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Abstract
A class of Bernstein-Bézier basis based high-order finite element methods is developed
for the Galerkin-characteristics solution of convection-diffusion problems. The Galerkin-
characteristics formulation is derived using a semi-Lagrangian discretization of the total
derivative in the considered problems. The spatial discretization is performed using the finite
element method on unstructured meshes. The Lagrangian interpretation in this approach
greatly reduces the time truncation errors in the Eulerian methods. To achieve high-order
accuracy in the Galerkin-characteristics solver, the semi-Lagrangian method requires high-
order interpolating procedures. In the presentwork, this step is carried out using theBernstein-
Bézier basis functions to evaluate the solution at the departure points. Triangular Bernstein-
Bézier patches are constructed in a simple and inherent manner over finite elements along the
characteristics. An efficient preconditioned conjugate gradient solver is used for the linear
systems of algebraic equations. Several numerical examples including advection-diffusion
equations with known analytical solutions and the viscous Burgers problem are considered to
illustrate the accuracy, robustness and performance of the proposed approach. The computed
results support our expectations for a stable and highly accurate Bernstein-Bézier Galerkin-
characteristics finite element method for convection-diffusion problems.
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1 Introduction

Convection-diffusion equations have been widely used to model many applications in engi-
neering involving advection of scalar quantities such as density, temperature or concentration
among others. For instance, convection-diffusion problems have been proposed to study
water transport in soils [25], heat transfer of nanofluids [36], and the transport in ferrofluids
under rotating magnetic fields [10]. On the other hand, various numerical methods have been
developed in recent years to solve the convection-diffusion equations. Most of these com-
putational techniques can be classified into three main categories: (i) Eulerian methods, (ii)
Lagrangian methods and (iii) semi-Lagrangian methods. In the framework of finite elements,
the most popular Eulerian methods are the streamline upwind Petrov-Galerkin methods [9,
11], Galerkin/least-squares methods [9, 26] and Taylor-Galerkin methods [12, 13]. How-
ever, it is well known that these Eulerian methods do not perform very satisfactory in the
case of convection-dominated problems unless small time steps and highly refined grids
are used in the simulations. In the case of pure convection problems as those considered
in this study, these requirements are practically not feasible and may limit the performance
of these Eulerian methods. The Lagrangian techniques on the other hand, are theoretically
well suited for the numerical solution of advection problems due to the possibility of using
large time steps in the simulations. In practice, the computational mesh for the Lagrangian
methods moves along the fluid particle trajectory which may yield to mesh distortion after
few time steps in the computations. Thus, because of this drawback, the Lagrangian methods
are not recommended for the numerical solution of complex convection-diffusion problems.
In the semi-Lagrangianmethods known also in the framework of finite elements by Galerkin-
characteristics, the computational mesh is taken to be fixed to overcome the drawback of the
Lagrangianmethods while keeping the advantage of the Lagrangian tracking algorithm along
the characteristic curves. The main advantage of the Galerkin-characteristics method lies on
the fact that the Courant-Friedrichs-Lewy (CFL) condition is highly relaxed compared to its
Eulerian counterparts, see for example [15–18, 32, 39, 42]. In addition, the Lagrangian treat-
ment in the Galerkin-characteristics algorithms greatly reduces the time truncation errors in
the Eulerian methods, see [7, 8, 15, 38, 41] among others. Thus, the Galerkin-characteristics
finite element method has the potential to be more suitable than the Eulerian and Lagrangian
methods for convection-diffusion problems on unstructured meshes. Numerical assessment
of the conventional Galerkin-characteristics method has been carried out in [16] for convec-
tion problems and comparisons to well-established Eulerian methods can also been found in
this reference.

In general, most of Galerkin-characteristics finite element methods are second-order accu-
rate in space and time but the accuracy of this class of numerical methods depends on the
order of the interpolation polynomials used to compute the solution in the convection stage
and on the time integration procedure for the diffusion operator. For example, to achieve a
second-order accuracy in the Galerkin-characteristics finite element method, the interpola-
tion polynomials have to be at least second-order accurate and the time integration must be
at least semi-implicit for the diffusion terms. In addition, it has been observed that the error
in the conventional Galerkin-characteristics finite element method for convection-diffusion
problems decreases as the time step increases at certain range of parameters, see for instance
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[17, 18, 20]. High-order accurate numerical methods for convection-dominated problems
have the potential to reduce the computational effort required for a given order of solution
accuracy. The state of the art in this field is more advanced for the Eulerian methods than
for the semi-Lagrangian methods. For example, high-order discretization techniques such as
those relying on spectral or hp-finite element method have been shown to achieve fast conver-
gence with low numerical diffusion and dispersion errors for advection-diffusion problems
[22, 28]. The p-finite element method and hp-finite element method where introduced by
Babuška, Szabó and their coworkers in the mid-1970s. It was shown that the hp-finite ele-
ment method delivers exponential convergence for elliptic problems with piecewise analytic
data, see the survey [6] and further references are therein. A similar performance was also
proven for boundary-layer and singularly perturbed problems [33, 37]. A study reported in [5]
reveals that the choice of high-order shape functions is critical to the stability and efficiency of
the finite element procedure. Particularly, high-order finite elements based on Lobatto shape
functions have proven to possess better conditioning compared to other types of high-order
shape functions widely used in the literature [43]. Assessment of different high-order shape
functions in [35], including Bernstein, Lobatto and Lagrange Gauss-Lobatto polynomials for
interior acoustic problems, has shown the advantage of high-order polynomials in reducing
the pollution errors and the good performance of Bernstein polynomials when combined with
the Krylov subspace solvers. In a closely related study [19], Bernstein shape functions have
been demonstrated to yield comparable, and even better performance in terms of accuracy and
memory requirements compared to the well-established partition of unity finite method. The
Bernstein polynomials are well known in the field of computer aided geometric design and
computer graphics. However, their applications in the finite element community have until
now not been widely adopted. Although hierarchical basis functions are often chosen in the
design of high-order finite elements for their suitability in p-adaptivity, recently attention has
been paid to the favorable properties of the Bernstein polynomials [1, 24, 29]. Especially, it
has been shown that Bernstein-Bézier finite elements over simplicial domains, hexahedra and
pyramids yield optimal complexity for the standard finite element spaces. In a more recent
work [3], the Bernstein basis functions combined to an additive Schwarz preconditioner was
successfully implemented for challenging applications including boundary layers, non-linear
reaction-diffusion problems and wave propagation of solitons.

The main focus of the present study is the development of a class of high-order
Galerkin-characteristics finite element methods to numerically solve convection-dominated
problems. This goal is achieved by the implementation of Bernstein-Bézier finite elements
for the Galerkin-characteristics method. It should be stressed that combining the Galerkin-
characteristicsmethodwith theBernstein-Bézier finite elements, to the best of our knowledge,
is reported for the first time. In the context of Galerkin-characteristics finite element methods,
Bernstein polynomials are used as shape functions associated with elements of the computa-
tional mesh to calculate the departure points and update the global solutions. The positivity
of these local basis functions and the variation diminishing properties make them a very
attractive alternative to the standard Lagrange polynomials. To increase the efficiency of the
proposed method, we also implement an efficient preconditioned iterative solver using the
mass matrix as a preconditioner as proposed in [3]. The key idea behind this considered
algorithm lies on the static condensation of the cell-based Degrees of Freedoms (DoFs) on
each element and it can be viewed as an extension of the Additive Schwarz method. This
results in a p-independent uniform bound on the growth of the associated condition num-
ber. It should also be noted that in case of the pure convection problem, the resulting linear
system in the proposed semi-Lagrangian method consists of the mass matrix which make
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the proposed preconditioned conjugate gradient solver more convenient than its convection-
diffusion counterpart. Furthermore, for the convection-dominated problems the growth of the
condition number is relaxed by the viscosity coefficient and therefore, the performance of the
considered linear solver is not affected. Numerical results presented in this work demonstrate
that an interesting feature of the Bernstein-Bézier finite elements is to allow large time steps
and coarse meshes in the simulations without deteriorating the high-order accuracy of the
computed solutions.

This paper is organized as follows. Introduction of the Bernstein-Bézier finite element
discretization is presented in Sect. 2. Section 3 is devoted to the formulation of the Bernstein-
Bézier Galerkin-characteristics finite element method for pure convection problems. This
section includes the calculation of characteristic curves and the implementation of the compu-
tational algorithm. The extension of the method for solving convection-diffusion equations is
discussed inSect. 4. InSect. 5,we examine thenumerical performanceof the proposedmethod
using several test examples of convection-diffusion problems including the viscous Burger
equation. The proposed Bernstein-Bézier Galerkin-characteristics finite element method is
demonstrated to enjoy the expected high-order accuracy as well as efficiency. Concluding
remarks are summarized in Sect. 6.

2 Bernstein-Bézier Finite Element Approximation

In order to formulate our Galerkin-characteristics method, the computational domain �

assumed for simplicity to be a two dimensional bounded and polygonal domain, is first
partitioned into non-overlapping triangular finite elements. Let ̂T be the reference element
defined by

̂T =
{

ξ = (ξ1, ξ2) : 0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1 − ξ1

}

, (1)

where q̂1 = (0, 0), q̂2 = (1, 0) and q̂3 = (0, 1) are vertices of the reference element as
shown in Fig. 1. The barycentric coordinates λi (i = 1, 2, 3) relative to the reference element
̂T are defined by

λ1(ξ) = ξ1, λ2(ξ) = ξ2 and λ3(ξ) = 1 − ξ1 − ξ2. (2)

The Bernstein-Bézier basis for the space Pp(̂T ) of polynomials of total degree at most p
consists of the following shape functions:

• Vertex-based shape functions defined by

B p
(p,0,0)(ξ) = λ

p
1 (ξ), B p

(0,p,0)(ξ) = λ
p
2 (ξ), B p

(0,0,p)(ξ) = λ
p
3 (ξ),

• Edge-based shape functions defined by

B p
(p−k,k,0)(ξ) =

(

p
k

)

λ
p−k
1 (ξ)λk2(ξ), 1 ≤ k ≤ p − 1,

B p
(0,p−k,k)(ξ) =

(

p
k

)

λ
p−k
2 (ξ)λk3(ξ), 1 ≤ k ≤ p − 1,

B p
(k,0,p−k)(ξ) =

(

p
k

)

λ
p−k
3 (ξ)λk1(ξ), 1 ≤ k ≤ p − 1.

• Cell-based shape functions defined by

123



Journal of Scientific Computing            (2022) 92:58 Page 5 of 29    58 

B p
(i, j,p−i− j)(ξ)=

(

p
i + j

) (

i + j
i

)

λi1(ξ)λ
j
2(ξ)λ

p−i− j
3 (ξ), 1≤ i≤ p−2, 1≤ i+ j ≤ p−1.

For a multi-index α ∈ Z
3+, we define |α| =

3
∑

i=1

αi and α! =
3

∏

i=1

αi !. Let α,β ∈ Z
3+ such

that β ≥ α i.e., βi ≥ αi for ≤ i ≤ 3, we set

(

β

α

)

=
3

∏

i=1

(

βi

αi

)

. Using these notations, the

Bernstein-Bézier shape functions can also be formulated in a simple compact form as

B p
α =

(

p

α

) 3
∏

i=1

λ
αi
i , (3)

where
(p
α

) = p!
α! and |α| = p. It should also be stressed that one of the most important

proprieties of the Bernstein polynomials lies on the fact that their product yields a scaled
Bernstein polynomial as

B p
α (ξ)Bq

β (ξ) =

(

α + β

α

)

(

p + q
p

) B p+q
α+β (ξ), (4)

where |α| = p and |β| = q . Furthermore the integral of a Bernstein polynomial over the
reference triangle element has a simple form

∫

̂T
B p

α (ξ)dξ = |̂T |
(

p + 2
2

) (5)

On the other hand the gradient of Bernstein polynomials can be computed as follows:

∇B p
α (ξ) = p

3
∑

k=1

B p−1
α−ek (ξ)∇λk, (6)

where ek is a multi-index with its kth entry is a unity and its remaining entries are zero,
and B p−1

α−ek = 0 if α − ẽk has a negative component. It should be noted that the Bernstein
polynomials are non-negative and form a partition of unity on the element ̂T . Moreover, these
polynomials have some attractive features such as variation diminishing and monotonicity
preserving properties, see for instance [21, 23] and further references can be found therein.

Following the same procedure carried out in the classical finite element methods, each
mesh element T in the triangulation Th is mapped to the reference element ̂T in which all
computations are performed. Here, we use the following reference affine map

x = �T (ξ) = λ1(ξ)q1 + λ2(ξ)q2 + λ3(ξ)q3, (7)

where q1, q2 and q3 are the vertices of the physical element T . The conforming finite element
space for the solution that we consider is defined as

Vh =
{

wh ∈ C0(�̄) : wh

∣

∣

∣

T
◦ �T ∈ Pp(̂T ), ∀ T ∈ Th

}

. (8)
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Fig. 1 A schematic diagram showing the main quantities used in the approximation of the departure points.
Here, T is a given mesh element, ξ j is a Stroud quadrature point used in the reference element ̂T and mapped
onto xh j in the element T , T ∗

j is the host element where the departure point X n
h j belongs, and �T is the

affine one-to-one mapping

For a polynomial degree p ≥ 1, the number of Degrees of Freedom (DoF) per element is
given by

Ne =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

3, if p = 1,

6, if p = 2,

3 + 3(p − 1) + (p − 2)(p − 1)

2
, if p ≥ 3.

(9)

Note that, in contrast to the Lagrange finite elements where the degrees of freedom refer
to nodal point evaluations, a global orientation of edges is required to enable matching
edge modes of a similar shape, thus ensuring C0 conformity [19, 28, 43]. Finite element
approximations with varying polynomial order can also be used by assigning to each vertex,
edge and cell in the mesh an arbitrary polynomial degree, see [1, 19] among others.

3 Bernstein-Bézier Finite Element Galerkin-Characteristics Method

To describe the formulation of the proposed Bernstein-Bézier finite element Galerkin-
characteristics method, we consider the following two-dimensional Cauchy problem for the
convection equation

Dc

Dt
:= ∂c

∂t
+ v(x, t) · ∇c = 0, (x, t) ∈ � × (0, T ],

c(x, 0) = c0(x), x ∈ �, (10)

where x = (x, y)	 is the space variable, ∇c = ( ∂c
∂x , ∂c

∂ y )
	 is the gradient vector, � is a

spatial bounded domain in R2 with boundary ∂�, and [0, T ] is a time interval. Here, c(x, t)
denotes the concentration of some species, v(x, t) = (u(x, t), v(x, t))	 is the velocity
field assumed to depend on the solution c as well, and c0(x) is a given initial function. We
assume that appropriate boundary conditions are given in such a way the problem is well
defined and has a unique solution. Note that Dc

Dt in (10) measures the rate of change of the
concentration c following the trajectories of the flow particles. The main idea behind the
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Galerkin-characteristics method is to impose a regular grid at the new time level and to
backtrack the flow trajectories to the previous time level. At the old time level, the quantities
that are needed are evaluated by interpolation from their known values on a regular grid.

Next, we divide the time interval [0, T ] into N subintervals [tn, tn+1] with length 	t =
tn+1−tn for n = 0, 1, . . . , N .We use the notationwn to denote the value of a generic function
w at time tn . Hence, the characteristic curves associated with the convection problem (10)
are the solution of the backward differential equation

dX (τ ; x, tn+1)

dτ
= v

(X (τ ; x, tn+1), τ
)

, τ ∈ [tn, tn+1],
X (tn+1; tn+1, x) = x, (11)

where X (τ ; x, tn+1) = (

X(τ ; x, tn+1), Y (τ ; x, tn+1)
)	 is the departure point at time τ of

a particle that will arrive at x = (x, y)	 at time tn+1. Note that the Galerkin-characteristics
methods do not follow the flow particles forward in time, as the Lagrangian schemes do,
instead they trace backwards the position at time tn of particles that will reach the points of a
fixedmesh at time tn+1, see Fig. 1 for an illustration. By so doing, theGalerkin-characteristics
methods avoid the grid distortion difficulties that the conventional Lagrangian methods have.
The solution of the differential eq. (11) can be expressed as

X (tn; x, tn+1) = x −
∫ tn+1

tn
v (X (τ ; x, tn+1), τ ) dτ. (12)

Hence, integrating the convection eq. (10) along the characteristic curves yields

cn+1(x) = cn (X (tn; x, tn+1)) . (13)

Note that the Bernstein polynomials are not interpolatory by reconstruction i.e., the degrees
of freedom associated to the shape functions do not directly lie on the solution evaluated
at control points. Hence, the solution at the next time level should be obtained by a weak
formulation. Thus, multiplying both sides of equation (13) by a test function w ∈ H1 (�)

and integrating over �, it leads to the following weak form
∫

�

w cn+1 dx =
∫

�

w cn ◦ X n dx. (14)

Here, the finite element solution cn+1
h is sought element-wise at each time step as

cn+1
h (x) =

∑

|α|=p

Cn+1
α B p

α (ξ), (15)

with x = �T (ξ) and T ∈ Th . The approximation of the weak form (14) using the conforming
finite element space Vh yields the following linear system of algebraic equations

MCn+1 = bn, (16)

with M is an nndof × nndof-valued sparse symmetric matrix, b is an nndof-valued right-hand
side column vector and C is nndof-valued column vector of the unknowns, where nndof is the
total number of degrees of freedom. The entries of the mass element matrix can be written
as

Mp
α,β =

∫

̂T
det(JT )B p

α (ξ)B p
β (ξ) dξ , (17)
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where |α| = |β| = p and JT =
(

d�T
dξ

)	
is the Jacobian matrix. Since the geometry is

interpolated using the affine map �T , analytical integration rules as those proposed in [1,
29] can be used for the evaluation of the element mass matrix. Thus, using the proprieties
(4) and (5), the integral in (17) can be evaluated as

Mp
α,β = |T |

|̂T |

(α+β
β

)

(2p
p

)

∫

̂T
B2p

α+β(ξ) dξ = |T |
|̂T |

(α+β
β

)

(2p
p

)(2p+2
2

) . (18)

Note that the crucial step in this approach is the evaluation of the right-hand entries in (16)
given by

bnα =
∫

̂T
det(JT ) cnh ◦ X n

h B p
α (ξ) dξ . (19)

is evident that, if the above integrals are evaluated exactly then it is easy to show that the
Galerkin-characteristics method is unconditionally stable in the L2-norm, see for instance
[15, 40]. In a general framework, this cannot be done and one has to approximate the integrals
by numerical integration.

It has shown in [1] that the Duffy transformation enables a tensorial reconstruction of the
Bernstein-Bézier basis on simplices. Thus, the well-established sum factorization is used to
efficiently evaluate and integrate these polynomials based on the Stroud conical quadrature.
This transformation maps the unit quadrilateral with coordinates t = (t1, t2) ∈ ̂S = [0, 1]2
to the reference triangle ̂T and it can be defined by

F(t) = ξ =
(

t1, (1 − t1)t2
)	

. (20)

Let us denote by B p
i = (p

i

)

t i (1 − t)p−i the one-dimensional Bernstein polynomial on the
unit interval [0, 1]. Hence, it is shown in [1] that

B p
α (ξ) = B p

α1
(t1)B

p−α1
α2

(t2), (21)

where |α| = p. Therefore, the Bernstein polynomial form (15) becomes

cn+1
h (x) =

p
∑

α1=0

B p
α1

(t1)
p−α1
∑

α2=0

Cn+1
α B p−α1

α2
(t2), (22)

with x = �T ◦ F(t) and T ∈ Th . Recall the q-point Gauss-Jacobi quadrature defined as
∫ 1

0
w(t) f (t) dt ≈

q
∑

i=0

w
(a,b)
i f (s(a,b)

i ), (23)

where the weight function w(t) = (1 − t)atb, with a, b > −1, {s(a,b)
i } is the set of nodes,

and {w(a,b)
i } are the weights. Thus, using the Stroud quadrature rule, the relations (20) and

(22), the evaluation of the integral (19) yields

bnα = |T |
|̂T |

∫ 1

0

(∫ 1

0
(1 − t1)B

p
α1

(t1)c
n
h ◦ X n

h dt1

)

B p−α1
α2

(t2) dt2,

≈ |T |
|̂T |

q
∑

j2=1

w
(0,0)
j2

B p−α1
α2

(

s(0,0)
j2

)

⎛

⎝

q
∑

j1=1

w
(1,0)
j1

B p
α1

(s(1,0)
j1

) cnh

(

X n
h j

)

⎞

⎠ , (24)
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where j = ( j1, j2). By setting ξ∗
j = �−1

T ∗
j
(X n

h j ), t
∗
j ,1 = ξ∗

j ,1 and t∗j ,2 = ξ∗
j ,2

1 − ξ∗
j ,1

, the

solution cnh can be evaluated at the point X n
h j as

cnh(X n
h j ) =

∑

|α|=p

Cn
αB

p
α

(

ξ∗
j

)

,

=
p

∑

α1=0

B p
α1

(

t∗j ,1
)

p−α1
∑

α2=0

Cn
α B p−α1

α2

(

t∗j ,2
)

. (25)

Note that if 1 − ξ∗
j ,1 = 0 the Duffy transformation degenerates and since in this case

λ1(ξ
∗
j ,1) = 1 and λ2(ξ

∗
j ,1) = λ2(ξ

∗
j ,1) = 0, it follows that cnh(X n

h j ) = Cn
(p,0,0).

The evaluation step (25) requires finding for each arrival point xh j = �T (ξ j ), the host
element T ∗

j where the departure point X n
h j = X h

(

tn; xh j , tn+1
)

is located, with

ξ j1 = s(1,0)
j1

and ξ j2 = (1 − s(1,0)
j1

)s(0,0)
j2

. (26)

At the implementation level, the interpolation of cnh at the departure pointX n
h j is performed in

the samemanner as in [1], by exploiting property (25). Thus,wefirst evaluate all the univariate
Bernstein polynomials B p

α1 and B p−α1
α2 , with α1 = 0, 1, . . . , p and α2 = 0, 1, . . . , p − α1,

at the points t∗j ,1 and t
∗
j ,2, respectively, based on the recursion formula

Bk+1
α (t) = t Bk

α−1(t) + (1 − t)Bk
α(t), (27)

where Bk−1 = Bk
k+1 = 0 and B0

0 = 1. Note that this procedure requires O(p2) floating point
operations. Next, for α1 = 0, 1, . . . , p, we compute the auxiliary coefficients

C∗
α1

=
p−α1
∑

α2=0

Cn
α B p−α1

α2
(t∗j ,2), (28)

which yields a cost of O(p2). Hence, we evaluate cnh(X n
h j ) as

cnh(X n
h j ) =

p
∑

α1=0

C∗
α1
B p

α1
(t∗j ,1). (29)

Notice that the computational cost of this algorithm per point is of O(p2) operations for an
arbitrary point. It should also be stressed that De Casteljau’s algorithm [31] can be used for
evaluating the previous coefficients. However, this results in O(p3) operations, unless the
given point X n

h j belongs to an edge of the triangle for which the computational cost will

decrease to O(p2) operations. Once cnh(X n
h j ) is computed for all j1, j2 = 1, . . . , q , each

entry bnα given by (24) can be evaluated in O(q2) operations. Since the required number q
of quadrature points should be chosen such that q = O(p) to ensure a sufficiently accurate
numerical integration, the total cost to set up the element right-hand side is O(p2).

In the current study, to compute the departure point X n
h j from a given integration point

xh j , the discrete analogous of (12) is first reformulated as

X n
h j = xh j − δh j , (30)
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where the displacement δh j is evaluated using the following iterative procedure based on the
Adams-Bashforth method

δ
(0)
h j = 	t

2

(

vn
(

xh j
) − vn−1 (

xh j
)

)

,

δ
(k+1)
h j = 	t

2

(

3vn
(

xh j − 1

2
δ
(k)
h j

)

− vn−1
(

xh j − 1

2
δ
(k)
h j

))

, k = 0, 1, . . . , (31)

with the velocity fields vn
(

xh j − 1
2δ

(k)
h j

)

and vn−1
(

xh j − 1
2δ

(k)
h j

)

evaluated based on the

finite element interpolation on the mesh element where xh j − 1
2δ

(k)
h j is located. This iterative

procedure was first proposed in [41] for the finite difference semi-Lagrangian methods and
investigated in [15] for the finite element discretizations. In the present work, the iterations
(31) are stopped when the following criteria

∥

∥

∥δ
(k+1)
h j − δ

(k)
h j

∥

∥

∥

∥

∥

∥δ
(k)
h j

∥

∥

∥

≤ ε, (32)

is satisfied for the Euclidean norm ‖·‖ and a given tolerance ε. In general, the departure points
do not coincide with the spatial position of a mesh point in the triangular mesh. Therefore,
the method used to compute X n

h j should be equipped with a search-locate algorithm to find
the host element where such point is located. In our simulations presented in Sect. 5, we have
implemented a search-locate algorithm designed in [4] for the semi-Lagrangian methods in
unstructured finite element discretizations. In addition, the iterations in (31) were continued
until the trajectory changed by less than ε = 10−6.

4 Implementation for Convection-Diffusion Problems

In this section we consider convection-diffusion problems reformulated using the total
derivative as

Dc

Dt
− ν	c = f (x, t), (x, t) ∈ � × (0, T ],
c(x, 0) = c0(x), x ∈ �, (33)

where ν is the diffusion coefficient and f (x, t) the source term. We assume that eq. (33) is
equipped with well defined boundary and initial conditions depending on the problem under
study. In the current study, to deal with the diffusion part in the eq. (33) we consider a second-
order implicit scheme of Gear type also known in the literature by backward differentiation
formula (BDF2). Using the same notations introduced in the previous section, the time
semi-discrete form of the eq. (33) reads

3cn+1 − 4cn ◦ X n + cn−1 ◦ X n−1

2	t
− ν	cn+1 = f n+1, (34)

which can be rearranged in a compact form as

3

2	t
cn+1 − ν	cn+1 = Fn, (35)

with Fn = 4
2	t c

n ◦X n − 1
2	t c

n−1 ◦X n−1 + f n+1. Notice that to advance the solution cn+1

in time in (34), the two solutions cn−1 and cn are required. At time t = 0 only one initial
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condition is provided and to obtain the second condition we use the implicit Euler scheme.
Suppose for simplicity purposes, the convection-diffusion problem (33) is supplied with an
homogeneous Dirichlet boundary condition on ∂�. Then, the discrete weak form of (35)
reads as: Find cn+1

h ∈ V 0
h = Vh ∩ H1

0 (�), such that

3

2	t

∫

�

vh cn+1
h dx + ν

∫

�

∇vh · ∇cn+1
h dx =

∫

�

vh Fn dx, ∀vh ∈ V 0
h , (36)

where Vh is the conforming finite element space defined in (8). By virtue of definitions of the
finite element operators given above, this reduces to the following linear system of algebraic
equations

3

2	t
MCn+1 + νKCn+1 = bn, (37)

where K is an nndof × nndof-valued sparse symmetric matrix and bn is an nndof-valued
right-hand side column vector. It should also noted that since the Bernstein polynomials
are only interpolatory at the mesh grid vertices, a numerical procedure is needed to impose
nonhomogeneous Dirichlet type boundary condition. In the present work, this is achieved by
using the L2 projection on the Bernstein-Bézier basis of the local boundary data Lagrange
interpolate.

The entries Kα,β of the element stiffness matrix K are given by

Kα,β =
∫

̂T
det(JT )

(

J−1
T

̂∇B p
β

)

·
(

J−1
T

̂∇B p
α

)

dξ , (38)

and the entries bnα of the right-hand side column vector bn are given by

bnα =
∫

̂T
det(JT )

(

4

2	t
cn ◦ X n − 1

2	t
cn−1 ◦ X n−1 + f n+1

)

B p
α (ξ) dξ . (39)

where |α| = |β| = p, ̂∇ refers to the gradient with respect to the local coordinates ξ .
Following the same procedure used in the previous section to compute analytically the entries
of the elements mass matrix, one can easily verify that the computation of the entries of the
element stiffness matrix can be carried out analytically using eq. (6) as

Kα,β = p2
|T |
|̂T |

3
∑

k,l=1

(

J−1
T

̂∇λk

)

·
(

J−1
T

̂∇λl

)

Mp−1
α−ek,β−el

, (40)

where Mp−1
α−ek,β−el

is deduced from the closed form (18). In addition, the integral in (39) is
computed in the samemanner as previously based on the Stroud quadrature and property (22).
Here, a rule of q = p + 2 quadrature points which is exact if the integrand is a polynomial
of degree no higher than 2p + 3 is adopted.

In summary, the Bernstein-Bézier Galerkin-characteristics finite element method to solve
either the convection problem (10) or convection-diffusion problem (33) is carried out in the
following steps:

Note that, since the cell-based shape functions are internal i.e., they vanish on the element
boundaries and are therefore not connected to the neighboring elements, the static conden-
sation can be applied at the elemental level to remove the internal DoFs from the global
finite element system during the assembly. Once the matrix and the right-hand side of the
statically condensed system are formed, the internal DoFs in the solution can be recovered
during the post-processing by solving element-wise local linear problems. This procedure is
very efficient in reducing the size and enhancing the condition number of hp-finite element
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Algorithm The Bernstein-Bézier Galerkin-characteristics finite element method
1: for each time step do
2: for each mesh element T do
3: For each Stroud quadrature point xh j calculate the departure pointsX n

h j using (30)–(31).

4: Identify the mesh element T ∗
j where the departure point X n

h j belongs using the search-locate
algorithm proposed in [4].

5: Evaluate the gridpoint approximations using (25).
6: Compute the element right-hand side using (39) and assemble it in the global column vector bn .
7: end for
8: Compute Cn+1 by solving the linear system (16) or (37).
9: Update the solution cn+1

h element-wise according to (22).
10: end for

system matrices. Furthermore, the considered method requires solution of uncoupled elliptic
problems such that their finite element discretization leads to linear systems of algebraic
equations for which, very efficient solvers can be implemented. Therefore, by taking advan-
tage of these properties, we solve the linear systems in (16) or (37) by the preconditioned
conjugate gradient solver. This yields an efficient method for solving this class of linear sys-
tems of algebraic equations for which the preconditioner is implemented at a cost of O(p3)
operations as discussed in [3]. Here, the additive Schwarz preconditioner is used in the same
manner as studied in [3]. The key idea consists in using the relationship between the Bernstein
and Jacobi polynomials which makes the passage from the Jacobi to the Bernstein basis func-
tions and vice versa easy without inverting any matrix. These techniques have been proposed
in [3] to build a preconditionner for the Bernstein polynomials using the well-established
preconditionner introduced in [2] for the Jacobi polynomials but with less computational
cost. This gives rise to a preconditioned system for which the condition number is bounded
independently of the polynomial order p and the mesh size h.

5 Results and Examples

A number of numerical examples are selected to illustrate the accuracy of the new Galerkin-
characteristicsmethodwithBernstein-Bézier finite elements introduced in the above sections.
These examples range from a linear passive advection of some initial conditions to a nonlinear
viscous Burgers problem. For some of these test examples the analytical solutions are known,
so that we can evaluate the relative L1-error and relative L2-error at time tn as

L1-error =

∫

�

∣

∣cnh − cnexact
∣

∣ dx
∫

�

∣

∣cnexact
∣

∣ dx
, L2-error =

√∫

�

∣

∣cnh − cnexact
∣

∣

2
dx

√

∫

�

∣

∣cnexact
∣

∣

2
dx

, (41)

where cnexact and cnh are respectively, the exact and numerical solutions at gridpoint xh and
time tn . We also define the CFL number associated to the problems (10) and (33) as

CFL = max
x,y

(√

|u|2 + |v|2
)

	t

h/p
. (42)

In all our computations carried out in this section, the resulting linear systems of algebraic
equations are solved using the preconditioned conjugate gradient solver and stopping criteria
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set to 10−6h/p, which is small enough to guarantee that the algorithm truncation errors
dominate the total numerical errors. All the computations were performed on an Intel®

Core(TM) i7-7700HQ CPU@2.80GHz with 8 GB of RAM. It should be pointed out that in
all our simulations reported in this section, the number iterations in the linear solver do not
exceed 30 iterations.

5.1 A Gaussian Pulse Example

In this example we consider the advection-diffusion of a Gaussian pulse in a rotating velocity
field widely used in the literature to ascertain the performance of transport schemes, see for
example [18, 41]. Thus, the governing equations are of the form (33) with v = (−ωy, ωx)	
and ω = 4. Initial and boundary conditions are taken from the exact solution

cexact(x, y, t) = σ 2

σ 2 + 4νt
exp

(

− (x̄ − x0)2 + (ȳ − y0)2

σ 2 + 4νt

)

,

where x̄ = x cos(ωt) + y sin(ωt), ȳ = −x sin(ωt) + y cos(ωt), x0 = −0.25, y0 = 0
and σ 2 = 0.002. The computational domain � = [−0.5, 0.5] × [−0.5, 0.5] is covered
by different uniform finite element meshes and the time period required for one complete

rotation is π
2 . From the definition (42), the CFL number associated to this example isω

√
2
2

	t
h/p

and it is set to different values in our simulations.
The purpose of this test example is to quantify the errors and convergence rates for the

proposed Bernstein-Bézier Galerkin-characteristics finite element method. First we consider
the case of pure advection for this example corresponding to ν = 0 in (33). In Table 1 we
summarize the results obtained for the L1-error and convergence rate after one revolution
using different meshes, polynomial degrees and CFL numbers. In this table we also include
the CPU times for each run. In terms of L1-error, keeping the polynomial degree p fixed
and refining the spatial step h results in a substantial decrease in the computed L1-errors.
From the values of convergence rates in Table 1 we observe that the expected order of
convergence is achieved for each selected polynomial degree p. It has also been observed
that these convergence rates have not been deteriorated by the increase in the values of CFL,
and the order of the Bernstein-Bézier Galerkin-characteristics finite element method remains
almost the same for the considered CFL numbers of 2.5, 5 and 10. Notice that to reduce the
computational cost, these CFL numbers are chosen as large as possible which yield explicit
Eulerian-based methods noncompetitive.

Next we include the physical diffusion in this problem by solving the advection-diffusion
of the Gaussian pulse with diffusion coefficient ν = 10−6. As in the previous case, Table 2
summarizes the results obtained for the L1-error and convergence rate after one revolution
using different meshes, polynomial degrees and CFL numbers. It is clear from the results
in Table 2 that for the considered diffusion coefficient, the expected convergence rates are
preserved in the Bernstein-Bézier Galerkin-characteristics finite element method for the con-
sidered CFL numbers of 2.5, 5 and 10. Notice that, to be confined with convection-dominated
problems only small values of the diffusion coefficient are accounted for in our simulations.
Furthermore, for the considered small values of the diffusion coefficient, the time steps
obtained according to the selected CFL numbers are small enough such that the errors asso-
ciated with the discretization of the advection term are the dominant ones. Therefore, no
substantial decrease in the computed errors is achieved when decreasing the CFL number.
From the computational results obtained for the advection-diffusion of a Gaussian pulse, one
may conclude the following: (i) the Bernstein-Bézier Galerkin-characteristics finite element
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Table 3 Results for the time-dependent Burgers example with ν = 10−2 at time t = 2 using gradually refined
meshes, polynomial degrees and two CFL numbers

p h CFL = 2.5 CFL = 5
L1-error Rate L2-error Rate L1-error Rate L2-error Rate

4 1
4 1.0838E-02 – 2.8508E-02 – 1.1806E-02 – 3.5439E-02 –
1
8 1.0541E-03 3.362 3.2272E-03 3.143 1.0721E-03 3.461 3.2339E-03 3.454
1
16 8.0829E-04 3.705 2.6049E-04 3.631 7.5805E-04 3.822 2.3509E-04 3.728

5 1
4 6.3325E-03 – 1.2336E-02 – 6.5782E-03 – 1.9600E-02 –
1
8 3.9441E-04 4.005 1.3553E-03 3.819 4.0017E-04 4.039 1.3649E-03 3.844
1
16 1.6207E-05 4.605 5.7178E-05 4.567 1.1809E-04 4.889 4.0870E-04 4.818

6 1
4 6.0445E-03 – 9.5468E-03 – 6.3438E-03 – 1.6631E-02 –
1
8 2.9681E-04 4.348 5.5904E-04 4.094 3.1086E-04 4.351 7.1143E-04 4.164
1
16 5.4354E-06 5.771 1.1542E-05 5.598 7.3908E-05 6.068 1.1556E-05 5.944

7 1
4 5.6751E-03 – 7.8822E-03 – 5.3972E-03 – 1.0806E-02 –
1
8 1.2291E-04 5.529 1.8258E-04 5.432 8.6702E-05 5.960 2.1312E-04 5.664
1
16 1.3045E-06 6.558 2.0740E-06 6.460 6.3156E-07 7.101 1.8258E-06 6.867

method highly solve this test problem on coarse meshes, (ii) the convergence rate of the
method is not deteriorated when increasing the CFL numbers.

5.2 Time-Dependent Burgers Example

To further quantify the errors for the proposedBernstein-BézierGalerkin-characteristics finite
element method for time-dependent problems, we solve the following nonlinear Burgers
problem

∂c

∂t
+ c

∂c

∂x
+ c

∂c

∂ y
− ν	c = 0,

in the squared domain� = [0, 2]×[0, 2] subject to initial and boundary conditions obtained
from the following exact solution

c(x, y, t) = 1

1 + exp

(

x + y − t

2ν

) .

It is clear that the velocity field in this example depends on the time for which time accuracy
of the proposed method can be evaluated. A similar example has been considered in [27]
using a spectral volume method. In Table 3 we present the results obtained for the L1-error,
L2-error and convergence rates at time t = 2 for ν = 10−2 using different meshes, different
polynomial degrees and two CFL numbers CFL = 2.5 and CFL = 5. As in the previous
simulations, keeping the polynomial degree p fixed and refining the mesh size h results in
a substantial decrease in the computed L1-error, L2-error for both selected CFL numbers.
The convergence rates in Table 3 confirm the expected order of convergence of the proposed
Bernstein-BézierGalerkin-characteristics finite elementmethod for each selected polynomial
degree p. It should be also noted that lower convergence rates have been observed for this
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test example using CFL = 2.5 than the case using CFL = 5. These features can be attributed
to the nonlinear nature of the problem and also to the time dependence of the velocity field
involved in the calculation of departure points.

The next idea is to check the convergence rates in time of the proposed Bernstein-Bézier
Galerkin-characteristics finite element method for this test example. In doing so, we compute
the L1-error and L2-error using a fixed mesh with h = 1

32 and carry out some numerical
experiments varying the polynomial degree and the time step	t . The obtained results at time
t = 2 for two different diffusion coefficient ν = 10−2 and ν = 10−3 are listed in Table 4. It is
clear that decreasing the time step 	t yields a decrease in both L1-error and L2-error for all
considered polynomial degrees p and diffusion coefficients. A second-order convergence in
time is also clearly observed in Table 4 for the considered polynomial degrees p and diffusion
coefficients. Note that for this test example, better convergence results are obtained for the
simulations with ν = 10−2 than the simulations with ν = 10−3.

5.3 Deformational Flow Example

In this example we solve the deformational flow problem widely used in the literature to
examine the performance of Galerkin-characteristics methods, see for example [14, 18, 34].
Here, the problem statement consists of the linear advection eq. (10) in a circular spatial
domain centered at (x0 = 0, y0 = 0)with radius 4 and equipped with a highly deformational
velocity defined by a steady circular vortex with tangential velocity depending on the radius
of the vortex as

vt (x, y) = v0sech
2 (R) tanh (R) ,

where v0 = 2.58 and the radial distance R =
√

(x − x0)2 + (y − y0)2 is the radius of the
vortex. Initial and boundary conditions are obtained from the analytical solution

cexact(x, y, t) = − tanh

(

y − y0
η

cos (ωt) − x − x0
η

sin (ωt)

)

, (43)

with ω = vt

R
is the angular velocity of the circular vortex and η is a parameter controlling the

steepness of the solution (43). Here, η = 0.05 which yields a tight hyperbolic tangent profile
in the initial condition that results in a non-smooth solution as the problem is integrated
forward in time. Figure 2 illustrates the computational mesh and the initial condition used in
the simulations for this test example. The steep gradient at the centerline of the computational
domain can be clearly seen in the initial condition. The unstructured mesh shown in Fig. 2
contains 237 elements. This coarse mesh is considered in the simulations to demonstrate
the high accuracy of the proposed Bernstein-Bézier Galerkin-characteristics finite element
method to solve highly deformational flow problems without need to very fine meshes.

In Fig. 3 we display the results obtained at time t = 4 and CFL = 3 using different
values for the polynomial degree p. We also include the analytical solution in this figure
for comparison reasons. For a better insight, Fig. 4 exhibits cross-sections at x = 0 and
y = 0 of the results using the considered polynomial degrees. It is clear that, using p = 2 in
theBernstein-BézierGalerkin-characteristics finite elementmethod, nonphysical oscillations
are generated in the obtained results, specially at the center of the spatial domain where the
gradient is sharper. Increasing the value of polynomial degree to p = 4, the amplitude of
these oscillations is reduced but the numerical dissipation is still present in these results. From
the same figures we observe a complete absence of these oscillations and numerical diffusion
in the results obtained using p = 8 and p = 10. Observe the good agreement between the
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Fig. 2 Computational mesh (left) and initial solution (right) for the deformational flow problem

Fig. 3 Results for the deformational flow example at time t = 4 using different polynomial degrees p = 2, 4,
6, 8, 10 and the exact solution

numerical results and the analytical solutions in Fig. 4 even when using the coarse mesh and
the large CFL number. Since the analytical solution for this flow problem is provided in (43),
errors can be quantified. In Table 5 we present the L1-error and L2-error obtained using three
meshes and different polynomial degrees. These unstructured meshes are used such that the
number of elements in one mesh is about the double of its coarser counterpart. It is clear that
increasing the polynomial order or refining the mesh result in a decrease in both L1-error and
L2-error. This confirms the high accuracy and the good convergence of the proposed method
for solving deformational flow problems. It should be pointed out that the performance of the
proposed Bernstein-Bézier Galerkin-characteristics finite element method is very attractive
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Fig. 4 Cross-sections of the results in Fig. 3 at y = 0 (left) and at x = 0 (right) using different polynomial
degrees

Table 5 Results for the
deformational flow problem at
time t = 4 using different meshes
and polynomial degrees

p # elements L1-error L2-error

4 116 1.8782E-01 5.9450E-01

237 1.9592E-02 6.7721E-02

475 1.2060E-03 7.7143E-03

5 116 1.0075E-01 3.6147E-01

237 5.3357E-03 1.7799E-02

475 1.8008E-04 5.8875E-04

6 116 6.7891E-02 2.4142E-01

237 2.5388E-03 8.5233E-03

475 3.9449E-05 1.4136E-05

7 116 5.1184E-02 1.5885E-01

237 1.1232E-03 3.5988E-03

475 8.1647E-06 2.8567E-05

8 116 3.2184E-02 9.8834E-02

237 1.2301E-04 1.2543E-03

475 5.5196E-07 6.0321E-06

9 116 1.1134E-02 7.7831E-02

237 6.1507E-05 4.9389E-04

475 1.3799E-07 1.2295E-06

10 116 8.8932E-03 4.6541E-02

237 2.6327E-05 1.5609E-04

475 2.7555E-08 1.8767E-07

since the computed solutions remain stable and highly accurate even when coarse meshes are
used without requiring nonlinear solvers or small time steps to be taken in the simulations.
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Fig. 5 Computational meshes used for the moving fronts problem

5.4 Moving Fronts Example

We consider the problem of moving fronts modeled by the convection-diffusion eq. (33)
equipped with a time-dependent velocity field. Initially, two separate fronts propagate along
the main diagonal of the computational domain at different speeds and eventually coalesce
into a single front for a longer time. This problem has also been solved in [30] using a
family of finite element alternating-direction methods combined with a modified method of
characteristics. Here, we solve this problem in a squared domain � = [0, 1] × [0, 1] with
the velocity field defined as

u(x, y, t) = −0.1e−A(x,t) + 0.5e−B(x,t) + e−C(x,t)

e−A(x),t + e−B(x,t) + e−C(x,t)
,

v(x, y, t) = −0.1e−A(y,t) + 0.5e−B(y,t) + e−C(y,t)

e−A(y,t) + e−B(y,t) + e−C(y,t)
,

where

A(α, t) = 0.05

ν
(α − 0.5 + 4.95t) , B(α, t) = 0.25

ν
(α − 0.5 + 0.75t) ,

C(t, α) = 0.50

ν
(α − 0.375) ,

with α = x for the velocity u and α = y for the velocity v. Initial and boundary conditions
are defined by the following exact solution

c(x, y, t) = u(x, y, t)v(x, y, t).

First we examine the mesh convergence in the proposed Bernstein-Bézier Galerkin-
characteristics finite element method. To this end, we consider three structured meshes Mesh
A, Mesh B and Mesh C with different element densities as depicted in Fig. 5. Here, the num-
ber of triangular elements inMesh A,Mesh B andMesh C is 32, 128 and 512, respectively. In
Fig. 6 we present 20 equi-distributed contourlines of the solutions obtained at t = 0.2 using
CFL = 3 and p = 10. Here, results are presented for four different diffusion coefficients
namely, ν = 5× 10−4, ν = 10−4, ν = 5× 10−3 and ν = 10−2. The analytical solutions are
also included in Fig. 6 for comparison purposes. It is clear that, by decreasing the values of
the physical diffusion ν, the convective term becomes dominant and steep internal layers are
formed near the vicinity of front lines in the computational domain. Themesh convergence on
these results is clearly shown for the Bernstein-Bézier Galerkin-characteristics finite element
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Fig. 6 Results for the moving fronts problem at time t = 0.2 using p = 10 and ν = 5 × 10−4 (first row),
ν = 10−3 (second row), ν = 5 × 10−3 (third row) and ν = 10−2 (fourth row) on Mesh A (first column),
Mesh B (second column), Mesh C (third column) and exact solution (fourth column)

method using the selected polynomial degree p = 10. However, noticeable oscillations are
detected for results obtained on the coarsemeshMeshA. These results give a clear view of the
overall transport pattern and effects of the diffusion coefficient ν on the structure of moving
fronts in the computational domain. It is worth remarking that the thinning of the internal
layers with decreasing ν is evident from these plots and the rate of this thinning is slower
for ν = 5 × 10−4 than for ν = 10−3. These features clearly demonstrate the high accuracy
achieved by the proposed Bernstein-Bézier Galerkin-characteristics finite element method
for solving moving fronts problems using coarse meshes and large time steps. In addition,
compared to the results published for example in [30], it can be seen that our method resolves
accurately the solution features and the moving fronts seem to be localized in the correct
place in the flow domain without requiring very fine meshes as those reported in [30].

To further qualify the results for these meshes, we plot in Fig. 7 the cross-section results
at the main diagonal y = 1 − x using ν = 5 × 10−4 on the considered three meshes using
different polynomial degrees. Those results obtained using ν = 10−3 are depicted in Fig. 8.
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Fig. 7 Cross-sections of the results for the moving fronts problem at the main diagonal y = 1 − x using
ν = 5 × 10−4 and different polynomial degrees on the considered three meshes

Fig. 8 Same as Fig. 7 but using ν = 10−3

For large values of p, it is clear that the method on the three meshes produces practically
identical results. This can be attributed to the high accuracy achieved by Bernstein-Bézier
Galerkin-characteristics finite element method using p = 12 even on the coarse mesh Mesh
A. However, using low polynomial degrees on the meshes Mesh A and Mesh B, nonphysical
oscillations are clearly visible in those regions where the solution gradients are steep such
as the moving fronts. Apparently, the solution structures are in good agreement with the
exact solutions presented in these figures. Needless to say that for convection-dominated
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Fig. 9 Computational mesh (left) and initial solution (right) for the viscous Burgers problem. We set c = 0.5
on both center lines in the initial solution

simulations, keeping the mesh fixed and changing the polynomial degree, the Bernstein-
Bézier Galerkin-characteristics finite element method does not diffuse the fronts or yields
spurious oscillations near the steep gradients.

5.5 Viscous Burgers Flow Example

Our final example solves the following viscous Burgers equation which evolves to a highly
convective steady-state

∂c

∂t
+ λy

(

c − 1

2

)

∂c

∂x
+ λx

(

c − 1

2

)

∂c

∂ y
− 	c = 0,

where λ is a constant controlling the magnitude of the nonlinear convective term. The
boundary conditions are of Dirichlet type given by the exact steady-state solution

c(x, y) = 1

2

(

1 − tanh

(

λxy

2

))

.

This problem has been solved in a squared domain in [30] using a modified method of
characteristics. Here, this problem is solved in a circular domain with radius 5 and centered
at the origin. The domain dimensions and the initial conditions used in our computations
are illustrated in Fig. 9. We use the Bernstein-Bézier Galerkin-characteristics finite element
method to compute the steady-state solutions for three different values of λ namely, λ = 1,
λ = 5 and λ = 10. For these steady-state solutions, the time integration process is stopped
when the inequality

∥

∥cn+1 − cn
∥

∥

‖cn‖ ≤ τ, (44)

is satisfied. Here ‖ · ‖ denotes the L1-norm and τ is a given tolerance fixed to 10−6	t in our
computations. It should be pointed out that, the number of iterations to reach this tolerance
depends on the values taken by λ such that, for a fixed CFL number, more iterations are
required for larger values of λ.

Figure 10 illustrates the obtained results using a mesh of 432 elements and CFL = 3.
Here, we plot 10 equi-distributed contours of the solutions using two values of the polynomial
degree p = 6 and p = 10. For comparison, we have also included analytical steady-state
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Fig. 10 Results for the viscous Burgers equation with λ = 1 (first column), λ = 5 (second column) and
λ = 10 (third column) using p = 6 (first row), p = 10 (second row) and exact solution (third row)

Fig. 11 Cross-sections at y = x of the results for the viscous Burgers problem using λ = 1 (first column),
λ = 5 (second column) and λ = 10 (third column)
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solutions in this figure. It is clear that, by increasing the values of λ, the convective term
becomes dominant and steep internal boundary layers are formed near the vicinity of center
lines. For lowvalues ofλ, the internal boundary layers arewide and diffuse in the flowdomain.
As λ increases, the internal boundary layers concentrate andmove towards the domain center.
It is apparent that the flow structure is in good agreement with the previous work in [30].
These plots give a clear view of the overall flow pattern and the effect of the convection
control parameter λ on the structure of steady internal boundary layers in the cavity. It is
worth remarking that the thinning of the internal boundary layers with increasing λ is evident
from these plots, although the rate of this thinning is slower for p = 6 method than for
p = 10. These features clearly demonstrate the high accuracy achieved by the proposed
Bernstein-Bézier Galerkin-characteristics finite element method for solving viscous Burgers
problems at steady-state regimes. In addition, compared to the results published for example
in [30], it can be seen that ourmethod resolves accurately the flow structures and the boundary
layers seem to be localized in the correct place in the flow domain.

For visualizing the comparisons, we display in Fig. 11 a cross-section at the main diagonal
y = x using the selected values of λ and p. For λ = 1, it is clear that the results obtained
using p = 6 and p = 10 produce practically identical results. This can be attributed to the
large physical diffusion presented in the problem. However, increasing the value of λ to 5
and 10 the results computed using p = 10 are more accurate than those computed using
p = 6. Apparently, By using p = 10, high resolution is achieved in those regions where
the flow gradients are steep such as the moving fronts. Comparing the results obtained using
the considered values of p, it is clear that using p = 6 produces diffusive solutions resulting
in smearing the shocks. On the other hand, this numerical diffusion has remarkably been
reduced in the results computed using p = 10.

6 Conclusions

In this paper, we have presented a Bernstein-Bézier Galerkin-characteristics finite element
method for solving convection-diffusion equations on unstructured meshes. The proposed
solver inherits the advantages of semi-Lagrangian integration (unconditional stability and
reduction of time truncation errors) while preserving high-order accuracy. Moreover, this
implementation simplifies the computational complexity of the Bernstein-Bézier Galerkin-
characteristics solver for a fixed polynomial approximation during the time integration
process. To increase the performance of the proposedmethod the element-level static conden-
sation is implemented. The favorable performance of the developed algorithm is demonstrated
using a series of numerical examples including the viscous Burgers equation. The results
obtained for these examples show that the Bernstein-Bézier Galerkin-characteristics finite
element method has the advantage of requiring less computational resources for the inte-
gration of convection-dominated problems than an Eulerian-based finite element methods,
typical of those widely used in Eulerian algorithms for convection-dominated problems.
This fact, as well as its favorable high-order accuracy and strong stability properties, make it
an attractive alternative for convection solvers based on Galerkin-characteristic techniques.
Finally, the method presented in this paper is not appropriate for nonlinear invscid equations
with strong shocks. However, using the idea of the limiting techniques studied in [17], and
following the arguments of Sect. 3, it is possible to reconstruct a shock-preserving Bernstein-
Bézier Galerkin-characteristics finite element method for nonlinear equations. Results on
these schemes will be reported in the near future. Future work will also concentrate on
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extending these methods for the incompressible viscous flows in three space dimensions
using unstructured meshes and developing highly efficient preconditioned iterative solvers
for the associated linear systems.
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