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The lack of evidence for new interactions and particles at the Large Hadron Collider (LHC) has
motivated the high-energy physics community to explore model-agnostic data-analysis approaches to
search for new physics. Autoencoders are unsupervised machine learning models based on artificial neural
networks, capable of learning background distributions. We study quantum autoencoders based on
variational quantum circuits for the problem of anomaly detection at the LHC. For a QCD tt̄ background
and resonant heavy-Higgs signals, we find that a simple quantum autoencoder outperforms classical
autoencoders for the same inputs and trains very efficiently. Moreover, this performance is reproducible on
present quantum devices. This shows that quantum autoencoders are good candidates for analysing high-
energy physics data in future LHC runs.
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I. INTRODUCTION

In the absence of a confirmed new physics signal and in
the presence of a plethora of new physics scenarios that
could hide in the copiously produced LHC collision events,
unbiased event reconstruction and classification methods
[1–4] have become a major research focus of the high-
energy physics community. Unsupervised machine learn-
ing models [5–8], popularly used as anomaly detection
methods [9–15], are trained on Standard Model processes
and should indicate if a collision event is irreconcilable
with the kinematic features of events predicted by the
Standard Model.
One of the most popular neural network-based approach

are autoencoders [16]. Autoencoders consist of an encoder
step that compresses the input features into a latent
representation with reduced dimensionality. Subsequently,
the latent representation is decoded into an output of the
same dimensionality as the input feature space. The entire
network is then trained to minimize the reconstruction
error. The latent space acts as an information bottleneck,
and its dimension is a hyperparameter of the network. The
assumption is that the minimal dimension of the latent

space for which the input features can still be reconstructed
corresponds to the intrinsic dimension of the input data,
here Standard Model induced background processes.
However, the trained autoencoder would poorly reconstruct
any unknown new physics process with a higher-intrinsic
dimension. If the signal is sufficiently kinematically differ-
ent from the background samples, the loss or reconstruction
error will be larger for signal than for background events.
Such autoencoders can be augmented with convolutional
neural networks [17,18], graph neural networks [19,20], or
recurrent neural networks [21,22] on its outset, making it a
very flexible anomaly detection method for a vast number
of use cases.
With the advent of widely available noisy intermediate-

scale quantum computers (NISQ) [23] the interest in
quantum algorithms applied to high-energy physics prob-
lems has spurred. Today’s quantum computers have a
respectable quantum volume and can perform highly non-
trivial computations. This technical development has
resulted in a community-wide effort [24,25] exploring
the applications of quantum computers for studying quan-
tum physics in general and in particular, the application to
challenges in the theoretical description of particle physics.
Some recent studies in the direction of LHC physics
include evaluating Feynman loop integrals [26], simulating
parton showers [27] and structure [28], quantum algorithm
for evaluating helicity amplitudes [29], and simulating
quantum field theories [30–35]. An interesting application
of quantum computers is the nascent field of quantum
machine learning–leveraging the power of quantum devices
for machine learning tasks, with the capability of already
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recognized classical1 machine learning algorithms for
various applications at the LHC, it is only natural to
explore whether quantum machine learning (QML) can
improve the classical algorithms [36–43].
This work explores the feasibility and potential advan-

tages of using quantum autoencoders (QAE) for anomaly
detection. Most quantum algorithms consist of a quantum
state, encoded through qubits, which evolves through the
application of a unitary operator. The necessary compres-
sion and expansion of data in the encoding and decoding
steps are manifestly nonunitary, which has to be addressed
by the QAE using entanglement operations and reference
states which disallow information to flow from the
encoder to the decoder. To this end, a QAE should, in
principle, be able to perform tasks ordinarily accom-
plished by a classical autoencoder (CAE) based on deep
neural networks (DNN). The ability of DNNs are known
to scale with data [44], and large datasets are necessary to
bring out their better performance over other machine-
learning algorithms. Interestingly, we find that a quantum
autoencoder, augmented using quantum gradient descent
[39,45] for its training, is much less dependent on the
number of training samples and reaches optimal
reconstruction performance with minuscule training data-
sets. Since the use of quantum gradient descent is a
relatively new way of improving the convergence speed
and reliability of the quantum network training, we
provide a detailed introduction in Appendix A.
Moreover, compared to CAEs, which use the same input
variables as the QAE, QAEs have better anomaly detec-
tion capabilities for the two benchmark processes we use
in our study. This better performance is particularly
interesting as the CAE has Oð1000Þ parameters compared
to just Oð10Þ for the QAE. The study indicates the
possibility to study quantum latent representations of
high-energy collisions, in analogy to classical autoen-
coders [19,46–48]. Our results indicate that quantum
autoencoders could be advantageous in anomaly detection
tasks in the NISQ era.
The rest of the paper is organized as follows. In Sec. II,

we present an introduction to classical autoencoders based
on deep neural networks. We then describe the basic ideas
of quantum machine learning and a quantum autoencoder
in Sec. III. The details of the data simulation, network
architecture, and training are described in Sec. IV. We
present the performance of a quantum autoencoder com-
pared to a classical autoencoder in Sec. V. We conclude
in Sec. VI.

II. CLASSICAL AUTOENCODERS

Autoencoders are neural networks utilized in various
applications of unsupervised learning. They learn to map
input vectorsx to a compressed latent vector z via an encoder.
This latent vector feeds into a decoder that reconstructs the
inputs. Denoting the encoder and decoder networks as
EðΘE;xÞ and DðΘD; zÞ with ΘE and ΘD denoting the
learnable parameters of the respective network, we have

z ¼ EðΘE;xÞ; x̂ ¼ DðΘD; zÞ; ð1Þ

where x̂ denote the reconstructed output vector. The whole
network is trained via gradient descent to reduce a faithful
distance L, between the reconstructed output x̂ and the input
vector x. For instance L can be the root-mean-square error
(RMSE),

Lðx; x̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i¼n
i¼1ðx̂i − xiÞ2

n

r
; ð2Þ

where x̂i and xi are the ith component of the reconstructed and
input vectors respectively, and n is their dimension. A faithful
encoding should have an optimal latent dimension k < n,
with k being the intrinsic dimension of the data set. This
dimensionality reduction is crucial in many applications of
autoencoders, which otherwise learns trivial mappings to
reconstruct the output vectors x̂. Unsupervised learning deals
with learning probability distributions, and properly trained
autoencoders are excellent for many applications. A dense
CAE for a four-feature input and two-dimensional latent
space is shown in Fig. 1. The encoder and the decoders are
also enclosed in red and blue boxes, respectively.
One popular usage of autoencoders in collider physics is

anomaly detection. In various scenarios at the LHC, the
background processes’ contributions are orders of magni-
tude larger than most viable signals. However, a plethora
of possible signal scenarios exist that could be realized in
nature, making it unlikely that the signal-specific
reconstruction techniques of supervised learning methods
comprehensively cover all possible scenarios. This moti-
vates unsupervised anomaly detection techniques, wherein
a statistical model learns the probability distribution of the
background to classify any data not belonging to it as
anomalous (signal) data. Using an autoencoder as an
anomaly detector, we train it to reconstruct the background
data faithfully. Many signals have a higher-intrinsic dimen-
sion2 than background data due to their increased complex-
ity. Hence, they incur higher-reconstruction losses. Thus,

1By classical, we mean any machine learning algorithm that
leverages only discrete bit computations, while by quantum, we
imply a computation that uses the properties of quantum
mechanics and qubits, even if they are simulated on classical
hardware.

2It has been found in Ref. [49] that convolutional autoencoders
cannot detect signals of lower-intrinsic dimensions. While
quantum autoencoders could alleviate this issue, we do not study
their properties for lower-dimensional signals. The study aims to
validate their workings on similar scenarios where classical
autoencoders work.
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the loss function can be used as a discriminant to look for
anomalous events.

III. QUANTUM AUTOENCODERS

Quantum machine learning broadly deals with extending
classical machine learning problems to the quantum
domain with variational quantum circuits [50]. We can
divide these circuits into three blocks; a state preparation
that encodes classical inputs into quantum states, a unitary
evolution circuit that evolves the input states, and a
measurement and postprocessing part that measures the
evolved state and processing the obtained observables
further. For this discussion, we will always work in the
computational basis with the basis vectors fj0i; j1ig
denoting the eigenstates of the Pauli Z operator σ̂z for
each qubit.
There are many examples of state preparation in liter-

ature [51], which has their own merits in various applica-
tions. We prepare the states using angle encoding, which
encodes real-valued observables ϕj as rotation angles along
the x-axis of the Bloch sphere

jΦi ¼ ⊗
n

i¼1
RxðϕjÞj0i ¼ ⊗

n

j¼1

�
cos

ϕj

2
j0i − i sin

ϕj

2
j1i

�
; ð3Þ

where Rx ¼ e−i
ϕj
2
σ̂x denote the rotation matrix. The number

of qubits required n, is same as the dimensions of the input
vector. A parametrized unitary circuit UðΘÞ, with Θ
denoting the set of parameters, evolves the prepared state
jΦi to a final state jΨi,

jΨi ¼ UðΘÞjΦi: ð4Þ

The final measurement step involves the measurement of an
observable on the final state jΨi. Since measurements in
quantum mechanics are inherently probabilistic, we mea-
sure multiple times (called shots) to get an accurate result.

In order to do that, we need quantum hardware that can
prepare a large number of pure identical input states jΦi for
each data point.
After defining a cost function, the parameters Θ can be

trained and updated using an optimization method. To
better capture the geometry of the underlying Hilbert space
and to achieve a faster training of the quantum network,3

we will use quantum gradient descent [45], where the
direction of steepest descent is evaluated according to the
Fubini-study metric [52,53]. The general idea is to make
the optimization procedure aware of the weight space’s
underlying quantum geometry, which improves the speed
and reliability of finding the global minimum of the loss
function. A brief outline of quantum gradient descent is
given in Appendix A.
While we have not discussed the specific form of the

parametrized unitary operationUðΘÞ, it is important to note
that one of the major advantages of quantum computation is
due to its ability to produce entangled states, a phenomenon
absent in devices based on classical bits. The prepared input
state is separable into the component qubits, and a product
of unitaries acting on single-qubit states will not entangle
the subsystems. The CNOT gate is a standard two-qubit
gate, which will be used in our circuit to entangle the
subsystems.

A. Quantum autoencoders on variational circuits

Quantum autoencoders based on variational circuit
models have been proposed for quantum data compression
[54]. In our work, we want to learn the parameters of such a
network to compress the background data efficiently.
Along the same principles as anomaly detection on

FIG. 1. Schematic representation of a simple dense classical autoencoder (left) and a quantum autoencoder (right) for a four-
dimensional input space and a two-dimensional latent space. To induce an information bottleneck in quantum unitary evolutions, we
throw away states jβ0ii (trash states) at the encoder output (green lines), which are replaced by reference states jβii (shown in orange
lines), containing no information of the input jxji. The mechanism can be better understood by dividing the Hilbert space of the
complete system into three parts:HA the subspace formed by the qubits that are fed to the decoder,HB the subspace of the qubits that are
discarded after encoding, and HB0 the subspace where a fixed reference state (initialized as j0i⊗dimHBÞ unacted by the encoder is fed to
the decoder. SWAP gates can achieve the exchange of states denoted by black lines.

3See [39] for a brief presentation of the Fubini-Study metric
and a comparison of natural and quantum gradient descent for the
training of classical and quantum networks. It was shown that
quantum gradient descent improves the training of a variational
quantum circuit significantly.
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classical autoencoders, we expect that the compression and
subsequent reconstruction will work poorly on data with
different characteristics to the background.
A quantum autoencoder, in analogy to the classical

autoencoders has an encoder circuit which evolves the
input state jΦi to a latent state jχi via a unitary trans-
formation UðΘÞ, and then reconstructs the input state, via
its hermitian conjugate jΦi ¼ U†ðΘÞjχi. However, note
that since unitary transformations are probability conserv-
ing and act on spaces having identical dimensions, there is
no data compression in such a setup. In order to have data
compression, some qubits at the initial encoding jχi are
discarded and replaced by freshly prepared reference states.
Such a setup for a four-feature input and two-dimensional
latent space if shown in Fig. 1. The unitary operators output
identical number of qubits, however at the encoder step,
two of its outputs (shown by green lines) are replaced by
freshly prepared reference states (shown in orange lines),
devoid of any information of the input states. We describe
the basics of quantum autoencoding in the following,
mainly based on the discussion of quantum autoencoders
for data compression from Ref. [54]. Quantum anomaly
detection of simulated quantum states has been investigated
in Ref. [55]. To the best of our knowledge, our study is the
first to explore anomaly detection of classical inputs via a
quantum autoencoder. The main difference between
existing studies and ours is that the input states for the
former are inherently quantum mechanical. In contrast, the
choice of input embedding of the classical numbers in our
case determines the nature of the quantum state. We will
use angular encoding, where the quantum states are
separable into the constituent qubits. We will, however,
be extensively using CNOT gates in the unitary evolution
which will entangle the different qubits.
Let us denote the Hilbert space containing the input

states by H. For describing a quantum autoencoder, it is
convenient to expand H as the product of three subspaces,

H ¼ HA ⊗ HB ⊗ HB0 ; ð5Þ

with subspace HA denoting the space of qubits fed into the
decoder from the encoder, and HB denoting the space
corresponding to the ones that are reinitialized, and HB0

denoting the Hilbert space containing the reference state.
In the following, we will denote states belonging to any
subspace with suffixes while the full set will have no suffix.
For example, jaiAB ∈ HA ⊗ HB, jκi ∈ H, jbiB0 ∈ HB0 etc.
We will use the same convention for operators acting on the
various subspaces.
Since we entangle the separable input qubits in the

subspaces HA ⊗ HB via UABðΘÞ, the latent state
jχiAB ∈ HA ⊗ HB, in general, is not seperable. The input
of the larger composite system including the reference state
is jΦiAB ⊗ jβiB0 , with jβiB0 denoting a freshly prepared
reference state (initialized as j0i⊗dimH0

B ) not acted on by the

unitary UAB. The process of encoding can be therefore
written as

jχiAB ⊗ jβiB0 ¼ ðUABðΘÞ ⊗ IB0 ÞjΦiAB ⊗ jβiB0 ; ð6Þ

where IB0 denotes the identity operator on HB0 . Explicitly,
the dimensions of the subspacesHA,HB, andHB0 are 2Nlat ,
2Ntrash , and 2Ntrash , respectively, where Nlat is the number of
qubits passed to the decoder directly from the encoder,
while Ntrash are the ones that are discarded. Swapping the B
and B0, gives the input to the decoder as

jχ0i ¼ IA ⊗ VBB0 jχiAB ⊗ jβiB0 ; ð7Þ

where VBB0 indicates a unitary that performs the swap
operation,4 and IA is the identity operator on HA. The
output of the decoder can now be written as

jΨi ¼ U†
ABðΘÞ ⊗ IB0 jχ0i; ð8Þ

with IB0 being the identity operator on HB0 . The decoding,
therefore, takes the swapped latent state jχ0i, and the
unitary U†

AB evolves it with no information from the
encoder in the subspace HB. The reconstruction efficiency
of the autoencoder can be quantified in terms of the fidelity
between the input and output states in the subspace
HA ⊗ HB, which quantifies their similarity. For two
quantum states jψi and jϕi, it is defined as

Fðjϕi; jψiÞ ¼ Fðjψi; jϕiÞ ¼ jhϕjψij2:

For normalized states, we have 0 ≤ F ≤ 1, with F ¼ 1 only
when jϕi and jψi are exactly identical. We can write the
fidelity of the complete system as

FðjΦiAB ⊗ jβiB0 ; jΨiÞ
¼ FðjΦiAB ⊗ jβiB0 ;U†

AB VBB0 UABjΦiAB ⊗ jβiB0 Þ;

where we have implicitly assumed that the unitary oper-
ators are extended to the whole space via a direct product
with the identity operator on the subspace it does not act on,
for notational compactness. Noting thatUABjΦiAB ¼ jχiAB,
we can write this as

4For instance swapping the state of two qubits in the basis
fj00i; j01i; j10i; j11ig, can be implemented via the unitary
matrix

VBB0 ¼

2
666664

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

3
777775
:
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FðjΦiAB ⊗ jβiB0 ; jΨiÞ
¼ FðjχiAB ⊗ jβiB0 ;VBB0 jχiAB ⊗ jβiB0 Þ:

Writing the swapped state as VBB0 jχiAB ⊗ jβiB0 ¼ jχiAB0 ⊗
jβiB, we have

FðjΦiAB ⊗ jβiB0 ; jΨiÞ ¼ FðjχiAB ⊗ jβiB0 ; jχiAB0 ⊗ jβiBÞ:
ð9Þ

Since we are interested in the wave functions belonging to
the subspaceHA ⊗ HB, we trace over B0 to get the required
fidelity. However, a perfect fidelity between the input and
outputs of the AB system can be achieved when the
complete information of the input state passes to the
decoder, i.e.,

UABjΦiAB ¼ jΦciA ⊗ jβiB: ð10Þ

The state jΦciA denotes a compressed form of jΦiAB, i.e., it
should contain the information of the AB system in the
input, while jβiB is equivalent to the reference state, with no
information of the input. If the B and B0 systems are
identical during the swap operation, the entire circuit
reduces to the identity map. The output of the B0 system,
hereby referred to as the trash state, is itself the determining
factor of the output state fidelity. The output of the B0
system can be obtained after tracing over the A system as
ρ̂B0 ¼ TrAfjχihχjAB0 g and the required fidelity of the B0
system is FðjβiB0 ; ρ̂B0 Þ.
A perfect reconstruction of the input is possible only

when the trash state fidelity FðjβiB0 ; ρ̂0BÞ ¼ 1. Thus a
quantum autoencoder can be trained by maximizing the
trash state fidelity instead of the output fidelity, which has
the advantage of reducing the resource requirements during
training. Although, the output fidelity obtained by tracing
over the B0 system is numerically not equal to the trash state
fidelity, we can use the latter in anomaly detection as well,
since it is a faithful measurement of the output fidelity.
Thus, unlike vanilla classical autoencoders, we can reduce
the execution and training of QAEs into the encoder circuit
for anomaly detection.
The above discussions have focused on the underlying

principles behind a quantum autoencoding process on
single input states. As stated before, we need to prepare
identical input states for each data point and repeat the
unitary evolution and measurement to get a useful estimate
of the fidelity, evident also from the use of density operators
to express the output state. Referring to the ensemble of the
input states as fpi; jΦiiABg, we obtain for the cost function

CðΘÞ ¼ −
X
i

pi FðjβiB0 ; ρ̂0BÞ; ð11Þ

where the negative sign converts the optimization process
into minimising the cost function. It is important to note

that the ensemble should not be taken as being analogous to
the batch training in classical neural networks, as it is
required for the accurate prediction of the network output
even when testing the autoencoder network.

IV. ANALYSIS SETUP

A. Data simulation

To show the prowess of the quantum autoencoders, we
study two processes with distinctive features; a QCD
continuum background of top-pair production taking pos-
sible signal signatures of resonant heavy Higgs decaying to
a pair of top quarks, and invisible Z decays into neutrinos
with a likely signal of the 125 GeV Higgs decaying to two
dark matter particles. As we shall see in the following
sections, the relative performance of QAEs over CAEs
show parallels in these two different signatures, pointing
towards an advantage of QAEs over CAEs not governed by
the specific details of the final state.

1. Resonant Higgs signal over
continuum tt̄ background

The first background and signal samples used in our
analysis consist of the QCD tt̄ continuum production,
pp → tt̄, and the scalar resonance production pp →
H → tt̄, respectively. The background and the signal events
are generated with a center-of-mass energy of 14 TeV, as
expected during future LHC runs. Each top decays to a
bottom quark and aW boson, and we focus on the decay of
the W’s into muons exclusively. We consider four different
masses of the scalar resonance, mH ¼ 1.0, 1.5, 2.0, and
2.5 TeV. All events are generated with MadGraph5_aMC@NLO

[56], and showered and hadronization is performed by
PYTHIA8 [57]. DELPHES3 [58] is utilized for the detector
simulation, where the jets are clustered using FastJet [59].
We generate about 30,000 events for the background
samples, while for each signal sample, we generate about
15k. The background events are divided into 10,000
training, 5000 validation and 15,000 testing samples.
For the object reconstruction, a standard jet definition

using the anti-kt algorithm [60] with the jet radius
R ¼ 0.5 is used. For the signal bottom jets, the output
from DELPHES3 is used and requires pb

T > 30 GeV. For
isolated leptons, we require pl

T > 30 GeV and its isolation
criteria with R ¼ 0.5. We extracted four variables
fpb1

T ; pl1
T ; p

l2
T ; =ETg for our analysis, keeping in mind the

limitations of current devices. To conserve the aperiodic
topology of these variables in the angle embedding
(given in Eq. (6) we fix the range of each variable to
[0, 1000] by adding two points5 and map the whole data-
set to a range ½0; π� via the MinMaxScaler implemented in

5Events with the variables lying above 1000 GeVare very rare
and excluded in our case. In a realistic analysis, the upper bound
can be determined from the data.
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SCIKIT-LEARN [61]. The two added points are then removed
from the dataset. This maps each feature’s minimum and
maximum to two distinct angles separated by a finite
distance due to the selection criteria.

2. Invisible Higgs signal over invisible Z background

To test the anomaly detection capabilities of QAEs in a
different scenario, we study invisible decays of a Z boson
produced with two jets originating from QCD vertices. As a
possible signal, we take the production of the 125 GeV
Higgs boson and two jets originating from Electroweak
vertices, decaying to two scalar dark matter particles.
The generation is carried out in the same manner as in
the previous case, including the definition of jets. We
demand that we have at least two reconstructed jets with
pT > 30 GeV, and the events have a missing transverse
momentum =ET > 30 GeV. For the background, we have
30,000 events divided into 10,000 training, 5000 valida-
tion, and 15,000 test events, while for the signal, we have
15,000 test events. We extract six variables to train the
QAE and the CAE. They are the absolute separation in
pseudorapidity between the two jets jΔηjjj, the invariant
mass of the dijet system mjj and the sum of transverse
energies

HηC
T ¼

X
jηij<ηC

Ei
T;

within four ranges of pseudorapidity ηC ∈ f1.0; 1.5;
2.0; 2.5g. The mapping to conserve the aperiodic topology
of these variables in the angular embedding is done by
increasing their range on the higher side.

B. Network architecture and training

TheQAEwas implemented and trainedusingPENNYLANE
[62]. As stated before, we train and test the QAEmodel with
only the encoder circuit. After the input features are
embedded as the rotation angle of the x-axis in the Bloch
sphere, the unitary evolutionUðΘÞ consists of two stages. In
the first step, each qubit is rotated by an angle θi in the y-axis
of the Bloch sphere. The values of these angles are to be
optimized via gradient descent. After this, we apply the CNOT
gate to all the possible pairs of qubits, with the ordering
determined by the explicit number of the qubit. This circuit is
shown in Fig. 2 for a four-qubit input QAE with two-qubit
latent representation. It is given by

UAB ¼ C23 ⊗ C13 ⊗ C12 ⊗ C23 ⊗ C03 ⊗ C02 ⊗ C01

⊗ R0
yðθ0Þ ⊗ R1

yðθ1Þ ⊗ R2
yðθ2Þ ⊗ R3

yðθ3Þ;

where Cij is the CNOT operation acting on the composite
space of two qubits i and j, and Ri

yðθiÞ is the rotation of a
single qubit i about the y-axis of the Bloch sphere. Note that
the expression does not contain the operations of the

SWAP test, which will be explained in the following para-
graphs. The training proceeds to find the optimal values
for θi.
The number of qubits discarded at the encoder, the size

of the trash state, fixes the latent dimension6 via
Nlat ¼ Nin − Ntrash, with Nlat the latent dimension, Nin
the size of the input state, and Ntrash the number of
discarded qubits. The reference state jβiB0 , has the same
number of qubits Ntrash, and it is initialized to be

jβiB0 ¼ j0i⊗Ntrash :

We measure the fidelity between the trash-state ρ̂B0 and the
reference state jβiB0 via a SWAP test [63]. It is a way to
measure the fidelity between two multiqubit states. For any
two states jϕi and jψi with the same dimensions, the
fidelity Fðjϕi; jψiÞ can be measured as the output of an
ancillary qubit jaianc after the following operation,

Hanc ⊗ Iðc-SWAPÞHanc ⊗ Ij0ianc ⊗ jϕi ⊗ jψi; ð12Þ

where Hanc is the Hadamard gate acting on the ancillary
qubit, and c-SWAP is the controlled swap operation between
the states jϕi and jψi controlled by the ancillary qubit.
Thus the total number of qubits required for a fixed Nin and
Ntrash is Nin þ Ntrash þ 1. Due to the limitation of current

FIG. 2. The figure shows a Quantum autoencoder circuit for a
four-qubit input and two latent qubits. The inputs are already
embedded in qi (by the input embedding circuit), which are then
rotated by tunable angles θi in the y-direction of the Bloch sphere
by RyðθiÞ gates (shown in purple boxes). Each pair of these qubits
are entangled via CNOT gates (shown with blue lines). For the
trash training, we need a two-dimensional reference state denoted
by ti qubits and an ancillary qubit a0. The fidelity between two
qubits at the encoder output and the reference states is measured
via a SWAP test.

6In our discussion, we will use the number of latent qubits as
the latent dimension, although the Hilbert space would have 2N lat

dimensions.
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quantum devices we limit the input feature to four, and scan
over the possible latent dimensions.
The quantum network is trained by minimizing the cost

function (c.f. Eq. (11) with quantum gradient descent for
the one, two and three-dimensional latent spaces. We train
these instances for different training sizes of 1, 10, 100,
1000, and 10,000 events to study the dependence of the
QAE’s performance on the size of the training data. We
update the weights for each data sample, with 5,000 shots
in all training scenarios. For training sizes greater than or
equal to 100, we train the networks for 50 epochs. In
comparison, for sample sizes 1 and 10, we train the QAE
for 500 and 200 epochs, respectively. To benchmark the
performance of a QAE on a quantum computer, we train a
QAE with the two inputs pl1

T and pb1
T with quantum-

gradient descent on PENNYLANE, and compare the test
performance with the simulation and the IBM-Q. For
running on the IBM-Q, we build and implement the test
circuits in QISKIT [64].
We also train classical autoencoders using KERAS-v2.4.0

[65] with TENSORFLOW-v2.4.1 [66] for the same input
features, for comparison. The encoder is a dense network
mapping the input space to a latent dimension of
Nlat ∈ f1; 2; 3g, and has three hidden layers with 20, 15,
and 10 nodes. The hidden layers have R eLUactivations while
the latent output has LINEAR activation. The decoder has a
symmetric configuration to the encoder. The networks are
trained with ADAM [67] optimizer with a learning rate of
10−3 to minimize the root-mean-squared error between the
input vector x and the reconstructed vector x̂. For the
CAEs, we found that training with single data per update
(technically batch size ¼ 1) has a volatile validation loss
per epoch, with slow convergence. Therefore, we choose a
batch size of 64 to train the CAEs.7

We train the QAE with analogous architecture for a six-
dimensional input for the second scenario for a two-
dimensional latent space in a similar fashion for all training
sizes. For the CAE keeping the number of nodes and layers
identical to the previous case for six-dimensional input and
output vectors, we perform a hyperparameter scan, the
details of which is given in Appendix C. All results shown
in the next section for this scenario is for the best
performing hyperparameters.

V. RESULTS

Results of the various training scenarios are presented in
this section. We present a detailed investigation of the QAE
and CAE’s properties for the tt̄ background scenario in
Secs. VA–VD. The lessons learnt from these analyses,

particularly the training size independence and the relative
performance, are then tested for the invisible Z background
in Sec. V E.

A. Dependence of test reconstruction efficiency
on the number of training samples

The distribution of the loss function of the independent
background test samples for different training sizes of the
CAE is shown in Fig. 3. Although training with a single
data point is inherently inaccurate, we perform such an
exercise as a sanity check of the CAE’s comparison to a
QAE. The test distribution shifts towards the left as one
increases the training size, thereby signifying increased
reconstruction efficiency. For training sizes of up to 102, the
limited statistics will produce a very high statistical
uncertainty. Since it is not the main emphasis of our
present work, we do not comment any further. Looking
at the distribution across different latent dimensions for 103

and 104 training samples, one can see the impact of the
information bottleneck. For a singular latent dimension, the
passed information is already available from 103 samples,
and hence the loss distribution is very close to the one
trained on 104. This relative separation increases as we go
to higher latent dimensions, denoting the higher informa-
tion passed to the decoder to reconstruct the input, which is
exploited with higher training samples. For an analogous
comparison with the quantum fidelity, we define the cosine
similarity between the input vector x and the reconstructed
vector x̂ as

cos α ¼ x:x̂
jxjjx̂j ; ð13Þ

where the dot product is done with a Euclidean signature.
The distribution of the cosine similarity shown in Fig. 4,
shows similar features to the loss function’s distribution,
with efficient reconstruction possible only when the train
size is at least 103.
We have seen that CAEs cannot be trained with limited

statistics to reconstruct the statistically independent test
dataset. From the distribution of the test sample’s fidelity in
Fig. 5, we see that QAEs are much more effective in
learning from small data samples. Although training with a
single data point has not reached the optimal reconstruction
efficiency, it is obtained with ten sample events. Unlike
CAEs, see Figs. 3 and 4, the test fidelity distribution for all
latent spaces are identical for training sizes greater than or
equal to ten. The independence of the sample size is
particularly important in LHC searches where the back-
ground cross section is small. This particularly interesting
feature may be due to the interplay of an enhancement of
statistics via the uncertainty of quantum measurements and
the relatively simple circuits employed in our QAE circuit.
For a single input point and assuming that we have
hardware capable of building exact copies, a finite number

7The network performs one update per epoch for training with
a number of samples less than 64. These training sizes are too
small for a CAE to have any good learning capability. Hence, we
do not try to modify the batch sizes or interpret the test
distributions.
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of measurement processes always introduces a nonzero
uncertainty in the network output. This uncertainty can act
as additional information in the quantum gradient mini-
mization, which is performed after the measurement
process, increasing the convergence for smaller data

samples. Moreover, existing studies [68,69] show the
advantage of quantum machine learning over classical
approaches. Additionally, the use of quantum gradient
descent [39] makes the loss landscape more convex,
thereby speeding up convergence.

FIG. 4. Cosine similarity (analogous to quantum fidelity) distribution of the test background samples (15,000) for different sizes of
training dataset of the CAE.

FIG. 3. Loss distribution of the test background samples (15,000) for different sizes of training dataset. We can see that the distribution
shifts significantly towards the left (direction with lower loss) as one increases the training data size, which reflects that there is
noticeable increase in learning with larger data samples.

FIG. 5. Quantum fidelity distribution of the test background samples (15,000) for different sizes of training dataset for the QAE. The
peak shifts towards the right in analogy to the CAE, however the shift is not as pronounced. With a single training sample, the network is
not able to converge completely while for anything greater than 10, the increase in training size has practically no effect.
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B. Classification performance

We compare the QAE and the CAE’s performance for
the four-dimensional input feature space. The metrics used
in this presentation bear similarity to those used in a
supervised framework. It also assumes that a randomly
chosen event is equally likely to be either the background or
the signal. This assumption is not sound in the context of
LHC searches or in an anomaly detection technique since
the background’s cross section is orders of magnitude
larger than that of the signal. Nevertheless, they are handy
when comparing different classifiers.
For each value of mH, we plot the receiver-operator

characteristics (ROC) curve between the signal acceptance
and the background rejection in Fig. 6, for the networks
trained with 10,000 samples. The ROC curve is obtained by
evaluating the signal acceptance as a function of the
background rejection since both are functions of the
threshold T0 applied on the loss function. The signal
acceptance ϵS ∈ ½0; 1� quantifies the fraction of accepted
signal events when one puts a threshold T0 on the variable
x, while the background rejection ϵ̄B ∈ ½0; 1� measures the
fraction of rejected background events for the threshold T0.

An outline of how the ROC curve is obtained is given in
Appendix B. The black dotted lines denote the performance
of a random classifier with no knowledge of either the
signal or the background, and the lines further away from it
indicate better performance than those in its vicinity. The
performance reduces with increasing latent dimensions for
CAEs and QAEs, with the highest background rejection
coming for a singular latent dimension. Comparing the
QAEs and the CAEs (dotted vs solid lines for each colour),
we find that QAEs perform better than CAEs consistently
in all latent dimensions and the different values ofmH. This
better performance may be a universal property of QAEs.
However, as our analysis is a proof of concept, an in-depth
exploration of the properties of QAEs in general and
anomaly detection at colliders, in particular, is needed to
affirm this observation.

C. Anomaly detection

We now explore the performance of the autoencoders in
a semirealistic search scenario. When we scale the nor-
malization of the signal and the background by their
respective probability of occurrence, i.e., their respective

FIG. 6. ROC curve between signal acceptance vs background rejection for quantum autoencoder (QAE) and classical autoencoder
(CAE) for various values of mH and different latent dimensions for a training datasize of 10,000 samples. The trend across latent
dimensions is same for both QAE and CAE with QAEs performing better in all cases.
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cross sections, we are essentially in an anomaly detection
scenario since the background is orders of magnitude larger
than the signal. The performance of the autoencoders can
then be quantified in terms of statistical significance as a
function of the threshold applied on the loss. For the
background, we scale the cross section obtained from
Madgraph by a global k factor of 1.8 [70], while for all
the signal masses, we fix a reference value of 10 fb. The
yield is then calculated as

Np ¼ ϵp σp LEpðT0Þ;

where ϵp is the baseline selection efficiency, σp the cross
section, and EpðT0Þ the efficiency at a threshold T0 of the
loss distribution, for a process p, while L is the integrated
luminosity which we take to be 3000 fb−1.
Since it is natural to use the best classifier in a search, we

evaluate the significance of the autoencoders with one
latent dimension, trained on 10k samples. We apply the
threshold for the QAE and the CAE on the quantum trash
state fidelity and the RMSE loss, respectively. We use
(1-Fidelity) for the QAE to make the signal-rich regions
same in both scenarios. RMSE loss is chosen over the
cosine similarity since the former was found to have a
higher performance. The significance NS=

ffiffiffiffiffiffiffi
NB

p
for each of

the signal masses as a function of the threshold T0 is shown
in Fig. 7. We fix the threshold range so that there are
enough background test statistics in the least background
like bin. Looking at the peak of the significance, we note
that QAEs outperform CAEs, which is only natural from
the preceding discussions. However, an interesting devel-
opment is the relative performance for the different masses.
Even though the ROCs indicated higher discrimination

with increasing mass, the significance increases for
mH ¼ 1.0 TeV–1.5 TeV and decreases for higher masses.
Since we have fixed a fiducial cross section for each signal
mass, it plays no role in this irregularity. The trend arises
via an interplay between the higher discrimination by the
autoencoder output and the decrease in baseline efficiency
with increasing mass mH. The decreasing selection effi-
ciency is due to the isolation criteria of the jets and the
leptons, which would be naturally boosted when we go to
higher resonant masses mH, thereby becoming more
collimated.

D. Benchmarking on a quantum device

We now compare the performance of the quantum
simulator and the actual quantum hardware. Since there
is a limitation on the available number of qubits, we limit
the feature space in two dimension, which consists of
fpb1

T ; pl1
T g. For our QAE setup, in addition to the two qubits

for embedding the input features, one qubit for the
reference state and another ancilliary qubit for the SWAP

test are needed. We use the simpler version of the quantum
circuit shown in Fig. 2, which is implemented and trained
using PENNYLANE. To compare the performance, we use
the same circuit with the same optimized parameters both
for PENNYLANE and for the IBM-Q belem backend.
Accessing the IBM hardware was done through QISKIT.
In Fig. 8 we show the fidelity distributions for the

background and the signal samples for our QAE circuit
with the optimized circuit parameters computed by the
simulator in PENNYLANE and in the actual quantum device
of IBM-Q belem backend. The plot shows the shape of the
distribution (denoted by the width of the shaded region) in
the y-axis for each bins of size 0.1 in the x-axis (plotted at
each bin center). The lines at each ending denote the range
of the data of the y-axis. Since IBM-Q does not have a
shallow implementation of the c-SWAP operation, the
fidelity distributions are smeared toward 0.5, and it is
especially worse around 1. One of the advantages of using
the SWAP test is to reduce the number of qubits for the
evaluations of the fidelity during the optimization process.
For example, to check the performance of the current
circuit, directly measuring the fidelity between the refer-
ence state and the output for the second qubit would be
enough. It can be achieved by the simple Pauli Z mea-
surements. The correlation of the fidelities obtained by
PENNYLANE and by IBM-Q belem, based on the SWAP test
and on the Pauli Z measurement are shown in the right
panel as the violin plots, in blue and in orange, respectively.
The correlation is better for the Pauli z measurements for
the same circuit part with the identical input parameters. It
suggests that the decoherence effects from a deeper circuit
obscure the performance.
In Fig. 9 we show the ROC curves based on the fidelity

distributions for the background and the signal samples
evaluated by PENNYLANE simulator in the left panel.

FIG. 7. Significance as a function of the threshold T0 on the
fidelity and RMSE of the QAE and the CAE, respectively, for
each of the signal scenarios and singular latent dimension trained
on 10,000 samples. To keep the signal rich region on the right
side for both, we have used (1-Fidelity) for the QAE. We fix the
cross section of all signals to 10 fb, and evaluate the yields at an
integrated luminosity of 3000 fb−1.
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The central panel shows the ROC curves based on the
fidelities evaluated by the SWAP test, while the right panel
shows those by the second qubit Pauli Z measurements, for
the same IBM-Q device of belem backend. As one can see,
the performances based on the Pauli Zmeasurements on the
IBM-Q device follow those obtained by the PENNYLANE
simulator. The AUCs for them are also essentially the same.
Thus, the deficit in the performance with the SWAP test is
due to the too deep circuit realization for the c-SWAP

operation in the IBM-Q device. Therefore, the realization of
a c-SWAP operation with a shallow circuit is necessary.
To check the efficacy of quantum hardware for the four-

input QAE, we evaluate the trash state fidelity of a QAE
with four-dimensional input features. Due to hardware
limitations discussed above, we estimate it without the
SWAP test for a single trash qubit giving us a three-
dimensional latent representation. The correlation between

the PENNYLANE evaluated fidelity and the output from
IBM-Q lagos, shown in Fig. 8 displays a good agreement
between the simulation and the hardware.

E. Comparative training efficiency and performance
for pp → Zðνν̄Þjj background

We have seen that a QAE trains efficiently and per-
forms better than a CAE in a hypothetical resonant signal
scenario. To gauge how these important behaviors carry
over to a different process, we study the training size
dependence and performance of a QAE and CAE for an
invisible background (and signal), detailed in the last
paragraph of Sec. IVA for a two-dimensional latent
space. Note that all the results for the CAE are for the
best model chosen after a hyperparameter scan described in
Appendix C.

FIG. 8. The correlation between the fidelity values obtained by PENNYLANE and by the IBM-Q backends. On the left we show the
comparison of a 2-1-2 QAE, where we directly measure the trash state (orange) and with a SWAP test employing a c-SWAP gate. We find
that the shallower implementation without the c-SWAP gate has lesser decoherence effects, and hence better agreement with the
simulation. The correlation with the direct measurement for the 4-3-4 case is shown on the right.

FIG. 9. ROC curves based on the fidelity distributions. Those evaluated by the PENNYLANE simulator (left panel), by the quantum
device IBM-Q belem backend with the SWAP test (central panel), and with the second qubit measurements (right panel) are shown.
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The loss distribution of the test dataset for the back-
ground for different sizes of training data and their ROC
curve for the case of 10,000 training samples are shown in
Fig. 10. The characteristics are similar to the previous
scenario, giving further evidence that the training efficiency
of the QAE is not limited to a specific kind of process.
Moreover, from the ROC and the AUC value, we see that
the QAE also performs better than the CAE. This superior
performance is particularly noteworthy given that the
CAE’s hyperparameters has been chosen after a hyperspace
scan restricted to a fixed width and depth.

VI. CONCLUSION

The lack of evidence for new interactions and particles at
the Large Hadron Collider has motivated the high-energy
physics community to explore model-agnostic data-driven
approaches to search for new physics. Machine-learning
anomaly detection methods, such as autoencoders, have
shown to be a powerful and flexible tool to search for
outliers in data. Autoencoders learn the kinematic features
of the background data by training the network to minimize
the reconstruction error between input features and neural
network output. As the kinematic characteristics of the
signal are different to the background, the reconstruction
error for the signal is expected to be larger, allowing signal
events to be identified as anomalous.
Although quantum architecture capable of processing

huge volumes of data is not yet feasible, noisy-intermediate
scale devices could have very real applications at the Large
Hadron Collider in the near future. With the origin of the
collisions being quantum-mechanical, a quantum autoen-
coder could, in principle, learn quantum correlations in the
data that a bit based autoencoder fails to see. We have
shown that quantum-autoencoders based on variational
quantum circuits have potential applications as anomaly
detectors at the Large Hadron Collider. Our analysis shows

that for the scenario we consider, i.e., the same set of input
variables, quantum autoencoders outperform dense
classical autoencoders based on artificial neural networks,
asserting that quantum autoencoders can indeed go beyond
their classical counterparts. They are very judicious with
data and converge with very small training samples. This
independence opens up the possibility of training quantum
autoencoders on small control samples, thereby opening up
data-driven approaches to inherently rare processes.
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APPENDIX A: QUANTUM GRADIENT DESCENT

We discuss the basic idea behind quantum gradient
descent [45] in this appendix. The general idea is to make
the optimization procedure aware of the underlying quan-
tum geometry of the weight space. Denoting any generic
weight vector by Θ, we have the vanilla gradient descent
update as

Θiþ1 ¼ Θi − γ∇Θ LðΘÞ; ðA1Þ

where L is a well-behaved loss function. This expression
implicitly assumes that l2 distances correctly describe the

FIG. 10. The test distribution of the invisible Z background scenario for different training sizes of a CAE (left) and a QAE (center) for
a two-dimensional latent representation, and their respective ROC curve (right) for the training done with 10k events. Similar to the
previous case, the QAE has converged with much smaller datasets than the CAE. Moreover, the QAE performs relatively better than the
CAE for the particular signal.
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underlying geometry of the weight space, placing all
directions in the weight space on an equal footing. In
reality, however, the geometry of the weight space can be
much more complicated, and such a straightforward update
rule may not converge to the optimal point. Therefore, to
have an idea of the underlying geometry, we modify
Eq. (A1) with the metric tensor G,

Θiþ1 ¼ Θi − γG−1ðΘiÞ ð∇ΘLðΘÞÞΘ¼Θi
; ðA2Þ

to get the natural gradient descent [71]. Note that natural
gradient descent gives the usual gradient descent [Eq. (A1)]
for a Euclidean metric G ¼ I. Due to the extremely large
parameter space, it is computationally prohibitive to put
metric-restrained optimization in deep neural networks,
which is not the case for currently used variational quantum
circuits. The natural metric on complex projective Hilbert
Spaces (the space containing physical quantum states) is
the Fubini-Study metric [52,53],

gij ¼ Re½h∂iϕ0j∂jϕ0i − h∂iϕ0jϕ0ihϕ0j∂jϕ0i�: ðA3Þ

Here, j∂iϕ0i ¼ ∂jϕ0i∂θi , with θi, a component of the weight
vector Θ and jϕ0i, a state in the Hilbert space. The inverse
of the metric is evaluated in PENNYLANE using the Moore-
Penrose pseudoinverse [72,73]

gþ ¼ ðgTgÞ−1gT;

which is well behaved even when det g ¼ 0 and is numeri-
cally equal to the inverse when it exists.

APPENDIX B: DEFINING THE RECEIVER-
OPERATOR-CHARACTERISTICS CURVE

In this appendix we outline the procedure of obtaining
the ROC curve from the normalized probability distribution
of a signal pSðxÞ, and background pBðxÞ. By normalized,
we mean

R
∞
−∞ dxpSðxÞ ¼

R
∞
−∞ dxpBðxÞ ¼ 1. The signal

acceptance ϵS ¼ fSðT0Þ and the background rejection
ϵ̄B ¼ f̄BðT0Þ are defined as

fSðT0Þ ¼
Z

T0

−∞
dxpSðxÞ; f̄BðT0Þ ¼

Z
∞

T0

dxpBðxÞ;

where we have assumed that the signal-rich regions are on
the lower side of the variable x. The ROC curve is then
obtained by expressing the signal acceptance as a function
of the background rejection as

T0 ¼ f̄−1B ðϵ̄BÞ ⇒ ϵS ¼ fSðT0Þ ¼ fSðf̄−1B ðϵ̄BÞÞ:

The ROC curve therefore shows the function ϵSðϵ̄BÞ
without any reference to the threshold T0, which is
implicitly assumed in the evaluation of the dependent
(ϵSÞ and the independent (ϵ̄B) quantities. The variable x
can be any physical observable or the output of a neural
network model. For the studies conducted here, it is the
RMSE loss for the CAE, and the fidelity for the QAE.

APPENDIX C: DETAILS OF HYPERPARAMETER
SCAN

The details of the hyperparameter scan of classical
autoencoder with six-dimensional inputs and outputs are
given in this appendix. We use the RandomSearch algorithm
implemented in KerasTuner [74] for the scan. The number of
nodes in the hidden layers of the encoder is kept fixed to 20,
15, and 10. With a (fixed) two-dimensional latent space, we
use a symmetric decoder setup. Once the skeleton of the
architecture is fixed, we scan over the activation function of
the layers, L1 regularization and L2 regularization of the
weights, the dropout value between two successive layers,
and the training’s learning rate and batch size. Their
respective values along with the best one chosen for the
final training are given in Table I. The best value of
the hyperparameters are from thousand trials trained for
hundred epochs, and the training is terminated if the
validation loss does not improve for ten epochs (imple-
mented as the EarlyStopping callback during training).
We do not vary the width or the depth to compare the

capabilities of CAEs with at least some degree of compa-
rability to the simple QAE used in the study. Increasing the
width and depth will undoubtedly increase the expressive
power of a CAE, which is not the objective of the current
study. Networks like convolutional or graph autoencoders
acting on low-level high-dimensional data will undoubtedly
perform better than currently executable QAEs. However,
existing quantum resources cannot process such high-
dimensional data.

TABLE I. The table shows the different values of the hyperparameters and their best values after the scan.

Serial number Hyperparameter Value space Best value

1. Activation function tanh, ReLU, SIGMOID, LINEAR ReLU
2. L1 regularization 0,0.1,0.01,0.001,0.0001 0
3. L2 regularization 0,0.1,0.01,0.001,0.0001 0
4. Dropout 0,0.1,0.2,0.3 0
5. Learning rate 0.01,0.001,0.0003 0.0003
6. Batch size 32,64,128,256,512,1024 64
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