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A B S T R A C T 

Potential features in the primordial power spectrum have been searched for in galaxy surv e ys in recent years since these features 
can assist in understanding the nature of inflation. The null detection to date suggests that any such features should be fairly weak, 
and next-generation galaxy surveys, with their unprecedented sizes and precisions, are in a position to place stronger constraints 
than before. Ho we ver, e ven if such primordial features once existed in the early Univ erse, the y would hav e been significantly 

damped in the non-linear regime at low redshift due to structure formation, which makes them difficult to be directly detected 

in real observations. A potential way to tackle this challenge for probing the features is to undo the cosmological evolution, i.e. 
using reconstruction to obtain an approximate linear density field. By employing a set of N -body simulations, here we show that a 
recently proposed non-linear reconstruction algorithm can ef fecti vely retrie ve damped oscillatory features from halo catalogues 
and impro v e the accurac y of the measurement of feature parameters (assuming that such primordial features do exist). We do a 
Fisher analysis to forecast how non-linear reconstruction affects the constraining power, and find that it can lead to significantly 

more robust constraints on the feature amplitude for a DESI-like surv e y. Comparing non-linear reconstruction with other ways 
of improving constraints, such as increasing the surv e y volume and range of scales, this shows that it is possible to achieve what 
the latter do, but at a lower cost. 

Key words: methods: numerical – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

nflation, the most successful theory to solve the problems of the hot
ig bang model and to explain the seeding of the observed large-
cale structures today, plays a crucial role in the development of
odern cosmology. The single-field slow-roll inflation (Guth 1981 ; 
lbrecht & Steinhardt 1982 ; Linde 1982 ) predicts that primordial 
ensity fluctuations obey Gaussian statistics and the corresponding 
o wer spectrum follo ws a simple po wer law, which is fa v oured by the
osmic microwave background (CMB) data released by the WMAP 

Peiris et al. 2003 ; Spergel et al. 2007 ; Komatsu et al. 2009 ; Hinshaw
t al. 2013 ) and Planck (Ade et al. 2014a , 2016b ; Akrami et al. 2020b )
ollaborations. 

Ho we ver, the physical origin of the inflation field, which is
elieved to have driven inflation, is not fully understood yet, and 
he fact that the very high energy scale in the early Universe makes
t an ideal place to probe the imprints of the laws of fundamental
hysics offers the possibility that new physics can be revealed by 
osmological observations of the large-scale structure (LSS). Certain 
ophisticated models of inflation and its alternatives dev eloped o v er
he last decades predict scale-dependent features in the power spec- 
rum of primordial density fluctuations (see e.g. Bartolo et al. 2004 ;
 E-mail: yl700@sussex.ac.uk 
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hen 2010 ; Chluba, Hamann & Patil 2015 ; Slosar et al. 2019 , for
ome re vie ws). Such ‘feature models’ can be mainly classified into
hree types with specific templates of oscillations added to the scale-
nv ariant primordial po wer spectrum, each of which can be attributed
o various mechanisms (see e.g. Chen 2010 ; Chluba et al. 2015 ;
losar et al. 2019 , for some re vie ws). ‘Sharp-feature’ models have
inusoidal wiggles in the power spectrum, P ( k ), that oscillate linearly
n wavenumber k at a fix ed frequenc y, ω, which can be generated
y a minimal local singularity such as a step in the inflationary
otential that breaks the slow-roll condition (e.g. Starobinsky 1992 ; 
dams, Cresswell & Easther 2001 ; Chen, Easther & Lim 2007 ; Hazra

t al. 2010 ; Adshead et al. 2012 ; Hazra et al. 2014 ), or produced in
articular cases of multifield models of inflation (e.g. Achucarro et al.
011 ; Gao, Langlois & Mizuno 2012 ). Another type is the ‘resonant-
eature’ model whose oscillatory features are in logarithmic k , which
an be realised in, e.g. the axion monodromy inflation (Flauger et al.
010 ; Flauger & Pajer 2011 ), or brane inflation (Bean et al. 2008 ),
odels. The last type is the so-called standard clock signal, which is
 combination of the previous two feature models (e.g. Chen 2012 ;
hen & Namjoo 2014 ; Chen, Namjoo & Wang 2015 ). 
These feature models have been continuously tested with the 

pdated release of data from the Planck mission (Ade et al. 2014b ,
016a ; Akrami et al. 2020a ), but none of them has been found to
e preferable to the scale-invariant power spectrum predicted by 
imple single-field slow-roll inflation models so far, which suggests 
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hat such features should be fairly weak if they do exist. Since the
rimordial features are not only imprinted in the CMB, but some of
hem can also leave a signature in the matter and galaxy distribution,
uture LSS surv e ys, such as Euclid (Racca et al. 2016 ), DESI (DESI
ollaboration 2016 ), SPHEREx (Dor ́e et al. 2014 ), and LSST (Ivezi ́c
t al. 2019 ), will provide the opportunity to search for, or tighten
he constraints on, them, complementary to CMB data (e.g. Huang,
erde & Vernizzi 2012 ; Ballardini et al. 2016 ; Chen et al. 2016 ;
allardini et al. 2018 ; L’Huillier et al. 2018 ; Palma, Sapone & Sypsas
018 ; Zeng et al. 2019 ). More recently, this idea has been put into
ractice by making forecast (e.g. Beutler et al. 2019 ; Ballardini et al.
020 ; Debono et al. 2020 ) or performing real LSS data analysis
Beutler et al. 2019 ). 

Ho we v er, an y feature imprinted in the primordial density or
urvature field by inflation is subject to the impact of cosmic
volution that last until today. In particular, even if such primordial
eatures once existed in the very early Universe, they would have
een modified in the late-time Universe due to non-linear structure
ormation. Meanwhile, the available information on large scales,
here the evolution can be described by linear perturbation theory,

s limited due to the cosmic variance, i.e. the poor statistics caused
y the finite number of Fourier modes probed in that regime. This
an affect the confidence level at which to measure or constrain
hese features. In order to maximally extract useful information from
he observed galaxy distributions, several studies of the primordial
eatures in the non-linear regime has been conducted. Vasude v an
t al. ( 2019 ) and Beutler et al. ( 2019 ) analytically computed the
amping effect by gravitational non-linearities, making a consider-
ble contribution to the forecast of constraints on primordial feature
rom future galaxy surv e ys. Ballardini et al. ( 2020 ) employed N -
ody simulations to show a compatible non-linear damping effect
ith the analytical results abo v e to leading order. Beutler et al.

 2019 ) and Ballardini et al. ( 2020 ) made forecasts for future galaxy
urv e ys by taking the damping effect into account. Besides, Beutler
t al. ( 2019 ) performed the first LSS data analysis for the primordial
eatures, which showed that LSS can surpass the CMB as a probe
f such features. Furthermore, Vlah et al. ( 2016 ) and Chen, Vlah &
hite ( 2020 ) showed that different perturbation theories, including

agrangian and Eulerian perturbation theories and the ef fecti ve field
heory, can model the non-linear evolution of primordial features
ell for k � 0 . 25 h Mpc −1 at z = 1 and for k � 0 . 2 h Mpc −1 at
 = 0, but no oscillatory features survive past k ≈ 0 . 5 h Mpc −1 .
hus, it would be beneficial to develop other approaches which can
otentially allow us to exploit the LSS data in the range of scales,
.2 � k ( h Mpc −1 ) � 0.5 even at low redshifts. 
A potential method mentioned in Vasude v an et al. ( 2019 ), Ballar-

ini et al. ( 2020 ) and implemented in Beutler et al. ( 2019 ) to address
he issue of non-linear damping and further impro v e the constraints
n primordial features is to undo the cosmological evolution in
 process called reconstruction, which can partially retrieve the
nitial density field and therefore the information that existed there.
 well-known example is the reconstruction of baryonic acoustic
scillation (BAO) features, which sharpens these features in the
alaxy correlation function which provides a standard ruler for
istance measurements (e.g. Eisenstein et al. 2007 ; Kazin et al.
014 ; Schmittfull et al. 2015 ; Wang et al. 2017 ; Zhu et al. 2017 ; Shi,
autun & Li 2018 ; Sarpa et al. 2019 ; Mao et al. 2021 ). While recon-

tructing the primordial power spectrum from observed galaxies has
een shown to be beneficial for probing the primordial features from
SS data (Beutler et al. 2019 ), this study made use of one particular

the standard) reconstruction method, and it will be interesting to
lso assess how other reconstruction methods work in this regard. 
NRAS 514, 4363–4378 (2022) 
In this work, as a first step towards assessing the potential benefit
f non-linear reconstruction, we assume additional simple oscillatory
eatures in the power-law primordial power spectrum. By utilizing
 small set of N -body simulations, we study the performance of the
on-linear reconstruction algorithm proposed recently by Shi et al.
 2018 ) and Birkin et al. ( 2019 ) in retrieving the damped primordial
eatures from the halo catalogues. In particular, by quantifying this
amping caused by structure formation based on the functional form
n Vasude v an et al. ( 2019 ) and Beutler et al. ( 2019 ), we will carry
ut parameter fittings to the damped and reconstructed wiggles,
he comparison of which allows us to assess whether non-linear
econstruction can lead to more robust constraints on the feature
arameters. To investigate the impact of non-linear reconstruction in
eal galaxy surv e ys, we also forecast the constraints on the feature
arameters for a DESI-like surv e y using the Fisher matrix approach,
nd compare the cases with and without reconstruction. 

This paper is organized as follows: in Section 2 , we describe the
odel of primordial features, the simulations used in this work,

nd the methodology of assessing the performance of the non-linear
econstruction method to retrieve the damped primordial features
ue to structure formation. In Section 3 , we give more details on the
pproach used to forecast the constraints on the feature parameters
or the DESI-like surv e y. In Section 4 , we show the results of non-
inear reconstruction and forecast and discuss the implications of
hem. Finally, in Section 5 we conclude our findings and discuss
otential future impro v ements. 

 M E T H O D O L O G Y  

e start with presenting the primordial power spectrum models
ith oscillatory features that we adopt in this paper for illustration
urpose. We then describe the simulation runs for these models. It is
ollowed by a brief review of the non-linear reconstruction method
hich will be used to reco v er the small-scale oscillation features

rom evolved dark matter and halo fields. Finally, we describe the
nalytical model to quantify the features measured in the power
pectrum before giving the details of the Fisher matrix forecast in
he next section. 

.1 Models of featured primordial power spectrum 

e take a power law-type primordial power spectrum to be our
ducial no-wiggle model (note that the BAO wiggles are still

ncluded), given by 

 

ini 
nw ( k) = A s 

(
k 

k ∗

)n s −1 

, (1) 

here k is the comoving wavenumber, A s and n s are, respectively,
he scalar amplitude and spectral index with the pivot scale given by
 ∗ = 0 . 05 Mpc −1 . To explore whether the non-linear reconstruction
lgorithm employed in this paper can lead to impro v ements compared
ith the unreconstructed cases in Ballardini et al. ( 2020 ), we consider

our wiggled models that are based on the template of the sharp
eature model (Slosar et al. 2019 ), i.e. oscillations in linear k , given
y 

 

ini 
w ( k) = P 

ini 
nw ( k) 

[
1 + A cos ( ωk m + φ) 

]
, (2) 

here A , ω, and φ are, respectively, the amplitude, frequency, and
hase of the oscillation. We extend the sharp feature model by
ntroducing m for a particular purpose explained later; when m =
, equation ( 2 ) is related to the equation (2.1) in Ballardini et al.
 2020 ). 
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Table 1. The oscillation parameters used for the no-wiggle model and four 
wiggled models. Columns respectively denote (1) the power of the comoving 
wavenumber; (2) the amplitude, (3) frequency, and (4) phase of the oscillation. 

m A ω φ/ π
(Mpc m ) 

Fiducial 0 
Model 1 1 0.05 40 0 
Model 2 1 0.05 70 0 
Model 3 1 0.05 150 0 
Model 4 0.631 0.05 28.9 0 
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Note that even if the primordial features e xist, the y could be more
omplicated than any phenomenological models that we are currently 
sing. For now, we cannot determine the precise form of the features,
hus we aim at something narrow, which is assuming that we know
he functional form and verifying if non-linear reconstruction can 
mpro v e the accuracy of measuring the feature parameters. 

The oscillation parameters of the five models are listed in Table 1 .
ote that the frequencies of the wiggled models here are in units
f Mpc m due to m introduced abo v e. The initial oscillations of
he four wiggled models are shown in the red-dashed lines in the
ight-hand panel of Fig. 1 , where we have presented the difference
etween P 

ini 
w and P 

ini 
nw . Within our interested range of scales, k =

0 . 05 –0 . 5) h Mpc −1 , Model 1 has the first peak at the smallest scale,
ollowed by Models 2 and 3, the frequency used in Model 3 is the
ame as BAO frequency. Model 4 is particularly adopted to have 
he first two peaks at the same positions of the first and third peaks
f Model 2. The reason why this special model is designed will be
xplained in Section 4.2 . By comparing the reconstructed wiggles of
he four wiggled models later, we would be able to comprehend 
he effect of the non-linear reconstruction method on different 
cales. 

.2 N -body simulations 

n the regime of linear perturbations, the primordial wiggles preserve 
heir shapes and amplitude P 

ini 
w /P 

ini 
nw . Ho we ver, non-linear large-scale 

tructure evolution will change this behaviour, leading to damping of 
 

ini 
w /P 

ini 
nw at late times. This makes it harder to measure the properties

f these primordial oscillations directly from an evolved density field, 
ven more so for a late-time tracer (e.g. galaxy or halo) field. In order
o quantify such effects, N -body cosmological simulations can pro v e
o be a useful tool. 

We have run five simulation runs including the no-wiggle model 
nd four wiggled models. First, we assume a flat universe and 
dopt Planck 2018 cosmology, with h = 0.674, �m 

= 0 . 3135,
c h 2 = 0.120, �b h 2 = 0.0224, �� 

= 0 . 6865, n s = 0.965, and A s =
 × 10 −9 (Aghanim et al. 2020 ). The value of σ 8 is approximately
.79 though it varies a little bit across different models. We then
ustomize the function of the primordial power spectrum in the 
instein–Boltzmann solver code CAMB (Lewis & Challinor 2011 ) 

o be equation ( 1 ) for the no-wiggle model and equation ( 2 ) for
he wiggled models. We calculate the linear theory matter power 
pectrum at z = 49 using this version of the CAMB code, which is
sed as the input matter power spectrum for the publicly available 
ode 2 LPT ic (Crocce, Pueblas & Scoccimarro 2006 ) to generate the
nitial conditions used for the N -body simulations. In the left-hand 
anel of Fig. 1 , we compare the initial matter power spectrum given
y CAMB and the matter power spectrum measured from the initial 
onditions generated using 2 LPT ic; it can be seen that they are in good
greement for all models within the range of scales of our interest
the blowing up at small scales is due to the finite particle resolution).

To more conveniently describe the oscillatory features for the 
iggled models, as mentioned abo v e, we define the relativ e wiggle
attern as 

 

ini 
rw ( k ) = 

P 

ini 
w ( k ) 

P 

ini 
nw ( k ) 

− 1 , (3) 

hich are shown in the right-hand panel of Fig. 1 . This indicates
hat the oscillatory features have been reliably created in the initial
onditions of the simulations within our interested range of scales, 
.g. k � 0.5 h Mpc −1 . 

Next, we run the simulations using the parallel N -body code
AMSES (Teyssier 2002 ) which is based on the adaptive mesh
efinement (AMR) technique. Each simulation is performed with 
 = 1024 3 dark matter particles in a box of size 1024 h 

−1 Mpc,
nd we output four snapshots at different redshifts, respectively, as 
 = 0, 0.5, 1, and 1.5. For each snapshot, we use the halo finder
OCKSTAR (Behroozi, Wechsler & Wu 2013 ) to identify the haloes
ith the definition of the halo mass M 200 c , where M 200 c is the mass
ithin a sphere whose average density is 200 times the critical
ensity. Since the low-mass haloes are unable to be fully probed
ue to the limited simulation resolution, we measure the cumulative 
alo mass functions (cHMFs) from the main haloes with more than
00 particles to check the validity of the simulation, which show
ery good agreement with the analytical formulae in Tinker et al.
 2008 ). For each snapshot we establish one dark matter particle
atalogue (hereafter DM) and two halo catalogues, respectively, 
ith the number density of 1 × 10 −3 ( h 

−1 Mpc) −3 (hereafter H1)
nd 5 × 10 −4 ( h 

−1 Mpc) −3 (hereafter H2). Both host haloes and
ubhaloes are included in the halo catalogues. The number density 
f 5 × 10 −4 ( h 

−1 Mpc) −3 is chosen to be an approximate value
ccording to the current observations such as CMASS or LOWZ 

espite not being exactly the same, and 1 × 10 −3 ( h 

−1 Mpc) −3 is
 representati ve v alue of emission line galaxies (ELGs) in DESI
urv e y; these choices are also somehow limited by the resolution of
ur simulations, though the use of the dark matter density field serves
s a catalogue that has a much larger number density. Many realistic
ock galaxy catalogues would give something between H1 and DM. 
We achieve the number density by applying a mass cutoff, i.e.

eglecting the haloes with smaller masses than the cutoff. By using
he power spectrum estimator tool POWMES (Colombi & No viko v
011 ), we measure the non-linear matter power spectrum from DM
nd non-linear halo power spectrum separately from H1 and H2. 
inally, we take the ratio of the power spectrum of the wiggled
odels to the corresponding power spectrum of the no-wiggle model 

o obtain the quantity O rw for all cases. 

.3 Reconstruction 

n order to partially retrieve the primordial features damped during 
tructure formation, we perform reconstruction of the initial density 
eld from the late-time density field using the non-linear reconstruc- 

ion algorithm described in Shi et al. ( 2018 ). This reconstruction
ethod is based on mass conservation. Without assuming a cosmo- 

ogical model or having free parameters except the size of the mesh
sed to calculate the density field, it employs multigrid Gauss–Seidel 
elaxation to solve the non-linear partial differential equation which 
o v erns the mapping between the initial Lagrangian and final
ulerian coordinates of particles in evolved density fields. Previous 

ests show that the reconstructed density field is o v er ∼ 80 per cent
orrelated with the initial density field for k � 0 . 6 h Mpc −1 , if
MNRAS 514, 4363–4378 (2022) 
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M

Figure 1. The left-hand panel shows the comparison between the initial matter power spectra given by CAMB (red dashed lines) and the matter power spectra 
measured from the initial conditions of the simulations generated using 2 LPT ic (black lines), from the top down they are, respectively, the fiducial model, Models 
1, 2, 3, and 4, each model is shifted upw ards by a f actor of 10 successively to a v oid the clutter of all curves. The right-hand panel shows the O 

ini 
rw results, cf. 

equation ( 3 ), obtained from the left-hand panel for the four wiggled models, for instance, the top curve shows the ratio of Model 1 to the fiducial model, followed 
by the ones for Models 2, 3, and 4 downwards; each model is shifted upwards by a constant of 0.15 successively for the same reason as above. 
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econstruction is performed on the dark matter density field, which
o v er the scales of our interest, but the performance becomes poorer
hen the method is instead applied on the density fields calculated

rom sparse tracers (Birkin et al. 2019 ; Liu, Yu & Li 2020 ; Wang, Li &
autun 2020 ). This method is implemented in a modified version of

he ECOSMOG code (Li et al. 2012 , 2013 ), which itself is based on
AMSES . 
We reconstruct the initial density field separately from the cata-

ogues DM, H1 and H2 for each snapshot. The halo catalogues, which
ontain both main and subhaloes, are assumed to be the same as mock
alaxy catalogues hereafter unless otherwise stated. 1 The procedure
or the reconstruction from the halo catalogue is principally similar
o that from the dark matter particle catalogue, apart from two things
t the beginning. One is that we prepare the GADGET -format particle
ata for the ECOSMOG code in tw o w ays. The halo catalogue is directly
ritten into Gadget-format tracer particles due to its small number
ensity. Ho we v er, the v ery large number of the simulation particles,
long with their strongly non-uniform spatial distribution, in the dark
atter particle catalogues, leads to the requirement of large memory

ootprint when processing the data. To a v oid this problem, we use
he publicly available DTFE code (Cautun & van de Weygaert 2011 ),
ased on Delaunay tessellation, to calculate the density field on a
egular mesh with 512 3 cells employing the triangular shaped cloud
TSC) mass assignment scheme; then the mesh cells are regarded as
niformly distributed f ak e particles with different masses, which are
ransformed to GADGET format that can be directly read by ECOSMOG .

The other particular thing is that we calculate the linear halo bias
sed for the reconstruction from the halo catalogue. The estimate of
he halo bias is based on the relation 

 1 ( r ) = 

ξhh ( r ) 

ξhm 

( r ) 
, (4) 

here ξ hh ( r ) is the autocorrelation function of haloes and ξ hm 

( r ) is
he cross-correlation function between the haloes and the dark matter
articles. We use the publicly available CUTE code (Alonso 2012 ) to
NRAS 514, 4363–4378 (2022) 

 As a result, we will use ‘haloes’ and ‘galaxies’ interchangeable throughout 
he rest of this paper: ‘galaxies’ will be used where we refer to observational 
uantities, while ‘haloes’ will be used for simulated quantities. 

i
 

i  

W  

o  
easure ξ hh ( r ) and ξ hm 

( r ) from a given simulation snapshot, and take
he ratio between them to obtain the value of linear halo bias as a
unction of the distance r . Since the linear halo bias is theoretically
 constant on large scales, we apply the method of least squares
o the values on scales r � 10 h 

−1 Mpc to obtain an estimate of it.
ote that when dealing with observational data we do not necessarily
ave such an accurate measurement of the linear halo or galaxy bias;
o we ver, Birkin et al. ( 2019 ) find that the exact value of linear bias
s not very important for this reconstruction method to reco v er the
hases of the initial density field. 
The following steps of reconstruction are then the same for both

ark matter particle catalogue and halo catalogues. First, ECOSMOG

alculates the density field in the Eulerian coordinates using the
SC mass assignment scheme, and solves the mapping between

he Eulerian and Lagrangian coordinates, to get the displacement
otential as well as the displacement field on a regular mesh with
12 3 cells. We then use a PYTHON code to transfer the output fields
rom the Eulerian coordinates to the Lagrangian coordinates. After
hat, because the Lagrangian coordinates are not uniform, we feed
he DTFE code with the Lagrangian coordinates and displacement
eld of the mesh cells to calculate the reconstructed density field
s the divergence of the displacement field w.r.t. the Lagrangian
oordinates. Finally, we measure the reconstructed power spec-
rum from the reconstructed density field using a post-processing
ode. 

.4 Parameter fitting to the damped wiggles 

s we discussed abo v e, cosmic structure formation leads to damping
f the primordial wiggles. Reconstruction is expected to revert some
f this damping, but cannot completely undo it. So we need a model
or the wiggles of the reconstructed matter or halo power spectrum.
deally this should be an analytical model since it can be more easily
sed in the Fisher analysis later. In this section, we describe how this
s achieved by using a fitting function. 

A functional form of the feature damping is analytically computed
n Vasude v an et al. ( 2019 ) and Beutler et al. ( 2019 ) to be a Gaussian.

e combine it with the oscillatory feature model described abo v e, in
rder to directly fit the wiggle pattern O rw . The fitting function that
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s used to described the damped wiggles is given by 

 

fit 
rw ( k, z) = A cos ( ωk m + φ) exp 

[
− k 2 ζ ( z) 2 

2 

]
, (5) 

here ζ ( z) is the damping parameter that depends on the redshift z.
or the fitting of each measured O rw ( k ) = P w ( k )/ P nw ( k ) − 1, we let
, φ, and ζ be the free parameters because ω and φ play an essential

ole in determining the position of the peaks, and ζ quantifies the 
xtent of the damping effect. The parameters A and m are taken to
e their theoretical values in Table 1 . In principle, A is also a free
arameter here and should be allowed to vary in our parameter fitting.
e have explicitly checked this 4-parameter fitting and found that, 

ompared with the 3-parameter fitting, in the vast majority of cases 
f Table 2 , the best-fitting values of ω and φ are not more accurate,
hich is as expected. There is a degeneracy between the amplitude 
 and the damping scale ζ , with the fitted values of the latter having

arger uncertainties in the case of the 4-parameter fitting. Since for
ur forecast work the value of ζ is more important, we stick with the
esults obtained from the 3-parameter fitting. 

We apply the least-squares estimator to obtain the best-fitting 
arameters by minimizing 

2 = 

N ∑ 

i= 1 

[
O rw , i ( z) − O 

fit 
rw ( k i , z; ω, φ, ζ ) 

]2 
, (6) 

here O rw, i ( z) are the data points of wiggle spectrum in the i th k bin
t reshift z. Since there is only one realization of simulation for each
odel, we assume that the uncertainties of all data points O rw, i ( z)

re the same and follow the same Gaussian distribution. Note that, as
he quantity we fit is O rw = P w / P nw − 1, this is equi v alent to doing
he fitting of P w with 

√ 

P nw as uncertainty (e.g. Feldman, Kaiser & 

eacock 1994 ). 
We calculate the uncertainties of the best-fitting parameters based 

n 95 per cent confidence interval, as a rough estimate of the size
f the errors. To minimize the influence of the cosmic variance on
ery large scales, we fit the data within the interval of k = (0 . 04 −
 . 6) h Mpc −1 , which co v ers our intended range of scales. 

 FO R ECAST  F O R  T H E  DESI-LIKE  SURV EY  

n order to investigate the impact of reconstruction, we will forecast 
he constraints on the feature parameters for the DESI-like surv e y
sing the Fisher information matrix, and compare with the case 
f doing no reconstruction. For this purpose, we first model the 
bserved broad-band galaxy power spectrum. Then we describe how 

o calculate the Fisher information matrix, followed by its analytical 
arginalization. Finally, we give the specifications of the DESI-like 

urv e y. 

.1 Modelling the obser v ed galaxy power spectrum 

ombining the equations ( 3 ) and ( 5 ), the featured non-linear matter
ower spectrum in real space can be modelled as 

 mod ( k, z) = P nl ( k, z) 

[
1 + A cos ( ωk m + φ) exp 

(
− k 2 ζ ( z) 2 

2 

)]
, (7) 

here P nl ( k , z) is the non-linear matter power spectrum without the
rimordial oscillatory features at z, which includes the BAO wiggles 
nd is equi v alent to the non-linear matter po wer spectrum of the no-
iggle model. Ho we ver, since there is only one simulation realization

or a single no-wiggle model, which cannot provide a smooth non- 
inear matter power spectrum, and since a fast method to get P mod is
ore convenient in the Fisher analysis, we use the HALOFIT model
n the CAMB code to calculate P nl ( k , z) instead later in this work. We
ave checked that the fractional difference between the simulated no- 
iggle power spectrum and the one computed by HALOFIT is below
0 per cent within the entire fitting range. 
The broad-band galaxy power spectrum in real space is not 

 direct observable due to the measurement in the angular and
edshift coordinates instead of the 3D comoving coordinates. In 
rder to relate the observed galaxy power spectrum P obs ( k , z) to the
odelled matter power spectrum P mod ( k , z), the standard practice is

o project the galaxies to their comoving positions assuming some 
eference cosmology via the coordinate transformation based on the 
elations 

 

ref 
⊥ 

= 

D A ( z) 

D 

ref 
A ( z) 

k ⊥ 

, k ref 
‖ = 

H 

ref ( z) 

H ( z) 
k ‖ , (8) 

here k � and k ⊥ 

are, respectively, the line of sight and transverse
omponents of the wav ev ector k , i.e. k 2 = | k | 2 = k 2 ⊥ 

+ k 2 ‖ , the su-
erscript ref denotes the reference cosmology, note that the reference 
osmology hereafter is the same one used in the simulations unless
therwise stated; D A ( z) = r ( z)/(1 + z) is the angular diameter
istance at z with the comoving distance r ( z): under the assumption
f flat universe it is given by 

( z ) = 

c 

H 0 

∫ z 

0 
d z ′ 

[ 
�m 

(1 + z) 3 + �� 

] − 1 
2 
, (9) 

here �� 

= 1 − �m 

is the current density parameter of the cosmo-
ogical constant, and the Hubble parameter H ( z) is given by 

 ( z) = H 0 

[ 
�m 

(1 + z) 3 + �� 

] 1 
2 
. (10) 

long with several main factors being considered, i.e. the redshift- 
pace distortions (RSD) and shot noise, one can model the observed
alaxy power spectrum as 

 obs ( k, μ, z) = 

[
D 

ref 
A ( z) 

D A ( z) 

]2 
H ( z) 

H 

ref ( z) 

F FoG ( k, μ, z) 

σ 2 
8 ( z) 

P mod ( k, z) + N gal ( z) , 

(11) 

here σ 8 ( z) is the R.M.S. linear density fluctuations on the scale of
 h 

−1 Mpc, N gal ( z) = 1 / n g ( z) is the shot noise with n g ( z) being the
alaxy number density, and the Finger-of-God factor F FoG ( k , μ, z)
escribing the effect of RSD is modelled as Ballardini et al. ( 2020 ) 

 FoG ( k, μ, z ) = 

[
b( z ) σ8 ( z ) + f ( z ) σ8 ( z ) μ2 

]2 

1 + k 2 μ2 σ 2 
r,p / 2 

exp 
( − k 2 μ2 σ 2 

r,z 

)
, 

(12) 

here we have included the linear halo bias at z , b ( z ), to make P obs 

he ‘galaxy’ [remember that in our simulations we treat (sub)haloes 
s mock galaxies] power spectrum, and 

 ( z) = 

d ln D( a) 

d ln a 
, (13) 

s the linear growth rate at z with D ( a ) and a respectively being the
inear growth factor and the scale factor (note that we normalize
 ( a ) so that D ( a = 1) = 1 in this work), μ = cos θ with θ being

he angle between the wav ev ector k and the line of sight, i.e. μ =
 � / k , σ r , p = σ p /[ H ( z) a ] is the distance dispersion corresponding to
he physical velocity dispersion σ p whose fiducial value is taken to 
e 290 km s −1 . The last exponential factor represents an additional
amping to account for the observational redshift error σ ( z) with
r , z = c σ ( z )/ H ( z ) specific to a giv en surv e y, which is v ery close to 1

or our intended range of scales given that the DESI surv e y assumes
MNRAS 514, 4363–4378 (2022) 
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Table 2. The best-fitting parameters of ω, φ, and ζ and their 95% uncertainties for the four wiggled models studied in this work. The values of ω and φ are, 
respectively, in the units of Mpc m and π , and their theoretical values are shown below the title of each model on the top of the table. DM denotes the dark 
matter particle catalogue, H1 the halo catalogue with n halo = 1 × 10 −3 ( h −1 Mpc) −3 and H2 the halo catalogue with n halo = 5 × 10 −4 ( h −1 Mpc) −3 . Each 
group of six rows includes the unreconstructed and reconstructed cases for the same redshift. 

Model 1 Model 2 
ω = 40, φ = 0 ω = 70, φ = 0 

z para DM H1 H2 DM H1 H2 

0.0 unrec ω 33.0 ± 3.4 36.5 ± 1.6 36.2 ± 1.9 68.5 ± 1.1 69.0 ± 1.7 68.4 ± 1.7 
φ 0.09 ± 0.08 0.02 ± 0.04 0.04 ± 0.05 0.00 ± 0.03 0.01 ± 0.05 0.00 ± 0.04 
ζ 7.23 ± 0.95 6.21 ± 0.44 6.90 ± 0.53 7.43 ± 0.26 6.95 ± 0.40 7.27 ± 0.41 

rec ω 40.0 ± 0.1 40.3 ± 0.4 40.8 ± 1.1 70.1 ± 0.1 70.1 ± 1.0 69.9 ± 0.9 
φ 0.00 ± 0.01 − 0.02 ± 0.02 − 0.04 ± 0.04 − 0.01 ± 0.01 0.00 ± 0.05 0.01 ± 0.04 
ζ 2.05 ± 0.05 3.41 ± 0.13 4.07 ± 0.32 2.06 ± 0.03 3.58 ± 0.28 4.00 ± 0.25 

0.5 unrec ω 37.6 ± 1.4 37.3 ± 1.1 37.7 ± 1.0 69.1 ± 0.4 68.0 ± 0.9 68.2 ± 1.2 
φ 0.02 ± 0.04 0.03 ± 0.03 0.02 ± 0.03 0.00 ± 0.01 0.05 ± 0.03 0.02 ± 0.04 
ζ 5.53 ± 0.40 5.27 ± 0.32 5.71 ± 0.29 5.88 ± 0.10 5.72 ± 0.23 6.18 ± 0.30 

rec ω 40.0 ± 0.1 40.1 ± 0.3 40.3 ± 0.7 70.1 ± 0.1 70.1 ± 0.4 69.7 ± 0.6 
φ 0.00 ± 0.01 − 0.01 ± 0.02 − 0.01 ± 0.03 − 0.01 ± 0.01 0.00 ± 0.02 0.01 ± 0.03 
ζ 1.52 ± 0.04 3.17 ± 0.10 3.75 ± 0.20 1.51 ± 0.04 3.12 ± 0.10 3.83 ± 0.17 

1.0 unrec ω 38.6 ± 0.6 38.0 ± 0.7 37.5 ± 0.9 69.5 ± 0.2 68.7 ± 0.8 69.0 ± 0.8 
φ 0.01 ± 0.02 0.01 ± 0.03 0.01 ± 0.03 0.00 ± 0.01 0.02 ± 0.03 0.00 ± 0.03 
ζ 4.39 ± 0.18 4.38 ± 0.22 5.08 ± 0.26 4.73 ± 0.05 4.90 ± 0.21 5.48 ± 0.20 

rec ω 40.0 ± 0.1 40.1 ± 0.3 39.7 ± 0.7 70.0 ± 0.1 70.0 ± 0.5 70.0 ± 0.7 
φ 0.00 ± 0.01 − 0.01 ± 0.02 0.01 ± 0.03 0.00 ± 0.01 0.00 ± 0.02 − 0.01 ± 0.03 
ζ 1.09 ± 0.04 3.09 ± 0.11 3.56 ± 0.20 1.11 ± 0.03 3.23 ± 0.14 3.81 ± 0.20 

1.5 unrec ω 39.3 ± 0.3 38.1 ± 0.7 36.5 ± 0.8 69.6 ± 0.1 69.1 ± 0.8 68.2 ± 1.0 
φ 0.00 ± 0.01 0.02 ± 0.03 0.07 ± 0.03 0.00 ± 0.01 0.01 ± 0.03 0.03 ± 0.03 
ζ 3.60 ± 0.10 4.07 ± 0.20 4.92 ± 0.25 3.90 ± 0.02 4.43 ± 0.21 5.17 ± 0.26 

rec ω 40.0 ± 0.1 39.6 ± 0.5 40.1 ± 1.1 70.0 ± 0.1 70.2 ± 0.4 69.6 ± 1.1 
φ 0.00 ± 0.01 0.02 ± 0.02 − 0.01 ± 0.05 0.00 ± 0.01 − 0.01 ± 0.02 0.01 ± 0.05 
ζ 0.84 ± 0.03 3.08 ± 0.15 3.66 ± 0.32 0.88 ± 0.03 3.24 ± 0.12 3.90 ± 0.29 

Model 3 Model 4 
ω = 150, φ = 0 ω = 28.9, φ = 0 

z para DM H1 H2 DM H1 H2 
0.0 unrec ω 149.3 ± 0.4 151.2 ± 2.0 151.6 ± 2.1 26.1 ± 0.6 27.2 ± 1.0 25.9 ± 1.0 

φ 0.01 ± 0.01 − 0.04 ± 0.05 − 0.05 ± 0.04 0.11 ± 0.04 0.06 ± 0.06 0.14 ± 0.06 
ζ 7.95 ± 0.09 7.44 ± 0.51 8.51 ± 0.50 6.96 ± 0.23 6.62 ± 0.35 6.68 ± 0.36 

rec ω 150.1 ± 0.1 150.7 ± 0.6 150.7 ± 1.0 29.0 ± 0.1 29.5 ± 0.4 28.7 ± 0.6 
φ − 0.01 ± 0.01 − 0.04 ± 0.03 − 0.03 ± 0.04 − 0.01 ± 0.01 − 0.05 ± 0.03 0.03 ± 0.05 
ζ 2.13 ± 0.04 3.70 ± 0.19 4.04 ± 0.28 2.11 ± 0.04 3.41 ± 0.14 3.75 ± 0.22 

0.5 unrec ω 149.6 ± 0.2 150.4 ± 0.9 150.4 ± 1.5 27.2 ± 0.2 27.2 ± 0.6 26.2 ± 0.7 
φ 0.01 ± 0.01 − 0.01 ± 0.02 − 0.02 ± 0.03 0.07 ± 0.02 0.06 ± 0.05 0.12 ± 0.05 
ζ 6.30 ± 0.05 6.02 ± 0.23 6.85 ± 0.39 5.33 ± 0.08 4.96 ± 0.23 5.58 ± 0.26 

rec ω 150.1 ± 0.1 150.0 ± 0.5 150.1 ± 0.8 29.0 ± 0.1 29.1 ± 0.3 29.3 ± 0.4 
φ − 0.01 ± 0.01 − 0.01 ± 0.02 − 0.02 ± 0.03 − 0.01 ± 0.01 − 0.03 ± 0.03 − 0.03 ± 0.04 
ζ 1.63 ± 0.03 3.37 ± 0.15 3.96 ± 0.23 1.53 ± 0.04 3.04 ± 0.11 3.46 ± 0.16 

1.0 unrec ω 149.7 ± 0.1 149.9 ± 0.9 149.3 ± 0.9 27.7 ± 0.1 27.1 ± 0.5 26.7 ± 0.5 
φ 0.01 ± 0.01 0.00 ± 0.03 0.02 ± 0.03 0.05 ± 0.01 0.08 ± 0.04 0.10 ± 0.03 
ζ 5.08 ± 0.03 5.29 ± 0.25 5.95 ± 0.24 4.19 ± 0.03 4.30 ± 0.20 4.99 ± 0.17 

rec ω 150.1 ± 0.1 150.6 ± 1.7 149.9 ± 0.6 29.0 ± 0.1 28.7 ± 0.4 28.3 ± 0.4 
φ − 0.01 ± 0.01 − 0.04 ± 0.08 0.00 ± 0.03 − 0.01 ± 0.01 0.02 ± 0.03 0.04 ± 0.04 
ζ 1.27 ± 0.03 3.31 ± 0.52 3.85 ± 0.17 1.12 ± 0.03 3.04 ± 0.13 3.55 ± 0.15 

1.5 unrec ω 149.7 ± 0.1 149.6 ± 0.8 149.6 ± 0.9 28.0 ± 0.1 27.4 ± 0.6 27.0 ± 0.6 
φ 0.01 ± 0.01 0.01 ± 0.03 0.01 ± 0.03 0.04 ± 0.01 0.05 ± 0.05 0.08 ± 0.04 
ζ 4.21 ± 0.02 4.88 ± 0.23 5.71 ± 0.24 3.41 ± 0.02 3.92 ± 0.22 4.73 ± 0.21 

rec ω 150.1 ± 0.1 150.0 ± 0.7 150.0 ± 1.2 28.9 ± 0.1 29.0 ± 0.4 28.9 ± 0.5 
φ − 0.01 ± 0.01 − 0.01 ± 0.03 0.00 ± 0.05 0.00 ± 0.01 − 0.02 ± 0.04 − 0.01 ± 0.04 
ζ 1.07 ± 0.03 3.38 ± 0.20 4.07 ± 0.34 0.83 ± 0.02 3.19 ± 0.16 3.65 ± 0.17 
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( z) = 0.0005/(1 + z) (DESI Collaboration 2016 ), so we neglect it
n the calculation. 

Additional effects involved in real observational constraints, such
s the surv e y window function and finite bandwidths, which would
NRAS 514, 4363–4378 (2022) 
nfluence the forecasted constraining power to some extent (see e.g.
eutler et al. 2019 , for a more detailed discussion), should be taken

nto account when dealing with real surv e ys in future works, but these
re not included in the forecast here. The present work is therefore a
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implified proof-of-concept study which is likely to lead to optimistic 
orecasts. 

.2 Fisher information matrix 

he Fisher matrix approach provides a method to propagate the 
ncertainties of the observable to the constraints on the cosmological 
arameters. Our calculation of the Fisher matrix is based on Tegmark 
 1997 ) and Seo & Eisenstein ( 2003 ), assuming that the power
pectrum of a given k mode satisfies a Gaussian distribution which has
 variance equal to the power spectrum itself, and that different bins
f k are independent of each other for large surv e ys, the Fisher matrix
or each redshift bin, with bin centre at z = z c , can be approximated
s 

 ij ( z c ) = 

V eff ( z c ) 

4 π2 

∫ 1 

0 
d μ

×
∫ k max 

k min 

d k k 2 
∂ ln P obs ( k , μ, z c ) 

∂θi 

∂ ln P obs ( k , μ, z c ) 

∂θj 

, (14) 

here k min , k max are, respecti vely, the minimum and maximum v alues
f k used for the forecast. We set k min = 0 . 05 h Mpc −1 and adopt two
 alues of k max , respecti vely, 0 . 25 and 0 . 5 h Mpc −1 , to compare the
onstraints for different ranges of scales. The ef fecti ve volume of the
edshift bin V eff ( z c ) is expressed as 

 eff ( z c ) = 

[
1 + 

1 

n g ( z) P obs ( k, μ, z) 

]−2 

V surv ( z c ) , (15) 

here n g ( z) P obs ( k, μ, z) is the signal to noise, the comoving survey
olume V surv ( z c ) with the redshift bin width �z is given by 

 surv ( z c ) = 

4 π

3 

[
r 
(
z c + 

�z 

2 

)3 
− r 

(
z c − �z 

2 

)3 
]

�surv 

�sky 
, (16) 

here �surv and �sky are, respectively, the survey area and the area of
he full sky . Additionally , θ is the 8D parameter vector which consists
f five cosmological parameters and three oscillation parameters 

 c = �c h 

2 , ω b = �b h 

2 , h, n s , A s , A, ω, φ. (17) 

he partial deri v ati ves of P obs ( k , μ, z c ) w.r.t. the cosmological
arameters are calculated numerically using the finite difference 

∂P obs ( k, μ, z c ) 

∂θi 

= 

P obs ( θfid 
i + �θi ) − P obs ( θfid 

i − �θi ) 

2 �θi 

, (18) 

here �θ i is taken to be 10 per cent of the fiducial value of θfid 
i ,

hough we have explicitly checked that the partial deri v ati ve is
nsensitive to the size of �θ i . By contrast, the partial derivatives 
.r.t. the oscillation parameters can be calculated analytically due to 

he analytical form of the oscillations. 
The Fisher matrices of the different redshift bins are summed up to

et a 8 × 8 matrix, and then we can calculate the covariance matrix
y taking the inverse of this Fisher matrix and the uncertainties of
he parameters are given by the square roots of its diagonal elements.
ince we are mainly interested in the constraints on the oscillation 
arameters, we marginalize the cosmological parameters using the 
nalytical marginalization method given by Taylor & Kitching 
 2010 ), which marginalizes the nuisance parameters and preserves 
he information about the target parameters. The marginalized Fisher 

atrix is given by 

 

M 

αβ = F αβ − F αm 

F 

−1 
mn F nβ, (19) 

here the subscripts α and β denote the target parameters, while the 
ubscripts m and n denote the nuisance parameters. Finally, we get 
he uncertainties of the oscillation parameters from the marginalized 
isher matrix. 

.3 Parameters used in the Fisher analysis 

he parameters used in the Fisher analysis, including those associated 
ith the specifications of the DESI-like surv e y (DESI Collaboration
016 ) are discussed here. 
We start with the most crucial parameter, the damping parameter ζ

isplayed in Table 2 , which depends not only on the redshifts but also
n the halo number densities and – more importantly – whether the 
econstruction is applied. We only have values of ζ for four redshifts,
.e. z = 0, 0.5, 1, 1.5, and two different halo number densities,
.e. n halo = 1 × 10 −3 ( h 

−1 Mpc) −3 and 5 × 10 −4 ( h 

−1 Mpc) −3 , but
he forecasted number density achie v able in the DESI-like surv e y
aries o v er the redshift range, so the values of ζ may not apply
o the entire redshift range. As a result, we cut off some high-
edshift bins which have the number density much smaller than 
 × 10 −4 ( h 

−1 Mpc) −3 . We use a bilinear interpolation between the
edshift and the number density to estimate an appropriate value 
f ζ for a given combination of the redshift and number density.
or those the number density is larger than 1 × 10 −3 ( h 

−1 Mpc) −3 or
maller than 5 × 10 −4 ( h 

−1 Mpc) −3 , we simply adopt the values of
for n halo = 1 × 10 −3 ( h 

−1 Mpc) −3 or n halo = 5 × 10 −4 ( h 

−1 Mpc) −3 

nstead. In this work, we use different values of ζ for the different
odels as obtained using the fitting method described in Section 2.4 ,

nd we will comment on this point again later. 
As we consider both emission line galaxies (ELGs) and luminous 

ed galaxies (LRGs) in the DESI-like surv e y, which hav e different
umber densities and redshift distributions, different range of redshift 
ins is chosen for ELGs and LRGs in the Fisher analysis. After
hrowing away the redshift bins with very small number densities, 
e take the range of z = (0.6–1.3) for ELGs and z = (0.6–0.9) for
RGs, and the redshift bin width is by default �z = 0.1. In addition

o the calculation of ef fecti v e surv e y volume, by following the DESI-
ike surv e y, the fix ed values of n g ( z) P obs (0 . 14 , 0 . 6 , z) are used for
he signal to noise, two surv e y areas are considered including the
 xpected surv e y area of 14 000 and 9000 de g 2 as the pessimistic
ase (DESI Collaboration 2016 ). As for the Finger-of-God factor, 
he linear halo bias for ELGs and LRGs is simply defined in terms
f the growth factor via (DESI Collaboration 2016 ) 

 ELG ( z ) D( z ) = 0 . 84 and b LRG ( z ) D( z ) = 1 . 70 . (20) 

 RESULTS  A N D  DI SCUSSI ON  

n this section, we will first compare the linear, non-linear and
econstructed O rw measured for all models and redshifts. Then 
e present the results of the analytical fit to more quantitatively
emonstrate the impro v ement by the reconstruction. Finally, we show 

he results of the constraints on the oscillation parameters and give
orecast for the DESI-like surv e y. 

.1 Comparisons among wiggle spectra 

n Fig. 2 , we compare the results of the linear, non-linear and
econstructed O rw ( k ) obtained from DM, H1 and H2 at the four
edshifts for the four wiggled models. The black solid lines represent
he linear O rw ( k ) obtained from the initial conditions of the simu-
ations, which are equi v alent to the primordial oscillatory features.
he blue dashed lines represent the non-linear O rw ( k ) obtained from

he output snapshots of the simulations, which are also referred to
MNRAS 514, 4363–4378 (2022) 
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Figure 2. Comparisons among the linear (black solid line), non-linear (blue dash–dotted line) and reconstructed (red dashed line) O rw . The linear O rw is 
measured from the initial conditions generated using 2LPTic, the non-linear O rw is measured from the output snapshots of the simulations, and the reconstructed 
O rw is obtained from the reconstructed density field. Each row represents one redshift z which is shown on the right side. The three columns denote, respectively, 
the results from the dark matter particle catalogue DM and the halo catalogues H1 and H2. Every four rows from the top do wn, respecti vely, belong to Models 
1, 2, 3, and 4. 
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s the unreconstructed O rw ( k ) for convenience. It can be seen that
he wiggles on small scales are gradually damped as the redshift
ecreases. The red dash–dotted lines represent the reconstructed
 rw ( k ) obtained from the reconstructed density field, which helps

o partially retrieve the damped wiggles. 
The O rw ( k ) results shown in the first column are obtained from DM,

hich exhibit some common characteristics for all three wiggled
odels. By comparing the unreconstructed results with the linear-

heory predictions, it can be seen that the scale at which the wiggles
tart to be weakened becomes larger as time progresses. Furthermore,
he wiggles on scales k � 0 . 3 h Mpc −1 are strongly damped at z = 0,
NRAS 514, 4363–4378 (2022) 
nd so the reco v ery of the wiggles on scales 0 . 3 � k � 0 . 5 h Mpc −1

ould be an important objective of reconstruction. By comparing
he reconstructed O rw with the linear-theory prediction, we can see
hat, while the reconstructed power spectrum is not exactly the same
s the linear spectrum, the reconstruction method to a certain extent
elps retrieve the initial oscillations on our interested scales, 0 . 05 �
 � 0 . 5 h Mpc −1 . This agrees with the findings in Shi et al. ( 2018 ),
hich studied the performance of the same reconstruction method in
ark matter reconstruction. 
The success of the reconstruction from the dark matter particles

s largely thanks to their high number density, which allows the

art/stac1544_f2.eps
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most cases as well. The unreconstructed ω values of Models 2 and 

3 Redistribution of matter due to baryonic processes, such as stellar and black 
hole feedback, could also lead to damping effects to the power spectrum, but 
that is less rele v ant for the range of scales we are interested in (some of the 
recent galaxy formation simulations, e.g. Schaye et al. 2015 ; Springel et al. 
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ate-time non-linear density field to be accurately produced: in this 
ense, reconstruction from DM can be considered as an idealised 
ase or an upper limit, which will be difficult to achieve in real
bservations. For a rough comparison, we have shown, in the middle 
nd right columns of Fig. 2 , the O rw results obtained from the two
alo catalogues, H1 and H2, which have number densities similar to 
ypical real galaxy catalogues. These results are less impressive than 
hose for the dark matter particles because of the much smaller halo
umber densities. Also due to the small halo number densities, these 
esults are noisier, which in theory can be made smoother by having
ore realizations of simulations, or equi v alently a larger volume. 
By comparing the results of H1 and H2 for the same model, we find

hat there is no significant difference in the unreconstructed O rw ( k )
t the same redshift, because the number densities of these two halo
atalogues only differ by a factor of 2. In most cases the reconstructed
 rw results of H1 seem slightly better compared to those of H2, as
 result of the slightly larger halo number density in H1, though the
ifference is again insignificant visually. We shall revisit this point 
hen discussing the analytical fit in the next subsection. Comparing 

he results with and without reconstruction, it is clear that the former
oes lead to less damped and sharper oscillation features, confirming 
hat reconstruction can indeed help to partially retrieve the damped 
iggles. This reco v ery seems more substantial at lower redshifts than

t higher redshifts, since at higher redshifts there is less damping in
he unreconstructed power spectra to start with. At lower redshifts, on 
he other hand, reconstruction can even recover some of the wiggles 
t k ∼ 0 . 5 h Mpc −1 , where the wiggles are strongly damped in the
nreconstructed case. We expect that this will help to impro v e the
ccuracy of the measurements of wiggle parameters, especially in 
odels with few wiggles at k � 0 . 3 h Mpc −1 – we will discuss this

n the parameter fittings next. 2 

Finally, we notice that in rare cases, for example H1 at z = 1 and
2 at z = 1.5 for Model 3, the reconstructed O rw seems to be poorer

han the unreconstructed one. The exact cause of this is not clear, but
e note that for these two cases the unreconstructed O rw happens to
e very noisy and deviate strongly from their theoretical values at 
arge scales (a similar ‘correlation’ can be observed in certain other 
anels across Fig. 2 , though to a lesser extent). It is possible that
he halo power spectra in these cases have inaccurate amplitudes 
f the oscillations on large scales, which affect the reconstruction 
esults. Given that in both H1 and H2 this only affects a particular
napshot and not all snapshots, we suspect that it is related to the
nly one realization per model we have used. Further investigation 
f this issue will be left for future works with more simulation
ealizations. 

.2 Wiggle parameter fitting 

he corresponding best-fitting parameters of ω, φ, and ζ ( z), as well as
heir uncertainties, are given in Table 2 , which assist the understand-
ng from a quantitative perspective. The relevant figures showing the 
nalytical fit to the data can be found in the Appendix. As mentioned
efore, we will mainly focus on the results of H1 and H2, and so the
esults of DM would be taken as a reference and not be discussed in
etail. The three parameters are mainly determined by the remaining 
eaks in the wiggles. We shall first discuss the results of the damping
 This is actually one of the moti v ations for our specific parameter choices 
n the feature models of equation ( 2 ), because we are particularly interested 
n cases where there are not many wiggles at k � 0 . 3 h Mpc −1 to maximally 
how the power of reconstruction. 

2
4

i
c
e
o
s

arameter, followed by the oscillation parameters, and then combine 
hem to clarify the impro v ement giv en by reconstruction. 

The damping parameter ζ ef fecti vely describes the extent of the
amping effects caused by the gravitational non-linearities 3 and 
haracterizes the suppression of the primordial oscillations. It is zero 
n the linear regime, such as at the initial redshift z = 49, and gradually
ncreases at lower redshifts as the structures become progressively 

ore non-linear and consequently more information of the wiggles 
n the primordial power spectrum gets damped. Thus reconstruction 
as the aim to reduce ζ and retrieve the primordial oscillations. 
able 2 shows that the reconstructed values of ζ are evidently 
maller than the unreconstructed values in all cases. Apart from a few
igh-redshift ( z > 1) cases, the uncertainties of most cases are also
educed after reconstruction, which confirms that the reconstruction 
uccessfully retrieves the damped wiggles to an appreciable extent. 
pecifically, by comparing the cases among different models but 

he same catalogues and redshifts, the corresponding values after 
econstruction seem to be nearly independent of the model, which 
mplies that the impro v ement on the reco v ery of the wiggles does
ot strongly depend on the shape of the primordial oscillations. 4 

For a closer inspection, we show the ratios of unreconstructed 
o reconstructed ζ in Table 3 , ζ unrec / ζ rec , which can be considered
s an indicator of the reconstruction efficiency. We do this for all
he cases (models, tracer types, and redshifts) listed in Table 2 . The
econstruction efficiency of halo catalogues H1 and H2 increases 
ith decreasing redshift, which shows that reconstruction is more 
eneficial for lower redshifts ( z < 1). This is to be e xpected, giv en
hat the halo density field is more non-linear at low z and so the
nreconstructed ζ is significantly larger than at high z; on the other
and, the reconstructed ζ depends more mildly on z, so that the
atio ζ unrec / ζ rec increases with decreasing z. Also, among the low- 
edshift ( z < 1) cases, the larger number density of H1 leads to
igher efficiency when compared with H2 at the same redshift. 
or the DM case, the trend is reversed, with the ratio between
nreconstructed and reconstructed ζ values increasing with redshift. 
ere, the behaviour is quite different from the halo cases, with the

econstructed ζ decreasing much faster with increasing redshift z. We 
ave checked (though not shown here) that the values of ζ unrec / ζ rec 

or the primordial features studied here are broadly consistent with 
he reconstruction efficiency defined in the same way applied to the
econstruction of BAO wiggles in Birkin et al. ( 2019 ), which uses
he same reconstruction method and similar tracer number density. 

Next, let us consider whether the ‘sharpened’ wiggles after recon- 
truction can lead to more accurate measurements of the oscillation 
arameters ω and φ. Regarding the oscillation frequency ω, the 
econstructed values of ω are much closer to the theoretical values
han the unreconstructed values in all cases, which is especially 
vident at low redshifts. Except for a few high-redshift cases, the
mpro v ement on the uncertainties after reconstruction is evident in
MNRAS 514, 4363–4378 (2022) 

018 , predict that this affects the matter power spectrum at k � 1 h Mpc ). 
 This makes sense given that the amplitude of the primordial oscillations 
s relatively small in this work, so that the effects of the wiggles can be 
onsidered as small perturbations to the primordial and subsequently the 
volved non-linear density field. Reconstruction, along with the reduction 
f ζ from the unreconstructed to the reconstructed cases that it leads to, is 
ensitive to the overall distribution of matter. 
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Table 3. The ratios of unreconstructed to reconstructed ζ , ζ unrec / ζ rec , obtained from Table 2 , which can 
be used to describe the reconstruction efficiency, in all cases considered in Table 2 . 

Model 1 Model 2 Model 3 Model 4 
z DM H1 H2 DM H1 H2 DM H1 H2 DM H1 H2 

0.0 3.52 1.82 1.69 3.61 1.94 1.82 3.73 2.01 2.11 3.30 1.94 1.78 
0.5 3.64 1.66 1.52 3.89 1.83 1.61 3.87 1.79 1.73 3.48 1.63 1.61 
1.0 4.03 1.42 1.43 4.26 1.52 1.44 4.00 1.60 1.54 3.74 1.41 1.41 
1.5 4.29 1.32 1.34 4.43 1.37 1.33 3.93 1.44 1.40 4.11 1.23 1.30 
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 appear to be closer to their theoretical values than in Models
 and 4, which is probably because the former two models have
ore oscillation periods within the fitting range of scales than the

atter two (see the right-hand panel of Fig. 1 , or the blue lines in
ig. 2 ). After reconstruction, ho we ver, there is less clear difference
mong the four models, either in how close the reconstructed ω
s to the theoretical value or in their uncertainties. Likewise, the
ifference between the best-fitting reconstructed ω values in H1
nd H2 is rather mild, although the uncertainties are generally
maller for the former catalogue. Overall, the results indicate that
econstruction does indeed lead to a stronger impro v ement of the
easurement of ω in Models 1 and 4, which have fewer visible

eaks at k � 0 . 5 h Mpc −1 . 
The situation is quite different in the case of the oscillation phase φ.

he unreconstructed values of φ in Models 1, 2, and 3 are determined
ery well in most cases, so the reconstructed values only show a little
mpro v ement on the unreconstructed φ even for low-redshift cases.
o we ver, for Model 4 the unreconstructed values largely deviate

rom the theoretical value in all cases, and the unreconstructed values
f H2 deviate even further than those of H1 at the same redshift.
lthough we cannot exclude the possibility that this discrepancy is

n effect caused by the particular simulation, since we have only one
ealization for each model, we doubt this would be the cause, because
he same random phases have been used to generate the ICs for all
imulations. Instead, we suspect that this is more likely to be caused
y the fact that m 	= 1 in Model 4, which means that the oscillation
attern is more complicated and thus leads to a less accurate fitting
f φ. Regardless, based on the table, it seems that the reconstruction
nce again enables more accurate measurement of φ, especially for
2 at low redshift. 
When considering the results of all three parameters, it seems

hat the reconstruction is most useful at low redshifts, z < 1, and
odels 1 and 4 benefit more from it than Models 2 and 3 do.
lthough the peaks of Models 2 and 3 are better preserved after the

osmic evolution so that their reconstructed results are better than
hose of the other two models, the impro v ement is relatively limited,
uggesting that the impro v ement depends not only on how clear-cut
he reconstructed wiggles are, but also on how poorly the primordial
iggles are preserved before reconstruction. Overall, reconstruction

eems more useful where the primordial wiggles are more damped. 5 

s we mentioned before, the wiggles on scales k � 0 . 3 h Mpc −1 are
trongly damped at z = 0; Models 2 and 3 have exactly the first
everal original peaks outside this range of scales, so these peaks are
f fecti v ely preserv ed at low redshift. By contrast, we designed Model
 so that it has one original peak at the same position of the first peak
f Model 2 which is ef fecti v ely preserv ed, and its second peak is at
he same position of the third peak of Model 2, which is strongly
NRAS 514, 4363–4378 (2022) 

 This statement, of course, is based on the limited range of models we have 
tudied here. 

k  

m  

w  

t  

a

amped. Therefore, the primordial wiggles of Model 4 are preserved
ess well than those of Model 2, and this Model benefits more from
he reconstruction. Similarly, Model 1 has two original peaks in the
ange k � 0 . 5 h Mpc −1 : the first is at a smaller scale compared with
he first peak of the other models and thus is not preserved as well as
he first peak of the other models due to the stronger damping effect,
hile the second peak is completely damped. Therefore Models 1

nd 4 both benefit from the reconstruction substantially more than
odels 2 and 3. 
Additionally, the values of ω used in Models 1, 2, and 3 imply that

he reconstruction method is not only ef fecti ve at low frequency, such
s ∼ 40 Mpc, but also working well at relatively higher frequency,
uch as ∼ 150 Mpc. 

.3 Constraints on oscillation parameters for DESI-like survey 

ince the four wiggled models have similar results of the constraints
n the oscillation parameters, we shall take Model 1 as an example
o illustrate and discuss how the reconstruction potentially impro v es
he constraints in a real galaxy surv e y . Additionally , we also forecast
ow much the uncertainties of the feature amplitude can be reduced
fter reconstruction for the wiggled models. 

Fig. 3 shows the forecasted constraints on the oscillation parame-
ers for a DESI-like surv e y with a surv e y area of 14 000 deg 2 , based
n the primordial oscillations of Model 1. The marginalized posterior
istribution of each parameter shown in the upper panels indicates
hat, without reconstruction, the case of k max = 0 . 5 h Mpc −1 (the red
ines) give better constraints than the case with k max = 0 . 25 h Mpc −1 

grey), because in the former case more k modes are included in the
isher matrix and increase the accuracy of the constraints. Addition-
lly, by comparing the cases with the same k max (red versus blue, or
re y v ersus green lines), we find that reconstruction leads to stronger
onstraints on the parameters, especially with k max = 0 . 5 h Mpc −1 .
his is because the oscillation wiggles on scales k � 0 . 25 h Mpc −1 

re heavily damped at low redshift without any reconstruction, while
he reconstructed wiggles at k = (0 . 25 − 0 . 5) h Mpc −1 significantly
ontribute to the constraints. By contrast, since the peaks on scales
 � 0 . 25 h Mpc −1 are preserved reasonably well, the reconstruction
or k max = 0 . 25 h Mpc −1 does not lead to as much benefit as in
he case of k max = 0 . 5 h Mpc −1 . Furthermore, stronger constraints
re shown for ELGs (right-hand panels) compared with LRGs (left-
and panels), because the former has more available redshift bins
nd larger number density for the same redshift bins. 

In particular, every two out of three parameters show degeneracies
n the confidence contours when k max = 0 . 25 h Mpc −1 , though these
egeneracies are broken and replaced with stronger constraints when
 max = 0 . 5 h Mpc −1 in the A –ω and A –φ contours due to more k
odes included. By contrast, the ω–φ contours keep the de generac y
hich is a consequence caused by the oscillation model itself and by

he fact that here we are trying to constrain both oscillatory frequency
nd phase o v er a limited range of k . 
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Figure 3. Forecasts of constraints on the oscillatory feature parameters for a DESI-like surv e y with a surv e y area of 14 000 deg 2 , for the primordial oscillations 
of Model 1. The left side is for LRGs and the right side is for ELGs. The upper panels show the 1D marginalized posterior distributions. The middle and lower 
panels show the marginalized 68 and 95 per cent confidence contours for every two out of three feature parameters. The green and grey colours represent, 
respectively, the cases for k max = 0 . 25 h Mpc −1 with and without reconstruction, while the blue and red colours represent the cases for k max = 0 . 5 h Mpc −1 with 
and without reconstruction. 
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Lastly, similar to previous works (Beutler et al. 2019 ; Slosar et al.
019 ; Ballardini et al. 2020 ), we show the marginalized uncertainties
f feature amplitude as a function of oscillatory frequency for our 
eature models in Fig. 4 and discuss the implications of the results.
ecause Models 1, 2, and 3 have an identical form of oscillations
nd almost same damping parameters within the error bars, we only 
how the results of Models 1 and 4 here. 

We consider Model 1 first. As expected, ELGs place slightly 
ighter constraints than LRGs due to their larger number densities 
nd redshift range. The sharp peaks that appear at ω 
 150 Mpc are
ue to the de generac y between the oscillatory features and the BAO
iggles. We have tested that for ω � 200 Mpc the uncertainties

lmost stay as a constant, and so we have cut off the figure at
 

m = 300 Mpc m . For smaller ω, things are complicated and behave
ifferently for different k max . For k max = 0 . 25 h Mpc −1 we can see an
ncrease in the uncertainties at ω � 70 Mpc, while a similar increase
tarts to appear at even smaller ω–30 Mpc–for k max = 0 . 5 h Mpc −1 .
hus larger k max has an extra advantage of significantly reducing 

he uncertainties for small ω, in addition to giving more stringent
onstraints (everything else the same) for all ω o v erall. By comparing
he pairs of curves with the same colours, i.e. the same cases ( k max 

nd reconstructed versus unreconstructed) but different surv e y areas, 
e find that, as expected, a larger surv e y area al w ays gives better

onstraints. 
Most interestingly, everything else equal, performing the non- 

inear reconstruction can significantly reduce the uncertainties of 
 . As an example, for large values of ω, in the case of k max =
 . 5 h Mpc −1 and a surv e y area equal to 14 000 deg 2 , reconstruction
educes σ ( A ) from ∼0.003 to ∼0.002, and this impro v ement is
tronger than not performing reconstruction, but instead going from 

000 to 14 000 de g 2 with k max fix ed to 0.25 or 0 . 5 h Mpc −1 , or
ncreasing k max from 0.25 to 0 . 5 h Mpc −1 keeping the surv e y area
xed to either 9000 or 14 000 deg 2 . A similarly good improvement
an be seen with k max = 0 . 25 h Mpc −1 or surv e y area equal to
000 deg 2 , when doing reconstruction. In certain cases, e.g. the
arge- ω regime of the lower panels of Fig. 4 , reconstruction with
 max = 0 . 25 h Mpc −1 and a surv e y area equal to 9000 deg 2 (the
hin green dashed line) can lead to comparable constraints to not
oing reconstruction but with k max = 0 . 5 h Mpc −1 and a surv e y area
qual to 14 000 deg 2 (the thick orange dot–dashed line). Given that
ncreasing surv e y area is not al w ays possible due to the finite sky
rea, but increasing k max in analyses for these primordial feature 
odels is comparably more straightforward (Beutler et al. 2019 ), 

ombining an increase in k max with non-linear reconstruction can be 
 potentially promising way to obtain even stronger constraints on 
he feature parameters, and help to maximize the scientific return of
uture surv e y data. 

The behaviour of Model 4 is similar to that of Model 1, e.g. both
he absolute and the relative heights of the different curves, as well as
heir shapes are the same as before. There are, ho we ver, some notable
ifferences, e.g. the main peaks in σ ( A ) in Model 4 are at slightly
if ferent v alues of ω from the other models, and the curves are also
ess smooth. As mentioned abo v e, the bump (which has the structure
f a double peak) of σ ( A ) for Model 1 is related to the BAO peak in
he matter/galaxy correlation function, which is at 
 150 Mpc. The
rimordial wiggles of Model 1, in configuration space, correspond 
o a spike at matter or halo separation r = ω. When ω � 150 Mpc,
he BAO and primordial peaks are separated afar and thus the former
oes not affect the accuracy of the measurement for the latter. As ω 

pproaches 150 Mpc from abo v e, the BAO and primordial peaks start
o ‘interfere’, leading to changes of both the amplitude and shape of
he latter, making it harder to measure its parameters accurately. We
MNRAS 514, 4363–4378 (2022) 
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Figure 4. Forecasts of the marginalized uncertainties of the oscillation amplitude A as a function of the frequency ω, for the two models, Model 1 (top row) 
and Model 4 (bottom row); the result for Models 2 and 3 are not shown here since the two models have the identical form of oscillations to that of Model 1. 
The first column is for LRGs and the second column is for ELGs. The dotted black lines mark the theoretical amplitudes of the oscillations, A = 0.05, used in 
the forecasts. The meanings of the different colours and line styles are indicated in the legends. The same colours represent the cases with same k max and same 
situation of reconstruction but different surv e y areas; the thick lines are for the surv e y area of 14 000 deg 2 and the thin lines are for 9000 deg 2 . 

s  

σ  

d  

p  

m  

s  

i  

c  

b

5

I  

r  

i  

s  

f
 

t  

r  

a  

f  

d  

t  

fi  

t  

d  

–  

f  

u  

p  

t
 

a  

g  

l  

s  

F  

p  

f  

o  

t  

r
 

i  

a  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/514/3/4363/6608881 by U
niversity of D

urham
 user on 27 July 2022
peculate that the dip – which causes the double-peak structure in
( A ) for Model 1 – is due to the fact that, when the primordial peak
oes not coincide well with the centre of the (rather wide) BAO
eak, its shape can be affected in an asymmetric manner, making the
easurement of its parameters even more inaccurate. In contrast, the

tructure of the primordial wiggles in Model 4 is more complicated
n configuration space, because m 	= 1 in equation ( 2 ), which can
ause the differences in the units of ω and other fine details of σ ( A )
etween this and the other models. 

 C O N C L U S I O N S  

n this paper, we have investigated the effect of a non-linear density
econstruction method on retrieving hypothetical oscillatory features
n the primordial power spectrum which are significantly damped on
mall scales in the late-time Universe due to cosmological structure
ormation. 

We considered four different oscillatory features which are added
o a simple power-law type primordial power spectrum, for which we
an N -body simulations and identified dark matter halo catalogues
t a number of redshifts. We reconstructed the initial density fields
rom the particle data and halo catalogues with two different number
ensities. Finally, we compared the fitted feature parameters from
NRAS 514, 4363–4378 (2022) 
he power spectra of the unreconstructed and reconstructed density
elds, to identify the impro v ement by reconstruction. We showed

hat non-linear reconstruction can ef fecti vely help to retrieve the
amped wiggles with a range of frequencies between 40 and 150 Mpc
not only does it lead to less biased best-fitting values of the

eature parameters, but it also substantially shrinks the measurement
ncertainty. The impro v ement was especially strong where the
rimordial features have been less well preserved pre-reconstruction
o start with, such as at z < 1. 

In order to forecast the constraints on the feature parameters from
 DESI-like galaxy surv e y, we modelled the observed broad-band
alaxy power spectrum based on the HALOFIT prediction of the non-
inear matter power spectrum with the addition of oscillatory features
tudied in this work, and then used the analytical marginalized
isher matrix to calculate the expected constraints on the oscillation
arameters using the specifications of DESI LRGs and ELGs. We
ound that non-linear reconstruction led to more robust constraints
n the oscillation parameters, with the equi v alent ef fects of enlarging
he surv e y area (but at a much smaller cost) and/or increasing the k
ange. 

While non-linear reconstruction has been proposed to be used in
mproving the measurement of the BAO scale (e.g. Wang et al. 2017 ),
nd hence the determination of the expansion rate of the Universe and

art/stac1544_f4.eps
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ence the properties of dark energy, this work has demonstrated that 
imilar applications are possible in other cases where certain features 
n matter clustering are present, following the spirit of earlier works
uch as Beutler et al. ( 2019 ). This is particularly true if these features
re in the mildly non-linear regime, 0.1 � k /( h Mpc −1 ) � 0.5, since
his range of scales is what the non-linear reconstruction method used 
ere helps most: on even larger scales the benefit of reconstruction is
nsignificant, while on further smaller scales reconstruction will not 
elp much. 
The methodology e x emplified in this paper assumes that we know

he functional form of the primordial features a priori – this is how
e forecasted constraints on the oscillation amplitude A . Ho we ver,

he reconstruction step is completely independent of any assumption 
f a particular primordial feature, and hence any method developed 
or detecting general features from the matter clustering should apply 
o and benefit from the reconstructed density field. 

As a first step, the present study is based on various simplifications,
nd we discuss a couple here which can be impro v ed in the future.
he first is related to the post-reconstruction damping parameter ζ . 
s we have discussed, ζ characterizes the damping of the primordial 

eatures, and a smaller ζ means that the reconstruction has done a 
etter job. Due to the limited number of simulations carried out in this
ork (one realization per model), shot noise will impact the estimated 

econstruction efficiency. This could be improved by increasing the 
umber of simulations and more studies are needed in the future. 
The second is related to the modelling of redshift-space distortions 

RSD), for which we have adopted a simplistic prescription and well 
ushed beyond the limit (e.g. k 
 0.5 h Mpc −1 ) where it is expected
o work. This is not an issue for a forecast work, but for constraints
sing real data it should be treated more carefully. The reconstruction 
ethod here has been extended to remo v e RSD from observ ed galaxy

atalogues (Wang et al. 2020 ), though that is unlikely to work reliably
t k as large as 
 0.5 h Mpc −1 . Of course, we can al w ays cut k max 

o something that we are comfortable with. Ho we ver, as mentioned
bo v e, if we would like to take maximum benefit from reconstruction, 
t is likely that we need to go substantially beyond k 
 0.1 h Mpc −1 .
his can be achieved, for example, by using emulators of redshift-
pace galaxy or halo clustering (see e.g. Zhai et al. 2019 ; Kobayashi
t al. 2020 ); actually, as long as the primordial oscillations are weak
as implied by current null detections), one might assume that their 
resence has little or negligible impact on RSD. 
The ultimate objective, of course, is to apply this method to real

bservation data from future galaxy surv e ys such as Euclid and DESI.
or this, the above-mentioned improvements, amongst many others, 
ould need to be done properly. These will be left for future works,

n which we plan to carry out updated forecasts for these surv e ys and
ventually real constraints. 
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Figure A2. The same as Fig. A1 but for Model 2. 

Figure A3. The same as Fig. A1 but for Model 3. 
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Figure A4. The same as Fig. A1 but for Model 4. 
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