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A CHARACTERISATION OF

THE CONTINUUM GAUSSIAN FREE FIELD

IN ARBITRARY DIMENSIONS

by Juhan Aru & Ellen Powell

Abstract. —We prove that under certain mild moment and continuity assumptions, the
d-dimensional continuum Gaussian free field is the only stochastic process satisfying the usual
domain Markov property and a scaling assumption. Our proof is based on a decomposition of
the underlying functional space in terms of radial processes and spherical harmonics.

Résumé (Une caractérisation du champ libre gaussien dans le continu en toute dimension)
Nous montrons que, sous de faibles hypothèses de moment et de continuité, le champ libre

gaussien dans le continu à d dimensions est le seul processus stochastique satisfaisant à la
propriété habituelle de Markov sur le domaine et une propriété d’échelle. Notre preuve est
basée sur une décomposition de l’espace fonctionnel sous-jacent en termes de processus radiaux
et d’harmoniques sphériques.
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1. Introduction

The continuum Gaussian free field (GFF) is a generalisation of Brownian motion,
taking the index set to higher dimensions, which is defined on the unit ball as follows.

Definition 1 (Gaussian free field). — Let d > 1 and B ⊆ Rd denote the open unit
ball. The d-dimensional zero boundary continuum GFF in B is the centred Gaussian
process (hB, f)f∈C∞c (Rd) whose covariance is given by

E((hB, f)(hB, g)) =

∫∫
(Rd)2

f(z)GB(z, w)g(w) dzdw; f, g ∈ C∞c (Rd),
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1102 J. Aru & E. Powell

where GB denotes the zero boundary Green’s function for the Laplacian in B. Note in
particular that GB is identically zero in Rd r B, so that (hB, f) is almost surely zero
as soon as f has support outside of B.

In dimension d = 1, this corresponds to a slightly awkward definition of the Brow-
nian bridge on the interval (−1, 1): in this concrete one-dimensional case the GFF can
actually be defined as an a.s. continuous function, i.e., indexed by points instead of
test functions. In d > 2 the GFF does not make sense as a pointwise defined function,
thus the more general definition. However, one can still heuristically see the continuum
GFF as a Gaussian height function parameterised by a domain D ⊆ Rd [She07]. The
Gaussian free field has played many roles in probability and mathematical physics
since the 1970s: it is the stationary solution of the stochastic heat equation; is used
to describe both free and interactive Euclidean Quantum field theories; it appears
as a corrector in stochastic homogenisation; to name just a few. Recently, the 2d

GFF has played a crucial role in the probabilistic study of statistical physics mod-
els, Schramm-Loewner evolution, Liouville quantum gravity and Liouville field theory
[Dub09, MS16, DS11, DKRV16]. It is both the proven and the conjectured scaling
limit of several natural discrete height functions [NS97, Ken01, RV07, BLR20]

There are many characterisations of Brownian motion that single it out among 1d

stochastic processes and it is similarly natural to also ask how the GFF in higher
dimensions can be characterised. Recently, the 2d continuum GFF was characterised
as the only conformally invariant field, satisfying a domain Markov property and
certain minimal moment and continuity assumptions [BPR20, BPR21].

This short article provides a first characterisation of the d-dimensional continuum
Gaussian free field for d > 3, answering Question 6.1 in [BPR20]. It also provides a
new characterisation of the GFF in d = 2 that relaxes the assumption of conformal
invariance and thereby generalises the main result of [BPR20] via a new more ele-
mentary proof. Our characterisation is based only on scaling and the domain Markov
property and in particular, we do not even need to assume rotational invariance.

More precisely, but still somewhat informally, we prove that, under certain mild
moment and continuity assumptions, the d-dimensional Gaussian free field is the only
random Schwartz distribution in d > 2 that satisfies the following domain Markov
property – for each ball, the field inside can be written as a sum of an independent
scaled and translated copy of the original field plus the “harmonic extension” of
its behaviour on the boundary. We prove the theorem by identifying the covariance
structure as the Green’s kernel (lighter step), and then proving Gaussianity (more
involved). The second step in particular uses a completely different argument to that
in [BPR20] – instead of working with circle averages, we use a decomposition of L2(B)

based on spherical harmonics. The two steps in our proof are quite independent of
each other (although we use the knowledge of the covariance kernel to simplify some
arguments later on), but both make strong use of the domain Markov property. Our
proof, which does not even assume rotational invariance, stresses the nice interplay
between the GFF and harmonic functions.

J.É.P. — M., 2022, tome 9



A characterisation of the continuum Gaussian free field in arbitrary dimensions 1103

Recently, there has been a lot of interest in proving scaling limit results for random
surface models, e.g., [DCHL+19, BLR19, GM21]. The characterisation given in this
article and its mild generalisations below could potentially be helpful for obtaining
such results, by giving a new way to identify the GFF as a continuum scaling limit.
Importantly, one that does not rely on conformal nor rotational invariance – condi-
tions that are both very difficult to prove from lattice considerations (though there is
important recent progress [DCKK+20]).

As mentioned, essentially the only property that is needed to characterise the
continuum Gaussian free field is its domain Markov property. It should be emphasised
that, as stated, this domain Markov property also encapsulates a scaling property for
the field (that could however be disposed of to some extent, see comments below).

Definition 2 (Domain Markov Property (DMP) with scaling for balls)
Let d > 2 and B ⊆ Rd denote the open unit ball. Suppose that h is a random

Schwartz distribution with support on B, i.e., a random continuous functional (h, f)

indexed by f ∈ C∞c (Rd) and zero as soon as f has support outside of B.
We define the random Schwartz distribution ha+rB on domains a+rB as the rescaled

image of hB under translation by a and scaling(1) by r:

(ha+rB, f((· − a)/r)) = r1+d/2(hB, f(·)).

We then say that h satisfies the domain Markov property if the following holds:
– Suppose that a+ rB ⊆ B. Then we can write

(hB, f)f∈C∞c (Rd) = (ha+rBB , f)f∈C∞c (Rd) + (ϕa+rBB , f)f∈C∞c (Rd)

where the two summands are independent, ϕa+rBB is a stochastic process that a.s.
corresponds to integrating against a harmonic function when restricted to a+ rB and
ha+rBB is equal in law to a translated and scaled copy ha+rB.

We can now state the characterisation:

Theorem 3 (Characterisation of the d-dimensional GFF). — Let d > 2 and B ⊆ Rd

denote the open unit ball. Suppose that h is a random Schwartz distribution with
support on B, i.e., a random continuous functional (h, f) indexed by f ∈ C∞c (Rd) and
zero as soon as f has support outside of B.

If h satisfies the following conditions, then for some constant c the stochastic pro-
cess (hB, f)f∈C∞c (Rd) has the law of c times a d-dimensional zero boundary Gaussian
free field in B.

(A) Domain Markov property with scaling for balls, as in Definition 2.
(B) Moments. We have E((hB, f)) = 0 and E((hB, f)4) <∞ for all f ∈ C∞c (Rd).
(C) Zero boundary conditions. For any sequence (fn)n>0 of smooth positive

functions with
∫
fn uniformly bounded, d(supp(fn), 0) → 1 as n → ∞ and

supn supr<1 supx,y∈∂(rB) |fn(x)/fn(y)|<∞, we have that E((hB, fn)2)→0 as n→∞.

(1)Note that if h were a function and (·, ·) was the L2 inner product, this would be equivalent to
ha+rB(a+ r·) = r(2−d)/2hB(·), exhibiting half the scaling factor of GB.

J.É.P. — M., 2022, tome 9



1104 J. Aru & E. Powell

We have not striven for most general technical assumptions, but rather have tried to
keep the proofs light and self-contained. However, we believe that several assumptions
can most likely be relaxed. Let us remark on those and the case d = 1.

– In fact, a similar characterisation holds also in d = 1 with basically the same
proof. In this case one would just work directly in the space of continuous functions,
and state the zero boundary condition pointwise.

– We believe that the moment assumption can be probably relaxed using methods
of [BPR21].

– Although using spherical harmonics is key in our proofs, one can also adapt the
method to work for other reasonable domains, e.g. when one considers boxes instead
of spheres both as the original domain and for the DMP. Indeed, in this case one can
still make sense of spherical harmonics defined on the boundary of the box, defined
with respect to harmonic measure on the boundary as seen from the centre of the box.
A characterisation of harmonic functions using such “box averages” will then give the
required harmonicity for the covariance in the first part of the proof and everything
in the second part will work the same way. More generally, a similar strategy ought
to work for smooth convex domains, where there is a point of homothety inside the
domain. The proof would, however, become more technical, and hence is not pursued
here.

– We use the same form of domain Markov property (DMP) as in [BPR20], but
only for balls. The DMP plays a key role in our argument – it is used both in showing
that the covariance kernel is harmonic off the diagonal, and in proving Gaussianity.
With the current approach it seems difficult to relax the harmonicity condition for
the extension of the boundary data, but it would be very interesting to determine
if this is possible.

– On the other hand, one can easily envisage replacing the condition of having an
exact (scaled) copy of the field in the DMP with a more relaxed, martingale type
of condition. Namely, we could ask that hB inside any sub-ball a + rB ⊂ B, can be
decomposed as the independent sum of an a.s. harmonic function, and a random
Schwartz distribution that has mean zero when tested against any test function, with
some conditions on the second moment. Indeed, this is known to suffice in the case
of Brownian motion. We believe that our proof would adapt, as long as we imposed
certain growth conditions for the variance of averages around a point, and certain
homogeneity conditions. For the sake of keeping things simple and short, we will not
pursue this direction here.

– It might seem a bit surprising that we are not using rotational invariance. How-
ever, the reason is that the DMP already implies rather easily that the covariance is
a harmonic function, and this is a very strong property.

– Rather than assuming that h is almost surely a Schwartz distribution, we could
instead assume that: (1) ((hB, f))f∈C∞c (Rd) is linear in f , and (2) the covariance
K2(f, g) := E((hB, f)(hB, g)), is a continuous bilinear form on C∞c (Rd)(2). Indeed,

(2)with respect to the usual topology on C∞c (Rd) in which fn → f iff all derivatives of fn converge
to the corresponding derivative of f , uniformly on the closure of supp(f).
J.É.P. — M., 2022, tome 9
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we will use linearity of the process (hB, f) repeatedly, but will only use the fact that
f 7→ (hB, f) is a Schwarz distribution for justifying (2.10) below, which would actually
follow more directly had we assumed (2).

– Finally, let us comment on the exact form of the zero boundary condition.
In [BPR20] this convergence was only asked for rotationally symmetric functions.
We need the slightly generalised form (that is implied for example by conformal in-
variance and the rotationally invariant form) in only two places: to determine that the
covariance is the Green’s kernel and to obtain the uniqueness of the domain Markov
property. Notice that for pointwise defined functions our condition is weaker than the
usual pointwise zero boundary condition.

Remark 4. — When d = 2 this is indeed a generalisation of the result in [BPR20].
Namely, in [BPR20] the authors assume that the law of a field hD is given for every
simply connected domain D, and the family of laws satisfy conformal invariance
(if ϕ : D → D′ is conformal then the law of the pushforward of hD by ϕ, as a
generalised function, is equal to that of hD′) and a more general domain Markov
property (whenever D′ ⊂ D we can write hD = hD

′

D + ϕD
′

D as an independent sum,
with ϕD

′

D harmonic in D and hD
′

D equal in law to hD′). In particular, under these
assumptions, hB does satisfy (A) of Theorem 3.

Therefore, if we take the assumptions of [BPR20] as an input,(3) our result gives
that hB is equal in law to some multiple of the zero boundary Gaussian free field in B.
Then the assumption of conformal invariance identifies the law of hD for arbitrary
simply connected D, and we reach the same conclusion as [BPR20].

We will now present the argument in three sections. First, we discuss some im-
mediate consequences of the assumptions (along similar lines to [BPR20], so we will
keep this brief). In Section 3, using the DMP, scaling and translation invariance, we
show how to deduce that the covariance kernel is the Green’s kernel (Proposition 6).
Finally, the main part of the paper is Section 4, where we prove Gaussianity (Propo-
sition 14) – we do this using solely the DMP, and a decomposition of the underlying
functional space using spherical harmonics. Theorem 3 is an immediate consequence
of Proposition 6 and Proposition 14. Sections 3 and 4 can be read quite independently
of each other, although we use the identification of the covariance kernel to simplify
some arguments in the latter.

Definition 5 (Scaling function). — In what follows we write s(r) for the function on
(0,∞) defined by − log r when d = 2 and r2−d when d > 3.

Acknowledgements. — We would like to thank here H.Duminil-Copin and V.Tassion
for asking us whether only rotational invariance should suffice for the characterisation
of the 2d continuum GFF. This discussion happened in a nice and friendly workshop in
Fribourg, organised by I.Manolescu, who we would hereby like to thank too. We would

(3)also using the assumptions of [BPR20] on K2, which would equivalently work for our proof (as
explained in the bullet point above).
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finally like to thank N.Berestycki, J.C.Mourrat, G.Ray and W.Werner for many
interesting and fruitful discussions on this topic, and two anonymous referees who
pointed out several places where more clarity was required.

2. Immediate consequences

Here we discuss some immediate properties of our assumptions. The section is self-
contained, but we remain brief, as similar properties have been shown in detail in the
2d case in [BPR20].

The domain Markov decomposition is unique. — Indeed, suppose that for some a, r we
had two decompositions as in (A) of Theorem 3:

hB = ha+rBB + ϕa+rBB = h̃a+rBB + ϕ̃a+rBB .

Then for any z ∈ a+ rB, by harmonicity, there exists a sequence (fn)n>0 of functions
satisfying the zero boundary condition assumption (C) from Theorem 3, and such
that (ϕ, fn(a+r·)) = ϕ(z) for all n and any harmonic ϕ in a+rB. The zero boundary
condition then implies that (ha+rBB −h̃a+rBB , f)→ 0 a.s. along a subsequence as n→∞.
Thus, it must be the case that ϕa+rBB (z) = ϕ̃a+rBB (z) a.s. Applying this for a dense
collection of z and using harmonicity of ϕa+rBB , ϕ̃a+rBB proves the uniqueness.

We will use the following consequences of this uniqueness repeatedly:
– if a+ rB ⊂ a′ + r′B ⊂ B then

(2.1)
{
ϕa+rBB − ϕa

′+r′B
B is independent of ϕa

′+r′B
B

and equal in law to (r/r′)(2−d)/2ϕ
(a−a′)+(r/r′)B
B ;

– we can apply the domain Markov property in several balls at once. More precisely,
if B1, . . . , Bn are n balls, and hB = hi + ϕi in each ball, then

(2.2) ϕ := hB −
n∑
i=1

hi is a.s. harmonic in
⋃
i

Bi

and hi is independent of {ϕ, (hj)j 6=i} for each i. Indeed, for any fixed i we can write
ϕ = ϕi −

∑
j 6=i h

j and since hj is zero in Bi for all j 6= i, ϕ = ϕi is harmonic in Bi.
But also for every j 6= i, hi is zero in Bj and therefore hj is measurable with respect
to ϕi. So the collection {ϕ, (hj)j 6=i} = {ϕi −

∑
j 6=i h

j , (hj)j 6=i} is ϕi-measurable and
therefore independent of hi.

The 2-point function. — For z1, z2 ∈ (1− ε)B with |z1− z2| > 2ε, define the harmonic
functions ϕz1+εBB , ϕz2+εBB according to the domain Markov decomposition of hB in
z1 + εB, z2 + εB respectively. Then by (2.1) and (2.2), the quantity

k2(z1, z2) = E(ϕz1+εBB (z1)ϕz2+εBB (z2))

is well-defined, i.e., it does not depend on ε > 0 satisfying the above conditions. Note
that, by harmonicity, we can alternatively write

(2.3) k(z1, z2) = E((hB, ηz1)(hB, ηz2))

J.É.P. — M., 2022, tome 9



A characterisation of the continuum Gaussian free field in arbitrary dimensions 1107

for any smooth functions ηz1 = ηεz1 , ηz2 = ηεz2 of mass one, that are supported in
z1 + εB, z2 + εB and rotationally symmetric about z1, z2 respectively.

For every δ > 0, the following crude upper bound for z1 6= z2 ∈ (1− δ)B is rather
direct with C = C(δ):

(2.4) |k2(z1, z2)| 6 C(1 + s(|z1 − z2|)).

To justify this, observe that by Cauchy–Schwarz and the domain Markov property,
it suffices to show that for any z ∈ (1− δ)B and ε < δ

(2.5) E(ϕz+εBB (z)2) 6 C(1 + s(ε)).

Indeed, as long as d(zi, ∂B) > |z1 − z2|/2 for i = 1, 2 we can set ε = |z1 − z2|/2 in the
definition of k2(z1, z2); otherwise we crudely set ε = δ/2 (leading to the dependence
of C on δ).

Let us first consider the case z = 0. If 2−n 6 ε 6 2−(n−1), then the domain
Markov property implies that E(ϕεBB (0)2) 6 E(ϕ2−nB

B (0)2). Further, by the domain
Markov property again and also scaling, the right hand side can be written as the
sum

∑n−1
m=0 2m(d−2)/2Xm, with the Xm i.i.d. each having the law of ϕ0.5B

B (0). Adding
up the variances gives the desired bound.

When z 6= 0 with |z| = r < 1, let r′ = 1/(1 + r) ∈ (1/2, 1), ε′ = ε/(1 + r) and
z′ = −r′z. By applying the Markov property for hz

′+r′B
B in ε′B we can write

ϕε
′B

B (0) = ϕz
′+r′B

B (0) + ϕ̃(0)

where the summands are independent and by translation invariance and scaling, ϕ̃(0)

has the law of (r′)2−d times ϕz+εBB (z). But since the variance of the summands add
up, the variance of ϕ̃(0) is no greater than the variance of ϕε′BB (0). Hence the claim
follows from the case z = 0.

The 4-point function. — Similarly, due to (2.2), for z1, . . . , z4 ∈ B with

min
j 6=i
|zi − zj | > 2ai and d(zi, ∂B) > ai for each i,

k4(z1, . . . , z4) = E
(∏

ϕzi+aiBB (zi)
)
is well-defined, i.e., it does not depend on the choice

of ai satisfying the above conditions. Again we can write this as E
(∏4

i=1(hB, ηzi)
)

for any smooth functions (ηzi)16i64, with ηzi having mass one, being rotationally
symmetric about zi and supported in zi + aiB for i = 1, 2, 3, 4.

Using the same argument as in the 2-point case, one can now bound |k4(z1, . . . , z4)|.
Indeed, by Hölder’s inequality it suffices this time to obtain bounds on the fourth
moments of ϕz+εBB (z) for ε > 0. This can be done very similarly to the 2-point bound.
One first treats z = 0 using the i.i.d nature of increments – the only change here is
that when expanding E

(
(
∑n−1
m=0 αmXm)4

)
with independent Xms one must consider

both
∑
α4
mE(X4

m) and
∑
m 6=` α

2
mα

2
`E(X2

m)E(X2
` ) – and then transports this bound

to general z using translation invariance and scaling. The result is that for any given
δ > 0, there exists C = C(δ) such that

(2.6) E((ϕz+εBB (z))4) 6 C(1 + s(ε)2)

J.É.P. — M., 2022, tome 9
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for any z ∈ (1−δ)B and ε < δ (we omit the details). This leads to the final conclusion:
there are constants C(δ) > 0 such that for any distinct z1, z2, z3, z4 ∈ (1− δ)B

(2.7) |k4(z1, . . . , z4)|4 6 C(δ)

4∏
i=1

(1 + max
j 6=i

s(|zi − zj |)2).

The diagonal contribution of the 2-point function is negligible. — We can now show
that k2 is the covariance function of the field, in the sense that for any f1, f2 ∈ C∞c (B),
if we have

K2(f1, f2) := E((hB, f1)(hB, f2))

=

∫∫
B2

f1(z1)f2(z2)k2(z1, z2) dz1dz2,

where the right-hand side is well defined as the limit

(2.8) lim
a→0

∫∫
B2r{|z1−z2|6a}

f1(z1)f2(z2)k2(z1, z2) dz1dz2

(see just below for a proof). In other words, we show that K2 is an integral kernel
with density k2, and that there is no “diagonal contribution” of K2, so it does not
matter than k2 is only defined off the diagonal. This already rules out, for example,
the possibility that the field is a white noise or one of its derivatives.(4)

Let us now justify (2). For each w ∈ B and 0 < ε < d(w, ∂B), let ηεw be a unit-mass
radially symmetric mollifier in the ε ball around w, as in (2.3). Then if f1, f2 ∈ C∞c (B)

(we fix these from now on), the functions

fεi (z) :=

∫
B
fi(w)ηεz(w) dw =

∫
B
fi(w)ηεw(z) dw

converge to fi in C∞c (B) for i = 1, 2. The assumption that hB is almost surely a
Schwartz distribution therefore implies that

(2.9) K2(f1, f2) = E(limε→0(hB, fε1 )(hB, fε2 ))

where the limit inside the expectation is almost sure. Moreover, (hB, fε1 )(hB, fε2 ) is
uniformly bounded in L2: indeed, we have that

E((hB, fε1 )2(hB, fε2 )2)

=

∫∫
f1(u)f1(v)f2(w)f2(x)E((hB, ηεu)(hB, ηεv)(h

B, ηεw)(hB, ηεx)) dudvdwdx

6 sup
i=1,2

sup
z∈B
|fi(z)| sup

z∈supp(f1)∪supp(f2)
E((hB, ηεz)

4),

where by (2.6), the domain Markov property and scaling, we can bound

E((hB, ηεz)
4) = E((ϕ2εB

B (z) + (h2εBB , ηεz))
4) 6 C(1 + s(ε) + s(ε)2)

(4)We would like to thank A. Sepúlveda for raising the need for extra clarity on this point.
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for C uniform over ε (small enough) and z in supp(f1) ∪ supp(f2). Thus the fam-
ily (hB, fε1 )(hB, fε2 ) is uniformly integrable and we can take the limit outside of the
expectation in (2.9), i.e., we have

(2.10) K2(f1, f2) = lim
ε→0

E((hB, fε1 )(hB, fε2 )).

We are now in a good position to prove (2), but still need to deal with the contri-
bution to K2 from points “near the diagonal”. For this, we break up the right-hand
side of (2.10) as

lim
ε→0

(∫∫
|z1−z2|>2ε

f1(z1)f2(z2)K2(ηεz1 , η
ε
z2) dz1dz2

+

∫∫
|z1−z2|62ε

f1(z1)f2(z2)K2(ηεz1 , η
ε
z2)dz1dz2

)
,

where by (2.3), we have∫∫
|z1−z2|>2ε

f1(z1)f2(z2)K2(ηεz1 , η
ε
z2) dz1dz2

=

∫∫
|z1−z2|>2ε

f1(z1)f2(z2)k2(z1, z2) dz1dz2

for each ε. On the other hand, K2(ηεz1 , η
ε
z2)2 6 E((hB, ηεz1)2)E((hB, ηεz1)2) for each ε by

Cauchy–Schwarz, where by (2.5), the domain Markov property and scaling, we can
bound E((hB, ηεz)

2) = E(ϕ2εB
B (z)2)+E((h2εBB , ηεz)

2) 6 C(1+s(ε)) for some constant C.
Note that this constant C does not depend on ε, and the bound holds for all z in the
compact supports of f1 and f2 simultaneously. This implies that

lim sup
ε→0

∫∫
|z1−z2|62ε

f1(z1)f2(z2)K2(ηεz1 , η
ε
z2)dz1dz2 = 0

and hence that

lim
ε→0

∫∫
|z1−z2|>2ε

f1(z1)f2(z2)k2(z1, z2) dz1dz2 exists and is equal to K2(f1, f2),

as required. A similar argument appears in [BPR20, Proof of Lem. 2.18].

Spherical averages. — For z ∈ B and ε < d(z, ∂B) we define hε(z) = ϕz+εBB (z) to be
the ε-spherical average of hB around z. The spherical average admits the following
natural approximations. Write ρεn for a sequence of smooth test functions with total
mass one that are rotationally symmetric about z and supported in the annular region
z + {(1 − 2−2n)εB r (1 − 2−n)εB} for each n. Then E((hB, ρεn)2) = E(hε(z)

2) +

E((hz+εBB , ρεn)2) for each n by the Markov property, where the second term on the
right-hand side goes to 0 as n → ∞ by the zero boundary condition assumption. It
therefore follows that

E(hε(z)
2) = lim

n→∞
E((hB, ρεn)2)

and moreover this convergence is uniform for, say, ε ∈ (δ, 1).
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Using the same construction as above with z = 0 and ε = rn converging to 1 as
n → ∞, we also see that limn→∞ E(hrn(0)2) = limn→∞ E(hB, ρrnn )2), and this final
limit is 0, again by the zero boundary condition. Since E(hr(0)2) is decreasing as r ↑ 1,
this implies that
(2.11) E(hr(0)2)↘ 0 as r ↑ 1.

3. Covariance is the Green function

Let us start by showing that scaling and translation invariance together with the
domain Markov property already imply that the covariance kernel is the Green’s
function:

Proposition 6. — The function k2(x, y) (defined for x 6= y) is a positive multiple of
the zero boundary Green’s function. In particular, by (2), this implies that the bilinear
form K2 is a multiple of the map (f1, f2) 7→

∫∫
B2 G

B(z1, z2)f1(z1)f2(z2) dz1dz2.

Proof. — Write GB for the zero boundary Green’s function in B. We are going to use
the following characterisation of GB (see for example [WP22, Lem. 3.7]).

(?) Suppose that for y ∈ B, ky(x) is a harmonic function defined in in Br{y}, such
that ky(x)− bs(|x− y|) is bounded in a neighbourhood of y for some b > 0 and such
that (ky, fn)→ 0 as n→∞ for any sequence of functions fn as in our zero boundary
condition (C) of Theorem 3.(5)(6) Then ky(x) = bGB(x, y) for all x 6= y; x, y ∈ B.

Let us first see that for fixed y ∈ B the function ky(·) := k2(y, ·) is harmonic
away from {y}. For this, suppose that η > 0 and x ∈ B is such that |x − y| ∧
d(x, ∂B) > η. Then if we choose a such that |x − y| > η + 2a, we have k2(x, y) =

E(ϕ
x+(η+a)B
B (x)ϕy+aBB (y)) by definition, where ϕx+(η+a)B

B is almost surely harmonic
in x+ηB. This means that ϕx+(η+a)B

B satisfies ϕx+(η+a)B
B (x) =

∫
ϕ
x+(η+a)B
B (w)ρηx(dw)

(the mean value property) with probability one, where ρηx is uniform measure on
∂(x + ηB). Moreover, the domain Markov decomposition (and its uniqueness) mean
that ϕw+(a/2)B

B (w) = ϕ
x+(η+a)B
B (w) +Z with Z centred and independent of ϕy+aBB (y),

so again using the definition of k2, we have that k2(w, y) = E(ϕ
x+(η+a)B
B (w)ϕy+aBB (y))

for each w ∈ ∂(x + ηB). The conclusion is that for any given η > 0, and any x ∈ B
such that |x− y| ∧ d(x, ∂B) > η:

(3.1) k2(x, y) =

∫
k2(w, y)ρηx(dw).

Note that the support of ρηx does not include y by assumption, so the integral against
k2(·, y) is perfectly well defined. (The proof above is verbatim that given in [BPR20,
Lem. 2.9], which applies directly to all d > 2.) (3.1) implies that ky is indeed harmonic
in B r {y}. Note that in particular we have continuity in this region, which we did
not assume a priori.

(5)Note that for any fixed y, the support of fn will not intersect y and so (ky , fn) makes perfect
sense as the integral of ky against fn in B.

(6)The proof in [WP22] works exactly the same if we use this “zero boundary condition” for ky
rather than a pointwise zero boundary condition.
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We now check the boundary condition for ky. If fn are a sequence of functions
as in (C) of Theorem 3, we have (ky, fn) =

∫
k2(y, x)fn(x) dx by definition of ky.

Then, by the harmonicity shown above (and because fn has support outside of
some fixed neighbourhood Bδ(y) of y for n large enough), this integral is equal to∫
k2(w, x)fn(x)F (w) dxdw where we can take F to be a fixed smooth function sup-

ported in Bδ(y) that is radially symmetric about y. Due to (2), we see that this is equal
to K2(F, fn) = E((hB, F )(hB, fn)), which is in turn bounded (using Cauchy–Schwarz)
by the square root of E((hB, F )2)E((hB, fn)2). Applying the boundary condition (C),
we see that this indeed converges to 0 as n→∞.

Now, notice that by (2.4), for any δ > 0 there are some constants c1, c2 > 0 such
that w 7→ k2(0, w) + c1s(|w|) + c2 is a positive harmonic function in (1− δ)B r {0}.
Thus by Bôcher’s theorem [ABR01, Chap. III], we conclude that there is some har-
monic function ν(w) : (1 − δ)B → R such that in (1 − δ)B r {0} we can write
k2(0, w) + c1s(|w|) + c2 = c3s(|w|) + ν(w). In particular, there is some b > 0 such
that k2(0, w) − bs(|w|) is harmonic and bounded in (1 − 2δ)B r {0} and thus can
be extended to a harmonic function on (1 − 2δ)B. Note that b must be positive,
since

∫
k2(0, z)ρ

|w|
0 (dz) = E(h|w|(0)2) is positive and increasing to ∞ as w ↓ 0 by the

domain Markov property.
From here, we return to a fixed y ∈ B. We choose ε > 0 such that d(y, ∂B) > 2ε

and write hB|y+2εB = hy+2εB
B + ϕy+2εB

B . Then for x ∈ y + εB we have k2(x, y) =

E((hB, ηx)(hB, ηy)) where ηx and ηy are smooth functions with mass one, radially
symmetric around x, y and supported in small non-intersecting balls around x and y
respectively. Using the decomposition and harmonicity of ϕy+2εB

B we have

k2(x, y) = E((hBy+2εB, ηx)(hBy+2εB, ηy)) + E(ϕy+2εB
B (x)ϕy+2εB

B (y)),

where the second term on the right-hand side is bounded by Cauchy–Schwarz and
(2.4). The first term is equal to bs(|x− y|) +O(1) in some neighbourhood of y by the
definition of the distribution of hy+2εB

B , and the previous paragraph.
We have therefore shown that x 7→ k2(x, y) satisfies the condition (?) and is there-

fore equal to a multiple (which must actually be b) of GB(x, y). Since y ∈ B was
arbitrary we are done. �

Corollary 7. — For any f ∈ H−1(B), take a sequence of smooth functions (fn)n>0

such that GB(f − fn, f − fn) → 0. Then we may define (hB, f) to be the L2 limit of
(hB, fn) as n→∞. The limit does not depend on the approximation.

In what follows, we will therefore use the notation (hB, f) for f ∈ H−1(B) without
further justification.

4. Gaussianity

It now remains to argue that the field is Gaussian. We do this via a decomposition
of the field into a sequence of radial processes. We show using the domain Markov
property that each of these processes is Gaussian, and that moreover, the whole
sequence is jointly Gaussian.
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First, we will see a bound for the 4-point function that is reminiscent of Wick’s
theorem: this will help us deduce continuity of our processes. In the second subsection,
we do the basic case – the case of spherical averages. Finally, we extend this to a wider
range of processes, obtained from so called spherical harmonics. The Gaussianity of
the field (hB, f)f∈C∞c (Rd) is proved in this final subsection.

4.1. Weak Gaussianity in terms of the 4-point function. — To prove continuity of
our radial processes, we need the following bound that is implied by our assumption
on existence of fourth moments. Notice that this can be seen as establishing a very
weak form of Wick’s theorem, i.e., getting us closer to Gaussianity. Recall that for
r > 0, hr(0) = ϕrBB (0) is the spherical average at radius r around the origin, and
converges to 0 in probability as r ↑ 1.

Lemma 8. — For r ∈ (0, 1) we have that

(4.1) E(hr(0)4) =

∫∫
∂(rB)4

k4(z1, z2, z3, z4)

4∏
i=1

ρr0(dzi),

where the right-hand side is well defined as the limit when a→ 0 of∫∫
|zi−zj |>a ∀i,j

k4(z1, z2, z3, z4)
∏

ρr0(dzi).

Moreover, for some constant c(d) and some η ∈ [0, 1):

(4.2) |k4(z1, z2, z3, z4)| 6 c(d)δ−ηg(z1, z2, z3, z4)

for all δ ∈ (0, 1] and distinct z1, . . . , z4 ∈ ∂(1− δ)B, where

g(z1, z2, z3, z4) = GB(z1, z2)GB(z3, z4) +GB(z1, z3)GB(z2, z4) +GB(z1, z4)GB(z2, z3)

is the four-point function for the d-dimensional zero boundary GFF in B.

Before proving the lemma, let us show that for any 0 < r < 1 − η, and for some
constant C(η) depending only on η,

(4.3) lim sup
a>0

∫∫
∂(rB)4r{Aa}

|k4(z1, z2, z3, z4)|
4∏
i=1

ρr0(dzi) 6 C(η)s(r)2,

where Aa = {z1, z2, z3, z4 ∈ B4 : d(zi, zj) 6 a for some i 6= j}. Indeed, by symmetry it
suffices to bound the integral over the region where min(|zi−zj |) = |z1−z2|. However,
on this region, by (2.7), we can bound |k4| above by an η-dependent constant times

(1 + s(|z1 − z2|))
∑
i 6=3

√
1 + s(|zi − z3|)

∑
j 6=4

√
1 + s(|zj − z4|).

Then expanding the product of the two sums, we can show the desired bound for
the integral of each term separately (uniformly in a), using Cauchy–Schwarz in the
integral over z3 and z4 for all terms, except s(|z3 − z4|)s(|z1 − z4|) which can be
integrated directly. Here we are using the fact that for any fixed z1 ∈ ∂(rB), we have
that

∫
∂(rB) s(|z1−z|)ρ

r
0(dz) = O(s(r)). In particular, applying dominated convergence,

this shows that the integral in (4.1) is well-defined and finite.
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The expression for the 4-point function now also follows from dominated conver-
gence.

Proof of (4.1). — Fix r ∈ (0, 1) and for each n > 1 partition the sphere ∂((r−2−n)B)

into regions each having diameter no larger than 2−n. For each of these regions we
can then choose a ball of maximal radius centred at a point in the region, so that
the ball intersected with the sphere lies inside the region, but within distance 2−2n

from the boundary of the region. This produces a sequence {zi,n}16i6mn and radii
{ri,n}16i6mn (all less than 2−(n+1)) such that the balls zi,n + ri,nB do not intersect.

We can now set νi,n for each i, n to be a smooth mollifier supported on zi,n+ri,nB,
that is radially symmetric about zi,n and has total mass one. Using that k2 = bGB, we
see that m−1n

∑n
i=1(hB, νi,n)→ hr(0) in L2 as n→∞. On the other hand, the defini-

tion of k4 gives that k4(zi,n, zj,n, zk,n, z`,n) = E((hB, νi,n)(hB, νj,n)(hB, νk,n)(hB, ν`,n))

for any distinct 1 6 i, j, k, ` 6 mn and every n. Dominated convergence using (4.3)
then allows us to conclude. �

The Wick-type of bound is slightly trickier:

Proof of (4.2). — Fix z1, z2, z3, z4 distinct and for each j write aj=mini 6=j d(zi, zj)/2.
Denote Bj := (zj + ajB) ∩ B for each j so that the Bj do not intersect. Write ρj for
uniform measure on ∂(zj + ajB) and ρ̃j for harmonic measure on ∂Bj r ∂B, seen
from zj .

Claim 9. — We can write

(4.4) k4(z1, z2, z3, z4) = E((hB, ρ̃1)(hB, ρ̃2)(hB, ρ̃3)(hB, ρ̃4)).

This claim could be checked straightforwardly if we could apply the domain Markov
property inside the regions B1 to B4, so it should not be too surprising. However, since
the Markov property has only been assumed for balls, we will have to do a little bit
of work to show this. This will be carried out shortly, but let us first see how (4.2)
follows.

First, notice that using the domain Markov property we can write

E((h2B, ρ̃j)
4) = E((ϕB

2B, ρ̃j)
4) + 6E((ϕB

2B, ρ̃j)
2)E((hB2B, ρ̃j)

2) + E((hB2B, ρ̃j)
4)

and hence bound E((hB, ρ̃j)
4) 6 E((h2B, ρ̃j)

4) for each j . By the same dominated
convergence argument as for (4.2), and writing k2B4 for the four-point function of h2B,
we see that the latter is equal to

∫∫
∂(zj+ajB) |k

2B
4 (x, y, z, w)|ρ̃1(dx) . . . ρ̃4(dw). But then

by (4.3) and using that each zj + ajB is far from the boundary of 2B we see that this
is less than some constant, not depending on δ, times

(4.5) sup
∂Bjr∂B

∥∥∥dρ̃j
dρj

∥∥∥ s(aj)2.
In the case that aj > δ, sup∂Bjr∂B ‖dρ̃j/dρj‖ can be bounded above by the probability
that d-dimensional Brownian motion on the half space {(x1, . . . , xd) : x1 > 0}, started
from (δ/aj) reaches the boundary of the unit sphere before hitting the hyperplane
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{x1 = 0}. This is bounded above by a constant times (δ/aj) [Bur86, Th. 4.4]. When
δ > aj we have sup∂Bjr∂B ‖dρ̃j/dρj‖ = 1. So overall, we obtain the bound (where
from now on a . b means a 6 Cb for some constant C depending on the dimension):

E((hB, ρ̃j)
4)1/4 .

( δ
aj
∧ 1
)√

s(aj).

Thus applying Cauchy–Schwarz to (4.4) we see that

k4(z1, z2, z3, z4) .
4∏
j=1

( δ
aj
∧ 1
)√

s(aj).

On the other hand, we can lower bound g(z1, z2, z3, z4) using the explicit expression

GB(x, y) = s(|x− y|)− s(|x||y − x̃|) ; x̃ = |x|−2x.

In particular, when |x| = |y| = 1 − δ = r, we have that |x|2|y − x̃|2|x − y|−2 =

(1 + |x − y|−2δ2(2 − δ)2). This implies that, on the region |x − y| > δ, we have
GB(x, y) & δ2|x− y|−2 for d = 2 and GB(x, y) & |x− y|2−dδ2|x− y|−2 for d > 3. On
the region |x− y| < δ we have GB(x, y) & s(|x− y|).

Without loss of generality we can now assume that a1 > a2 > a3 > a4. Combining
the above lower bounds for GB and the definition of g with the upper bounds for k4,
we obtain (4.2) under the condition that a2 > a1/10. Note that the δ−η correction is
only actually needed when the dimension d = 2.

When a2 6 a1/10, i.e., one point is considerably further than the rest, our bounds
do not suffice – this is because we haven’t taken properly care of cancellations occur-
ring in the third moment, when three points are together. Let us do that now. Notice
that when a2 6 a1/10 we have B2, B3, B4 ⊂ z2 + a1B; we write ρ̂i for harmonic mea-
sure seen from z2, z3, z4 on ∂(z2 + a1B) r ∂B. We need an extension of Claim 9, that
first separates the three points, and looks at the occurring cancellations:

Claim 10. — In the case that a2 < a1/10 we can further write k4(z1, z2, z3, z4) as

(4.6) E((hB, ρ̃1)
∏
i 6=1

(hB, ρ̂i))

+
∑

σ∈S(2,3,4)

E((hB, ρ̃1)(hB, ρ̂σ(2)))E((hB, ρ̂σ(3) − ρ̃σ(3))(hB, ρ̂σ(4) − ρ̃σ(4))).

Again, we postpone the proof of the claim and first see how it implies (4.2). From
the same Cauchy–Schwarz argument and bounds as in a2 > a1/10 case (noting also
that d(zj , ∂(z2 +a1B)) > a1/2 for j = 3, 4), we can deduce that the first term in (4.6)
is . δ−ηg(z1, z2, z3, z4) for some η ∈ [0, 1). Again the δ−η correction is only needed
when d = 2.

To deal with the latter terms in (4.6), we use the fact that the covariance of hB is
equal to bGB. Indeed, using the explicit expression for GB we see that the latter term
is given by

4b2
∑

σ∈S(2,3,4)

GB(z1, zσ(2))G
(z2+a1B)∩B(zσ(3), zσ(4)),

and since GD′ 6 GD for D′ ⊂ D, (4.2) then follows in the case a2 6 a1/10 too.
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It now remains to prove the claims.

Proof of Claims. — We start with (4.4). As mentioned above, we cannot apply the
Markov property directly inside the regions Bj . Instead we will work in 2B and use
the equivalent of (4.4) for the field h2B, together with the Markov decomposition
h2B = hB2B +ϕB

2B. In this decomposition, the two summands are independent, hB2B has
the law of hB and ϕB

2B is harmonic inside B.
For each i = 1 . . . 4, let ηi be a smooth function supported in Bi, rotationally

symmetric about zi, such that k4(z1, z2, z3, z4) = E(
∏
i(h

B, ηi)). Let us also denote
by ρ′i the harmonic measure on ∂Bi (now including the part on ∂B) seen from zi.

By the Markov decomposition for the field h2B inside {z1 + a1B, . . . , z4 + a4B},
as in (2.2) with n = 4, we have that E

(∏4
i=1(h2B, ηi)

)
= E

(∏4
i=1(h2B, ρ′i)

)
. We use

the domain Markov decomposition h2B = hB2B + ϕB
2B to rewrite this as

E
(∏4

i=1(hB2B + ϕB
2B, ηi)

)
= E

(∏4
i=1(hB2B + ϕB

2B, ρ
′
i)
)
.

Opening the brackets and using the independence of hB2B and ϕB
2B we can write this

further as∑
S∪S′={1,2,3,4}

E
(∏

i∈S(hB2B, ηi)
)
E
(∏

j∈S′(ϕ
B
2B, ηj)

)
=

∑
S∪S′={1,2,3,4}

E
(∏

i∈S(hB2B, ρ
′
i)
)
E
(∏

j∈S′(ϕ
B
2B, ρ

′
j)
)
.

As hB2B has the law of hB, to prove that E
(∏4

i=1(hB, ηi)
)

= E
(∏4

i=1(hB, ρ′i)
)
it suffices

to show that all terms with |S| 6= 4 cancel out. Since (hB, ρ̃i) = (hB, ρ′i) a.s. for each i,
this proves the claim.

To show the cancellation, first observe that as ϕB
2B is harmonic inside each Bj ,

we have that (ϕB
2B, ηj) = (ϕB

2B, ρ
′
j) for every j = 1, . . . , 4 and thus the terms with

|S|′ = 4 cancel out. Also, both hB2B and ϕB
2B are mean zero, so all terms with |S| = 1

or |S|′ = 1 also cancel out. We are left to consider the cases when |S| = 2 and |S′| = 2.
But we already know that

E
(∏

j∈S′(ϕ
B
2B, ηj)

)
= E

(∏
j∈S′(ϕ

B
2B, ρ

′
j)
)
,

and thus it remains to just verify that for i 6= j, we have that E((hB2B, ηi)(h
B
2B, ηj)) =

E((hB2B, ρ
′
i)(h

B
2B, ρ

′
j)). This can be however verified directly via the fact that the covari-

ance is a multiple of the Green’s function and all ηi, ηj , ρ′i, ρ′j have disjoint support.
The proof of (4.6) given (4.4) follows from the same argument, using the domain

Markov decomposition of h2B inside z1 + a1B and z2 + a1B. We omit the details. �

4.2. Gaussianity of spherical averages. — We now show that the r-spherical aver-
age process around 0 with a varying radius is a Gaussian process.

Lemma 11. — (hr(0))r∈(0,1) is a Gaussian process.

J.É.P. — M., 2022, tome 9



1116 J. Aru & E. Powell

To prove this, we will use the fact that any continuous stochastic process (indexed
by positive time) with independent increments, is Gaussian. The fact that hr(0) has
a continuous modification in r comes from Lemma 8 of the previous subsection.

Proof of Lemma 11. — Since the variance of this process increases as r ↓ 0, it is
natural to parameterise the time so that the process starts at r = 1. Thus we set
Xt = h1−r(0). Then Xt → 0 in probability as t ↓ 0 and X has independent incre-
ments by the domain Markov property (more precisely (2.1)). Thus, to show that
it is a Gaussian process, by [Kal97, Th. 11.4], it suffices to prove that it admits a
continuous modification in t.

We apply Kolmogorov’s continuity criterion to show this. By the domain Markov
property and scaling assumption it suffices to control the behaviour at time 0, i.e.,
it is enough to show that for some C ∈ (0,∞), some η < 1 and all δ ∈ (0, 1):

(4.7) E(X4
δ ) 6 Cδ2−η.

For this we use (4.2). We obtain that

E(X4
δ ) =

∫∫
∂((1−δ)B)4

k4(z1, z2, z3, z4)

4∏
i=1

ρ1−δ0 (dzi)

. δ−η
∫∫

∂((1−δ)B)4
g(z1, z2, z3, z4)

4∏
i=1

ρ1−δ0 (dzi).

Now recalling that g(z1, z2, z3, z4) is the four-point function for the zero boundary
GFF in B, we see that the integral on the right hand side is the fourth moment of the
spherical average of the GFF at radius 1− δ. But this spherical average is a centred
Gaussian with variance − log(1− δ) when d = 2 and 1− (1− δ)2−d when d > 2 – see
[WP22, Eq. (13)]. Since these are both of order δ as δ → 0 the fourth moment is of
order δ2 by Gaussianity of the GFF itself. �

4.3. Gaussianity in the general case. — In what follows, we will often use the co-
ordinates z = (r, θ) = (|z|, z/|z|) for a point in Rd, d > 2.

We will generalise the case of spherical averages to a wider class of processes,
stemming from so called spherical harmonics. The interest comes from the following
classical theorem (see e.g. [SW71, Chap. IV]).

Theorem 12 (Expansion using spherical harmonics). — In each d > 2, there is a
collection of smooth functions ψn,j(θ) : ∂B → R with n ∈ N0,Mn ∈ N and j ∈
{1, . . . ,Mn} such that

(A) The functions ψn,j(θ) form an orthonormal basis of L2(∂B);
(B) For every n ∈ N0 and j ∈ {1, . . . ,Mn}, we have that (r, θ) 7→ rnψn,j(θ) is

harmonic in B;
(C) For each n ∈ N0, one can find radially symmetric functions fn,i(r) : [0, 1]→ R

with i ∈ N0 such that (en,j,i = fn,iψn,j)n∈N0,j∈{1,...,Mn},i∈N form an orthonormal basis
of L2(B).
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Remark 13. — In fact one can write out a specific collection of such functions using
Legendre polynomials and Bessel functions and choose en,j,i to be eigenfunctions of ∆.
This is not necessary here.

For example, in d = 2, one has M0 = 1 and Mn = 2 for n > 1, with the ψ-s given
by the usual Fourier series on the circle. That is,{
{e0,1,k}k>1, {en,1,k, en,2,k}n>1,k>1

}
:=
{
{J0(α0,kr)}k>1, {Jn(αn,kr) sin(nθ), Jn(αn,kr) cos(nθ)}n>1,k>1

}
form an orthonormal basis of L2(B), where (Jn)n>0 are the Bessel functions and αn,k
are the zeroes of Jn for each n.

Using these notations, the main result of this section can be stated as follows:

Proposition 14 (Gaussianity). — The random variables (hB, en,j,i)n∈N,j∈{1,...,Mn},i∈N
are jointly Gaussian. In particular (hB, f)f∈C∞c (Rd) is a Gaussian process.

To prove Proposition 14 we will choose appropriate radial functions gn,j for which
we can verify that hB tested against gn,j(r)ψn,j(θ) on each sphere at radius r is a
Gaussian process in r ∈ (0, 1). The key observation is the following. For r ∈ (0, 1) and
a smooth function ψ : ∂B→ R let νψr be the signed measure defined by the condition
that

(4.8) νψr (φ) =

∫
∂B
ψ(θ)φ(r, θ)ρ10(dθ)

for all functions φ such that φ(r, θ) ∈ L1(∂B, ρ10(dθ)), where as before ρ10 is uniform
measure on ∂B.

Lemma 15. — Suppose that ϕ is a harmonic function in B. Suppose also that ψ(θ) is
a smooth function defined on ∂B such that (r, θ) 7→ ψ(θ)rn is harmonic in B. Then
r−nνψr (ϕ) is constant as a function of r on (0, 1).

Proof. — Let us fix r0 ∈ (0, 1): we will show that ( ddr )[r−nνψr (ϕ)]|r=r0 = 0, which
implies the result. By the second Green’s identity applied in r0B to the harmonic
functions ϕ and (r, θ) 7→ rnψ, we can write∫

∂(r0B)

(
ϕ
d

dr
[rnψ]− rnψ d

dr
ϕ
)

=

∫
r0B

(ϕ∆[rnψ]− rnψ∆ϕ),

where we are integrating against the standard volume measure on r0B on the right-
hand side, and the induced measure on its boundary on the left, which is a multiple
of uniform measure. Now the right-hand side is zero as both rnψ and ϕ are harmonic
by assumption. Thus we deduce that

n

∫
∂B
ϕ(r0, θ)ψ(θ) ρ10(dθ) = r0

∫
∂B
ψ(θ)

d

dr
ϕ(r, θ)

∣∣
r=r0

ρ10(dθ).
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It follows that
d

dr
[r−nνψr (ϕ)]

∣∣∣
r=r0

= −nr−n−10

∫
∂B
ψ(θ)ϕ(r0, θ) ρ

1
0(dθ)

+ r−n0

∫
∂B
ψ(θ)

d

dr
ϕ(r, θ)

∣∣
r=r0

ρ10(dθ) = 0. �

Notice that all the functions ψn,j of Theorem 12 satisfy the conditions for the
function ψ in this lemma. A similar proof to the spherical average case now implies
that any finite linear combination of the functions (r−nν

ψn,j
r )n>0,j∈{1,...,Mn} tested

against hB gives rise to a Gaussian process.

Lemma 16. — The process (Ar)r∈(0,1) defined by

(4.9) Ar :=

k∑
i=1

ai(h
B, r−niν

ψni,ji
r )

is Gaussian for any k > 0, ni ∈ N0, ji ∈ {1, . . . ,Mni
} and (a1, . . . , ak) real.

In particular, for any fixed radius r ∈ (0, 1), we have that (hB, ν
ψn,j
r )n∈N0,j∈{1,...,Mn}

is jointly Gaussian.

Proof. — First let us fix a0, . . . , ak in R. We again parametrise the process from large
radii towards small radii, i.e., let’s set Xt = A1−t. We first argue using Lemma 15
that Xt has independent increments.

For clarity, let us first show this for X̃t = (hB, (1 − t)−niν
ψni,ji
1−t ). Indeed, for each

i ∈ {1, . . . , k} and each s < r < 1 we can write by domain Markov property
(hB, s−niν

ψni,ji
s ) = (hrB, s−niν

ψni,ji
s ) + (ϕrB, s−niν

ψni,ji
s ).

As already mentioned, ψni,ji satisfies the conditions of Lemma 15, and thus
(ϕrB, s−niν

ψni,ji
s ) = lim

u↑r
(ϕuB, u−niν

ψni,ji
u ) = (hB, r−niν

ψni,ji
r ),

where the last equality follows since (hrB, u−niν
ψni,ji
u ) converges to 0 as u ↑ r in L2,

by a direct calculation using the Green’s function.
As hrB and ϕrB are independent, we conclude that X̃t = (hB, (1− t)−niν

ψni,ji
1−t ) has

independent increments. The same argument can be directly applied to get the claim
for Xt.

Now,Xt is also centred and square integrable, converging to 0 in probability as t↓0,
by definition and assumptions on hB. Moreover, using the fact that each ψn,j is bound-
ed on ∂B, we can use the 4th moment bound (4.2) to apply Kolmogorov’s criteria
similarly to the case of the spherical average and obtain that Xt possesses an a.s. con-
tinuous modification. This implies that the process is Gaussian by [Kal97, Th. 11.4].

For the final claim, let us fix r ∈ (0, 1). Then (hB, ν
ψn,j
r )n>0,j∈{1,...,Mn} is jointly

Gaussian, since for any k > 1, b1, . . . , bk ∈ R, ni ∈ N0 and ji ∈ {1, . . . ,Mni}, we can
apply the above with ai = rnibi for each i to see that

∑
i bi(h

B, ν
ψni,ji
r ) is a Gaussian

random variable. �

There is one more step required to deduce Proposition 14: to extend the joint
Gaussianity to varying radii.
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Lemma 17. — For any k > 1, and any (ri, ni, ji)16i6k with ri ∈ (0, 1), ni ∈ N0 and
ji ∈ {1, . . . ,Mni} for each i, the vector(

(hB, ν
ψn1,j1
r1 ), . . . , (hB, ν

ψnk,jk
rk )

)
is Gaussian.

In particular, we have that (hB, ν
ψn,j
r )r∈(0,1),n>0,j∈{1,...,Mn} is jointly Gaussian.

Proof. — The second statement is an immediate consequence of the first. So, let us
fix k, (ri, ni, ji)i6k as in the statement. For now, let us assume that r1 > · · · > rk > 0

(we come back to the general case at the end of the proof). We iterate the domain
Markov property inside each ball riB as follows: we write hB = h0, then h0 = h1 +ϕ1

by applying the Markov property inside r1B, then h1 = h2 + ϕ2 inside r2B etc. so
that (ϕ1, . . . , ϕk) are mutually independent by (2.1). Shortening the notation νψni,ji

r

to νir for each i = 1, . . . , k, it suffices to show that

(4.10)
(
(h0, ν1r1), (ϕ1, ν2r2), (h1, ν2r2), . . . , (ϕk−1, νkrk), (hk−1, νkrk)

)
is a Gaussian vector – indeed, we can write each (hB, νiri) =

∑i
j=1(ϕj , νiri). However,

as in the proof Lemma 16, it follows from Lemma 15 that
(hj−1, νψn,i

rj ) = (ϕj , νψn,i
rj ) = (rj+1/rj)

n(ϕj , νψn,i
rj+1

)

for any ψn,i and any j. Hence, (4.10) can be rewritten as(
(ϕ1, ν1r1), (r2/r1)n2(ϕ1, ν2r1), (ϕ2, ν2r2), (r3/r2)n3(ϕ2, ν3r2),

. . . , (ϕk−1, νk−1rk−1
), (rk/rk−1)nk(ϕk−1, νkrk−1

), (ϕk, νkrk)
)
.

But now (ϕk, νkrk) is Gaussian, and each pair ((ϕi, νiri), (ri+1/ri)
ni+1(ϕi, νi+1

ri )) with
i = 1, . . . , k − 1 is jointly Gaussian by Lemma 16. Moreover, this singleton, and each
pair in the list are independent of one another by construction. Thus we indeed have
a Gaussian vector.

Finally, if the ri’s are not distinct, the same argument still works: the “pairs” just
mentioned will simply be larger tuples, concluding the proof of the lemma. �

We are now ready to prove Proposition 14.

Proof of Proposition 14. — Consider the basis (en,j,i = fn,iψn,j)n∈N0,j∈{1,...,Mn},i∈N of
L2(B) given by Theorem 12. The previous lemma implies that
(4.11) {(hB, fn,i(r)νψn,j

r )}r∈(0,1),n∈N0,j∈{1,...,Mn},i∈N

is a Gaussian process. In particular,
(4.12) (hB, fn,iψn,j)n∈N0,j∈{1,...,Mn},i∈N

is also a Gaussian process. Indeed, the random variables in (4.12) exist by Corollary 7,
and we obtain the Gaussianity since they can be defined as almost sure limits of
weighted sums of elements in the collection (4.11).

The fact that en,j,i form a basis of L2(B), together with linearity of (hB, f) and
that hB is zero outside of B, now implies that (hB, f)f∈C∞c (Rd) is a Gaussian process.

�
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