Fig. 4. The reverse annealing protocols in

Ottaviani and Amendola (2018), Golden and O’Malley

(2020) fall into the category of algorithms represented by

the right side of this diagram. I discuss in Sect. 4.3 how

such existing hybrid techniques may be combined with

more sophisticated inference primitive protocols.

For the local search protocols considered in Chancellor

(2017), the results of previous calls to the inference

primitive are used sequentially, with the result of a previ-

ous call being fed into the next iteration of the protocol, as

depicted on the right of Fig. 4. In this case, however, there

is only one global value of Pi ¼ p 8i which defines the

uncertainty, the processing function which is run at each

step can therefore be defined as

U : ffp; p; :::g; S;Rg7!fG;Eg;
F ls : fG;E;Rg7!ffp0; p0; :::g; S0g;

ð12Þ

where p0 is the global value of P to be used for the next

local search, and the protocol is run iteratively with p p0

and S S0 at each step. This formalsim can further be

generalized to represent another class of hybrid annealer

based algorithms, which can be used without any reverse

annealing capabilities. These algorithms, which have been

shown to be successful in Karimi and Rosenberg (2017),

Karimi et al. (2017) work by ‘fixing’ some qubits by

removing them from the problem description and replacing

them with appropriate field terms to match the state which

they are assumed to take. This kind of process allows an

annealer without reverse annealing to be represented by an

inferrence primitive where pi is restricted to only take

values of either 0, indicating that a spin is to be ‘fixed’ or

0.5 for those which are not removed and will be annealed

normally. The representation of these algorithms in the

inferrence primitive formalism are therefore exactly the

same as the ones for the local search given in Fig. 4, but

with

U : fP; S;Rg7!fG;Eg;
F fix : fG;E;Rg7!fP0; S0g;

ð13Þ

where P0i 2 f0; 0:5g.
Going beyond simple local search (Chancellor 2017),

protocols incorporating local search that are inspired by the

state-of-the-art optimization techniques of parallel tem-

pering (Swendsen and Wang 1968; Earl and Deem 2005)

and population annealing (Hukushima and Iba 2003;

Matcha 2010; Wang et al. 2015; Barzegar et al. 2017),

these algorithms can be represented in this framework. The

processing function and inference primitives will still have

the general local search structure in Eq. 12, but generally

allow fG;Eg to be copied (in the case of population

annealing) or exchanged between sets of inferrence prim-

itives with different p values. The structure of the popu-

lation annealing inspired protocol is depicted in Fig. 5,

while the structure of a parallel tempering inspired protocol

is depicted in Fig. 6.
Fig. 5 Structure of the poplution annealing inspired protocols from

Chancellor (2017) expressed in the inference primitive formalism

Fig. 6 Structure of the parallel tempering inspired protocols from

Chancellor (2017) expressed in the inference primitive formalism
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Since quantum annealing is often considered a quantum

analog to simulated annealing, it is worth briefly consid-

ering how those methods could be interpreted using the

formalism introduced here. This is especially appropriate

considering that much of the work in hybrid quantum

annealing algorithms, particularly in Chancellor (2017)

could be thought of as bringing intuition developed for

classical Monte Carlo methods into use for quantum

annealing. The most faithful way to translate the methods

here to more traditional Monte Carlo methods is to con-

sider each call to the inference primitive U to be a call to a

Metropolis Hastings algorithm (Metropolis et al. 1953;

Rosenbluth 2003) at a given temperature and number of

updates. The processing function F can in turn be viewed

as passing the initial state and the temperature (which can

be viewed as global certainty as expressed in Eq. 12). A

simple call to Metropolis Hastings at a fixed temperature

therefore has the structure given in Fig. 4 (left) since the

algorithm is called with a fixed set of parameters, although

it could also be viewed as a call to the algorithm depicted

in the right figure, but where each processing function acts

trivially and does not change the parameters.

Since simulated annealing sweeps the temperature rather

than leaving it fixed, it must be represented as a diagram in

the form of Fig. 4 (right). Furthermore, the more advanced

Monte Carlo algorithms of population annealing and par-

allel tempering in this analogy would directly take the form

of Figs. 5 and 6 respectively, but with probability replaced

with temperature. The fact that a simple adaptation of the

formalism here can be used to express powerful classical

Monte Carlo algorithms helps demonstrate its potential for

developing hybrid quantum/classical algorithms.

3 Algorithmic design

As well as being a powerful tool for expressing currently

proposed algorithms, the intended purpose of the inference

primitive formalism is to design new algorithms. This

formalism depicts the different possible ways for infor-

mation to flow between classical processing and a quantum

‘inference primitive’ subroutine in a high level way, and

therefore can be used to express different algorithmic

possibilities in terms of information flow. Thus far, we

have only considered processing functions which take

outputs from a single call to an inference primitive, how-

ever, processing functions can be constructed which take

information from multiple inference primitive calls. Using

processing functions in this way represents a combined

crossover and mutation step in a genetic-like algorithm.

While the focus of this paper is on developing the inference

primitive formalism for design of annealer algorithms,

rather than to design specific heuristics, it is still useful to

discuss examples how different processing function

heuristics can be constructed, which I do in the next

subsection.

3.1 Processing function heuristics

Although the primary purpose of this paper is not to design

algorithms, it is worth briefly discussing what form the

heuristics in the processing function could take, including

some examples which are direct extensions of work which

has already been done. While testing these heuristics would

be useful, doing it properly would be quite an involved

task, and therefore beyond the scope of the current work.

The focus of this work is to examine how new algorithms

can be designed for a quantum annealer with generalized

controls, not to study relative algorithm performance.

Recall that I have already discussed heuristics to convert

probability values for each qubit into the actual s0 values
which will be supplied to the annealer. In the inference

primitive formalism details of the exact experimental

implementation are contained with the inference primitive

U itself, rather than the processing function F . In this

subsection however, I focus on the processing function F

which provides uncertainty information which can then be

converted to experimental parameters in the inference

primitive.

For simplicity, let us start with cases where the pro-

cessing function F only has a single stream of input values

from the inference primitive fG;Eg. In this case, the

simplest thing to do is just to take statistics over the raw

data, calculating the probability that a bit will take a certain

value directly by averaging over G with no regard for E, as

was done in Eqs. 7 and 8. Such a simplistic approach relies

on the ability of the inference primitive, for instance a

quantum annealer, to always find highly optimal states.

However, in practice real devices may only occasionally

sample very high quality solutions and often return ones of

low quality.

One approach to mitigate the fact that some solutions in

G may not be very optimal is to only consider candidates

which have an energy below an ‘elite threshold’, this

approach has already proved useful in hybrid algorithms

used in Karimi and Rosenberg (2017), Karimi et al. (2017)

which do not require an initial state to be seeded. Those

papers, however, were based on annealers which did not

have reverse annealing capabilities. With reverse annealing

capabilities (and independent annealing controls of indi-

vidual qubits), their method can be extended to include the

possibility where the direction of a state of a qubit is sus-

pected but should not be assigned with 100% certainty. A

simple generalized processing function in this case could

take the form:
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Si ¼ sgnð
XN

j¼1
GjÞHðEelite � ~EjÞÞ; ð14Þ

Pi ¼
minð

PN
j¼1 dGj¼SiHðEelite � EjÞÞ

minð
PN

j¼1 HðEelite � EjÞÞ
; ð15Þ

where H is the Heaviside step function defined so that

HðaÞ ¼ 1 if a[ 0 and HðaÞ ¼ 0 otherwise, and Eelite is the

elite energy threshold, as assigned in Karimi and Rosen-

berg (2017), Karimi et al. (2017). Note that, as imple-

mented in those papers, any qubit with Pi ¼ 0 can be

excluded from the actual annealer run and replaced with

field terms.

Rather than using a hard cutoff, another way to give

preference to low energy solution candidates when calcu-

lating S and P is to thermally reweight each of the unique

candidates

Si ¼ sgnð
XNu

j¼1
G
ðuÞ
j expð�

E
ðuÞ
j

T
ÞÞ; ð16Þ

Pi ¼
1

Z
ð
XNu

j¼1
d
G
ðuÞ
j ;�Si expð�

E
ðuÞ
j

T
ÞÞ; ð17Þ

where the (u) superscript indicates a set of solution can-

didates and energies where duplicate candidates in Gi have

been removed. In this case, T can be thought of as a meta-

parameter which controls the effective range of the search

that will be performed by the inference primitive. This

suggests that one algorithmic possibility could be to run a

series of inference primitive calls as depicted in Fig. 4

(right), but with successively decreasing T as a simulated

annealing analogue.

Thus far we have only considered processing functions

F which take a single fG;Eg, however, for genetic-like

algorithms, we need to define processing functions which

take sets of inference primitive outputs fG; Eg. One way to

construct such processing function heuristics is to create

flattened lists, which treat all solution candidates as if they

came from a single inference primitive, these flattened data

f ~G; ~Eg can then be used directly in heuristics such as those

discussed earlier in this section. Not all processing func-

tions can be represented in this way, however, for example

a processing function F could take the lowest energy

solution candidate from two different G 2 G and assign

Pi ¼ 0:5 to bits which disagree between the two and Pi ¼ p

where 0\p\0:5 to those which do.

3.2 Algorithm structure

Now that I have given examples of how processing func-

tion heuristics can be constructed, it is worth briefly con-

sidering how the inference primitive formalism can be used

as a graphical tool to understand algorithmic applications.

To start out, let us contrast a traditionally formulated

genetic algorithm with a simple genetic-like algorithm built

using the inference primitive formalism. Let us start by

reviewing a simple traditionally formulated genetic algo-

rithm, which starts with a population, which is a pool of

solution candidates which have either been generated ran-

domly, or have come from a previous iteration of the

algorithm, this pool of states undergoes the following three

steps:

Selection The most fit solution candidates are chosen to

breed and form the next generation, discarding

the less fit candidates.

Crossover Pairs of solution candidates are spliced toge-

ther to form a pool of new solutions.

Mutation Small random changes are made after cross-

over to ensure diversity in the pool of states.

These steps are then applied repeatedly on the popula-

tion until the algorithm converges or until a solution can-

didate of sufficient quality is observed. A genetic like

algorithm which uses a quantum annealer as an inference

primitive would similarly start with a population, made

either of single states or ensembles of states output by the

annealer. This population similarly undergoes three steps:

Selection The most fit solution candidates are cho-

sen to breed and form the next generation,

discarding the less fit candidates. This is

performed in the same way as in a tradi-

tional genetic algorithm.

Processing

function

Annealer inputs constructed based on a

pair of inputs, recall that this can be done

in a variety of ways.

1 Up to the fact that where the two genomes are spliced together may

be chosen randomly.

Fig. 7 Structure of an analogue of a genetic algorithm constructed

using the inference primitive formalism (right labelling). This

diagram also represents the structure of the QAGA proposed in King

et al. (2019) with the left labelling
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Inference

primitive

Annealer is called based on output of

processing function, the outputs make the

new population.

As with a traditional genetic algorithm, these steps can

be repeatedly applied until the algorithm converges or until

a solution candidate of sufficient quality is observed. To

some extent, the processing function can be thought of as

analogous to crossover, while the inference primitive itself,

or the call to the annealer can be thought of as analogous to

mutation. This analogy is appropriate in one sense, because

like crossover in a traditional genetic algorithm, the pro-

cessing function is responsible for determining how the

information from each annealer output is combined, and is

a deterministic process1. The call to the inference primi-

tive, in other words the annealer itself, is non-deterministic

in nature, and this superficially similar to mutation, in that

it produces a variety of states randomly based on the input

from the processing function. This analogy breaks down

when considering the details of how the information is

being processed however, the output of the processing

function is not of the same form as the population, it is a set

of control inputs for the annealer, therefore it does not

exactly perform a crossover, it combines the information in

such a way that the inference primitive can perform a

randomized crossover which has mutation built in. Since

the inference primitive is also performing part of the

crossover as well as the mutation, it is likewise not

appropriate to think of this step as only a mutation step. A

visualization of this process using the inference primitive

formalism appears in Fig. 7.

Although the protocol is different, the structure in Fig. 7

is also shared by the QAGA proposed in King et al. (2019).

The key difference between these algorithms is that the

annealer is only used for mutation in that algorithm rather

than mutation and crossover as proposed here. One

important observation about this structural similarity is that

it means that the QAGA methods could also be applied to

the more complicated algorithmic structures discussed later

in this paper

Now that we have discussed how to build an analogue of

a standard genetic algorithm, it is worth discussing more

advanced usage of the formalism, for instance how a

genetic component can be added to the population

annealing algorithm depicted in Fig. 5 by allowing multi-

ple edges to be incident on each processing function, as

depicted in Fig. 8. Because of the way the total population

is controlled in these algorithms (see Hukushima and Iba

2003), adding a fixed number of extra processing functions

which accept two or more inputs to produce offspring will

not cause the population to grow (or shrink) uncontrollably.

In this example, which inference primitive outputs get to

produce extra offspring could be chosen for instance by

drawing two or more from a Boltzmann probability dis-

tribution constructed from the lowest energy given by each

inference primitive call (as was suggested in Chancellor

(2017) Pj ¼ expð�minðE jÞ=TeffÞ=Z without replacement.

The genetic like component could also be replaced by a

QAGA type call, where the qubits are not individually

biased, and the reverse annealing step is used for only

mutation rather than crossover and mutation, in this case

crossover would have to be performed as it is in traditional

genetic algorithms.

The inference primitive formalism can also demonstrate

how we can add a genetic component to a parallel tem-

pering inspired algorithm. In such an algorithm one can

replace each single call to an inference primitive at an

effective temperature with a pair of calls, and than combine

these outputs in a ‘hybridization pool’ consisting of infer-

ence primitive calls based on pairs of inference primitive

outputs as depicted in Fig. 9. As with the population

annealing methods, the genetic component could be

replaced with a QAGA type call, with crossover performed

using more traditional methods. These hybridization results

could then be reinserted into the main pool of inference

primitive calls probabilistically, one way to accomplish

this is to use the process outlined below:

1 Produce ‘genetic pool’ of inference primitive outputs,

for instance using some of the methods discussed in the

previous subsection.

2 For each set of inference primitive outputs in the

genetic pool, fGhyb;Ehybg, starting from the lowest Teff
and increasing, have this set of outputs replace a set in

the standard inference primitive pool probabilistically

with a probability determined by

Pex ¼ min expðminðEhybÞ �minðEÞ
Teff

Þ; 1
� �

;

Fig. 8 Structure of population annealing inspired protocols with

additional genetic component
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where Teff is the effective temperature which has been

used on the inference primitive in the parallel tem-

pering pool. If either a replacement has been per-

formed, or all inference primitive outputs in the regular

parallel tempering pool have been tested and none have

been replaced, move on to the next set of hybridzation

outputs. In the case where a replacement has been

successfully performed discard the inference primitive

outputs which have been replaced, otherwise, discard

the outputs in the genetic pool. Once all outputs in the

gentic pool have been either discarded or used as

replacements, move on to the next step.

3 Perform parallel tempering inspired swaps using the

standard update rules as described in Chancellor

(2017).

Step 2 could also be performed using the QAGA

methodology, and the inference primitive diagram would

remain the same, however the inference primitive and

processing function used within the genetic pools would

function differently than in the genetic-like algorithm I

have described in this paper. There are also many other

algorithms which can be discovered using the inference

primitive formalism. The two ideas here are included to

give examples of how the inference primitive formalism

can be used as a tool to visualize information flow in

annealer based algorithm design.

4 Compatibility with other methods

Now that I have demonstrated the power of the inference

primitive formalism in terms of designing algorithms based

on quantum annealers with generalized classical controls

(and representing those which have already been used), I

turn my attention to how these methods are compatible

with many methods which currently represent the state of

the art, as well as techniques which are now on the horizon.

This section is not supposed to be an exhaustive list, but

rather to give the reader an idea of the versatility of

inference primitive based annealer computation.

4.1 Protocol modifications

The first techniques which I discuss are techniques

developed by D-Wave Systems Inc. to advance or retard

individual qubits to synchronize freezing (Lanting et al.

2016) using an effective local temperature estimated using

the methods in Raymond et al. (2016). These methods

apply to the relative values of the annealing parameter

s during the final forward anneal, a parameter which is not

fixed by the inference primitive protocol described in

Sect. 2, and therefore freezing can be synchronized by

advancing or retarding the point at which one qubit begins

its final forward anneal relative to the other qubits, as

depicted in Fig. 10.

The anneal offset feature, as implemented on D-Wave

devices Andriyash et al. (2016) combined with reverse

annealing performs a combination of the protocol depicted

in Fig. 10 and the variation of s0 depicted in Fig. 1. In

principle this feature could be used to create inference

primitives as described in this paper, but also with poten-

tially unintentional consequences from varying the qubit

freeze time. The use anneal offsets to perform biased

Fig. 9 Structure of parallel tempering inspired protocols with

additional genetic component. The ‘genetic pool’ of inference

primitives and processing functions is circled in blue dashed lines

0

1

s

t

s’(Pi)

s’(Pj)

Fig. 10 Depiction of how the time at which annealing from s0 is
started can be used to advance or retard individual qubit annealing

schedules to synchronize freezing
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searching will be explored experimentally in Chancellor

(2020).

4.2 Higher order drivers

Let us now consider generalizations of inference primitive

protocols for multi-body drivers, which are necessary to

realize non-stoquastic drivers, for example. Previously, R

has just been a list of every qubit, but now will also include

some clusters of qubits which are flipped simultaneously by

multibody drivers. To determine the strength at which

multibody drivers are applied, one should consider statis-

tics over the overlap of each of the members of Gj with the

solution candidate S over the relevant cluster, Mj ¼
P

k2Rj
Sk

~GjðkÞ
jRjj where jRjj is the number of elements in Rj.

When Mj ¼ 1, then the cluster agrees exactly for the can-

didate solution and the ~Gj½Ri�. The valueMj ¼ �1 indicates
perfect disagreement. The uncertainty value Pi for the

cluster Ri corresponds to the probability that SRj
is closer in

Hamming distance to the correct solution than :SRj
. Posi-

tive Mj indicates that SRj
is the closer of the two, whereas

negative indicates that :SRj
is closer.

For each cluster, we formulate a weighted sum to

determine the probability that SðRiÞ is closer. To achieve

this, I define P in terms of a weighting factor W using

Eq. (9). For simplicity, I assume that W can be decom-

posed into two terms such that

Wð ~Ej; ~Gj½Ri�; SðRiÞÞ ¼ Ŵð ~EiÞ �Wð ~GjðRiÞ; SðRiÞÞ. For the

energy dependent part, one could for example define

Ŵð ~EiÞ ¼ expð� ~Ei

T Þ corresponding to the thermal weighting

as in Eq. (17), Ŵð ~EiÞ ¼ 1 for unweighted averages as in

Eq. (8), or finally Ŵð ~EiÞ ¼ Hð ~Eelite � EiÞ for a multi-bit

analogue of the elite averages used in Eq. (15). As for

�Wð ~Gj½Ri�; SðRiÞÞ, it should be weighted to favor jMjj close to
1, as these are the values for which cluster flips will make

the largest difference. A logical choice is therefore to

choose weights which are inversely proportional to the

number of states within the same Hamming distance from

either SðRjÞ or :SðRjÞ,

�Wð ~Gj½Ri�; sjÞ ¼
jRjj

DðSðRiÞ;
~Gj½Ri�Þ

 !�1
ð18Þ

where jRjj indicates the number of elements in the set, and

DðSðRiÞ;
~Gj½Ri�Þ indicates the Hamming distance between

the two lists.

4.3 Belief propagation

For the current generation of annealers, with hardware

graphs which are relatively small compared to the size of

many relevant problems, it is important to be able to solve

problems which are larger than the available hardware

graph. The general method to do this is to solve problems

on modified subgraphs of the hardware graph in an algo-

rithmic way (Bian et al. 2014, 2016; Douglass et al. 2017),

eventually converging on a single consistent solution. In

this paper I will focus on one particular method, the gen-

eralized belief propagation method proposed in Bian et al.

(2016) based on earlier work in Yedidia et al. (2005).

Although only exact for tree graphs, belief propagation has

proven to be an important tool for solving a host of

important real world problems, most notably decoding Low

Density Parity Check Codes (LDPC) (Kschischang et al.

2006; Mceliece et al. 1998). The belief propagation

method described in Bian et al. (2016) performs belief

propagation between hardware-sized subgraphs to obtain

an approximate thermal distribution.

Because this method obtains a distribution, rather than a

single state, it can be used effectively as an inference

primitive and therefore can be used as a subroutine in all of

the previously discussed algorithms, using the same

fR; S;Pg throughout the protocol until either convergence

is found or a timeout occurs. However, the marginals

which are calculated throughout the protocol carry beliefs

about the likely value of a bit and its uncertainty. The

protocol can be made more efficient by using this infor-

mation to update fS;Pg, whenever the beliefs are updated.
With fixed fS;Pg new information about bit values is

wasted. If one of the bit values Si with a low value of Pi,

became inconsistent with the others during the course of

this protocol it would likely not be able to correct for this

inconsistency and may either fail to converge or return a

low quality solution.

In the algorithm proposed in Bian et al. (2016), each bit

has an associated marginal, biðziÞ, which contains infor-

mation about the relative likelihood of a bit having a value

of 1 or �1. Based on a normalized version of this marginal,

we can find an approximate value for Si and Pi which

dynamically updates at each step of the protocol:

Si ¼ sgnðbiðzi ¼ þ1Þ � biðzi ¼ �1ÞÞ; ð19Þ

Pi ¼ 0:5 1� biðzi ¼ þ1Þ � biðzi ¼ �1Þ
biðzi ¼ þ1Þ þ biðzi ¼ �1Þ

����

����
� �

: ð20Þ
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5 Conclusions

In this paper I have proposed a new way of thinking about

algorithms based on a quantum annealer with generalized

classical controls. I have given examples both of how

existing quantum annealer based algorithms can be repre-

sented in this formalism and how this formalism can be

used to design new algorithms, including algorithms with

genetic components. While the algorithms proposed here

will not in general obey detailed balance, they could allow

for a more complete accounting of the low energy local

minima of an energy landscape, and therefore may be

useful for calculating thermal distributions if used with

appropriate post processing. To motivate this formalism I

have given a proof-of-principle demonstration that the

output of annealer runs contain information not only about

the likely solution to a problem Hamiltonian, but also the

relative bitwise uncertainty.

Although a full analysis is beyond the scope of this

paper, it would likely be interesting to explore the con-

nection between the methods proposed here and quantum

inspired diffusion Monte Carlo algorithms as discussed in

Jarret et al. (2016, 2017), which show similar structure in

the methods with which they solve problems. It would

likewise be interesting to develop inference primitives

based on other physical mechanisms, such as closed system

adiabatic quantum computing, or quantum walks. It would

also be interesting to run comparisons of algorithms

designed with this formalism on real devices to determine

their performance, and to design more algorithms. The

algorithms given in this paper are only intended as exam-

ples of how the design techniques I have developed can be

used, this paper has only scratched the surface of the

algorithmic possibilities for this functionality of a quantum

annealer.

Appendix 1: Example of a heuristic to relate
uncertainty to transverse field

There are many potential heuristics which could be used to

relate the probabilites P which are passed to an inference

primitive to the annealing s0 parameter which is use in a

reverse annealing protocol. While the focus of this paper is

not on how to actually relate these two parameters, it is

instructive to give a simple example of what one such

heuristic could look like. Whether or not this heuristic

works well in practice is beyond the scope of this current

work, and almost certainly more sophisticated heuristics,

for instance based on the local temperture estimates given

in Raymond et al. (2016) are likely to perform better.

To start with, I make use of the fact that it has been

numerically demonstrated that quantum fluctuations mod-

erated by a transverse field can be used as a proxy for

thermal fluctuations for inference problems (Otsubo et al.

2012). In this spirit I define an approximate effective

temperature related to a transverse field strength, which is

set by a chosen value of s in Eq. (1) which I denote as s0.
This can be done using the method suggested in Chancellor

(2017) by analytically diagonalizing the Hamiltonian at the

appropriate point in the annealing schedule with a‘‘prob-

lem’’Hamiltonian consisting of a single bit Hamiltonian

with a longitudinal field of unit strength,

H1ðs0Þ ¼ �Aðs0Þ rx þ Bðs0Þ rz. This ratio is then compared

to a Boltzmann distribution, and the equation inverted to

solve for temperature. This approach yields

T 0ðs0Þ ¼

2 ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðs0Þ2 þ Bðs0Þ2

q

Aðs0Þ þ Bðs0Þ
Aðs0Þ

������

������

2
0
B@

1
CA

2
64

3
75

�1

: ð21Þ

In situations where coupling is present, rather than the

single qubit case examined here, the effective picture

becomes more complicated. To correctly determine the

effect of a coupler on a single qubit, one must take into

account the fact that all other qubits within the coupler are

also fluctuating in a way which is generally complicated

and correlated both with each other and the qubit we are

examining. The results in Otsubo et al. (2012) suggest,

however, that these complicated effects will be very similar

for both quantum and thermal fluctuations. Based on these

similarities, a simple first approximation is to apply rela-

tionships between temperature and driver strength which

are derived in the single qubit case to larger multi-qubit

systems, based on the reasoning that the effects of corre-

lations with neighbors may be qualitatively similar in both

cases. While this is a rather crude approximation, the

heuristic given here is only intended as a minimal example,

single qubit dynamics provide one of the simplest ways to

relate temperature to transverse field. Alternatively, a local

temperature could be estimated experimentally using the

methods of Raymond et al. (2016), or by adapting the

methods to estimate a global effective temperature used in

Benedetti et al. (2016).

Now I use the seminal result by Nishimori

(1980, 2001, 2016) that a temperature can be related to an

error probability via the Nishimori temperature, TN . This

relationship is mathematically rigorous and is the under-

lying principle behind maximum entropy inference, which

has many practical applications (Frieden 1972; Berger

et al. 1996; Phillips et al. 2006; Raychaudhur et al. 2002;
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Gilmore 1996; Mistrulli 2011; Ruján 1993). In these

applications, the Nishimori temperature

TN ¼ 2 lnð1� P

P
Þ

� 	�1
; ð22Þ

serves to match a temperature to an effective uncertainty,

expressed as a probability P. The quantity could be, for

instance, an error rate in the context of decoding of com-

munications as in Ruján (1993). In the context of inference

primitive protocols, P should be taken as Pi for a given bit

or cluster of bits a simple approximate heuristic to relate

the probailities to the effective temperature T 0 is to set it to

be proportional to the Nishimori temperature

T 0ðs0Þ / TN :

By plugging in the approximate formula in Eq. 21 and

inverting the equation, I obtain the approximate uncertainty

value,

Pðs0Þ ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aðs0Þ2 þ Bðs0Þ2

q

Aðs0Þ þ Bðs0Þ
Aðs0Þ

������

������

22
64

3
75

�1

: ð23Þ

The relationship I have just derived allows a direct defi-

nition of the uncertainty values defined in fPg in Sect. 2 in

terms of real device parameters. Expressed in these term,

the algorithms in Chancellor (2017) assign the same

probability of being incorrect to every bit value.

Thus far, I have assumed that the annealer is exposed to

a bath with a temperature which is low compared with the

relevant energy scales Aðs0Þ and Bðs0Þ. However, this may

not be the case in a real annealer. In this case we can make

the approximation that the themal and quantum fluctuations

act in a statistically independent way and add them in

quadrature,

TN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T 02ðs0Þ þ Tphys
Bðs0Þ

� �2
s

; ð24Þ

where Tphys is the physical temperature. Carrying this result

through, we arrive at,

Pðs0Þ ¼ 1þ exp
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T 02ðs0Þ þ ðTphysBðs0ÞÞ
2

q

0

B@

1

CA

2

64

3

75

�1

: ð25Þ

It is worth discussing briefly a special subclass of problem

Hamiltonians for which hi ¼ 08i in Eq. (2). For the

quantum annealing algorithm applied to such a problem

Hamiltoninan, the mean orientation of a bit is zero

\rzi [ ¼ 0 and similarly for any cluster of bits

\
P

j2Ri
rzj [ ¼ 0 by the fact that these Hamiltonians

have a Z2 symmetry with respect to flipping all of the

qubits (global bit inversion). However, the candidate

solution breaks this symmetry, meaning that solution

refinement will still work. If multiple sets of annealer

outputs are being combined (i.e. jGj[ 1) for such a

problem Hamiltonian, then we should consider the possi-

bility of performing global spin inversions on some of the

sets of outputs before applying the processing function.

Ideally this should be chosen as the one which yields the

highest possible bitwise correlation between all of the

candidates.

Because the space of possible global spin inversions of

candidate solutions will be 2Ninputs , performing an exhaus-

tive search over all possible inversions may not be possible

if Ninputs is moderately large. However a heuristic search

method such a simulated annealing could be used to find

choices which yield high correlations. Alternatively, one

could break the spin inversion symmetry by taking a

‘majority vote’, and performing a global bit inversion on

all solution candidates in Gk if more bits are in the �1 state

than the 1 state.

A simple alternative approach for problems where hi ¼
08i is to effectively fix a single spin arbitrarily, and replace

coupling to that spin with fields. While mathematically

correct, this approach has the disadvantage that it gives one

spin a ‘privileged’ role in that quantum fluctuations damp

out the effect of couplers much more strongly then they do

fields because the effect of a coupler is moderated by the

fluctuations of two qubits, while the effect of a field is

moderated only by the fluctuations of the single qubit it is

coupled to.

The methods which I have derived in this section to

relate the local annealing parameter on the real device s0 to
the uncertainty value Pi are not necessarily unique, there

will be other suitable mathematical ways to relate these

quantities. For real applications the preferred method may

actually be to try different heuristics until one is found

which works well, or to try to work out this relationship

directly experimentally, for instance by adapting the

bisection methods used to find the range of local searches

proposed in Chancellor (2017).
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