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ABSTRACT

Potential features in the primordial power spectrum have been searched for in galaxy surveys in recent years since these features
can assist in understanding the nature of inflation. The null detection to date suggests that any such features should be fairly weak,
and next-generation galaxy surveys, with their unprecedented sizes and precisions, are in a position to place stronger constraints
than before. However, even if such primordial features once existed in the early Universe, they would have been significantly
damped in the non-linear regime at low redshift due to structure formation, which makes them difficult to be directly detected
in real observations. A potential way to tackle this challenge for probing the features is to undo the cosmological evolution, i.e.
using reconstruction to obtain an approximate linear density field. By employing a set of N-body simulations, here we show that a
recently proposed non-linear reconstruction algorithm can effectively retrieve damped oscillatory features from halo catalogues
and improve the accuracy of the measurement of feature parameters (assuming that such primordial features do exist). We do a
Fisher analysis to forecast how non-linear reconstruction affects the constraining power, and find that it can lead to significantly
more robust constraints on the feature amplitude for a DESI-like survey. Comparing non-linear reconstruction with other ways
of improving constraints, such as increasing the survey volume and range of scales, this shows that it is possible to achieve what

the latter do, but at a lower cost.
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1 INTRODUCTION

Inflation, the most successful theory to solve the problems of the hot
big bang model and to explain the seeding of the observed large-
scale structures today, plays a crucial role in the development of
modern cosmology. The single-field slow-roll inflation (Guth 1981;
Albrecht & Steinhardt 1982; Linde 1982) predicts that primordial
density fluctuations obey Gaussian statistics and the corresponding
power spectrum follows a simple power law, which is favoured by the
cosmic microwave background (CMB) data released by the WMAP
(Peiris et al. 2003; Spergel et al. 2007; Komatsu et al. 2009; Hinshaw
etal. 2013) and Planck (Ade et al. 2014a, 2016b; Akrami et al. 2020b)
collaborations.

However, the physical origin of the inflation field, which is
believed to have driven inflation, is not fully understood yet, and
the fact that the very high energy scale in the early Universe makes
it an ideal place to probe the imprints of the laws of fundamental
physics offers the possibility that new physics can be revealed by
cosmological observations of the large-scale structure (LSS). Certain
sophisticated models of inflation and its alternatives developed over
the last decades predict scale-dependent features in the power spec-
trum of primordial density fluctuations (see e.g. Bartolo et al. 2004;
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Chen 2010; Chluba, Hamann & Patil 2015; Slosar et al. 2019, for
some reviews). Such ‘feature models’ can be mainly classified into
three types with specific templates of oscillations added to the scale-
invariant primordial power spectrum, each of which can be attributed
to various mechanisms (see e.g. Chen 2010; Chluba et al. 2015;
Slosar et al. 2019, for some reviews). ‘Sharp-feature’ models have
sinusoidal wiggles in the power spectrum, P(k), that oscillate linearly
in wavenumber k at a fixed frequency, w, which can be generated
by a minimal local singularity such as a step in the inflationary
potential that breaks the slow-roll condition (e.g. Starobinsky 1992;
Adams, Cresswell & Easther 2001; Chen, Easther & Lim 2007; Hazra
et al. 2010; Adshead et al. 2012; Hazra et al. 2014), or produced in
particular cases of multifield models of inflation (e.g. Achucarro et al.
2011; Gao, Langlois & Mizuno 2012). Another type is the ‘resonant-
feature’ model whose oscillatory features are in logarithmic k, which
can be realised in, e.g. the axion monodromy inflation (Flauger et al.
2010; Flauger & Pajer 2011), or brane inflation (Bean et al. 2008),
models. The last type is the so-called standard clock signal, which is
a combination of the previous two feature models (e.g. Chen 2012;
Chen & Namjoo 2014; Chen, Namjoo & Wang 2015).

These feature models have been continuously tested with the
updated release of data from the Planck mission (Ade et al. 2014b,
2016a; Akrami et al. 2020a), but none of them has been found to
be preferable to the scale-invariant power spectrum predicted by
simple single-field slow-roll inflation models so far, which suggests
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that such features should be fairly weak if they do exist. Since the
primordial features are not only imprinted in the CMB, but some of
them can also leave a signature in the matter and galaxy distribution,
future LSS surveys, such as Euclid (Racca et al. 2016), DESI (DESI
Collaboration 2016), SPHEREX (Doré et al. 2014), and LSST (Ivezié
et al. 2019), will provide the opportunity to search for, or tighten
the constraints on, them, complementary to CMB data (e.g. Huang,
Verde & Vernizzi 2012; Ballardini et al. 2016; Chen et al. 2016;
Ballardini et al. 2018; L’Huillier et al. 2018; Palma, Sapone & Sypsas
2018; Zeng et al. 2019). More recently, this idea has been put into
practice by making forecast (e.g. Beutler et al. 2019; Ballardini et al.
2020; Debono et al. 2020) or performing real LSS data analysis
(Beutler et al. 2019).

However, any feature imprinted in the primordial density or
curvature field by inflation is subject to the impact of cosmic
evolution that last until today. In particular, even if such primordial
features once existed in the very early Universe, they would have
been modified in the late-time Universe due to non-linear structure
formation. Meanwhile, the available information on large scales,
where the evolution can be described by linear perturbation theory,
is limited due to the cosmic variance, i.e. the poor statistics caused
by the finite number of Fourier modes probed in that regime. This
can affect the confidence level at which to measure or constrain
these features. In order to maximally extract useful information from
the observed galaxy distributions, several studies of the primordial
features in the non-linear regime has been conducted. Vasudevan
et al. (2019) and Beutler et al. (2019) analytically computed the
damping effect by gravitational non-linearities, making a consider-
able contribution to the forecast of constraints on primordial feature
from future galaxy surveys. Ballardini et al. (2020) employed N-
body simulations to show a compatible non-linear damping effect
with the analytical results above to leading order. Beutler et al.
(2019) and Ballardini et al. (2020) made forecasts for future galaxy
surveys by taking the damping effect into account. Besides, Beutler
et al. (2019) performed the first LSS data analysis for the primordial
features, which showed that LSS can surpass the CMB as a probe
of such features. Furthermore, Vlah et al. (2016) and Chen, Vlah &
White (2020) showed that different perturbation theories, including
Lagrangian and Eulerian perturbation theories and the effective field
theory, can model the non-linear evolution of primordial features
well for k <0.25 hMpc~! at z = 1 and for k < 0.2 hMpc~! at
z = 0, but no oscillatory features survive past k ~ 0.5 h Mpc~'.
Thus, it would be beneficial to develop other approaches which can
potentially allow us to exploit the LSS data in the range of scales,
0.2 < k(h Mpc™") < 0.5 even at low redshifts.

A potential method mentioned in Vasudevan et al. (2019), Ballar-
dini et al. (2020) and implemented in Beutler et al. (2019) to address
the issue of non-linear damping and further improve the constraints
on primordial features is to undo the cosmological evolution in
a process called reconstruction, which can partially retrieve the
initial density field and therefore the information that existed there.
A well-known example is the reconstruction of baryonic acoustic
oscillation (BAO) features, which sharpens these features in the
galaxy correlation function which provides a standard ruler for
distance measurements (e.g. Eisenstein et al. 2007; Kazin et al.
2014; Schmittfull et al. 2015; Wang et al. 2017; Zhu et al. 2017; Shi,
Cautun & Li 2018; Sarpa et al. 2019; Mao et al. 2021). While recon-
structing the primordial power spectrum from observed galaxies has
been shown to be beneficial for probing the primordial features from
LSS data (Beutler et al. 2019), this study made use of one particular
(the standard) reconstruction method, and it will be interesting to
also assess how other reconstruction methods work in this regard.
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In this work, as a first step towards assessing the potential benefit
of non-linear reconstruction, we assume additional simple oscillatory
features in the power-law primordial power spectrum. By utilizing
a small set of N-body simulations, we study the performance of the
non-linear reconstruction algorithm proposed recently by Shi et al.
(2018) and Birkin et al. (2019) in retrieving the damped primordial
features from the halo catalogues. In particular, by quantifying this
damping caused by structure formation based on the functional form
in Vasudevan et al. (2019) and Beutler et al. (2019), we will carry
out parameter fittings to the damped and reconstructed wiggles,
the comparison of which allows us to assess whether non-linear
reconstruction can lead to more robust constraints on the feature
parameters. To investigate the impact of non-linear reconstruction in
real galaxy surveys, we also forecast the constraints on the feature
parameters for a DESI-like survey using the Fisher matrix approach,
and compare the cases with and without reconstruction.

This paper is organized as follows: in Section 2, we describe the
model of primordial features, the simulations used in this work,
and the methodology of assessing the performance of the non-linear
reconstruction method to retrieve the damped primordial features
due to structure formation. In Section 3, we give more details on the
approach used to forecast the constraints on the feature parameters
for the DESI-like survey. In Section 4, we show the results of non-
linear reconstruction and forecast and discuss the implications of
them. Finally, in Section 5 we conclude our findings and discuss
potential future improvements.

2 METHODOLOGY

We start with presenting the primordial power spectrum models
with oscillatory features that we adopt in this paper for illustration
purpose. We then describe the simulation runs for these models. It is
followed by a brief review of the non-linear reconstruction method
which will be used to recover the small-scale oscillation features
from evolved dark matter and halo fields. Finally, we describe the
analytical model to quantify the features measured in the power
spectrum before giving the details of the Fisher matrix forecast in
the next section.

2.1 Models of featured primordial power spectrum

We take a power law-type primordial power spectrum to be our
fiducial no-wiggle model (note that the BAO wiggles are still
included), given by

o k ng—1
PU(k) = A, <;) ) (1)

where k is the comoving wavenumber, A; and n, are, respectively,
the scalar amplitude and spectral index with the pivot scale given by
k. = 0.05 Mpc~!. To explore whether the non-linear reconstruction
algorithm employed in this paper can lead to improvements compared
with the unreconstructed cases in Ballardini et al. (2020), we consider
four wiggled models that are based on the template of the sharp
feature model (Slosar et al. 2019), i.e. oscillations in linear &, given
by

P ) = P01+ Acos(@k” + ¢)]. ®

where A, w, and ¢ are, respectively, the amplitude, frequency, and
phase of the oscillation. We extend the sharp feature model by
introducing m for a particular purpose explained later; when m =
1, equation (2) is related to the equation (2.1) in Ballardini et al.
(2020).
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Table 1. The oscillation parameters used for the no-wiggle model and four
wiggled models. Columns respectively denote (1) the power of the comoving
wavenumber; (2) the amplitude, (3) frequency, and (4) phase of the oscillation.

m A 10} ¢l
(Mpc™)
Fiducial 0
Model 1 1 0.05 40 0
Model 2 1 0.05 70 0
Model 3 1 0.05 150 0
Model 4 0.631 0.05 28.9 0

Note that even if the primordial features exist, they could be more
complicated than any phenomenological models that we are currently
using. For now, we cannot determine the precise form of the features,
thus we aim at something narrow, which is assuming that we know
the functional form and verifying if non-linear reconstruction can
improve the accuracy of measuring the feature parameters.

The oscillation parameters of the five models are listed in Table 1.
Note that the frequencies of the wiggled models here are in units
of Mpc” due to m introduced above. The initial oscillations of
the four wiggled models are shown in the red-dashed lines in the
right-hand panel of Fig. 1, where we have presented the difference
between PiM and PN, Within our interested range of scales, k =
(0.05-0.5) h Mpc~!, Model 1 has the first peak at the smallest scale,
followed by Models 2 and 3, the frequency used in Model 3 is the
same as BAO frequency. Model 4 is particularly adopted to have
the first two peaks at the same positions of the first and third peaks
of Model 2. The reason why this special model is designed will be
explained in Section 4.2. By comparing the reconstructed wiggles of
the four wiggled models later, we would be able to comprehend
the effect of the non-linear reconstruction method on different
scales.

2.2 N-body simulations

In the regime of linear perturbations, the primordial wiggles preserve
their shapes and amplitude Pi"/ Pi" However, non-linear large-scale
structure evolution will change this behaviour, leading to damping of
Pini/ pini at late times. This makes it harder to measure the properties
of these primordial oscillations directly from an evolved density field,
even more so for a late-time tracer (e.g. galaxy or halo) field. In order
to quantify such effects, N-body cosmological simulations can prove
to be a useful tool.

We have run five simulation runs including the no-wiggle model
and four wiggled models. First, we assume a flat universe and
adopt Planck 2018 cosmology, with & = 0.674, Q, = 0.3135,
Q.h* = 0.120, Q,h* = 0.0224, Q5 = 0.6865, n, = 0.965, and A, =
2 x 107° (Aghanim et al. 2020). The value of og is approximately
0.79 though it varies a little bit across different models. We then
customize the function of the primordial power spectrum in the
Einstein—Boltzmann solver code CAMB (Lewis & Challinor 2011)
to be equation (1) for the no-wiggle model and equation (2) for
the wiggled models. We calculate the linear theory matter power
spectrum at z = 49 using this version of the CAMB code, which is
used as the input matter power spectrum for the publicly available
code 2LPTic (Crocce, Pueblas & Scoccimarro 2006) to generate the
initial conditions used for the N-body simulations. In the left-hand
panel of Fig. 1, we compare the initial matter power spectrum given
by CAMB and the matter power spectrum measured from the initial
conditions generated using 2LPTic; it can be seen that they are in good
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agreement for all models within the range of scales of our interest
(the blowing up at small scales is due to the finite particle resolution).

To more conveniently describe the oscillatory features for the
wiggled models, as mentioned above, we define the relative wiggle
pattern as

Pl (k)
O]

OM(ky = 1, (3)
which are shown in the right-hand panel of Fig. 1. This indicates
that the oscillatory features have been reliably created in the initial
conditions of the simulations within our interested range of scales,
e.g. k<05hMpc .

Next, we run the simulations using the parallel N-body code
RAMSES (Teyssier 2002) which is based on the adaptive mesh
refinement (AMR) technique. Each simulation is performed with
N = 1024 dark matter particles in a box of size 1024 2~! Mpc,
and we output four snapshots at different redshifts, respectively, as
z =0, 0.5, 1, and 1.5. For each snapshot, we use the halo finder
ROCKSTAR (Behroozi, Wechsler & Wu 2013) to identify the haloes
with the definition of the halo mass M., where M. is the mass
within a sphere whose average density is 200 times the critical
density. Since the low-mass haloes are unable to be fully probed
due to the limited simulation resolution, we measure the cumulative
halo mass functions (cHMFs) from the main haloes with more than
100 particles to check the validity of the simulation, which show
very good agreement with the analytical formulae in Tinker et al.
(2008). For each snapshot we establish one dark matter particle
catalogue (hereafter DM) and two halo catalogues, respectively,
with the number density of 1 x 1073(h~! Mpc)~> (hereafter H1)
and 5 x 107*(h~' Mpc)™3 (hereafter H2). Both host haloes and
subhaloes are included in the halo catalogues. The number density
of 5x 107*(h~'Mpc)~3 is chosen to be an approximate value
according to the current observations such as CMASS or LOWZ
despite not being exactly the same, and 1 x 1073(h~! Mpc)~? is
a representative value of emission line galaxies (ELGs) in DESI
survey; these choices are also somehow limited by the resolution of
our simulations, though the use of the dark matter density field serves
as a catalogue that has a much larger number density. Many realistic
mock galaxy catalogues would give something between H1 and DM.

We achieve the number density by applying a mass cutoff, i.e.
neglecting the haloes with smaller masses than the cutoff. By using
the power spectrum estimator tool POWMES (Colombi & Novikov
2011), we measure the non-linear matter power spectrum from DM
and non-linear halo power spectrum separately from H1 and H2.
Finally, we take the ratio of the power spectrum of the wiggled
models to the corresponding power spectrum of the no-wiggle model
to obtain the quantity O, for all cases.

2.3 Reconstruction

In order to partially retrieve the primordial features damped during
structure formation, we perform reconstruction of the initial density
field from the late-time density field using the non-linear reconstruc-
tion algorithm described in Shi et al. (2018). This reconstruction
method is based on mass conservation. Without assuming a cosmo-
logical model or having free parameters except the size of the mesh
used to calculate the density field, it employs multigrid Gauss—Seidel
relaxation to solve the non-linear partial differential equation which
governs the mapping between the initial Lagrangian and final
Eulerian coordinates of particles in evolved density fields. Previous
tests show that the reconstructed density field is over ~ 80 per cent
correlated with the initial density field for k < 0.6 hMpc™!, if
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Figure 1. The left-hand panel shows the comparison between the initial matter power spectra given by CAMB (red dashed lines) and the matter power spectra
measured from the initial conditions of the simulations generated using 2LPTic (black lines), from the top down they are, respectively, the fiducial model, Models

1, 2, 3, and 4, each model is shifted upwards by a factor of 10 successively to avoid the clutter of all curves. The right-hand panel shows the O

ini

w results, cf.

equation (3), obtained from the left-hand panel for the four wiggled models, for instance, the top curve shows the ratio of Model 1 to the fiducial model, followed
by the ones for Models 2, 3, and 4 downwards; each model is shifted upwards by a constant of 0.15 successively for the same reason as above.

reconstruction is performed on the dark matter density field, which
cover the scales of our interest, but the performance becomes poorer
when the method is instead applied on the density fields calculated
from sparse tracers (Birkin et al. 2019; Liu, Yu & Li 2020; Wang, Li &
Cautun 2020). This method is implemented in a modified version of
the ECOSMOG code (Li et al. 2012, 2013), which itself is based on
RAMSES.

We reconstruct the initial density field separately from the cata-
logues DM, H1 and H2 for each snapshot. The halo catalogues, which
contain both main and subhaloes, are assumed to be the same as mock
galaxy catalogues hereafter unless otherwise stated.! The procedure
for the reconstruction from the halo catalogue is principally similar
to that from the dark matter particle catalogue, apart from two things
at the beginning. One is that we prepare the GADGET-format particle
data for the ECOSMOG code in two ways. The halo catalogue is directly
written into Gadget-format tracer particles due to its small number
density. However, the very large number of the simulation particles,
along with their strongly non-uniform spatial distribution, in the dark
matter particle catalogues, leads to the requirement of large memory
footprint when processing the data. To avoid this problem, we use
the publicly available DTFE code (Cautun & van de Weygaert 2011),
based on Delaunay tessellation, to calculate the density field on a
regular mesh with 5123 cells employing the triangular shaped cloud
(TSC) mass assignment scheme; then the mesh cells are regarded as
uniformly distributed fake particles with different masses, which are
transformed to GADGET format that can be directly read by ECOSMOG.

The other particular thing is that we calculate the linear halo bias
used for the reconstruction from the halo catalogue. The estimate of
the halo bias is based on the relation

Enn(r)

Ehm (1) '
where &pp(r) is the autocorrelation function of haloes and &, (r) is
the cross-correlation function between the haloes and the dark matter
particles. We use the publicly available CUTE code (Alonso 2012) to

bi(r) =

“

! As a result, we will use ‘haloes’ and ‘galaxies’ interchangeable throughout
the rest of this paper: ‘galaxies’ will be used where we refer to observational
quantities, while ‘haloes” will be used for simulated quantities.
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measure &,(r) and &, (7) from a given simulation snapshot, and take
the ratio between them to obtain the value of linear halo bias as a
function of the distance r. Since the linear halo bias is theoretically
a constant on large scales, we apply the method of least squares
to the values on scales = 10 A~! Mpc to obtain an estimate of it.
Note that when dealing with observational data we do not necessarily
have such an accurate measurement of the linear halo or galaxy bias;
however, Birkin et al. (2019) find that the exact value of linear bias
is not very important for this reconstruction method to recover the
phases of the initial density field.

The following steps of reconstruction are then the same for both
dark matter particle catalogue and halo catalogues. First, ECOSMOG
calculates the density field in the Eulerian coordinates using the
TSC mass assignment scheme, and solves the mapping between
the Eulerian and Lagrangian coordinates, to get the displacement
potential as well as the displacement field on a regular mesh with
5123 cells. We then use a PYTHON code to transfer the output fields
from the Eulerian coordinates to the Lagrangian coordinates. After
that, because the Lagrangian coordinates are not uniform, we feed
the DTFE code with the Lagrangian coordinates and displacement
field of the mesh cells to calculate the reconstructed density field
as the divergence of the displacement field w.r.t. the Lagrangian
coordinates. Finally, we measure the reconstructed power spec-
trum from the reconstructed density field using a post-processing
code.

2.4 Parameter fitting to the damped wiggles

As we discussed above, cosmic structure formation leads to damping
of the primordial wiggles. Reconstruction is expected to revert some
of this damping, but cannot completely undo it. So we need a model
for the wiggles of the reconstructed matter or halo power spectrum.
Ideally this should be an analytical model since it can be more easily
used in the Fisher analysis later. In this section, we describe how this
is achieved by using a fitting function.

A functional form of the feature damping is analytically computed
in Vasudevan et al. (2019) and Beutler et al. (2019) to be a Gaussian.
We combine it with the oscillatory feature model described above, in
order to directly fit the wiggle pattern O,,,. The fitting function that
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is used to described the damped wiggles is given by

k*¢(2)? }

> (%)

O™ (k, z) = Acos(wk™ + p)exp [—
where ¢(z) is the damping parameter that depends on the redshift z.
For the fitting of each measured O,y (k) = Py(k)/Pow(k) — 1, we let
w, ¢, and ¢ be the free parameters because w and ¢ play an essential
role in determining the position of the peaks, and ¢ quantifies the
extent of the damping effect. The parameters A and m are taken to
be their theoretical values in Table 1. In principle, A is also a free
parameter here and should be allowed to vary in our parameter fitting.
We have explicitly checked this 4-parameter fitting and found that,
compared with the 3-parameter fitting, in the vast majority of cases
of Table 2, the best-fitting values of w and ¢ are not more accurate,
which is as expected. There is a degeneracy between the amplitude
A and the damping scale ¢, with the fitted values of the latter having
larger uncertainties in the case of the 4-parameter fitting. Since for
our forecast work the value of ¢ is more important, we stick with the
results obtained from the 3-parameter fitting.

We apply the least-squares estimator to obtain the best-fitting
parameters by minimizing

N
1= [Oni(@) = OB ki, 0. 6. O] ©)
i=1

where Oy, i(z) are the data points of wiggle spectrum in the ith k bin
at reshift z. Since there is only one realization of simulation for each
model, we assume that the uncertainties of all data points Oy, i(z)
are the same and follow the same Gaussian distribution. Note that, as
the quantity we fit is O, = Py/P,, — 1, this is equivalent to doing
the fitting of P,, with V Poy as uncertainty (e.g. Feldman, Kaiser &
Peacock 1994).

We calculate the uncertainties of the best-fitting parameters based
on 95 percent confidence interval, as a rough estimate of the size
of the errors. To minimize the influence of the cosmic variance on
very large scales, we fit the data within the interval of k = (0.04 —
0.6) h Mpc~!, which covers our intended range of scales.

3 FORECAST FOR THE DESI-LIKE SURVEY

In order to investigate the impact of reconstruction, we will forecast
the constraints on the feature parameters for the DESI-like survey
using the Fisher information matrix, and compare with the case
of doing no reconstruction. For this purpose, we first model the
observed broad-band galaxy power spectrum. Then we describe how
to calculate the Fisher information matrix, followed by its analytical
marginalization. Finally, we give the specifications of the DESI-like
survey.

3.1 Modelling the observed galaxy power spectrum

Combining the equations (3) and (5), the featured non-linear matter
power spectrum in real space can be modelled as

2 2
Paoa(k, 2) = Pu(k, 2)| 1 + Acos(wk™ + ¢)exp (— k {2@ )} %)

where Py (k, z) is the non-linear matter power spectrum without the
primordial oscillatory features at z, which includes the BAO wiggles
and is equivalent to the non-linear matter power spectrum of the no-
wiggle model. However, since there is only one simulation realization
for a single no-wiggle model, which cannot provide a smooth non-
linear matter power spectrum, and since a fast method to get Ppq is
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more convenient in the Fisher analysis, we use the HALOFIT model
in the CAMB code to calculate P,(k, z) instead later in this work. We
have checked that the fractional difference between the simulated no-
wiggle power spectrum and the one computed by HALOFIT is below
10 per cent within the entire fitting range.

The broad-band galaxy power spectrum in real space is not
a direct observable due to the measurement in the angular and
redshift coordinates instead of the 3D comoving coordinates. In
order to relate the observed galaxy power spectrum Peps(k, z) to the
modelled matter power spectrum Py,0q(k, z), the standard practice is
to project the galaxies to their comoving positions assuming some
reference cosmology via the coordinate transformation based on the
relations

ref __ DA(z) ref __ Href(z)
e A By T ©

where k| and k, are, respectively, the line of sight and transverse
components of the wavevector k, i.e. k? = |k|> = k% + kﬁ, the su-
perscript " denotes the reference cosmology, note that the reference
cosmology hereafter is the same one used in the simulations unless
otherwise stated; Da(z) = r(z)/(1 + z) is the angular diameter
distance at z with the comoving distance r(z): under the assumption
of flat universe it is given by

[ 3 -5

r@=— [ d[@n+2’ + 2] ©)
Hy Jo

where 2, = 1 — Qy, is the current density parameter of the cosmo-

logical constant, and the Hubble parameter H(z) is given by

H(z) = H, [Qm(l +20 4 QA] ’ (10)

Along with several main factors being considered, i.e. the redshift-
space distortions (RSD) and shot noise, one can model the observed
galaxy power spectrum as

Prod(k, 2) + Ngal(z)y

(1)

where og(z) is the R.M.S. linear density fluctuations on the scale of
8 h~'Mpc, Nga(z) = 1/n,(2) is the shot noise with 77,(z) being the
galaxy number density, and the Finger-of-God factor Fro(k, i, z)
describing the effect of RSD is modelled as Ballardini et al. (2020)

D;ff(zq > HG@) Froglk, 1, 2)

Pobs(k, 1, 2) = |: DAD) Hrcf(z) G82(Z)

[b()o3(2) + f(2os(2)u?]’
1+ K ua?, /2

Frog(k, 1, 2) = exp (—k*u’o}.),

(12)

where we have included the linear halo bias at z, b(z), to make P
the ‘galaxy’ [remember that in our simulations we treat (sub)haloes
as mock galaxies] power spectrum, and

dIn D(a)
dlna

is the linear growth rate at z with D(a) and a respectively being the
linear growth factor and the scale factor (note that we normalize
D(a) so that D(a = 1) = 1 in this work), 1 = cos @ with 6 being
the angle between the wavevector k and the line of sight, i.e. u =
kylk, o, , = o,/[H(z)a] is the distance dispersion corresponding to
the physical velocity dispersion o, whose fiducial value is taken to
be 290 km s~!. The last exponential factor represents an additional
damping to account for the observational redshift error o(z) with
o, . = co(z)/H(z) specific to a given survey, which is very close to 1
for our intended range of scales given that the DESI survey assumes

f@)= ; (13)
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Table 2. The best-fitting parameters of w, ¢, and ¢ and their 95% uncertainties for the four wiggled models studied in this work. The values of w and ¢ are,
respectively, in the units of Mpc™ and m, and their theoretical values are shown below the title of each model on the top of the table. DM denotes the dark
matter particle catalogue, H1 the halo catalogue with np,e = 1 x 103! Mpc)’3 and H2 the halo catalogue with np, = 5 x 104! Mpc)’3. Each
group of six rows includes the unreconstructed and reconstructed cases for the same redshift.

Model 1 Model 2
w=40,6=0 w=70,¢=0
z para DM HI1 H2 DM H1 H2
0.0 unrec w 33.0 £ 34 365 £ 1.6 362 £ 19 68.5 £ 1.1 69.0 £ 1.7 68.4 £ 1.7
¢ 0.09 + 0.08 0.02 + 0.04 0.04 + 0.05 0.00 = 0.03 0.01 £+ 0.05 0.00 = 0.04
¢ 7.23 £ 0.95 6.21 £+ 0.44 6.90 £+ 0.53 743 £ 0.26 6.95 £ 0.40 7.27 £ 041
rec w 40.0 £ 0.1 403 + 04 40.8 + 1.1 70.1 = 0.1 70.1 £ 1.0 69.9 + 0.9
¢ 0.00 £ 0.01 —0.02 + 0.02 —0.04 + 0.04 —0.01 £ 0.01 0.00 £ 0.05 0.01 £+ 0.04
¢ 2.05 + 0.05 341 £ 0.13 4.07 + 0.32 2.06 + 0.03 3.58 + 0.28 4.00 + 0.25
0.5 unrec w 37.6 + 1.4 373 £ 1.1 37.7 £ 1.0 69.1 + 0.4 68.0 + 0.9 68.2 + 1.2
] 0.02 £+ 0.04 0.03 + 0.03 0.02 + 0.03 0.00 = 0.01 0.05 £+ 0.03 0.02 £+ 0.04
¢ 5.53 + 0.40 5.27 + 0.32 571 £ 0.29 5.88 + 0.10 572 £ 0.23 6.18 £+ 0.30
rec w 40.0 + 0.1 40.1 £ 0.3 40.3 + 0.7 70.1 £ 0.1 70.1 £ 0.4 69.7 + 0.6
] 0.00 + 0.01 —0.01 + 0.02 —0.01 =+ 0.03 —0.01 £ 0.01 0.00 £+ 0.02 0.01 = 0.03
¢ 1.52 £+ 0.04 3.17 £ 0.10 3.75 £ 0.20 1.51 £ 0.04 3.12 £ 0.10 3.83 £ 0.17
1.0 unrec w 38.6 £ 0.6 38.0 £ 0.7 37.5 £ 0.9 69.5 + 0.2 68.7 + 0.8 69.0 = 0.8
] 0.01 & 0.02 0.01 + 0.03 0.01 & 0.03 0.00 = 0.01 0.02 + 0.03 0.00 = 0.03
¢ 4.39 + 0.18 4.38 £ 0.22 5.08 £ 0.26 473 + 0.05 4.90 + 0.21 548 £ 0.20
rec w 40.0 £ 0.1 40.1 = 0.3 39.7 £ 0.7 70.0 = 0.1 70.0 &£ 0.5 70.0 = 0.7
] 0.00 £ 0.01 —0.01 + 0.02 0.01 £+ 0.03 0.00 £+ 0.01 0.00 £ 0.02 —0.01 + 0.03
¢ 1.09 + 0.04 3.09 £ 0.11 3.56 £ 0.20 1.11 £ 0.03 323 +£ 0.14 3.81 £ 0.20
1.5 unrec w 393 + 0.3 38.1 £ 0.7 36.5 +£ 0.8 69.6 + 0.1 69.1 + 0.8 68.2 + 1.0
] 0.00 £+ 0.01 0.02 + 0.03 0.07 = 0.03 0.00 = 0.01 0.01 £+ 0.03 0.03 + 0.03
¢ 3.60 + 0.10 4.07 &£ 0.20 492 + 0.25 3.90 + 0.02 443 + 0.21 5.17 £ 0.26
rec w 40.0 £ 0.1 39.6 £ 0.5 40.1 + 1.1 70.0 £ 0.1 70.2 + 0.4 69.6 + 1.1
] 0.00 = 0.01 0.02 + 0.02 —0.01 =+ 0.05 0.00 = 0.01 —0.01 £ 0.02 0.01 = 0.05
e 0.84 + 0.03 3.08 £ 0.15 3.66 = 0.32 0.88 + 0.03 324 £ 0.12 3.90 + 0.29
Model 3 Model 4
w=150,¢=0 ©0=289,6=0
z para DM H1 H2 DM H1 H2
0.0 unrec w 1493 + 0.4 151.2 +£ 2.0 151.6 + 2.1 26.1 £ 0.6 272 £ 1.0 259 £ 1.0
] 0.01 &£ 0.01 —0.04 + 0.05 —0.05 + 0.04 0.11 =+ 0.04 0.06 + 0.06 0.14 = 0.06
e 7.95 + 0.09 744 + 0.51 8.51 £+ 0.50 6.96 + 0.23 6.62 + 0.35 6.68 + 0.36
rec w 150.1 + 0.1 150.7 + 0.6 150.7 = 1.0 29.0 +£ 0.1 295 £ 04 28.7 £ 0.6
] —0.01 £ 0.01 —0.04 + 0.03 —0.03 + 0.04 —0.01 £ 0.01 —0.05 £ 0.03 0.03 + 0.05
s 2.13 + 0.04 3.70 £ 0.19 4.04 + 0.28 2.11 £ 0.04 341 £ 0.14 3.75 £ 0.22
0.5 unrec w 149.6 + 0.2 150.4 + 0.9 1504 = 1.5 272 £ 0.2 272 £ 0.6 26.2 + 0.7
] 0.01 £ 0.01 —0.01 £ 0.02 —0.02 + 0.03 0.07 + 0.02 0.06 £+ 0.05 0.12 + 0.05
¢ 6.30 + 0.05 6.02 + 0.23 6.85 + 0.39 5.33 +£ 0.08 496 + 0.23 5.58 + 0.26
rec w 150.1 + 0.1 150.0 + 0.5 150.1 + 0.8 29.0 £ 0.1 29.1 £ 0.3 293 + 04
¢ —0.01 £ 0.01 —0.01 £ 0.02 —0.02 + 0.03 —0.01 £ 0.01 —0.03 £ 0.03 —0.03 £ 0.04
¢ 1.63 + 0.03 337 £ 0.15 3.96 + 0.23 1.53 £ 0.04 3.04 £ 0.11 346 £+ 0.16
1.0 unrec w 149.7 + 0.1 1499 + 09 1493 + 0.9 27.7 £ 0.1 27.1 £ 0.5 26.7 £ 0.5
¢ 0.01 &£ 0.01 0.00 + 0.03 0.02 + 0.03 0.05 + 0.01 0.08 + 0.04 0.10 + 0.03
¢ 5.08 + 0.03 5.29 + 0.25 595 £ 0.24 4.19 + 0.03 4.30 £+ 0.20 4.99 + 0.17
rec w 150.1 + 0.1 150.6 + 1.7 1499 + 0.6 29.0 +£ 0.1 287 + 0.4 283 + 04
] —0.01 £ 0.01 —0.04 + 0.08 0.00 = 0.03 —0.01 £ 0.01 0.02 £+ 0.03 0.04 + 0.04
I3 1.27 £ 0.03 3.31 £ 0.52 3.85 £ 0.17 1.12 £ 0.03 3.04 £ 0.13 3.55 £ 0.15
1.5 unrec w 149.7 + 0.1 149.6 + 0.8 149.6 + 0.9 28.0 +£ 0.1 274 + 0.6 27.0 £ 0.6
] 0.01 £ 0.01 0.01 &+ 0.03 0.01 + 0.03 0.04 + 0.01 0.05 £+ 0.05 0.08 + 0.04
¢ 421 £ 0.02 4.88 + 0.23 571 £ 0.24 341 £+ 0.02 392 + 0.22 473 + 0.21
rec w 150.1 = 0.1 150.0 + 0.7 150.0 = 1.2 28.9 £+ 0.1 29.0 + 0.4 28.9 + 0.5
] —0.01 £ 0.01 —0.01 £ 0.03 0.00 £ 0.05 0.00 £+ 0.01 —0.02 £ 0.04 —0.01 £ 0.04
e 1.07 + 0.03 3.38 £ 0.20 4.07 + 0.34 0.83 = 0.02 3.19 £ 0.16 3.65 + 0.17
o(z) = 0.0005/(1 + z) (DESI Collaboration 2016), so we neglect it influence the forecasted constraining power to some extent (see e.g.
in the calculation. Beutler et al. 2019, for a more detailed discussion), should be taken
Additional effects involved in real observational constraints, such into account when dealing with real surveys in future works, but these
as the survey window function and finite bandwidths, which would are not included in the forecast here. The present work is therefore a
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Non-linear reconstruction of primordial features

simplified proof-of-concept study which is likely to lead to optimistic
forecasts.

3.2 Fisher information matrix

The Fisher matrix approach provides a method to propagate the
uncertainties of the observable to the constraints on the cosmological
parameters. Our calculation of the Fisher matrix is based on Tegmark
(1997) and Seo & FEisenstein (2003), assuming that the power
spectrum of a given k mode satisfies a Gaussian distribution which has
a variance equal to the power spectrum itself, and that different bins
of k are independent of each other for large surveys, the Fisher matrix
for each redshift bin, with bin centre at z = z., can be approximated
as

Verr(ze) [
Fijz) = 5 3
Fonax 3 1n Poys(k, i1, zo) 8 In Pop(k 2
X/ a2 dm bs(k, 14, Z¢) 01 Popg( ,u,z)! (14)
kmin 89’ 89]

where kpin, kmax are, respectively, the minimum and maximum values
of k used for the forecast. We set ki = 0.05 hMpc*l and adopt two
values of knay, respectively, 0.25 and 0.5 hMpc~!, to compare the
constraints for different ranges of scales. The effective volume of the
redshift bin Veg(z.) is expressed as

2
Verr(ze) = |:1 + = :| Vsurv(2Ze), (15)

ng(Z)Pobs(kv M, Z)

where 77,(2) Pops(k, 14, 2) is the signal to noise, the comoving survey
volume Vi, (z.) with the redshift bin width Az is given by

Vo (ze) = 4?7[ {r (zc + %)3 - r(zC - %)3} %‘:yv, (16)

where Qqurv and Qg are, respectively, the survey area and the area of
the full sky. Additionally, 6 is the 8D parameter vector which consists
of five cosmological parameters and three oscillation parameters

we = Qe w, = Qh*, by ng, A, A, 0, ¢. (17

The partial derivatives of Pgys(k, @, z.) w.rt. the cosmological

parameters are calculated numerically using the finite difference

8Pobs(kv M, Zc) Pobs(giﬁd + A91’) - Pobs(giﬁd - A91’)
36; B 2A6; '

(18)

where A, is taken to be 10 per cent of the fiducial value of 6/,
though we have explicitly checked that the partial derivative is
insensitive to the size of A6;. By contrast, the partial derivatives
w.r.t. the oscillation parameters can be calculated analytically due to
the analytical form of the oscillations.

The Fisher matrices of the different redshift bins are summed up to
get a 8 x 8 matrix, and then we can calculate the covariance matrix
by taking the inverse of this Fisher matrix and the uncertainties of
the parameters are given by the square roots of its diagonal elements.
Since we are mainly interested in the constraints on the oscillation
parameters, we marginalize the cosmological parameters using the
analytical marginalization method given by Taylor & Kitching
(2010), which marginalizes the nuisance parameters and preserves
the information about the target parameters. The marginalized Fisher
matrix is given by

FY = Fup = Fam Fyp Fup, (19)

where the subscripts « and 8 denote the target parameters, while the
subscripts m and n denote the nuisance parameters. Finally, we get
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the uncertainties of the oscillation parameters from the marginalized
Fisher matrix.

3.3 Parameters used in the Fisher analysis

The parameters used in the Fisher analysis, including those associated
with the specifications of the DESI-like survey (DESI Collaboration
2016) are discussed here.

We start with the most crucial parameter, the damping parameter ¢
displayed in Table 2, which depends not only on the redshifts but also
on the halo number densities and — more importantly — whether the
reconstruction is applied. We only have values of ¢ for four redshifts,
ie. z =0, 0.5, 1, 1.5, and two different halo number densities,
i.e. Npgo = 1 X 10_3(h_1Mpc)_3 and 5 x 10_4(h_1Mpc)_3, but
the forecasted number density achievable in the DESI-like survey
varies over the redshift range, so the values of ¢ may not apply
to the entire redshift range. As a result, we cut off some high-
redshift bins which have the number density much smaller than
5 x 107#(h~' Mpc) 3. We use a bilinear interpolation between the
redshift and the number density to estimate an appropriate value
of ¢ for a given combination of the redshift and number density.
For those the number density is larger than 1 x 1073(h~' Mpc) 3 or
smaller than 5 x 10~*(h~! Mpc)~—, we simply adopt the values of
¢ for npge = 1 x 1073 (A~ Mpc) ™2 or npgo = 5 x 1074(h~! Mpc) >
instead. In this work, we use different values of ¢ for the different
models as obtained using the fitting method described in Section 2.4,
and we will comment on this point again later.

As we consider both emission line galaxies (ELGs) and luminous
red galaxies (LRGs) in the DESI-like survey, which have different
number densities and redshift distributions, different range of redshift
bins is chosen for ELGs and LRGs in the Fisher analysis. After
throwing away the redshift bins with very small number densities,
we take the range of z = (0.6-1.3) for ELGs and z = (0.6-0.9) for
LRGs, and the redshift bin width is by default Az = 0.1. In addition
to the calculation of effective survey volume, by following the DESI-
like survey, the fixed values of 774(z) Pops(0.14, 0.6, z) are used for
the signal to noise, two survey areas are considered including the
expected survey area of 14000 and 9000 deg? as the pessimistic
case (DESI Collaboration 2016). As for the Finger-of-God factor,
the linear halo bias for ELGs and LRGs is simply defined in terms
of the growth factor via (DESI Collaboration 2016)

berg(z)D(z) =0.84 and birg(z)D(z) = 1.70. (20)

4 RESULTS AND DISCUSSION

In this section, we will first compare the linear, non-linear and
reconstructed O,, measured for all models and redshifts. Then
we present the results of the analytical fit to more quantitatively
demonstrate the improvement by the reconstruction. Finally, we show
the results of the constraints on the oscillation parameters and give
forecast for the DESI-like survey.

4.1 Comparisons among wiggle spectra

In Fig. 2, we compare the results of the linear, non-linear and
reconstructed O, (k) obtained from DM, H1 and H2 at the four
redshifts for the four wiggled models. The black solid lines represent
the linear O,y (k) obtained from the initial conditions of the simu-
lations, which are equivalent to the primordial oscillatory features.
The blue dashed lines represent the non-linear O,, (k) obtained from
the output snapshots of the simulations, which are also referred to
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Figure 2. Comparisons among the linear (black solid line), non-linear (blue dash—dotted line) and reconstructed (red dashed line) Oyy. The linear Oy, is
measured from the initial conditions generated using 2LPTic, the non-linear Oy is measured from the output snapshots of the simulations, and the reconstructed
Oy 1s obtained from the reconstructed density field. Each row represents one redshift z which is shown on the right side. The three columns denote, respectively,
the results from the dark matter particle catalogue DM and the halo catalogues H1 and H2. Every four rows from the top down, respectively, belong to Models

1,2, 3, and 4.

as the unreconstructed O, (k) for convenience. It can be seen that
the wiggles on small scales are gradually damped as the redshift
decreases. The red dash—dotted lines represent the reconstructed
O, (k) obtained from the reconstructed density field, which helps
to partially retrieve the damped wiggles.

The O, (k) results shown in the first column are obtained from DM,
which exhibit some common characteristics for all three wiggled
models. By comparing the unreconstructed results with the linear-
theory predictions, it can be seen that the scale at which the wiggles
start to be weakened becomes larger as time progresses. Furthermore,
the wiggles on scales k > 0.3 h Mpc™! are strongly damped at 7 =0,

MNRAS 514, 4363-4378 (2022)

and so the recovery of the wiggles on scales 0.3 < k < 0.5 h Mpc™!
would be an important objective of reconstruction. By comparing
the reconstructed O,,, with the linear-theory prediction, we can see
that, while the reconstructed power spectrum is not exactly the same
as the linear spectrum, the reconstruction method to a certain extent
helps retrieve the initial oscillations on our interested scales, 0.05 <
k < 0.5 hMpc~!. This agrees with the findings in Shi et al. (2018),
which studied the performance of the same reconstruction method in
dark matter reconstruction.

The success of the reconstruction from the dark matter particles
is largely thanks to their high number density, which allows the
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late-time non-linear density field to be accurately produced: in this
sense, reconstruction from DM can be considered as an idealised
case or an upper limit, which will be difficult to achieve in real
observations. For a rough comparison, we have shown, in the middle
and right columns of Fig. 2, the O,,, results obtained from the two
halo catalogues, H1 and H2, which have number densities similar to
typical real galaxy catalogues. These results are less impressive than
those for the dark matter particles because of the much smaller halo
number densities. Also due to the small halo number densities, these
results are noisier, which in theory can be made smoother by having
more realizations of simulations, or equivalently a larger volume.

By comparing the results of H1 and H2 for the same model, we find
that there is no significant difference in the unreconstructed O, (k)
at the same redshift, because the number densities of these two halo
catalogues only differ by a factor of 2. In most cases the reconstructed
Oy, results of H1 seem slightly better compared to those of H2, as
a result of the slightly larger halo number density in H1, though the
difference is again insignificant visually. We shall revisit this point
when discussing the analytical fit in the next subsection. Comparing
the results with and without reconstruction, it is clear that the former
does lead to less damped and sharper oscillation features, confirming
that reconstruction can indeed help to partially retrieve the damped
wiggles. This recovery seems more substantial at lower redshifts than
at higher redshifts, since at higher redshifts there is less damping in
the unreconstructed power spectra to start with. At lower redshifts, on
the other hand, reconstruction can even recover some of the wiggles
at k ~ 0.5 h Mpc~!, where the wiggles are strongly damped in the
unreconstructed case. We expect that this will help to improve the
accuracy of the measurements of wiggle parameters, especially in
models with few wiggles at k < 0.3 2 Mpc~! — we will discuss this
in the parameter fittings next.’

Finally, we notice that in rare cases, for example H1 at z = 1 and
H2 at z = 1.5 for Model 3, the reconstructed O,,, seems to be poorer
than the unreconstructed one. The exact cause of this is not clear, but
we note that for these two cases the unreconstructed O, happens to
be very noisy and deviate strongly from their theoretical values at
large scales (a similar ‘correlation’ can be observed in certain other
panels across Fig. 2, though to a lesser extent). It is possible that
the halo power spectra in these cases have inaccurate amplitudes
of the oscillations on large scales, which affect the reconstruction
results. Given that in both H1 and H2 this only affects a particular
snapshot and not all snapshots, we suspect that it is related to the
only one realization per model we have used. Further investigation
of this issue will be left for future works with more simulation
realizations.

4.2 Wiggle parameter fitting

The corresponding best-fitting parameters of w, ¢, and £ (z), as well as
their uncertainties, are given in Table 2, which assist the understand-
ing from a quantitative perspective. The relevant figures showing the
analytical fit to the data can be found in the Appendix. As mentioned
before, we will mainly focus on the results of HI and H2, and so the
results of DM would be taken as a reference and not be discussed in
detail. The three parameters are mainly determined by the remaining
peaks in the wiggles. We shall first discuss the results of the damping

2This is actually one of the motivations for our specific parameter choices
in the feature models of equation (2), because we are particularly interested
in cases where there are not many wiggles at k < 0.32 Mpc™' to maximally
show the power of reconstruction.
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parameter, followed by the oscillation parameters, and then combine
them to clarify the improvement given by reconstruction.

The damping parameter ¢ effectively describes the extent of the
damping effects caused by the gravitational non-linearities® and
characterizes the suppression of the primordial oscillations. It is zero
in the linear regime, such as at the initial redshift z =49, and gradually
increases at lower redshifts as the structures become progressively
more non-linear and consequently more information of the wiggles
in the primordial power spectrum gets damped. Thus reconstruction
has the aim to reduce ¢ and retrieve the primordial oscillations.
Table 2 shows that the reconstructed values of ¢ are evidently
smaller than the unreconstructed values in all cases. Apart from a few
high-redshift (z > 1) cases, the uncertainties of most cases are also
reduced after reconstruction, which confirms that the reconstruction
successfully retrieves the damped wiggles to an appreciable extent.
Specifically, by comparing the cases among different models but
the same catalogues and redshifts, the corresponding values after
reconstruction seem to be nearly independent of the model, which
implies that the improvement on the recovery of the wiggles does
not strongly depend on the shape of the primordial oscillations.*

For a closer inspection, we show the ratios of unreconstructed
to reconstructed ¢ in Table 3, ¢ynrec/Crec, Which can be considered
as an indicator of the reconstruction efficiency. We do this for all
the cases (models, tracer types, and redshifts) listed in Table 2. The
reconstruction efficiency of halo catalogues H1 and H2 increases
with decreasing redshift, which shows that reconstruction is more
beneficial for lower redshifts (z < 1). This is to be expected, given
that the halo density field is more non-linear at low z and so the
unreconstructed ¢ is significantly larger than at high z; on the other
hand, the reconstructed ¢ depends more mildly on z, so that the
ratio ¢ynrec/¢rec increases with decreasing z. Also, among the low-
redshift (z < 1) cases, the larger number density of H1 leads to
higher efficiency when compared with H2 at the same redshift.
For the DM case, the trend is reversed, with the ratio between
unreconstructed and reconstructed ¢ values increasing with redshift.
Here, the behaviour is quite different from the halo cases, with the
reconstructed ¢ decreasing much faster with increasing redshift z. We
have checked (though not shown here) that the values of ¢ unrec/¢ rec
for the primordial features studied here are broadly consistent with
the reconstruction efficiency defined in the same way applied to the
reconstruction of BAO wiggles in Birkin et al. (2019), which uses
the same reconstruction method and similar tracer number density.

Next, let us consider whether the ‘sharpened’ wiggles after recon-
struction can lead to more accurate measurements of the oscillation
parameters @ and ¢. Regarding the oscillation frequency w, the
reconstructed values of @ are much closer to the theoretical values
than the unreconstructed values in all cases, which is especially
evident at low redshifts. Except for a few high-redshift cases, the
improvement on the uncertainties after reconstruction is evident in
most cases as well. The unreconstructed o values of Models 2 and

3Redistribution of matter due to baryonic processes, such as stellar and black
hole feedback, could also lead to damping effects to the power spectrum, but
that is less relevant for the range of scales we are interested in (some of the
recent galaxy formation simulations, e.g. Schaye et al. 2015; Springel et al.
2018, predict that this affects the matter power spectrum at k > 14 Mpc™!).
4This makes sense given that the amplitude of the primordial oscillations
is relatively small in this work, so that the effects of the wiggles can be
considered as small perturbations to the primordial and subsequently the
evolved non-linear density field. Reconstruction, along with the reduction
of ¢ from the unreconstructed to the reconstructed cases that it leads to, is
sensitive to the overall distribution of matter.
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Table 3. The ratios of unreconstructed to reconstructed ¢, ¢ unrec/ rec, Obtained from Table 2, which can
be used to describe the reconstruction efficiency, in all cases considered in Table 2.

Model 1 Model 2 Model 3 Model 4
z DM H1 H2 DM H1 H2 DM H1 H2 DM HI1 H2
0.0 352 182 1.69 3.6l 194 182 373 201 211 330 194 1.78
0.5 364 166 152 389 183 1.61 387 1.79 173 348 1.63 1.61
1.0 403 142 143 426 152 144 400 160 154 374 141 141
1.5 429 132 134 443 137 133 393 144 140 411 123 1.30

3 appear to be closer to their theoretical values than in Models
1 and 4, which is probably because the former two models have
more oscillation periods within the fitting range of scales than the
latter two (see the right-hand panel of Fig. 1, or the blue lines in
Fig. 2). After reconstruction, however, there is less clear difference
among the four models, either in how close the reconstructed w
is to the theoretical value or in their uncertainties. Likewise, the
difference between the best-fitting reconstructed o values in H1
and H2 is rather mild, although the uncertainties are generally
smaller for the former catalogue. Overall, the results indicate that
reconstruction does indeed lead to a stronger improvement of the
measurement of w in Models 1 and 4, which have fewer visible
peaks at k < 0.52 Mpc ™.

The situation is quite different in the case of the oscillation phase ¢.
The unreconstructed values of ¢ in Models 1, 2, and 3 are determined
very well in most cases, so the reconstructed values only show a little
improvement on the unreconstructed ¢ even for low-redshift cases.
However, for Model 4 the unreconstructed values largely deviate
from the theoretical value in all cases, and the unreconstructed values
of H2 deviate even further than those of H1 at the same redshift.
Although we cannot exclude the possibility that this discrepancy is
an effect caused by the particular simulation, since we have only one
realization for each model, we doubt this would be the cause, because
the same random phases have been used to generate the ICs for all
simulations. Instead, we suspect that this is more likely to be caused
by the fact that m # 1 in Model 4, which means that the oscillation
pattern is more complicated and thus leads to a less accurate fitting
of ¢. Regardless, based on the table, it seems that the reconstruction
once again enables more accurate measurement of ¢, especially for
H2 at low redshift.

When considering the results of all three parameters, it seems
that the reconstruction is most useful at low redshifts, z < 1, and
Models 1 and 4 benefit more from it than Models 2 and 3 do.
Although the peaks of Models 2 and 3 are better preserved after the
cosmic evolution so that their reconstructed results are better than
those of the other two models, the improvement is relatively limited,
suggesting that the improvement depends not only on how clear-cut
the reconstructed wiggles are, but also on how poorly the primordial
wiggles are preserved before reconstruction. Overall, reconstruction
seems more useful where the primordial wiggles are more damped.’
As we mentioned before, the wiggles on scales k = 0.3 # Mpc~! are
strongly damped at z = 0; Models 2 and 3 have exactly the first
several original peaks outside this range of scales, so these peaks are
effectively preserved at low redshift. By contrast, we designed Model
4 so that it has one original peak at the same position of the first peak
of Model 2 which is effectively preserved, and its second peak is at
the same position of the third peak of Model 2, which is strongly

5This statement, of course, is based on the limited range of models we have
studied here.
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damped. Therefore, the primordial wiggles of Model 4 are preserved
less well than those of Model 2, and this Model benefits more from
the reconstruction. Similarly, Model 1 has two original peaks in the
range k < 0.5 h Mpc™!: the first is at a smaller scale compared with
the first peak of the other models and thus is not preserved as well as
the first peak of the other models due to the stronger damping effect,
while the second peak is completely damped. Therefore Models 1
and 4 both benefit from the reconstruction substantially more than
Models 2 and 3.

Additionally, the values of w used in Models 1, 2, and 3 imply that
the reconstruction method is not only effective at low frequency, such
as ~ 40 Mpc, but also working well at relatively higher frequency,
such as ~ 150 Mpc.

4.3 Constraints on oscillation parameters for DESI-like survey

Since the four wiggled models have similar results of the constraints
on the oscillation parameters, we shall take Model 1 as an example
to illustrate and discuss how the reconstruction potentially improves
the constraints in a real galaxy survey. Additionally, we also forecast
how much the uncertainties of the feature amplitude can be reduced
after reconstruction for the wiggled models.

Fig. 3 shows the forecasted constraints on the oscillation parame-
ters for a DESI-like survey with a survey area of 14 000 deg?, based
on the primordial oscillations of Model 1. The marginalized posterior
distribution of each parameter shown in the upper panels indicates
that, without reconstruction, the case of kpax = 0.5 1 Mpc*1 (the red
lines) give better constraints than the case with kp,, = 0.25 2 Mpc™!
(grey), because in the former case more k modes are included in the
Fisher matrix and increase the accuracy of the constraints. Addition-
ally, by comparing the cases with the same k.« (red versus blue, or
grey versus green lines), we find that reconstruction leads to stronger
constraints on the parameters, especially with ky. = 0.5 A Mpc~!.
This is because the oscillation wiggles on scales k > 0.25 h Mpc™!
are heavily damped at low redshift without any reconstruction, while
the reconstructed wiggles at k = (0.25 — 0.5) h Mpc~! significantly
contribute to the constraints. By contrast, since the peaks on scales
k <0.25 hMpc~! are preserved reasonably well, the reconstruction
for kmax = 0.25 h Mpc*1 does not lead to as much benefit as in
the case of k. = 0.5 A Mpc~'. Furthermore, stronger constraints
are shown for ELGs (right-hand panels) compared with LRGs (left-
hand panels), because the former has more available redshift bins
and larger number density for the same redshift bins.

In particular, every two out of three parameters show degeneracies
in the confidence contours when kp.x = 0.25 h Mpcfl, though these
degeneracies are broken and replaced with stronger constraints when
kmax = 0.5 h Mpc‘1 in the A—w and A—¢ contours due to more k
modes included. By contrast, the w—¢ contours keep the degeneracy
which is a consequence caused by the oscillation model itself and by
the fact that here we are trying to constrain both oscillatory frequency
and phase over a limited range of k.
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Figure 3. Forecasts of constraints on the oscillatory feature parameters for a DESI-like survey with a survey area of 14 000 deg?, for the primordial oscillations
of Model 1. The left side is for LRGs and the right side is for ELGs. The upper panels show the 1D marginalized posterior distributions. The middle and lower
panels show the marginalized 68 and 95 per cent confidence contours for every two out of three feature parameters. The green and grey colours represent,
respectively, the cases for kpax = 0.254 Mpc’l with and without reconstruction, while the blue and red colours represent the cases for kpax = 0.5h Mpc’l with

and without reconstruction.

Lastly, similar to previous works (Beutler et al. 2019; Slosar et al.
2019; Ballardini et al. 2020), we show the marginalized uncertainties
of feature amplitude as a function of oscillatory frequency for our
feature models in Fig. 4 and discuss the implications of the results.
Because Models 1, 2, and 3 have an identical form of oscillations
and almost same damping parameters within the error bars, we only
show the results of Models 1 and 4 here.

We consider Model 1 first. As expected, ELGs place slightly
tighter constraints than LRGs due to their larger number densities
and redshift range. The sharp peaks that appear at @ ~ 150 Mpc are
due to the degeneracy between the oscillatory features and the BAO
wiggles. We have tested that for @ 2 200 Mpc the uncertainties
almost stay as a constant, and so we have cut off the figure at
o™ = 300 Mpc™. For smaller w, things are complicated and behave
differently for different kyax. For kpa = 0.25h Mpc*l We can see an
increase in the uncertainties at w < 70 Mpc, while a similar increase
starts to appear at even smaller w—30 Mpc—for kpa = 0.5 7 Mpc™'.
Thus larger knax has an extra advantage of significantly reducing
the uncertainties for small w, in addition to giving more stringent
constraints (everything else the same) for all @ overall. By comparing
the pairs of curves with the same colours, i.e. the same cases (kmax
and reconstructed versus unreconstructed) but different survey areas,
we find that, as expected, a larger survey area always gives better
constraints.

Most interestingly, everything else equal, performing the non-
linear reconstruction can significantly reduce the uncertainties of
A. As an example, for large values of w, in the case of k., =
0.5 h Mpc~! and a survey area equal to 14000 deg?, reconstruction
reduces o(A) from ~0.003 to ~0.002, and this improvement is
stronger than not performing reconstruction, but instead going from
9000 to 14000 deg’ with ky.y fixed to 0.25 or 0.5 2 Mpc~!, or

increasing kpqx from 0.25 to 0.5 A Mpc~! keeping the survey area
fixed to either 9000 or 14 000 deg®. A similarly good improvement
can be seen with kpa = 0.25 ZMpc™! or survey area equal to
9000 deg?, when doing reconstruction. In certain cases, e.g. the
large-w regime of the lower panels of Fig. 4, reconstruction with
kmax = 0.25 hMpc~! and a survey area equal to 9000 deg” (the
thin green dashed line) can lead to comparable constraints to not
doing reconstruction but with ky,, = 0.5 1 Mpc*1 and a survey area
equal to 14000 deg” (the thick orange dot—dashed line). Given that
increasing survey area is not always possible due to the finite sky
area, but increasing km,, in analyses for these primordial feature
models is comparably more straightforward (Beutler et al. 2019),
combining an increase in kp,x With non-linear reconstruction can be
a potentially promising way to obtain even stronger constraints on
the feature parameters, and help to maximize the scientific return of
future survey data.

The behaviour of Model 4 is similar to that of Model 1, e.g. both
the absolute and the relative heights of the different curves, as well as
their shapes are the same as before. There are, however, some notable
differences, e.g. the main peaks in o(A) in Model 4 are at slightly
different values of w from the other models, and the curves are also
less smooth. As mentioned above, the bump (which has the structure
of a double peak) of o (A) for Model 1 is related to the BAO peak in
the matter/galaxy correlation function, which is at >~ 150 Mpc. The
primordial wiggles of Model 1, in configuration space, correspond
to a spike at matter or halo separation r = w. When o > 150 Mpc,
the BAO and primordial peaks are separated afar and thus the former
does not affect the accuracy of the measurement for the latter. As w
approaches 150 Mpc from above, the BAO and primordial peaks start
to ‘interfere’, leading to changes of both the amplitude and shape of
the latter, making it harder to measure its parameters accurately. We
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Figure 4. Forecasts of the marginalized uncertainties of the oscillation amplitude A as a function of the frequency w, for the two models, Model 1 (top row)
and Model 4 (bottom row); the result for Models 2 and 3 are not shown here since the two models have the identical form of oscillations to that of Model 1.
The first column is for LRGs and the second column is for ELGs. The dotted black lines mark the theoretical amplitudes of the oscillations, A = 0.05, used in
the forecasts. The meanings of the different colours and line styles are indicated in the legends. The same colours represent the cases with same kpyax and same
situation of reconstruction but different survey areas; the thick lines are for the survey area of 14 000 deg? and the thin lines are for 9000 deg?.

speculate that the dip — which causes the double-peak structure in
o (A) for Model 1 —is due to the fact that, when the primordial peak
does not coincide well with the centre of the (rather wide) BAO
peak, its shape can be affected in an asymmetric manner, making the
measurement of its parameters even more inaccurate. In contrast, the
structure of the primordial wiggles in Model 4 is more complicated
in configuration space, because m # 1 in equation (2), which can
cause the differences in the units of @ and other fine details of o (A)
between this and the other models.

5 CONCLUSIONS

In this paper, we have investigated the effect of a non-linear density
reconstruction method on retrieving hypothetical oscillatory features
in the primordial power spectrum which are significantly damped on
small scales in the late-time Universe due to cosmological structure
formation.

We considered four different oscillatory features which are added
to a simple power-law type primordial power spectrum, for which we
ran N-body simulations and identified dark matter halo catalogues
at a number of redshifts. We reconstructed the initial density fields
from the particle data and halo catalogues with two different number
densities. Finally, we compared the fitted feature parameters from
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the power spectra of the unreconstructed and reconstructed density
fields, to identify the improvement by reconstruction. We showed
that non-linear reconstruction can effectively help to retrieve the
damped wiggles with a range of frequencies between 40 and 150 Mpc
— not only does it lead to less biased best-fitting values of the
feature parameters, but it also substantially shrinks the measurement
uncertainty. The improvement was especially strong where the
primordial features have been less well preserved pre-reconstruction
to start with, such as at z < 1.

In order to forecast the constraints on the feature parameters from
a DESI-like galaxy survey, we modelled the observed broad-band
galaxy power spectrum based on the HALOFIT prediction of the non-
linear matter power spectrum with the addition of oscillatory features
studied in this work, and then used the analytical marginalized
Fisher matrix to calculate the expected constraints on the oscillation
parameters using the specifications of DESI LRGs and ELGs. We
found that non-linear reconstruction led to more robust constraints
on the oscillation parameters, with the equivalent effects of enlarging
the survey area (but at a much smaller cost) and/or increasing the k
range.

While non-linear reconstruction has been proposed to be used in
improving the measurement of the BAO scale (e.g. Wang et al. 2017),
and hence the determination of the expansion rate of the Universe and
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hence the properties of dark energy, this work has demonstrated that
similar applications are possible in other cases where certain features
in matter clustering are present, following the spirit of earlier works
such as Beutler et al. (2019). This is particularly true if these features
are in the mildly non-linear regime, 0.1 < k/(hMpc™!) < 0.5, since
this range of scales is what the non-linear reconstruction method used
here helps most: on even larger scales the benefit of reconstruction is
insignificant, while on further smaller scales reconstruction will not
help much.

The methodology exemplified in this paper assumes that we know
the functional form of the primordial features a priori — this is how
we forecasted constraints on the oscillation amplitude A. However,
the reconstruction step is completely independent of any assumption
of a particular primordial feature, and hence any method developed
for detecting general features from the matter clustering should apply
to and benefit from the reconstructed density field.

As afirst step, the present study is based on various simplifications,
and we discuss a couple here which can be improved in the future.
The first is related to the post-reconstruction damping parameter ¢.
As we have discussed, ¢ characterizes the damping of the primordial
features, and a smaller ¢ means that the reconstruction has done a
better job. Due to the limited number of simulations carried out in this
work (one realization per model), shot noise will impact the estimated
reconstruction efficiency. This could be improved by increasing the
number of simulations and more studies are needed in the future.

The second is related to the modelling of redshift-space distortions
(RSD), for which we have adopted a simplistic prescription and well
pushed beyond the limit (e.g. k ~ 0.5 2 Mpc~') where it is expected
to work. This is not an issue for a forecast work, but for constraints
using real data it should be treated more carefully. The reconstruction
method here has been extended to remove RSD from observed galaxy
catalogues (Wang et al. 2020), though that is unlikely to work reliably
at k as large as ~0.5 hMpc~!. Of course, we can always cut kg,
to something that we are comfortable with. However, as mentioned
above, if we would like to take maximum benefit from reconstruction,
it is likely that we need to go substantially beyond k ~ 0.1 7 Mpc~".
This can be achieved, for example, by using emulators of redshift-
space galaxy or halo clustering (see e.g. Zhai et al. 2019; Kobayashi
et al. 2020); actually, as long as the primordial oscillations are weak
(as implied by current null detections), one might assume that their
presence has little or negligible impact on RSD.

The ultimate objective, of course, is to apply this method to real
observation data from future galaxy surveys such as Euclid and DESI.
For this, the above-mentioned improvements, amongst many others,
would need to be done properly. These will be left for future works,
in which we plan to carry out updated forecasts for these surveys and
eventually real constraints.
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APPENDIX: RESULTS OF WIGGLE FITTING

Figs Al, A2, A3, and A4 show, respectively, the results of the
analytic fit to the unreconstructed and reconstructed O,,, results for
the four models studied in this work. It can be seen that, in most
cases, the analytic model equation (5), with a Gaussian damping
function characterized by the parameter ¢(z), fits the pre- and post-
reconstruction data very well.

—— Reconstructed - - - Analytic fit

01
k [AMpc~1]

Figure A1l. The analytical fit to the unreconstructed and reconstructed Oy, for Model 1. The black solid lines represent the measured Oy, and the red dashed
lines represent the fitting curves given by the analytical model, equation (5). The thin lines are for the unreconstructed cases and the thick lines are for the
reconstructed cases. The three columns from left to right, respectively, denote the dark matter particle catalogue DM, and the halo catalogues H1 and H2. Every
two rows from the top down represent the same redshift shown on the right side. In each group of two rows, the upper one is for the unreconstructed, and the

lower one for the reconstructed, case.
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Figure A2. The same as Fig. Al but for Model 2.
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Figure A3. The same as Fig. Al but for Model 3.
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Figure A4. The same as Fig. A1 but for Model 4.
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