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Experimental measurements point at the Standard Model (SM) as the theory of electroweak symmetry
breaking, but as we close in on our characterization the question arises of what limits in theory space lead to
the SM. The class of theories with this property cannot be ruled out, only constrained to an ever smaller
neighborhood of the SM. In contrast, which class of theories does not possess this limit and can therefore
potentially be ruled out experimentally? In this work we study both classes and find evidence to support the
Standard Model effective field theory being the single road to the Standard Model, theories that fall outside
this class keeping a “minimum distance” from the SM characterized by a cutoff of at most 4πv=gSM.
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I. INTRODUCTION

Nowadays, particle physics finds itself in the midst of
electroweak symmetry breaking (EWSB) exploration, and
the outcome of this endeavor will chart nature’s theory of
elementary particles. Experimental data collated and com-
pared with predictions of theories of EWSB have narrowed
down the range possibilities; many casualties lie indeed
now discarded having been disproven by the progress in
our measurements. The Higgs boson discovery, coming
up on a decade old, was the main stroke in our map,
subsequent data giving a profile that resembles the one
heralded by the Standard Model (SM). Theory consider-
ations have long pointed out the SM case for EWSB to
be unstable under higher scale corrections and indicated
that new physics should lie in wait at the electroweak
scale. Whether these considerations should be revisited and
our theory perspective profoundly changed, or if instead
patience is all that is needed, the pressing question at
present posed by experimental data is to characterize the
theory “neighborhood” of the SM. The claim that one
observes nothing but the SM at the LHC is indeed only as
good as our characterization of what else we could observe;
it is here we find value in the aforementioned casualties.
The aim in this work is to explore the consistent theory
neighborhood of the Standard Model.
A long known and studied approach, or “trajectory,” to

the SM is a linearly realized effective field theory (SMEFT)
(see [1] for a review), this road being pointed at by the
decoupling theorem [2]. The integration of any heavy

particle whose mass can be arbitrarily larger than the
EWSB vacuum expectation value (VEV) (M > v) in a
perturbative linear realization will yield the SMEFT;
supersymmetry or composite Higgs models fall into this
category. Is this the only road to the Standard Model; i.e.,
are there other consistent limits to obtain the SM couplings
for the known spectrum of elementary particles? As
fundamental as this topic is, on its present formulation
the candidate preceded the question; Higgs effective theory
(HEFT) [3,4] is an EFT that encompasses the SMEFT but
extends beyond it and might offer new roads. In HEFT, a
linear realization is not assumed (though admissible in a
certain limit) and is indeed the most general Lorentz and
gauge invariant theory with the known spectrum of
particles (which suggests it should be possible to formulate
it in terms of amplitudes). The theories that this EFT
describes but fall out of SMEFT, which will be called here
theories of the quotient space HEFT/SMEFT or simply
quotient EFTs,1 could contain a path to the SM other than
via SMEFT. This quotient space is characterized as missing
a point in field space which is left invariant under an Oð4Þ
transformation [5,6], be it because it is not present or
because the would-be invariant point is singular [7]. A
geometric formalism was used to derive this result and also
aids in exploring the properties of theories without field
redundancies, as introduced in [5,6], and followed up in [7–
9]—it is also adopted here. Some theories in HEFT/
SMEFT quotient space have been formulated while having
a perturbative expansion [7]; they have been found to have
a cutoff of ∼4πv, and no limit can be taken within them that
yields the SM. It has been suggested that all of this quotient
space shares this property of a finite v-bound cutoff [10]Published by the American Physical Society under the terms of
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1In other works these are called, with a slight abuse of notation,
HEFT.
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with further evidence provided in [9], which means in turn
that they all could be casualties of our exploration with
present and future machines. This question has been
explored so far with perturbative unitarity bounds, while
here it is looked at with semiclassical arguments.
This article is structured as follows. Section II introduces

geometry from amplitudes, and Sec. II A presents the basis
in Riemann normal coordinates. This first part has been
rendered review, rather than new results, by virtue of [9]
although all results here are derived independently.
Section II B presents theory and experimental bounds on
the curvature plane while Sec. III characterizes SMEFT
on this plane. In Sec. IV, example models of SMEFT
and quotient space are presented and characterized in the
curvature plane. Section V presents theories in quotient
space arising from geometry rather than explicit models
and finds candidate quotient theories that seem to approach
the SM. A semiclassical argument for the finite cutoff of
theories in quotient space is given in Sec. VI.

II. GEOMETRY AND AMPLITUDES

For simplicity, Oð4Þ ⊃ SUð2Þ ×Uð1Þ invariance in the
EWSB sector is assumed. We take the high energy limit and
make use of the equivalence theorem. These approxima-
tions allow us to focus on a subset of possible modifications
of the bosonic sector. The Higgs singlet field is denoted h,
and the Goldstones swallowed by the W and Z bosons as
φa, a ¼ 1, 2, 3.
Let us start by defining our geometry from the scattering-

matrix S in order to depart from a common-place, basis-
invariant magnitude in particle physics. Following the
line-integral definition for general amplitudes valid also
in the UV, we have (S ¼ 1 − iA)

−Rhþh− ¼ 1

2πi

I
1

s212
AWþ

1
W−

2
→hh; ð1Þ

−Rþ−þ− ¼ 1

2πi

I
1

s212
AWþ

1
Wþ

2
→WþWþ ; ð2Þ

−∇hRþh−h ¼
1

2πi

I
1

s212
AWþ

1
W−

2
→hhh; ð3Þ

−∇hRþ−þ− ¼ 1

πi

I
1

s212
AWþ

1
Wþ

2
→Wþ

3
Wþ

4
h; ð4Þ

¼ 1

πi

I
1

s234
AWþ

1
Wþ

2
→Wþ

3
Wþ

4
h; ð5Þ

where sij ¼ ðpi þ pjÞ2. Indices in the Riemann tensor run
through h, a ¼ 1, 2, 3, and the � entries are given by
contracting an a index with the projector ðδa1 � iδa2Þ=

ffiffiffi
2

p
,

for example,

Rhþh− ¼ Rhahb
ðδa1 þ iδa2Þffiffiffi

2
p ðδb1 − iδb2Þffiffiffi

2
p : ð6Þ

While the above definition is useful to include UV models
and derive positivity bounds [11], in practice we will work
with the low energy EFT. In this case the correspondence is
taking our geometry from the order OðsÞ coefficients in a
Taylor expansion. What is more, they capture all terms to
this order. Being explicit,

AWþ
1
W−

2
→hh ¼ −s12Rþh−h; ð7Þ

AWþ
1
Wþ

2
→WW ¼ −s12Rþ−þ−; ð8Þ

AWþ
1
W−

2
→hhh ¼ −s12∇hRþh−h; ð9Þ

AWþ
1
Wþ

2
→Wþ

3
Wþ

4
h ¼ −

s12 þ s34
2

∇hRþ−þ−; ð10Þ

where we neglected masses assuming s ≫ M2
W;M

2
Z;m

2
h.

This starting point makes it evident that our tensor, R,
and its derivatives are physical and field redefinition
(coordinate) invariant. Even if intuitive, this last statement
should be qualified. On the geometry side, having defined
tensor entries rather than invariants, one has that these
change under coordinate transformations—albeit with
well-defined properties. They are nonetheless the same
for local (defined around the vacuum) transformations of
our fields which leave the amplitudes the same [12]:

ϕ̂i ¼
�
δij þ

X
k¼1

ckjϕ
k

�
ϕj; ð11Þ

so that after quantization both fields produce a particle out
of the vacuum,

hpjϕij0i ¼ hpjϕ̂ij0i ð12Þ

with jpi the state associated with the field. It is for this
type of transformation that the S matrix will be left
invariant, and tensors evaluated at the vacuum transform
trivially, since

∂ϕi

∂ϕ̂j

����
ϕ¼0

¼ δij: ð13Þ

Still, from where we stand the definition of Riemann
tensor components in terms of amplitudes seems arbitrary
and potentially inconsistent. So let us now turn to the
Lagrangian theory which yields such relations.

A. Riemann normal coordinates

Take the metric from which the Riemann tensor derives
in Eqs. (1)–(5) asGijðϕÞ, with i; j ¼ h; 1, 2, 3, ϕ ¼ ðh;φaÞ,
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a ¼ 1, 2, 3. The amplitudes in Eqs. (1)–(5) follow from the
action

S ¼ 1

2

Z
d4x∂μϕ

iGij∂μϕi

¼ 1

2

Z
d4xð∂μh∂μhþ FðhÞ2gab∂μφa∂μφ

bÞ: ð14Þ

In matrix notation, our parametrization of the metric reads

Gij ¼
�
1

F2gab

�
; ð15Þ

where off-diagonal entries are forbidden by symmetry and
gab is the metric on the three-sphere, which we find useful
to represent via the unit vector uðφÞ:

gab ¼
∂uðφÞ
∂φa

∂uðφÞ
∂φb ; u · u ¼ 1; ð16Þ

with u transforming as a vector under Oð4Þ. It follows that
the nonvanishing elements of the Riemann tensor and its
first covariant derivative are

Rabcd ¼
�
1

v2
− ðF0Þ2

�
F2ga½cgbd�; ð17Þ

Rahbh ¼ −F00Fg̃ab; ð18Þ

∇hRahbh ¼ F2

�
−
F00

F

�0
gab; ð19Þ

∇hRabcd ¼ F4

�
1

v2F2
−
ðF0Þ2
F2

�0
ga½cgbd�; ð20Þ

∇aRhbcd ¼
F4

2

�
1

v2F2
−
ðF0Þ2
F2

�0
ga½cgbd�; ð21Þ

where the prime denotes differentiation with respect to h
and it is useful to define

Rh ≡ −
F00

F
; Rφ ≡ 1

v2F2
−
ðF0Þ2
F2

: ð22Þ

Verifying that these tensor entries appear as coefficients
in the four- and five-point amplitudes is a matter of
computing amplitudes: expanding our metric around the
vacuum and adding over the various diagrams (e.g., see
Fig. 1 for those contributing to WW → hhh), relations
(1)–(5) are recovered. The Oð4Þ symmetry in our system
reduces the number of independent components and
amplitudes to Rh, Rφ, and its derivatives.
Geometry does tell us, however, that there is a frame

where this computation is particularly simple: the frame

where our coordinates follow geodesics, i.e., Riemann
normal coordinates (RNC).
Let us then go into a brief outline of RNC. One can solve

iteratively the geodesic equation

d2ϕi

dσ2
þ Γi

jkðϕÞ
dϕj

dσ
dϕk

dσ
¼ 0 ð23Þ

in an expansion that assumes the dependence on ϕ of Γ,
admits a Taylor expansion, and introduces new coordinates
ϕ0 defined to second order as

ϕ0i ¼ ϕi þ 1

2
Γi
jkð0Þϕjϕk þOðϕ3Þ:

Together with a metric in the new coordinates and to ϕ03
order [13]

Gðϕ0Þij ¼ Gð0Þij þ ϕ0kϕ0l 1
3
Riklj þ

1

6
ϕ0kϕ0lϕ0m∇mRiklj:

For concreteness, one can work out this transformation for
our metric to find

�
h0

φ0

�
¼

�
h − FF0φ2=2

φa þ F0hφa=F þ Γa
bcφ

bφc=2

�
þOðϕ3Þ:

The use of RNC is the reduction to parametrization
independent magnitudes, i.e., the Riemann tensor and its
derivatives with the Christoffel symbols absent in our
frame. In an analogy with general relativity, this is the
free-falling frame where tidal effects reveal the geometry of
the spacetime manifold. In practice, there are no three-point
amplitudes2 and the interacting Lagrangian for four-point
reads

FIG. 1. Diagrams for the OðsÞ contribution to the WWhhh
amplitude in the basis of Eq. (14).

2They are reinstated, however, once we account for massive
states.
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LRNC
4 ¼ 1

6
Rhahbð2h∂hφa∂φb − ð∂hÞ2φaφb − h2∂φa∂φbÞ

þ 1

6
Rabcd∂φaφbφc∂φd: ð24Þ

The first line gives the Feynman rule

which evaluated on-shell is the sole diagram needed to
compute AWW→hh in this frame. For five-point vertexes,
we have

LRNC
5 ¼ 1

12
ð∇hR∂φhh∂φ þ∇hR∂hφφ∂h þ 2∇hR∂hφh∂φÞ

þ 1

12
ð∇hR∂φφφ∂φ þ 2∇φR∂φhφ∂φÞ ð25Þ

where the term ∇φRdhφφdφ cancels due to the Riemann
tensor asymmetry; and with abuse of notation Vφ ¼ Vaφ

a,
similarly for h. For the 5-point amplitude, again due to the
absence of 3-point vertices, evaluating the Feynman rule
that follows from the five-point action yields the result (i.e.,
in this frame there is only the last diagram in Fig. 1 to
compute). Amplitudes for six or more particles in total do
require a sum over diagrams and contain, in addition, poles
that nevertheless can be derived from lower-point ampli-
tudes (see [9]).
A general EFT also has modifications in the pure gauge

and fermionic sectors as, e.g., a metric for the gauge kinetic
terms [8,14]; these are subleading in the high energy limit
and for the observables here considered, although in
practice they should be included in a complete analysis,
which we leave for future work.

B. Experimental and theory constraints
on curvature

Unitarity constrains the magnitude of curvature, and its
derivatives, for a given centre of mass energy s, to the four-
point level. Symbolically

where the first partial wave for WþW− gives�
Rφs

16π

�
2

þ 1

2

�
Rhs
8π

�
2

≤ 1; ð26Þ

where we have accounted for the amplitude being real. One
can also select theWþWþ channel, but the emphasis in here
is on bounds that are sensitive to both curvatures simulta-
neously, which helps to better close some corners in the
curvature plane.
One can use these constraints to determine the theory

cutoff in terms of curvature; however, here we turn this
around to note that given that we have explored energies up
to s ∼ v2 and no new states have showed up, we can set an
upper limit on curvature.
This limit is superseded by experimental bounds from

LHC which bound Higgs couplings. In the conventional
parametrization, one has

FðhÞ2 ¼ 1þ 2a
h
v
þ b

h2

v2
þOðh3Þ; ð27Þ

which gives a curvature around the origin

v2ðRφð0Þ; Rhð0ÞÞ ¼ ð1 − a2;−ðb − a2ÞÞ; ð28Þ

itself related to amplitudes as, substituting (22), (17), (18)
in (7) and (8),

AWþ
1
Wþ

2
→WW ¼ s12Rφ; ð29Þ

AWþ
1
W−

2
→hh ¼ −s12Rh: ð30Þ

Translating bounds on the coefficients from present and
future measurements into curvature,3 we present the plot in
Fig. 2. The value in both sets of constraints is to put into
context how much of the theory-consistent curvature space
have we explored experimentally.

3Implicit in the relation of curvature and amplitudes is the
assumption of no pure gauge sector modification justifiable given
stringent constraints from LEP.
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From the outermost to the innermost region of Fig. 2:
the (outermost) gray region is excluded due to unitarity;
up to the blue region is excluded by current LHC bounds
(the region is translated from bounds on a in [15], and b in
[16]); finally, up to the green and orange (innermost)
regions we present expected exclusion limits for HL-LHC
and FCC, respectively. The projected bounds on Rφ; Rh are
derived using sensitivity predictions of a (HL-LHC [17];
FCC-ee [18]), and b ([19] for both HL-LHC and FCC-hh),
around their SM values. All uncertainties and projected
sensitivities are displayed at the 95% confidence level,
where multiple sensitivity estimates are given, and the most
conservative is selected. Note that HL-LHC bounds used
here predate the LHC ones so that the seemingly marginal
improvement is likely an underestimation.

III. CORRELATION OF CURVATURE IN SMEFT

In the linear realization and to first order [with our
assumption of Oð4Þ invariance] we have

Rφ ¼ Rh; ð31Þ

which is to say the coefficients of s in the four-point
amplitudes for WþWþ scattering and WþW− → hh in
Eqs. (30) and (29) are anticorrelated. Correlations do

appear in the linear parametrization of SMEFT in HEFT
[20] in line with what we find here; nonetheless, in this
section we go into some length of how this can be derived
to display the utility of a geometric language.
A simple argument to show there is a correlation, if a bit

more abstract, is to use Riemann normal coordinates and
custodial symmetry around the Oð4Þ-symmetric point—
which admits Cartesian coordinates. In this frame, the
metric reads

GijðϕÞ ¼ δij þ
1

3
Rikljϕ

kϕl þOðϕ3Þ; ð32Þ

and a linear realization of Oð4Þ symmetry dictates that the
Riemann tensor be of the form Rðδilδkj − δklδijÞ, with a
single unknown R. A transformation from Cartesian to
polar coordinates then reveals Rh ¼ Rφ.
The collapse of the two curvatures into a single one can

also be derived matching the two EFTs:

ð∂h2 þ F2∂φ2Þ
2

¼ K
�
H†H
M2

�
ð∂H†HÞ2

þ G

�
H†H
M2

�
DμH†DμH; ð33Þ

where it should be understood from a general SMEFT
action; we transformed to a basis where the Higgs singlet is
canonically normalized.
This exercise yields to order M−4

Rφ ¼ −3
G0ð0Þ
M2

þH†H
M4

�
2ðG0ð0ÞÞ2 − 5

2
G00ð0Þ

�
; ð34Þ

Rh ¼ −3
G0ð0Þ
M2

þH†H
M4

ð4ðG0ð0ÞÞ2 − 5G00ð0ÞÞ; ð35Þ

which also reveals the correlation is lost at order M−4.
Finally, and in a direct connection with observables, one

can compute the amplitude that has been used to define our
curvature, the computation itself getting rid of any field
redundancy. Take the noncanonically normalized action

L ¼ 1

2

cH□

M2
ð∂μH†HÞ2 þ cHDD

M2
H†HDμH†DμH: ð36Þ

After normalization of the theory, the computation of
diagrams such as those shown in Fig. 3, where we note that
in this frame there is a h3 coupling that scales with s and
must be accounted for, yields

AWþWþ→WþWþ ¼ s
M2

ðcH□ − cHDDÞ; ð37Þ

AWþW−→hh ¼ −
s
M2

ðcH□ − cHDDÞ; ð38Þ

FIG. 2. Theoretically (gray) and experimentally (up to blue)
excluded (up to 95% confidence level) regions of the curvatures
Rh; Rφ which are related to electroweak amplitudes as in Eqs. (30)
and (29); and sensitivity limits of future colliders (HL-LHC, up to
green; FCC, up to orange), also up to 95% confidence level. See
text for details. The plot scales linearly within the dashed box and
logarithmically outside.
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and hence the direct connection with SMEFT geometry as

ðRφ; RhÞ ¼
1

M2
ðcH□ − cHDD; cH□ − cHDDÞ: ð39Þ

IV. MODELS AS PROBES INTO HEFT

Recent study of EFT has shown that UV completion
might impose extra constraints on an otherwise seemingly
valid EFT, as is the case of positivity constraints [21]. It
should be said that these constraints on the curvatures
themselves Rh and Rφ do not restrict their sign but reveal
the need for doubly charged states if the curvature is
negative [11]. It is for these reasons that this section
looks at models and introduces two new representations
under Oð4Þ as

h∶ 4 of Oð4Þ; ð40Þ

Φ∶ 9 of Oð4Þ ðtraceless symmetricÞ; ð41Þ

S∶ 1 of Oð4Þ; ð42Þ

with the results of positivity constraints suggesting S and Φ
will produce positive and negative curvatures, respectively.
Note that h is the Higgs doubletH in a real representation as

ðH̃; HÞ ¼ σ̂I
hIffiffiffi
2

p ð43Þ

with H̃ ¼ ϵH� and σI ¼ ðσi; 1Þ with σi the Pauli matrices.
We consider the addition of a 9 and a 1 separately with
respective actions

LS ¼
1

2
DμhTDμhþ 1

2
ð∂SÞ2 − Vðh; S2Þ; ð44Þ

LΦ ¼ 1

2
DμhTDμhþ 1

2
TrðDμΦDμΦÞ − Vðh;ΦÞ: ð45Þ

The key distinction is whether hΦi ¼ 0, which depends on
the sign of its mass term and its mixing as induced by the
potential.

A. Only h acquires a VEV, SMEFT case

In this subsection we momentarily restrict the Oð4Þ
symmetry to SOð4Þ to allow for trilinear couplings. First,
for the singlet S case, we take a potential as

V ¼ −
g�mS

2
Sh2 þm2

S

2
S2 þm2

h

2
h2; ð46Þ

extra terms allowed by the symmetry will give controlled
corrections to the result, and we neglect them. Integrating
the field S at tree level returns

Leff ¼
1

2

g�mS

2
h2

1

∂2 þm2
S

g�mS

2
h2 ð47Þ

¼ g2�
2
ðH†HÞ2 þ g2�

2m2
S
ð∂ðH†HÞÞ2 þOð∂4Þ; ð48Þ

and then via Eq. (39)

ðRφ; RhÞ ¼
�
g2�
m2

S
;
g2�
m2

S

�
; ð49Þ

i.e., positive curvature for the singlet case, as expected.
Along the same lines, the potential for the symmetric

representation is

V ¼ −
g�mΦ

2
hTΦhþm2

Φ
2

Φ2 þm2
h

2
h2: ð50Þ

The integration now returns to dimension six:

Leff ¼
g2�
8
Tr

��
hhT −

h2

4

�
m2

Φ
□þm2

Φ

�
hhT −

h2

4

��
¼ 3g2�

8
ðH†HÞ2 þ g2�

m2
Φ

�
H†HDH†DH þ ð∂H†HÞ2

8

�
;

ð51Þ

where □ ¼ DμDμ and one has that the operator does yield
negative curvature:

ðRφ; RhÞ ¼
�
−

3g2�
4m2

Φ
;−

3g2�
4m2

Φ

�
: ð52Þ

B. Both Φ and h break the symmetry, HEFT/SMEFT
quotient space

As we will show, this case does not belong in SMEFT
and stands as a representative of quotient space. We take the
extension of a mexican hat potential for two fields as

FIG. 3. A selection of diagrams for the WWhh and WWWW
amplitudes with the action in Eq. (36).
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VðΦÞ ¼ −
m⃗2

2
·

�
h2

Φ2

�
þ
�
h2

Φ2

�T λ

8

�
h2

Φ2

�
−
λ̃

8
hTΦΦhþ λ̃Φ

8
TrðΦΦΦΦÞ ð53Þ

with m⃗2 a two-vector and λ a 2 × 2 symmetric matrix.
Since Φ acquires a VEV, we take λ̃ > 0, which triggers
Oð4Þ → Oð3Þ and preserves custodial symmetry. Linear
terms in the fields are absent, contrary to the previous case
where we restoreOð4Þ in place of SOð4Þ. The key question
as will be shown is to consistently compute particle
couplings and masses from an explicit potential.
The Goldstone boson Lagrangian and couplings to the

radial singlet modes δh, δΦ read

L¼ 1

2
ððvhþ δhÞ2þC9ðvΦþ δΦÞ2Þgab

v2
DμφaDμφ

b; ð54Þ

where

C9 ¼
2 × 4

4 − 1
; v2 ¼ v2h þ C9v2Φ; sin β ¼

ffiffiffiffiffiffi
C9

p vΦ
v
;

ð55Þ

and

hhi ¼

0BBB@
0

0

0

vh

1CCCA; hΦi ¼ vΦ
2

ffiffiffi
3

p

0BBB@
1

1

1

−3

1CCCA; ð56Þ

the generalization of C9 to SOðNÞ being CNðNþ1Þ=2−1 ¼
2N=ðN − 1Þ. Take the mixing for the singlet radial modes
δh and δΦ as [note that no other field in Φ or h is a singlet
of SOð3Þ so we know these two only mix among each
other]: �

δh

δΦ

�
¼

�
cosω − sinω

sinω cosω

��
h

h̃

�
: ð57Þ

Putting the above back in the Lagrangian for the
Goldstones and taking h to be the lightest singlet, one
obtains in our basis of Eqs. (14) and (27)

a ¼ cωcβ þ
ffiffiffiffiffiffi
C9

p
sβsω; b ¼ c2ω þ C9s2ω: ð58Þ

Note that the limit of no mixing gives b ¼ 1 and a
parametrization of the curvature Rh ¼ −Rφ orthogonal to
the SMEFT with a potential new road to the SM. The
question to be answered is then: can one take ω ¼ β ¼ 0
while keeping mh̃ ≫ mh and maintaining perturbativity?
To answer this question we should express ω and β in

terms of physical masses and couplings, and then use

Eq. (28) to substitute and find curvature as a function of
physical masses and couplings. In practice we have to solve
for the potential. The value of the fields that minimize V
can be read off after rearranging as

Vðvh; vΦÞ ¼ ðv⃗2 − 2λ̂−1m⃗2ÞT λ̂
8
ðv⃗2 − 2λ̂−1m⃗2Þ ð59Þ

with

v⃗2 ¼ 2λ̂−1m⃗2; λ̂ ¼ λþ
�

−3λ̃=8
−3λ̃=8 7λ̃Φ=12

�
: ð60Þ

Next, expanding around the VEVs we find the mass matrix
for the singlets δh; δΦ as

M2 ¼ DiagðvÞλ̂DiagðvÞ ¼ U Diagðm2
h; m

2
h̃
ÞUT ð61Þ

with DiagðvÞ ¼ δijvj. The aim is to express ω, β as

ωðmh;mh̃; λ̂; vÞ; βðmh;mh̃; λ̂; vÞ, which can be done by
taking the determinant of the mass matrix

detðM2Þ ¼ v2hv
2
Φ detðλ̂Þ ¼ m2

hm
2
h̃

ð62Þ

and combining the eigenvector equations into

sinð2ωÞ ¼ 2vhvΦ
m2

h −m2
h̃

λ̂hΦ ð63Þ

to obtain

sinð2ωÞ ¼ 2mhmh̃

m2
h −m2

h̃

λ̂hΦffiffiffiffiffiffiffiffiffiffiffiffi
detðλ̂Þ

q ; ð64Þ

sinð2βÞ ¼
ffiffiffiffiffiffi
C9

p 2mhmh̃

v2
ffiffiffiffiffiffiffiffiffi
det λ̂

p : ð65Þ

No obstacle prevents taking ω → 0 with λ̂hΦ → 0, but it is
evident that β cannot be arbitrarily close to zero while
keeping h̃ massive and respecting unitarity. Qualitatively
then, we have a minimum attainable curvature as

�
v2Rφ ≥

3m2
hm

2
h̃

8π2v4
; v2Rh ≤ −

3m2
hm

2
h̃

8π2v4

�
; ð66Þ

where we took the unitarity bound on λ̂ that follows from
the four-point amplitude for δh and δΦ (see, e.g., [22]).
This result, being proportional to the extra state mass,
yields a naive cutoff R ¼ 4π

Λ2 with inverse dependence on the
new physics scale:
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Λ2

v2
∼
ð4πÞ3
λSM

v2

m2
h̃

; ð67Þ

so that the largest cutoff, or the closest to the SM couplings
one can get, is attained for the lowest new physics scale.
How low this scale can be while still being able to assume
an EFT applies can be estimated from the amplitude for W
scattering, mediated by the singlets in the full theory

−A ¼ s
v2

�
1 − c2β

s
s −m2

h

− s2β
s

s −m2
h̃

�
þ ðs → tÞ: ð68Þ

The plot in Fig. 4 shows the region in the curvature plane
of the models discussed in this section cover. In particular,
for the minimum mass of the extra singlet we take the limit
of mh̃ ≳ 350 GeV from [23] as a reference.

V. MANIFOLDS

The above HEFT cases fall into the category of mani-
folds with a singularity, as one can see by integrating out
heavy states [7]. In contrast, one can also have that no
Oð4Þ-symmetric point is present and the manifold is
smooth at every point. This section visualizes both types

of manifolds, together with those that admit a SMEFT
description. Consider (higher dimensional) cylindrical
coordinates, where the gauge symmetry acts rotating along
the axis, and orthogonal to this rotation we have a
cylindrical radial coordinate ρ and a “height” z. Our
manifolds are hypersurfaces within this five-dimensional
(5D) space parametrized by h and φa,

ðρðhÞuðφÞ; zðhÞÞ; ð69Þ

with a line element

dl2 ¼
��

dρ
dh

�
2

�
�
dz
dh

�
2
�
dh2 þ ρðhÞ2du2; ð70Þ

which defines the 4D metric, where the plus sign is for
Euclidean 5D space and the minus for the metric with a
ð−1; 1; 1; 1; 1Þ signature. In our basis, Eq. (14), dh2 has a
unit coefficient that can always be attained by a field
redefinition. In terms of geometry, the singlet Higgs field h
equals the distance in field space for fixed u. From the
equation above and our basis it also follows that FðhÞ ¼
ρðhÞ=v with Fð0Þ ¼ 1 giving ρð0Þ ¼ v. For convenience
let us define θ ¼ ðhþ h0Þ=f with f a new physics scale.
The most symmetric manifolds are S4, R4, and H4,

which are parametrized in our basis as

S4 ðf sinðθÞu; f cosðθÞÞ; ð71Þ

R4 ððhþ vÞu; 0Þ; ð72Þ

H4 ðf sinhðθÞu; f coshðθÞÞ; ð73Þ

and yield constant (field-independent) curvature:

S4;H4
Rφ; Rh

� 1
f2 ; � 1

f2
ð74Þ

while the f → ∞ limit yields R4 which corresponds to the
SM. Indeed, these manifolds can be described in SMEFT
and correspond to composite Higgs models [24] or negative
curvature models [25].

A. Quotient space theories with a singularity

A one-parameter deformation of the manifolds above
takes us into quotient space with a singularity at the origin:

deformedS4
�
fsγθu;

Z
dh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2c2γθ

q �
; ð75Þ

deformedH4

�
fshγθu;

Z
dh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ch2γθ − 1

q �
; ð76Þ

where sγθ ¼ sinðγθÞ and the singularity is made evident by
the curvature

FIG. 4. Range of curvature for SMEFT and quotient theories,
on the same background as Fig. 2. Two quotient theories are
plotted: the yellow region shows curvature for the symmetric
representation with hΦi ≠ 0, and the dark-gray region shows a
hyperbolic manifold (see Sec. V). The black line shows SMEFT
curvature, on which the purple and red dots represent the singlet
and the symmetric representation with hΦi ¼ 0 examples from
Sec. IV, respectively. The outermost to innermost dots are
evaluated with coupling g� ¼ 1 and heavy singlet mass:
500 GeV, 1 TeV, 1.5 TeV, 2 TeV, and 4 TeV.
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deformedS4
Rφ Rh

1−γ2
f2s2γθ

þ γ2

f2 ;
γ2

f2 ;
ð77Þ

deformedH4
1 − γ2

f2sh2γθ
−
γ2

f2
; −

γ2

f2
; ð78Þ

since the origin and would-be-Oð4Þ invariant point,
θ ¼ 0, return, which seemingly presents a way to approxi-
mate the SM by sending first f → ∞ while keeping
fsγθ0ðfshγθ0Þ ¼ v constant, and then γ → 1. Indeed, in
this limit, ∂nR ∝ ð1 − γ2Þ and contributions to amplitudes
of an arbitrary number of particles cancel. Nonetheless and
quite relevantly in this limit, the singularity is just a field
distance v=γ from the vacuum h ¼ 0. The model in Sec. IV
B with a symmetric representation taking a VEV also
belongs to the quotient theories with singularities, yet it
showed that the SM point cannot be reached. So it could be
that the deformed manifolds have no UV completion, yet
from low energy we see no indication for it. This highlights
the need for a bound based purely in the EFT perspective to
comprise all possibilities.

B. Smooth quotient theories

On the other hand, one could have smooth manifolds in
quotient space, ρ ≠ 0 ∀ h; we take here as examples a
torus and a hyperbola (in Euclidean space)

torus ððρ0 þ fcθÞu; fsθÞ; ð79Þ

hyperbola ððρ0 þ fchθ̂Þu; fshθ̂Þ; ð80Þ

where θ̂ ¼ ðĥðhÞ þ ĥ0Þ=f with ðdh=dĥÞ2 ¼ sh2
θ̂
þ ch2

θ̂
as

follows from our normalization in Euclidean 5D. In terms
of curvature, these manifolds give

Torus
Rφ Rh

cosðθÞ2
v2 ; cosðθÞ

fv ;
ð81Þ

Hyperbola
ch2

θ̂

ðch2
θ̂
þ sh2

θ̂
Þv2 ;

−chθ̂
ðch2

θ̂
þ sh2

θ̂
Þ2fv : ð82Þ

We see that the hyperbola does not go through the zero
curvature point for any value of f, θ, always keeping a
distance as the explicit model in Sec. IV B
did. The torus, however, for θ ¼ π=2 does have both
curvatures vanish, yet by construction the manifold is
not R4. Visually, for this point we are sitting atop of the
torus, and for its first two derivatives it does resemble a
plane; but its third derivative is nonvanishing, and indeed
R0
h ¼ 1=f2v which is bounded from below given ρ0 > f

and for θ ¼ π=2, v ¼ ρ0.

This nonetheless illustrates the possibility of manifolds
that do look locally like the SM to the nth derivative, yet do
not go through the origin. Let us take on such a set of
manifolds labeled by n

FðnÞðhÞ ¼ 1þ h
v
þ cn

�
h
v

�
n
; jcnj >

ðn − 1Þn−1
nn

: ð83Þ

The manifolds associated with these Fn for n ¼ 3, 4, 5 are
plotted in Fig. 5, and they resemble a plane and hence the
SM ever more accurately for increasing n around h ¼ 0.
It should be underlined that we do not know an UV

completion that would yield this type of EFT, as opposed to
quotient theories with singularities.

VI. OBSTACLES IN THE ROAD TO THE SM

We have encountered HEFT/SMEFT quotient theories
that come from either smooth manifolds with no Oð4Þ-
invariant point or manifolds that get arbitrarily close to the
would-be Oð4Þ-invariant point, but the point itself is
singular.
A number of UV complete theories yield quotient

theories with singularities at the origin. From working
out an explicit example, we have seen that these can only
get within a finite distance of the SM point. This explicit
computation relied on knowledge of the full theory, but
here we attempt to give an argument as to why quotient

FIG. 5. Examples of manifolds which belong (a) in SMEFT or
(b), (c), (d) in quotient space with the gauge symmetry action
being rotation around the z axis. SMEFT manifolds in (a) cor-
respond as follows: Composite models (yellow), the SM (green),
and negative curvature models (blue). Quotient manifolds (b), (d)
are smooth, while (c) presents a singularity, and both (c), (d) are
in a class that resembles the SM around the vacuum. For (d), part
of the manifolds has been cut out for better visualization.
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theories are not a road to the SM model in purely low
energy grounds.
Let us turn to semiclassical arguments. Consider the

Higgs field as sourced by a probe particle i localized in a
region σx and with a mass mi > mh. This configuration is,
of course, short lived, yet for times smaller than the decay
rates one might consider such a system. The renormalizable
linear realization gives an equation of motion4

ð−□ −m2
hÞhðxÞ ¼

mi

v
JiðxÞ; ð84Þ

where

Spin1=2 Ji ¼ hijψ̄ψ jii; ð85Þ

Spin 1 Ji ¼ −hijmiVμVμjii; ð86Þ

and the particle state is

jii ¼
Z

d3p
ð2πÞ3ΨðpÞ

a†i;pffiffiffiffiffiffiffiffi
2Ep

p j0i: ð87Þ

Away from the localized source the field is

hðr > σxÞ ¼
mi

v

Z
d4xd4q
ð2πÞ4

eiqðx−yÞbJiðx⃗Þ
q2 −m2

ð88Þ

≃ −
mi

v
e−mhr

4πr
; ð89Þ

where in the second line we assumed that the current Ji is
the same as the probability density, as we shall see justified
in the nonrelativistic limit.
Consider now the candidate quotient theories that resem-

ble the Standard Model to a high degree, where examples
given in the previous section are the functions FðnÞ as given
in (83) or the deformed S4, H4 theories (77) and (78). The
solution above should be a good first approximation cer-
tainly for large distances r > 1=mh where the field value is
exponentially close to the vacuum value. However, at shorter
distances if our candidate theories truly present a limit in
which the SM couplings are recovered, the solution should
still be a good approximation. The field value nonetheless
increases with decreasing distance, and if there is a singu-
larity in this SM limit, it is just a distance v=γ ≃ v away in
field space. Conversely, for smooth quotient theories, even if
our series example FðnÞ resembles the SM locally around the
vacuum, the corrections in Eq. (84) read 1þ ncnðh=vÞn with
ncn ∼ 1 for n ≫ 1 and would dominate over the SM for
h ∼ v. This is indeed the same condition for both types of
theories and yields a naive minimum distance or cutoff

hðσx < r < m−1
h Þ

v
≃
mi

v
1

4πvr
; ð90Þ

hðr0Þ
v

∼ 1 for
1

r0
≡ Λ ∼ 4πv

v
mi

: ð91Þ

This points at a cutoff an inverse coupling factor higher
than other estimates based on perturbative unitarity.
Nevertheless, quantum mechanics has something to say
about our implicit assumption σx < r0. Indeed, r0 ∼
ðm2

i =4πv
2Þm−1

i is smaller than the inverse mass of a particle
for perturbative couplings (which is the case for the SM),
but in order to localize the particle in a distance smaller than
the inverse mass, the uncertainty principle dictates a range
of momenta that extends to the relativistic regime. In this
high energy limit, our current Ji suffers a relativist factor
m=E suppression as an explicit evaluation of the matrix
elements shows when going beyond the nonrelativistic
approximation. For a fermion, one has

JiðxÞ ¼
Z

d3pd3k
ð2πÞ6

ūðkÞuðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ep2Ek

p eiðp−kÞxΨ�ðkÞΨðpÞ; ð92Þ

which implies that the space integral over the source Ji is
suppressed and the field value at a distance r > σx is

hðσx < rÞ
v

¼ NðmiσxÞ
4πvr

mi

v2
¼ NðσxmiÞ

rmi
αi; ð93Þ

Nðmi;σxÞ ¼
R
d3kðmi=EpÞjΨðpÞj2R

d3kjΨðpÞj2 ; αi ¼
m2

i

4πv2
; ð94Þ

which is the same result for spins 1=2 and 1. This
suppression implies that the prefactor of αi in Eq. (93)
is at most order one, which would then require an order one
αi to probe ðh=vÞ ∼ 1. Note that this αi will be at the edge
of perturbative unitarity, although loop corrections will be
suppressed by ∼1=ð4πÞ.
As an estimate, we take a Gaussian distribution

Ψ ∼ e−ðpσxÞ2=2 and evaluate the potential at a distance
r ¼ 2σx which encloses 95% of the probability density
to find that with αi ∼ 2 the cutoff, or inverse distance, where
we would probe h ∼ v would be r0 ¼ 0.6m−1

i ,

Λ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πσxmi

NðσxmiÞ

s ����
miσ∼0.3

v ≃ 2 TeV: ð95Þ

The nature of EWSB and the question of whether a
symmetric Oð4Þ point exits should be independent of the
introduction of our probe particle i, although admittedly the
fact that one would require couplings on the perturbative
edge makes the above a rough estimate.
The naive scaling from Eq. (90) does, however, point

toward the typical scale for nonperturbative effects. This is
4The spin 0, 1 case has an extra h=v times the source which we

dropped.
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indeed the natural scale for answering nonlocal questions
about our theory. While the detailed study of this effect will
be presented elsewhere [26], here we sketch the modifi-
cations in a well-known nonperturbative effect, sphalerons,
whose energy is

Esph ∼
4πv
g

: ð96Þ

In particular, the topological argument by Manton [27] has
to do with a loop (parametrized by μ) of mappings from the
sphere at spatial infinity to the vacuum manifold, charac-
terized by our unit vector u, i.e., uðθ;ϕ; μÞ, and holds
regardless of the Higgs singlet role. Nonetheless, the
boundary conditions to find the energy of the potential
barrier have to be drastically changed in quotient theories.
Indeed, the proposed field at the top of the barrier μ ¼ π=2
in [27] is ðh ¼ hðrÞuÞ,

h ¼ hðrÞ

0BBB@
sμsθcϕ
sμsθsϕ

sμcμðcθ − 1Þ
s2μcθ þ c2μ

1CCCA; B:C:

�
hð0Þ ¼ 0;

hð∞Þ ¼ v:
ð97Þ

In particular, the condition at the origin, where the Higgs
field goes to its symmetry preserving Oð4Þ symmetric
point, is demanded to remove dependence on angular
variables of the Higgs doublet at the origin where θ;ϕ
are ill-defined. For quotient theories, it is clear that this does
not apply given that an Oð4Þ point is absent or singular.
One can introduce a radial dependent function on u itself
such that

uðθ;ϕ; r → ∞Þ ¼ u∞; uðθ;ϕ; r → 0Þ → u0: ð98Þ

The boundary conditions on h would naively be h0ð0Þ ¼ 0.
In either case, the quotient theory effect is an order one
modification that serves as a handle to tell quotient theories
apart from the Standard Model.

VII. SUMMARY

This work studied the quotient space HEFT/SMEFT and
the potential limits to recover the SM other than via SMEFT
with the use of a geometric formulation. Explicit examples,
which include perturbative UV complete models, can and
will be told apart from the SMEFT case by future experi-
ments via the projection of measurements on the curvature
plane defined from the WW scattering and WW → hh
amplitudes (see Fig. 4). These examples of quotient space
HEFT/SMEFT theories do not offer a limit to recover the
SM and possess a finite cutoff. In contrast to these, quotient
theories were formulated in Sec. V that resemble the SM
amplitudes for arbitrary precision and number of particles.
While these theories look like the SM model around the
vacuum, at a Higgs-singlet distance of ∼v they reveal their
quotient space nature. Making use of semiclassical argu-
ments to displace the Higgs field by ∼v, we find an
argument for general theories in quotient space to be
distinguishable from the SM when probing the theory at
an energy (inverse distance) of at most 4πv=gSM. Our
discussion applies to quotient theories both with and
without singularities (nonanalyticities). The most pressing
outstanding question is the characterization of experimental
signatures that follow from the semiclassical arguments
given here.

ACKNOWLEDGMENTS

R. A. and M.W. are supported by the STFC under Grant
No. ST/T001011/1.

[1] I. Brivio and M. Trott, The standard model as an effective
field theory, Phys. Rep. 793, 1 (2019).

[2] T. Appelquist and J. Carazzone, Infrared singularities and
massive fields, Phys. Rev. D 11, 2856 (1975).

[3] F. Feruglio, The chiral approach to the electroweak inter-
actions, Int. J. Mod. Phys. A 08, 4937 (1993).

[4] B. Grinstein andM. Trott, A Higgs-Higgs bound state due to
new physics at a TeV, Phys. Rev. D 76, 073002 (2007).

[5] R. Alonso, E. E. Jenkins, and A. V. Manohar, A geometric
formulation of Higgs effective field theory: Measuring the
curvature of scalar field space, Phys. Lett. B 754, 335 (2016).

[6] R. Alonso, E. E. Jenkins, and A. V. Manohar, Geometry of
the scalar sector, J. High Energy Phys. 08 (2016) 101.

[7] T. Cohen, N. Craig, X. Lu, and D. Sutherland, Is SMEFT
enough?, J. High Energy Phys. 03 (2021) 237.

[8] A. Helset, A. Martin, and M. Trott, The geometric standard
model effective field theory, J. High Energy Phys. 03 (2020)
163.

[9] T. Cohen, N. Craig, X. Lu, and D. Sutherland, Unitarity
violation and the geometry of Higgs EFTs, J. High Energy
Phys. 12 (2021) 003.

[10] A. Falkowski and R. Rattazzi, Which EFT, J. High Energy
Phys. 10 (2019) 255.

[11] A. Falkowski, S. Rychkov, and A. Urbano, What if the
Higgs couplings to W and Z bosons are larger than in the
Standard Model?, J. High Energy Phys. 04 (2012) 073.

[12] S. Coleman, J. Wess, and B. Zumino, Structure of phe-
nomenological lagrangians. I, Phys. Rev. 177, 2239 (1969).

[13] A. Hatzinikitas, A note on Riemann normal coordinates,
arXiv:hep-th/0001078.

ROADS TO THE STANDARD MODEL PHYS. REV. D 105, 096028 (2022)

096028-11

https://doi.org/10.1016/j.physrep.2018.11.002
https://doi.org/10.1103/PhysRevD.11.2856
https://doi.org/10.1142/S0217751X93001946
https://doi.org/10.1103/PhysRevD.76.073002
https://doi.org/10.1016/j.physletb.2016.01.041
https://doi.org/10.1007/JHEP08(2016)101
https://doi.org/10.1007/JHEP03(2021)237
https://doi.org/10.1007/JHEP03(2020)163
https://doi.org/10.1007/JHEP03(2020)163
https://doi.org/10.1007/JHEP12(2021)003
https://doi.org/10.1007/JHEP12(2021)003
https://doi.org/10.1007/JHEP10(2019)255
https://doi.org/10.1007/JHEP10(2019)255
https://doi.org/10.1007/JHEP04(2012)073
https://doi.org/10.1103/PhysRev.177.2239
https://arXiv.org/abs/hep-th/0001078


[14] C. Hays, A. Helset, A. Martin, and M. Trott, Exact SMEFT
formulation and expansion to Oðv4=Λ4Þ, J. High Energy
Phys. 11 (2020) 087.

[15] G. Aad et al. (ATLAS Collaboration), Combined measure-
ments of Higgs boson production and decay using up to
80 fb−1 of proton-proton collision data at

ffiffiffi
s

p ¼ 13 TeV
collected with the ATLAS experiment, Phys. Rev. D 101,
012002 (2020).

[16] A. Tumasyan et al. (CMS Collaboration), Search for Higgs
boson pair production via vector boson fusion with highly
Lorentz-boosted Higgs bosons in the four b quark final state
at

ffiffiffi
s

p ¼ 13 TeV (2021), http://cds.cern.ch/record/2776802.
[17] M. Cepeda et al., Report from working group 2: Higgs

physics at the HL-LHC and HE-LHC, CERN Yellow Rep.
Monogr. 7, 221 (2019).

[18] A. Abada et al. (FCC Collaboration), FCC-ee: The Lepton
Collider: Future circular collider conceptual design report
volume 2, Eur. Phys. J. Special Topics 228, 261 (2019).

[19] F. Bishara, R. Contino, and J. Rojo, Higgs pair production in
vector-boson fusion at the LHC and beyond, Eur. Phys. J. C
77, 481 (2017).

[20] I. Brivio, T. Corbett, O. J. P. Éboli, M. B. Gavela, J.
Gonzalez-Fraile, M. C. Gonzalez-Garcia, L. Merlo, and S.
Rigolin, Disentangling a dynamical Higgs, J. High Energy
Phys. 03 (2014) 024.

[21] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis, and
R. Rattazzi, Causality, analyticity and an IR obstruction to
UV completion, J. High Energy Phys. 10 (2006) 014.

[22] B. W. Lee, C. Quigg, and H. B. Thacker, Weak interactions
at very high-energies: The role of the Higgs boson mass,
Phys. Rev. D 16, 1519 (1977).

[23] M. Aaboud et al. (ATLAS Collaboration), Search for heavy
resonances decaying into WW in the eνμν final state in
pp collisions at

ffiffiffi
s

p ¼ 13 TeV with the ATLAS detector,
Eur. Phys. J. C 78, 24 (2018).

[24] G. Panico and A. Wulzer, The composite Nambu-Goldstone
Higgs, Lect. Notes Phys. 913, 1 (2016).

[25] R. Alonso, E. E. Jenkins, and A. V. Manohar, Sigma models
with negative curvature, Phys. Lett. B 756, 358 (2016).

[26] R. Alonso and M. West (to be published).
[27] N. S. Manton, Topology in the Weinberg-Salam theory,

Phys. Rev. D 28, 2019 (1983).

RODRIGO ALONSO and MIA WEST PHYS. REV. D 105, 096028 (2022)

096028-12

https://doi.org/10.1007/JHEP11(2020)087
https://doi.org/10.1007/JHEP11(2020)087
https://doi.org/10.1103/PhysRevD.101.012002
https://doi.org/10.1103/PhysRevD.101.012002
http://cds.cern.ch/record/2776802
http://cds.cern.ch/record/2776802
http://cds.cern.ch/record/2776802
https://doi.org/10.48550/arXiv.1902.00134
https://doi.org/10.48550/arXiv.1902.00134
https://doi.org/10.1140/epjst/e2019-900045-4
https://doi.org/10.1140/epjc/s10052-017-5037-9
https://doi.org/10.1140/epjc/s10052-017-5037-9
https://doi.org/10.1007/JHEP03(2014)024
https://doi.org/10.1007/JHEP03(2014)024
https://doi.org/10.1088/1126-6708/2006/10/014
https://doi.org/10.1103/PhysRevD.16.1519
https://doi.org/10.1140/epjc/s10052-017-5491-4
https://doi.org/10.1007/978-3-319-22617-0
https://doi.org/10.1016/j.physletb.2016.03.032
https://doi.org/10.1103/PhysRevD.28.2019

