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Abstract
Team-sports staff often administer non-exhaustive exercise assessments with a view to evaluating physiological state, to 
inform decision making on athlete management (e.g., future training or recovery). Submaximal fitness tests have become 
prominent in team-sports settings for observing responses to a standardized physical stimulus, likely because of their time-
efficient nature, relative ease of administration, and physiological rationale. It is evident, however, that many variations of 
submaximal fitness test characteristics, response measures, and monitoring purposes exist. The aim of this scoping review 
is to provide a theoretical framework of submaximal fitness tests and a detailed summary of their use as proxy indicators 
of training effects in team sports. Using a review of the literature stemming from a systematic search strategy, we identified 
five distinct submaximal fitness test protocols characterized in their combinations of exercise regimen (continuous or inter-
mittent) and the progression of exercise intensity (fixed, incremental, or variable). Heart rate-derived indices were the most 
studied outcome measures in submaximal fitness tests and included exercise (exercise heart rate) and recovery (heart rate 
recovery and vagal-related heart rate variability) responses. Despite the disparity between studies, these measures appear 
more relevant to detect positive chronic endurance-oriented training effects, whereas their role in detecting negative transient 
effects associated with variations in autonomic nervous system function is not yet clear. Subjective outcome measures such as 
ratings of perceived exertion were less common in team sports, but their potential utility when collected alongside objective 
measures (e.g., exercise heart rate) has been advocated. Mechanical outcome measures either included global positioning 
system-derived locomotor outputs such as distance covered, primarily during standardized training drills (e.g., small-sided 
games) to monitor exercise performance, or responses derived from inertial measurement units to make inferences about lower 
limb neuromuscular function. Whilst there is an emerging interest regarding the utility of these mechanical measures, their 
measurement properties and underpinning mechanisms are yet to be fully established. Here, we provide a deeper synthesis 
of the available literature, culminating with evidence-based practical recommendations and directions for future research.
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1 � Background

Monitoring the training process and its outcomes within 
team-based sports requires a systematic approach that: (1) 
is grounded on a rigorous conceptual framework; (2) can 
be implemented pragmatically on a frequent basis; (3) uses 
proxy outcome measures possessing sufficient measure-
ment properties; and (4) is sensitive to identify acute (e.g., 
post-match) and chronic (e.g., post-training program) train-
ing effects [1–4]. Such an approach can be used to inform 
decision making around athlete and training management, 
including future programming, adjustments to training 

delivery, or the implementation of recovery interventions 
[1].

Assessing aerobic-oriented training effects has tradition-
ally been made via distinct maximal-effort exhaustive tests. 
For example, improvements denoted in maximal intermit-
tent field tests (e.g., 30–15 Intermittent Fitness Test) can 
infer improved aerobic capacity (amongst other systems), 
whereas decreased values may be interpreted as a negative 
response or de-training [5, 6]. However, given the nature of 
the in-season phase common to professional teams, which 
frequently experiences fixture congested periods, it is con-
sidered less feasible to expose athletes to serial exhaustive 
assessments [7, 8]. With regard to neuromuscular func-
tion, a variety of test protocols are administered to quantify 
chronic training effects on athletic qualities such as strength 
and power, but more frequently as indicators of acute and 
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Key Points 

Submaximal fitness tests provide a practical tool for 
team-sport practitioners to evaluate an athlete’s physi-
ological state in a short duration and non-exhaustive 
manner, whereby testing can be integrated within the 
training session.

We propose a theoretical framework for submaximal 
fitness tests in team sports, encompassing an opera-
tional definition, five test protocol categories according 
to their exercise regimen and intensity parameters, and 
an evidence-based synthesis of protocols and outcome 
measures derived from three main response types: cardi-
orespiratory/metabolic, subjective, and mechanical.

Heart rate indices are most prevalent in the literature 
(57% of all outcome measures) and appear sensitive to 
detect positive endurance-oriented training effects. How-
ever, their utility in inferring negative transient effects 
associated with variations in autonomic nervous system 
function is questionable in team sports.

At present, limited evidence exists regarding the util-
ity of ratings of perceived exertion to monitor training 
effects within submaximal fitness tests in team sports.

Collecting outcome measures derived from inertial 
measurement units during submaximal fitness tests may 
be a promising approach to monitor transient changes 
in lower limb neuromuscular function. Further work to 
establish the underlying theoretical framework and meas-
urement properties is warranted.

whereby exposure to maximal or exhaustive activities was 
thought to be ill-advisable because of the health risk it posed 
to patients [13, 14]. Over the years, a number of walking 
[15–19], cycling [14, 20–22], and running [23–25] SMFT 
have been administered among clinical and healthy popu-
lations. These tests involve single or multiple continuous 
steady-state protocols, with some prescribing an absolute 
standardized intensity, while others include relative intensity 
ranges, or self-paced protocols (refer to File 1 in the Elec-
tronic Supplementary Material [ESM]).

1.1 � Elite Sports

The implementation of SMFT in elite sports has been tradi-
tionally used for quantifying relevant physiological transi-
tions between exercise intensity domains (e.g., anaerobic 
threshold [i.e., the threshold indicates an equal rate of lac-
tate production and disposal] and the onset of blood lactate 
accumulation [4-mmol·L−1 lactate threshold]) [26, 27], often 
administered to inform training prescription or determine 
exercise economy. However, these tests generally necessitate 
a laboratory environment, are resource intensive and obtru-
sive, and therefore considered less feasible in the day-to-day 
field context, particularly with large cohorts of athletes [7].

Individual endurance sport practitioners were the first 
to develop and implement SMFT as part of their train-
ing monitoring processes [28, 29]. Throughout the years, 
a broad range of cycling and running SMFT have been 
adopted across a variety of endurance sport athletes such 
as cyclists [28–32], runners [33–35], and triathletes [29, 36, 
37]. Extensively used SMFT in endurance sports include 
exercise tasks prescribed by fixed internal intensities (% of 
an individual heart rate [HR] maximum) [32, 34], while the 
outcome measures are considered both external (e.g., speed 
[34], cadence, power [32] collected throughout the test) and 
internal responses (HR recovery [HRR] [38, 39], ratings of 
perceived exertion [RPE] [32] collected immediately post-
exercise). Alternatively, researchers have adopted tests using 
standardized external intensities (usually via absolute run-
ning speed values) [33, 37]. Initially, the primary purpose 
of these SMFT was to predict performance (e.g., time trial) 
or physiological capacities (i.e., maximal oxygen uptake) 
[32]; however, more recently, they have been used to iden-
tify impaired performance (e.g., functional overreaching) 
[40, 41].

Because of the simplicity of implementing SMFT, their 
non-exhaustive nature, and their potential to provide infor-
mation regarding both positive and negative training effects, 
SMFT have become common in team sports. Indeed, the 
adoption of SMFT in team-sports research [8, 10, 42] and 
practice [43, 44] has increased substantially over the last 
decade. However, given the broad range of SMFT adopted, 

transient responses (e.g., post-match recovery kinetics) [7, 
9]. Similarly, the practicability of such assessments in the 
team-sports environment is challenged by different factors 
such as the number of athletes, the time available for dis-
creet testing protocols, and the numerous contextual and 
individual elements that may undermine inferences derived 
from the data (e.g., motivation, physical qualities, season 
stage) [1, 7, 8].

Submaximal fitness tests (SMFT) have been proposed to 
deliver a feasible alternative to evaluate an athlete’s physi-
ological state, presumably because of their time-efficient 
nature, low physical/physiological burden, and relative 
ease of administration [10]. In essence, SMFT provide a 
pragmatic and systematic approach of observing response(s) 
to a standardized physical stimulus [11, 12]. Such assess-
ments have been investigated since the late 1940s [13] and 
were mainly adopted among clinicians diagnosing health 
conditions or physical fitness in non-athletic populations, 
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including various protocols (continuous vs intermittent) [45, 
46], activity modes (running vs cycling) [47, 48], intensities 
(fixed vs incremental, absolute vs individualized) [12, 48], 
outcome measures (cardiorespiratory/metabolic, subjective, 
or mechanical) [12, 49, 50], and purposes (monitoring posi-
tive vs negative effects) [47, 51], a synthesis appears war-
ranted. Accordingly, the aims of this scoping review were to 
(1) develop an operational definition of SMFT and protocol 
taxonomy, (2) identify previously used SMFT in the team-
sports research and discuss their conceptual and methodical 
aspects, (3) provide an audit of outcome measures, collec-
tion methods, and analytical processes, as well as evaluate 
the theoretical rationale underpinning their inclusion, (4) 
provide a narrative synthesis of the available research on 
SMFT as indicators of training effects in team sports, and 
(5) conclude with practical recommendations and future 
directions.

2 � Methods

Systematic searches of the electronic databases MEDLINE, 
Scopus, and Web of Science were used to identify rele-
vant studies. From 2170 records identified in the original 
searches, we accepted 87 team-sport studies meeting our 
inclusion criteria. A detailed description of the searching 
strategy, screening process, and the inclusion–exclusion cri-
teria are provided in File 2 in the ESM.

3 � Results

3.1 � Submaximal Fitness Test Definition

A table presenting the characteristics of the included stud-
ies is provided in File 3 in the ESM. Based on the avail-
able literature, we defined SMFT as a short exercise bout, 
undertaken at a standardized intensity that is intended to be 
non-exhausting, and performed with the purpose of inferring 
an athlete’s physiological state through the monitoring of 
relevant outcome measures. In this regard:

•	 Exercise is typically a cyclic activity involving large mus-
cle groups. In team-sports settings, this is often admin-
istered as running activities, however, cycling has also 
been featured.

•	 Standardized intensity refers to a threshold(s) that is 
standardized based on an internal response or exter-
nal intensity parameter, and can be either fixed for all 
athletes (i.e., absolute) or individualized to a capacity 
anchor (relative; e.g., fraction of HR maximum or maxi-
mal aerobic speed).

•	 Non-exhausting generally excludes frequent or prolonged 
‘all-out’ maximal intensities, intensities that would cause 
voluntary cessation, or intensities that elicit an excessive 
training stimulus beyond that originally intended. From 
a practical standpoint, in team sports, the test should 
not have negative carry-over effects for the subsequent 
training session (for instance, if administered during the 
warm-up), or elsewhere it is implemented as an inte-
grated standardized training component within the ses-
sion plan (see for example, Sect. 3.2; intermittent-varia-
ble category).

•	 Physiological state can be defined as a particular condi-
tion or function of an individual’s physiological system, 
or a combination of systems—primarily, cardiovascular, 
respiratory, nervous, and muscular—at a specific point 
in time. In the context of SMFT, it may be used to infer 
an athlete’s current (physical) performance capacity or 
training effects (i.e., training responses).

	   Training effects [4] indicate the direction (i.e., positive, 
negative) and the time course of the effect. Considering 
the challenges of dichotomizing time course criteria, we 
opted to use commonly referenced durations [4, 42] that 
align with the context and design of the included studies 
in our review, classified as acute (i.e., immediate [49] and 
up to a 1-week duration [47, 52]), short term (typically 
1–3 weeks; e.g., congested or intensified periods [53, 54], 
training camps [54, 55], exposure to extreme environ-
ments [56, 57], season break [58]), and chronic (usually 
established over several weeks or months of training; 
e.g., pre-season [51, 59], training intervention [60, 61]). 
The first two are commonly referred as transient effects, 
while the latter typically indicates more ‘persistent’ or 
‘enduring’ changes [4].

•	 Outcome measures include cardiorespiratory/metabolic, 
subjective, mechanical, or a combination, and are used 
as proxy (surrogate) measures that reflect (either directly 
or indirectly) the physiological systems they intend to 
assess. These are collected continuously within exercise 
and then aggregated into a summary metric (e.g., mean 
HR, accumulated ground impacts estimated via acceler-
ometery-derived data), or measured immediately post-
exercise (e.g., HRR, blood lactate, RPE).

3.2 � Protocol Taxonomy

Information on SMFT protocols was extracted and catego-
rized in reference to two main levels of classification: (1) 
exercise regimen (continuous or intermittent) and (2) manip-
ulation of exercise intensity (fixed, incremental, or variable). 
Regarding exercise regimen characteristics, continuous 
activity represents a constant load exercise bout (typically 
for at least several minutes), without frequent alterations in 
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velocity or rest periods [14, 62]. Alternatively, intermittent 
is defined as an activity that is interrupted and restarts after 
a particular time span, characterized by alternated loads and 
rest intervals [63, 64]. Considering all possible combinations 
of these categories, we subsequently identified five distinct 
SMFT categories from the available literature (Fig. 1), with 
each category further sub-divided based on the activity 
mode (running or cycling), movement pattern (linear, change 
of direction, or multi-directional), and exercise environment 
(closed, semi-open, or open):

•	 Continuous-fixed category represents a fixed-intensity 
exercise bout that remains constant for the entire SMFT 
and intends to elicit a steady state (e.g., 4 min running at 
12 km·h−1) [65, 66].

•	 Continuous-incremental category is characterized by 
a progressive increase in intensity within (single) or 
between (multiple) exercise bout(s), whereas each bout 
lasts for several minutes (e.g., 4 min running with pro-
gressive increases in speed, 3 sets × 3-min bouts at 10, 
11, and 12 km·h−1, interceded by 1-min rest periods) [11, 
67].

•	 Intermittent-fixed category involves reoccurring activi-
ties performed at a constant intensity and rest intervals 
(e.g., four running bouts × 50–60 m at 18–22.5 km·h−1, 
separated by 30 s of recovery) [49, 68].

•	 Intermittent-incremental category predominantly 
involves fixed rest periods, while intensity is increased 
between exercise bouts (e.g., 30-s shuttle runs at 
10–14 km·h−1, alternated by a 15-s rest period and with 
a-0.5 km·h−1 increment after each bout) [59, 69].

•	 Intermittent-variable category represents specific and 
non-specific standardized drills, and therefore locomotive 
demands fluctuate during the exercise (i.e., multi-direc-
tional movements). This category can be further catego-
rized into drill-based and game-based exercises. Drill-
based exercises refer to exercises that do not include 
competition features (e.g., passing drills) [70], whereas 
game-based exercises are characterized with competition 
features (small-sided games [SSG]) [71, 72].

3.2.1 � Application of the Taxonomy to the SMFT 
Team‑Sports Literature

From the 87 included team-sport studies, we identified 100 
independently described SMFT. As illustrated in Fig. 2, the 
majority of studies in the literature adopted continuous-fixed 
SMFT (37%), followed by intermittent-incremental (34%), 
intermittent-variable (15%), continuous-incremental (8%), 
and intermittent-fixed (6%). Table 1 provides a summary of 
these SMFT as described in these studies. Continuous-fixed 
protocols were administered in both running and cycling 

exercise modes and include linear and change of direc-
tion (running protocols) movement patterns performed at 
absolute or relative standardized intensities. Continuous-
incremental protocols comprised incremental exercises 
that were terminated when a specific internal (e.g., HR) or 
external (e.g., speed) intensity was achieved. Intermittent-
fixed SMFT solely involved short-duration (8–12 s), high-
intensity standardized bursts (~ 50–60 m). Intermittent-
incremental SMFT incorporated shorter versions of the most 
common intermittent shuttle fitness tests, such as the Yo-Yo 
Intermittent Recovery Tests (Yo-YoIR1&2) [46] and 30–15 
Intermittent Fitness Test [5]. Finally, intermittent-variable 
SMFT were mostly administered as game-based practices, 
including non-specific (handball, touchdown games) and 
specific (SSG of the sport) exercises, while drill-based prac-
tices included a variety of passing exercises (Table 1).

4 � Outcome Measures

We identified 202 total outcome measures used in previous 
team-sports research. As shown in Fig. 3, cardiorespiratory/
metabolic were the most used outcome measures (66%), fol-
lowed by mechanical (28%) and subjective (6%). The fol-
lowing sections present the outcome measures correspond-
ing to each response type, discuss their putative underlying 
mechanisms, and synthesize the current available evidence 
examining their changes within the SMFT framework.

4.1 � Cardiorespiratory/Metabolic Outcome 
Measures

In team-sports settings, which can include a large number of 
individuals who may possess different aerobic capacities [8, 
12], it is difficult to implement SMFT that are standardized 
by internal intensity variables. Accordingly, the majority of 
the tests were applied by standardizing the external inten-
sity and measuring the corresponding internal responses [10, 
73]. A variety of cardiorespiratory/metabolic outcome meas-
ures have been used in the literature, with the most common 
being HR-derived indices (Fig. 3). These include variables 
collected during (exercise HR [HRex]), immediately after 
(HRR) the SMFT, and soon after (HR variability [HRV, 
vagal-related HRV]) the SMFT. Other measures include 
blood markers (e.g., blood lactate) [67, 74–80] and oxygen 
consumption-related parameters (e.g., oxygen uptake) [75, 
76, 81, 82]. As blood and oxygen uptake outcome measures 
are time consuming, expensive, and obtrusive, their viability 
to provide standardized and repeatable response measures 
is considered limited, particularly in team sports [11, 83]. 
Accordingly, we focused on HR-derived indices.
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4.1.1 � Exercise HR

Exercise HR is collected during the SMFT and is analyzed in 
absolute (beats per minute; HRex[a]) [47, 59, 66, 69, 74–76, 
81, 82, 84–103, 104], relative to maximal HR (HRex[%]) [6, 
11, 12, 45, 46, 48, 51, 54, 56, 57, 59–61, 66, 67, 70, 79, 83, 
84, 89, 91, 105–119, 120], or HR reserve (HRex[reserve]) 
[53] values. A variety of methods are used to derive HRex, 
with the majority calculating the mean HR during the last 
10–60 s of the test [11, 12, 45, 47, 48, 51, 53–61, 66, 69, 
71, 74, 75, 82, 83, 85–87, 89, 92, 93, 96, 97, 103, 105–108, 
111, 113–115, 117, 119–121]. Other approaches calculate 
the mean HR during the overall test (particularly during 
intermittent-variable protocols such as SSG) [70, 71, 79, 
94, 98, 101, 104, 116], specific fixed timepoints [6, 46, 59, 
60, 84, 91, 95, 99, 105, 109, 110, 112, 122], or peak values 
observed [61, 90].

4.1.2 � HR Recovery

Heart rate recovery can be defined as the rate at which HR 
declines after exercise cessation [10, 39] and may be col-
lected with athletes lying supine [123], sitting upright [12, 
45], standing [89, 121], or walking [95]. Similarly, HRR can 
be assessed as the absolute (HRR[d]) [45, 47, 48, 53, 54, 57, 
59, 61, 66, 88, 100, 103, 107, 114, 119, 121, 123, 124] or 
relative (HRR[%d]) [12, 47, 53, 60, 66, 102, 104, 107, 113, 
114, 121] difference between HRex and HR value observed 
between 10 and 180 s post-test. Alternative approaches 
include the actual HR value observed at the end of the des-
ignated recovery period in absolute (HRR[a]) [66, 74, 89, 
95, 99, 121, 125] or relative (HRR[%]) [66, 89, 109, 110, 
113] values, or the overall mean HR during a variety of 
fixed time intervals [90, 97, 107]. Other approaches calculate 
time-based variables such as the time required to decrease 
from between fixed HR values (HRR[s]; e.g., time between 
80 and 70% HR maximum) [79], or the time constant of 
HRR derived from mono-exponential modeling [61, 126].

4.1.3 � HR Variability

Vagal-related HRV is defined as the variability in the time 
intervals (usually in milliseconds) between adjacent heart-
beats and reflects the regulation of cardiac autonomic nerv-
ous system (ANS) balance [10, 127]. Heart rate variability 
indices are commonly collected in a seated or supine posi-
tion and resting state in a laboratory or quiet room [10, 42]; 
however, as the aim in SMFT is to monitor the response 
during and after a given submaximal workload, only HRV 
parameters observed immediately or soon after the test are 
relevant for SMFT in team sports. These measures are usu-
ally analyzed within a window of 3–5 min post-test cessa-
tion, and predominantly calculated as time domain-related 

variables such as the square root of the mean of the sum 
of the squares of all differences between successive normal 
heartbeats (rMSSD) [61, 107] or its natural log (Ln rMSSD) 
[45, 47, 53, 59, 100, 106, 114], natural log of standard devia-
tion of successive ‘R spikes’ (the peak of the QRS complex, 
reflective of ventricular depolarization, recorded from an 
electrocardiogram wave) measured from Poincaré plots (Ln 
SD1) [57, 106], and the standard deviation of mean interval 
differences between normal heartbeats (SDNN) [61, 107].

4.1.4 � Putative Mechanisms

Heart rate-derived indices are commonly used to inform 
chronic aerobic-oriented training effects, attributed to the 
linear relationship between HRex and oxygen uptake dur-
ing an intended steady-state activity [10, 42]. A reduction 
in HRex to a standardized submaximal stimulus may rep-
resent improved exercise economy, which may translate 
to the development of aerobic fitness [51, 120], whereas 
an increment of HRex is considered to reflect a negative 
response (de-training of the cardiorespiratory system) [87], 
likely due to central adaptations (i.e., left-ventricular func-
tion) [128]. In addition, an increment of HRR or vagal-
related HRV measures is considered a positive effect [59, 
60, 107], reflecting the reactivation of the parasympathetic 
system and hemodynamic adjustments post-exercise [10]. 
That said, in addition to being more time consuming, these 
measures may be influenced by preceding exercise, with 
higher intensities eliciting increased blood acidosis that 
simulate the metaboreflex, and therefore may reduce HR 
decay post-exercise and alter HRR and vagal-related HRV 
results [10, 53].

The use of HR-derived indices to infer negative transient 
training effects is inconclusive in the SMFT research. The 
theoretical basis for their inclusion is due to the potential 
influence of various training-induced physiological pro-
cesses that originate in central (i.e., ‘central command’) 
and peripheral (e.g., afferent feedback from skeletal mus-
cles) body regions to alter cardiac ANS function (i.e., the 
balance between the sympathetic and parasympathetic 
systems), and subsequently HR activity [10, 38, 42]. It 
has been hypothesized that training-induced fatigue or 
an incomplete recovery might result in a greater muscle 
activation at a given intensity [129], promoting increased 
oxygen demands [129] and yielding accelerated cardiac 
sympathetic activity that consequently increase HRex, and 
reduce HRR and HRV [114, 129]. In contrast, previous 
research has proposed that increased training stress (lead-
ing at least to an overreaching state) may cause opposite 
responses — increased parasympathetic activity or blood 
plasma volume, consequently lowering HRex and increas-
ing HRR and HRV [37, 38, 130].
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4.1.5 � Inferring Physiological State

Generally, across a standard micro-cycle, HR measures tend 
to stay relatively stable [45, 47]. For example, studies among 
youth and senior athletes have observed no changes in the 
day-to-day variability of SMFT HRex [45, 47, 75] and HRR 
[45, 47] derived from multiple SMFT administered through-
out the week, despite substantial variations in training loads. 
Whilst vagal-related HRV indices are considered to provide 
a better insight into the cardiac ANS [10, 53], daily varia-
tions in training loads were associated with stable [45, 47] 
and lower [53] responses. The disparity across studies may 
be due to the differences in training loads and HRV variables 
[53], an athlete’s fitness levels [45], or simply reflective of 
measurement ‘noise’ (either measurement errors or biologi-
cal variations) [10, 61, 107], thus challenging between-study 
comparisons.

The current research suggests that the use of HR-derived 
indices appears more relevant after acute (3–7 days) and 
short-term (~ 2 weeks) altered training stress, albeit it may 
cause misleading interpretations. In team sports, 3–4 con-
secutive days of accumulated training loads have been asso-
ciated with both increased [114] and decreased [54] SMFT 
HRex. Lower SMFT HRex values have been also observed 
after 2 weeks of intensified training [84], but also following 
a substantial decline in training loads due to season breaks 
[58]. Whilst the information in team-sports settings is lim-
ited, studies among various cohorts of individual endurance 
athletes (e.g., cyclists, triathletes) provide encouraging evi-
dence that short-term intensified periods (1–3 weeks) of 
training-induced fatigue (incurring functional overreaching) 
lowered SMFT HRex [36, 38, 130] and increased SMFT 
HRR [36, 37, 39]. These responses likely reflect a complex 
interplay between acute cardiac ANS function (usually 
referred to as larger parasympathetic activity) and increased 
plasma volume [37, 54, 104], leading to an enhanced stroke 
volume for a similar cardiac output [10, 131]. In summary, 
the use of HR-derived indices (especially HRex and HRR) to 
infer transient training effects associated with cardiac ANS 
dysfunction is currently questionable (at least, not straight-
forward), with no consensus around the underlying mecha-
nisms and conflicting results in the literature.

Overall, SMFT HRex has small to very large inverse rela-
tionships with performance indicators (i.e., maximal oxygen 
uptake, intermittent endurance capacity) when measured 
concurrently (lower HRex is associated with higher test 
results) [46, 48, 105], suggesting its validity as an indicator 
of an individual’s current endurance capacity. Indeed, it has 
been highlighted that a chronic exposure to internal (e.g., 
HR-based training impulse, session RPE) [86, 90] and exter-
nal (e.g., total distance covered, force load) [71, 120] loads 
is associated with reduced SMFT HRex. However, the stud-
ies examining training effects within athletes have reported 

contrasting findings. For example, studies in soccer players 
[46, 91] have observed moderate to very large relationships 
between SMFT HRex and intermittent endurance perfor-
mance at different timepoints across the season, albeit with 
no interaction between the magnitude of these effects. Like-
wise, improved [91] or maintained [87] intermittent running 
ability did not necessarily coincide with reduced or stable 
SMFT HRex, respectively. In contrast, studies conducted 
on a variety of team sports and age groups have observed 
significant relationships between changes in similar mark-
ers from pre-season to in-season [51, 59], and across a full 
season [107]. Improved SMFT HRex were also largely cor-
related with the changes in running speed at 4 mmol·L−1 
blood lactate [11, 83] or a reduced oxygen uptake at fixed 
submaximal intensities (i.e., exercise economy) [81].

Research observations are more consistent where SMFT 
HRex has been administered to evaluate the adaptation time 
course to changes in extreme environments (heat and alti-
tude) during training camps or competitions [55–57, 93, 
104, 106, 132]. Collectively, HRex displayed substantial 
deteriorations upon arrival and up to days of exposure [56, 
57, 93, 104], and generally return to baseline values within 
6–10 [55, 106] or 14 days [56], with quicker adaptations 
among highly trained individuals or across repeated expo-
sures within individuals [133, 134]. Taken together, whilst 
it appears that SMFT HRex has the potential to serve as 
a valid and sensitive marker of positive training-induced 
effects, it remains questionable whether it can be used as 
a surrogate measure of within-athlete changes in maximal 
aerobic capacity. There is, however, considerable evidence 
suggesting its use during exposure to changes in environ-
ments for monitoring the athlete’s acclimatization.

The magnitude of correlations between cardiac parasym-
pathetic-related variables (HRR and vagal-related HRV) 
and performance indicators is less clear and ranged from 
no correlation to a very large relationship [48, 66, 100]. The 
disparity could be the consequence of varied protocol inten-
sities [10, 35, 42, 45], collection time (e.g., 60 s and 180 s 
post-exercise) [48], analysis approaches [66], and fitness cri-
terion measures [45, 79]. Importantly, inferences regarding 
their long-term validity as proxy measures of chronic train-
ing effects can be somewhat impacted by SMFT intensity 
(i.e., HRex) [10]. The rate of the sympathetic withdrawal 
and parasympathetic reactivation post-exercise is altered 
when the recovery period starts from different intensities. 
As an example, different absolute HRR values (HRR[d]) 
may be expected 60 s post-SMFT if the exercise intensity 
varies (e.g., 90% vs 75% HR maximum). Hence, in theory, 
a significant reduction in HRex might influence the con-
current interpretation of post-exercise outcomes. Although 
this issue has been addressed by analyzing HRR in relative 
values (HRR[%d]) [60, 114], the time necessary to decrease 
from two fixed HR values (HRR[s]) [79], or employing 
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individualized intensity protocols [12], these are not yet 
fully understood. In support of this, regardless of the HRR 
analysis used, authors examining training-induced changes 
in both HRex and HRR did not always find congruent trends 
[60, 61, 102]. Other studies observed a lack of association 
between changes in HRR and endurance performance, 
despite significant relationships with HRex [59, 107]. How-
ever, increased SMFT vagal-related HRV has been shown to 
be more appropriate, with studies reporting its validity for 
monitoring endurance-oriented training effects [59, 61, 107].

4.1.6 � Considerations

Of critical importance when using HR-derived indices as 
proxies of training effects is the range of confounding fac-
tors, such as environmental (e.g., temperature), habitual 
(e.g., sleep, diet), circadian (time during the day), and psy-
chological (e.g., emotions, stress). These could all contribute 
to the error of measurement of SMFT HR measures — HRex 
(coefficient of variation (CV): 1.0–3.5%) [12, 45, 48], HRR 
(CV: 2.8–13.8%) [45, 48, 66], and vagal-related HRV (CV: 
6.6–19.0%) [45, 61, 106] — and should be considered (or 
standardized where pragmatic) when interpreting changes in 
HR-derived indices responses to SMFT [10, 42].

Further research is warranted to explore the use of all 
HR-derived measures to infer acute and short-term effects, 
in particular, verifying the interaction between temporary 

changes in cardiac ANS function and plasma volume 
responses. In this respect, it should be highlighted that HR 
responses may still be less appropriate to denote peripheral 
neuromuscular fatigue, which are considered more important 
to monitor delayed recovery and injury risk mitigation in 
team sports [49, 135]. In the longer term, HRex is probably 
the easiest to collect and most reliable HR measure, and 
its utility in observing positive changes in aerobic capac-
ity has stronger empirical support. Accordingly, the utility 
of adding post-exercise (HRR, vagal-related HRV) SMFT 
HR responses to infer chronic effects may be redundant. In 
order to enhance interpretations, future research should first 
determine meaningful changes in SMFT HRex (i.e., smallest 
worthwhile change) in reference to variations in physiologi-
cal states.

Finally, when monitoring the responses to intermittent-
variable SMFT (e.g., SSG), an athlete’s HRex may be influ-
enced by their locomotor activity. These are likely to differ 
between tests and should be accounted for when interpreting 
data. Therefore, we recommend quantifying intermittent-
variable SMFT locomotor activity for consideration. Given 
the reasonable association between internal and external 
measures during field-based sessions [136], it is also pos-
sible to standardize HRex to a given (fixed) external inten-
sity parameter. Whilst some have attempted to achieve this 
by dividing the former by the latter, creating a ratio [137], 
there are complex statistical properties and assumptions 

Fig. 1   Submaximal fitness tests (SMFT) protocol taxonomy. Each 
protocol category consists of two levels: (1) exercise (EXE) intensity 
intermittency (continuous or intermittent) and (2) manipulation of 
exercise intensity (fixed, incremental, or variable), together yielding 
five distinct SMFT protocol categories (shaded areas). Intermittent-

variable can be further categorized into drill-based and game-based 
formats. Each category can be further manipulated based on the 
movement (MOVE) pattern (linear, change of direction [CoD], and 
multi-direction), activity mode (running or cycling), and exercise 
environment (closed, semi-open, or open)
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associated with such indexes, presenting as a major validity 
concern [138]. To appropriately examine HRex while hold-
ing external intensity parameters constant, we recommend 
linear regression techniques, which do not violate statistical 
assumptions and achieve the desired outcome ratios [139].

4.2 � Subjective Outcome Measures

Subjective measures are recognized by their ability to serve 
as gestalt measures that can be used across different exercise 
typologies, given their feasibility and low cost [140]. These 
are commonly applied to quantify an athlete’s perception of 
intensity and training effects. The former is derived solely 
from RPE, while the latter are commonly referred to as 
athlete-reported outcome measures [141] of latent response 
constructs such as readiness, wellness, and stress. [4, 142]. 
Accordingly, RPE are the only subjective outcome meas-
ures that can be applied to SMFT, a notion supported by 
their exclusivity (albeit the limited number of studies) in 
the team-sport SMFT literature (Fig. 3). Among the avail-
able studies, different scales such as the Category-Ratio 10 
(CR10 deciMax) [50, 56, 57, 67, 70, 98, 108], 100 (CR100® 
centiMax) [91], and 6–20 (Borg’s 6–20) [75, 76] have been 
adopted, using a variety of collection protocols (during the 
last 180 s, immediately, and up to 5 minutes post-exercise).

4.2.1 � Putative Mechanisms

Perception of effort is defined as the ‘conscious sensation of 
how hard or strenuous a physical task is’ [142], and mainly 
depends on how easy or hard it is to breathe and drive the 
working muscles during exercise [143]. As part of SMFT, 
the athlete provides a retrospective appraisal of perceived 
effort to a standardized stimulus that can be prescribed by 
either an objective internal [32] or external [91] means. 
Because RPE is strongly associated with cardiorespiratory, 
metabolic, and neuromuscular measures of exercise inten-
sity [144, 145], and influenced by the mental state [142], 
changes in RPE may reflect positive [32, 91] or negative [37, 
41] alterations in the psycho-physiological state. However, 
given their gestalt nature, it is perhaps difficult to align RPE 
as a proxy to a single physiological system during SMFT. 
For example, RPE has been empirically associated with 
HRex during a continuous exercise [144] and might there-
fore be used as a cardiorespiratory proxy measure. How-
ever, spinal or supraspinal motoneuron inhibition, which is 
a neuromuscular phenomenon, can increase central motor 
command and subsequently RPE [146]. This is not to say 
that RPE cannot be used to infer a physiological state dur-
ing SMFT, but rather the mechanisms may be less precise. 
In addition, given that RPE has also been used to regulate 
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exercise intensity [147], RPE can be used as an anchoring 
intensity variable (i.e., running or cycling at fixed RPE), 
whereby external outcomes such as velocity or power output 
are used as response measures [148]. However, to our knowl-
edge, there is no published team-sports research evaluating 
the theoretical basis of such SMFT and their actual utility.

4.2.2 � Inferring Physiological State

Whilst some evidence supports the use of SMFT RPE [58, 
91, 98], it is difficult to support or refute their utility to deter-
mine training effects, given the limited data available in team 
sports. In endurance athletes, RPE have been shown to detect 
negative transient effects associated with functional over-
reaching and disturbances in endurance performance [30, 
37, 41], while their sensitivity to chronic positive effects is 
less certain [34, 40]. In the team-sports context, one study 
[91] showed that reduced SMFT RPE (albeit maintained 
HRex[a]) was accompanied with enhanced intermittent run-
ning performance (Yo-YoIR1) and soccer match high-inten-
sity running [91]. Another study [50] in professional soccer 
players did not observe any significant relationships between 
RPE collected immediately after an individualized SMFT 
and athlete-reported outcome measures across 6 in-season 
standard weeks. Despite the conflicting results, research-
ers have suggested the potential usefulness of SMFT RPE 
when measured concomitantly with other objective outcome 
measures (e.g., HRex) as part of a multivariate monitoring 
approach [37, 42, 130].

4.2.3 � Considerations

It is noteworthy to highlight some of the challenges associ-
ated with collecting and interpreting RPE in team sports, 
where interpretation is challenged by the presence of the 
coach and peers biasing ratings, the application of unvali-
dated collection tools, lack of or inappropriate athlete famil-
iarization/education, and their gestalt nature [142, 146, 149]. 
Moreover, RPE may be confounded by other sensations 
associated with exercise, such as mood, discomfort, pain, 
and enjoyment [142]. In view of these challenges, research-
ers may consider other perceptual measures such as ratings 
of fatigue [150], or techniques such as numerically blinded 
[149] and differential [151] RPE, alongside the implemen-
tation of rigorous familiarization processes to facilitate 
authentic and sensitive perceptual ratings associated with 
SMFT.

With this in mind, a benefit of SMFT in team sports is 
to provide an assessment that can be seamlessly integrated 
into the training session such as the warm-up or standard-
ized drills. The need to collect RPE from all athletes indi-
vidually (~ 20–40) under controlled conditions is likely to 
be disruptive and impractical, which is perhaps why there 
are few studies using this practice. It is probably reasonable 
to assume that unless SMFT are completed as a discreet 
activity, with smaller groups, or RPE collection procedures 
are made more accessible (e.g., mobile devices, human 
resources), these outcome measures may be less pragmatic 
or sustainable in team sports.

Fig. 2   Frequency of sub-
maximal fitness test (SMFT) 
categories and their highlighted 
individual tests as identified in 
the team-sports literature. A 
detailed description of these 
tests is highlighted in Table 1. 
30-15IFT 30–15 Intermittent 
Fitness Test, HIR high-intensity 
runs, Int. intensity, ISRT 
interval shuttle run test, MSFT 
multi-stage fitness test, PCW 
physical capacity work, Yo-
YoIE2 yo-yo intermittent endur-
ance level 2, Yo-YoIR1 yo-yo 
intermittent recovery test level 
1, Yo-YoIR2 yo-yo intermittent 
recovery test level 2
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4.3 � Mechanical Outcome Measures

Within the current monitoring schemes in sport, there is a 
broad classification of external load parameters. These indi-
ces represent kinematic outputs [152] performed by an ath-
lete throughout an exercise bout/session [153] and have been 
classified into three distinct levels, which we will use here to 
audit their implementation in the context of SMFT [8, 154].

4.3.1 � Level 1–2 Measures

Level 1 variables are typically the locomotor performance 
outputs including distance covered, time spent, or the count 
of efforts in different velocity zones, whilst Level 2 variables 
reflect changes in velocity such as accelerations and deceler-
ations (i.e., change of directions) [8]. Such kinematic param-
eters are routinely collected using global positioning systems 
(GPS) or other tracking technologies (i.e., semi-automated 

pixel tracking, local positioning systems). In the team-sports 
SMFT framework, the use of level 1–2 mechanical outcome 
measures can occur in two scenarios: (1) monitoring the 
speed achieved to a submaximal exercise that is standardized 
by internal intensity responses [50, 155] and (2) monitoring 
the changes in these variables during intermittent-variable 
standardized drills [54, 58, 70–72, 79, 93, 98, 106, 116, 132, 
156], as they are standardized by a variety of other param-
eters such as duration, sets, recovery, and unique constraints 
(e.g., number of players, rules modifications). Whilst the 
former is considered less practical in team sports for many 
pragmatic reasons, the latter are implemented as a part of 
the training plan, encompassing sport-specific actions and 
are perhaps the most feasible to apply routinely [8, 131]. 
Conceptually, higher values (e.g., accumulated distance cov-
ered), coupled with stable or lowered internal responses are 
indicative of positive effects (i.e., improved exercise per-
formance) [8, 58, 98]. In fact, studies examining level 1–2 

Fig. 3   Frequency of submaximal fitness test (SMFT) outcome meas-
ures as identified in the team-sports literature. Heart rate (HR)-
derived indices are the most common cardiorespiratory/metabolic 
outcome measures and include variables representing exercise inten-
sity (HRex) and recovery (HRR and HRV). Level 1–2 mechanical 
outcome measures represent locomotor activity variables collected 
during SMFT that are standardized by an internal stimulus or inter-
mittent-variable exercise such as small-sided games  (SSG). Level 3 
mechanical outcome measures are response measures derived from 
inertial measurement units (micro-electrical mechanical systems 
[MEMS]) for monitoring neuromuscular status. Subjective outcome 
measures represent tolerance to effort and have been monitored solely 

via ratings of perceived exertion (RPE). AL accelerometry-load, ALV 
(AU) the vertical vector magnitude component of tri-axial AL, ALV 
(%) percentage contribution of the vertical vector magnitude com-
ponent to tri-axial AL, ANS autonomic nervous system, CT contact 
time, Force-load (fL) sum of estimated ground-reaction forces during 
all foot impacts, GPS global positioning system, Ln rMSSD natural 
log of rMSSD, Ln SD1 log-transformed standard deviation of succes-
sive R spikes measured from Poincaré plots, rMSSD root mean square 
of the sum of all differences between successive normal heartbeats, 
Velocity-load (vL) sum of distance covered weighted by the speed of 
displacement (in SMFT refers to the actual mean velocity), + posi-
tive, − negative
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variables during drill (passing) and game (SSG) exercises 
have highlighted their pragmatic advantages to deliver infor-
mation related to an athlete’s performance [58, 71, 72, 98]. 
However, it should be noted that intermittent-variable SMFT 
are influenced by a variety of individual and contextual fac-
tors such as technical level, motivation, and tactics [8, 72], 
and have a higher degree of variation (test–retest reliability) 
compared with other SMFT modalities [70, 72, 156, 157], 
and therefore, should not necessarily be interpreted in the 
aforementioned simplistic manner [8].

4.3.2 � Level 3 Measures

Level 3 external load variables are derived from inertial-
measurement units such as tri-axial accelerometers, mag-
netometers, and gyroscopes [8] (collectively referred to as 
micro-electrical mechanical systems [MEMS] [158, 159]). 
Unlike level 1–2 variables, these outcome measures can be 
used for the majority of SMFT applied in the team-sport 
context and have been proposed to provide an insight into 
an athlete’s neuromuscular system, given their potential link 
with lower limb vertical stiffness [135, 154, 160–163]. Verti-
cal stiffness is considered to affect several athletic param-
eters, including elastic energy storage and utilization (i.e., 
stretch shortening cycle) [164] and has traditionally been 
measured through a variety of jump assessments (counter-
movement, hopping, and drop jumps) using variables such 
as jump height, contact time, and flight time [52, 165, 166]. 
However, because of the limited viability of these assess-
ments in field conditions and their lack of specificity (jump-
ing activities may be less sensitive to detect changes in 
running strategies) [52, 161], researchers and practitioners 
have started to collect proxy variables required to estimate 
vertical stiffness derived from MEMS during SMFT [49, 52, 
55, 65, 68, 72, 167–169].

To date, studies have adopted accelerometer-derived 
vector magnitudes (collectively termed in this review as 
accelerometery load [AL]) [49, 52, 72] and individual 
vector components (vertical AL [ALV], antero-posterior 
AL [ALAP], and medio-lateral AL [ALML]) using MEMS-
embedded accelerometers [49, 52, 68, 167, 168], predomi-
nantly collected during intermittent-fixed protocols com-
prising high-intensity running bursts [49, 52, 55, 68, 168]. 
Generally, reduced AL in the vertical plane (ALV [arbitrary 
units; AU]), or the percentage contribution of the ALV to the 
overall tri-axial vector magnitude (ALV [%]) during SMFT 
have been postulated as an indicator of reduced leg vertical 
stiffness and subsequently inferred a degree of lower limb 
neuromuscular fatigue [167, 170]. Theoretically, reduced 
vertical stiffness may lead to reduced efficiency for the 
same speed through altered kinetic and kinematic param-
eters, such as reduced vertical ground-reaction forces and 
increased ground-contact time [161, 170], which likely lead 

to decreased stride length [52, 72] and elevated energy cost 
[162, 170].

4.3.3 � Inferring Physiological State

Studies investigating acute effects on mechanical outcome 
measures during SMFT are scarce, and those available are 
quite disparate in terms of protocols, variables, and their 
analytical processes [49, 52, 65]. Nonetheless, there is an 
emerging agreement from these studies that suggest AL 
measures can provide sensitive indicators of an athlete’s neu-
romuscular fatigue and efficiency. In a group of professional 
soccer players who performed an intermittent-fixed SMFT 
(4 ×  ~ 60-m runs, alternated by an ~ 30 s recovery) before 
and immediately after a training session, Buchheit et al. [49] 
found that various AL variables respond differently to dif-
ferent training modes (strength, speed, endurance-oriented 
conditioned sessions). Estimated vertical stiffness slightly 
increased after all training modes, whereas propulsion effi-
ciency (the ratio between velocity loads and force load; 
refer to Fig. 3 for variables) was session dependent (largely 
increased after strength, small and moderate decreases after 
endurance and speed, respectively), suggesting its sensitiv-
ity to detect changes in running strategies (hypothetically, 
horizontal force application capability) [8, 49]. A study 
[52] using a similar SMFT protocol and outcome measures 
among university rugby union players reported large rela-
tionships between the vector magnitude and vertical accel-
erometer components derived from the constant phase of 
the run, versus leg stiffness measured more directly via sub-
maximal hopping test performed on a force platform [52]. 
Whilst only trivial effects were observed in leg stiffness over 
the week, the changes in SMFT AL data were large [52].

Similar trends were also found in a study investigating 
the alterations in triaxial AL data collected before, 48 h, 
and 96 h after an Australian football match [68]. A main 
finding reported in this latter study was that ALV (AU) and 
ALML (AU) derived from the constant phase of the SMFT 
were still impaired 96 h post-match among players who were 
classified as ‘fatigued’ (> 8% reduced counter-movement 
jump at a 48 h post-match) [68]. Finally, a within-individ-
ual longitudinal study among soccer players [72] showed 
reductions in AL m·min−1 and AL slow·min−1 collected 
during a standardized SSG (5v5 + 5) 1 day before a match 
were concomitant with a reduction in neuromuscular func-
tion (flight-time:contact-time ratio measured from counter-
movement jump) and an altered match running profile—
increased ALML (%) and decreased ALV (%) contribution 
to AL—indicative of potential neuromuscular fatigue [72, 
167]. Collectively, it appears that specific mechanical level 
3 metrics may be useful for identifying acute variations in 
performance (neuromuscular fatigue and efficiency) associ-
ated with changes in lower limb function.
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Inferring longer term training effects from mechanical 
variables ascertained during SMFT has received limited 
attention, and insights have been drawn exclusively from 
tracking locomotor outputs during intermittent-variable 
SMFT in the form of SSG. For example, moderate to very 
large positive relationships have been reported between 
higher level 1–2 outputs during SSG and intermittent run-
ning capacity [98]. In addition, during intensified training 
camps (1–2 weeks), within-individual increases in running 
parameters (e.g., total and high-speed running distance) 
measured during intermittent-variable SMFT were also con-
cordant with improved intermittent running capacity [54, 
106, 132]. Of note, the utility of all mechanical outcome 
measures (levels 1, 2, and 3) derived during SMFT in detect-
ing chronic training effects in neuromuscular function such 
as improved running efficiency (enhanced muscle–tendon 
unit recoil) is unknown.

4.3.4 � Considerations

Most studies adopting mechanical outcome measures to 
denote acute neuromuscular effects have administered 
SMFT characterized by intermittent high-intensity bursts. 
These outcome measures are often sampled from the con-
stant running velocity phases of the SMFT and using the 
vertical accelerometer component [52, 68, 167], perhaps 
owing to an enhanced association with vertical stiffness 
[52, 68]. Typically, such techniques have demonstrated an 
inferior degree of reliability (CV: 6.7–17.5%, standardized 
TE: small to moderate [49, 52, 68]) versus maximal and 
non-running-based assessments of neuromuscular function 
(jump and force indices; CV: 2.9–6.1%, standardized TE: 
small [49, 65, 171]). One study [65] using a continuous-
fixed SMFT and lower running intensity (mean veloc-
ity of 12 km·h−1 compared to 18–22.5 km·h−1) reported 
lower measurement noise (CV: 2.1–8.0%, standardized TE 
rated as small). Additionally, the changes found in ALV 
(%) [decreased] and ALML (AU) [increased] 24 h after a 
strenuous soccer training session were greater than small-
est worthwhile change (signal-to-noise ratio >  ± 1) [167]. 
Although these findings indicate enhanced reliability and 
sensitivity for SMFT involving lower running speeds in a 
more continuous manner, this is based on only one study 
and the utility of different SMFT protocols has not yet been 
compared in the available literature, and barriers to imple-
mentation should also be considered. Similarly, the ques-
tionable reliability of locomotor outputs recorded during 
intermittent-variable SMFT in the form of SSG (total dis-
tance CV: 2.3–11.7%, high-speed thresholds CV: 8.1–83.0% 
[70, 72, 94, 98, 156, 157], small to moderate in magnitude 
[70, 156, 157], perhaps limits their utility to denote mod-
erate-to-large effects only (i.e., larger CV may decrease the 
signal-to-noise ratio).

Although studies have suggested that changes in AL 
variables may reflect effects on lower limb stiffness [162, 
172, 173], few have directly assessed stiffness [52, 174]. 
Moreover, these studies have typically used MEMS mounted 
between the scapulae, which may be influenced by upper-
body kinematics during running or dampening of ground-
contact vibrations [172, 175]. Whilst unit placement may 
have limited the impact under standardized conditions, inter-
mittent-variable SMFT may be more susceptible to position-
ing noise as changes in orientation of the MEMS devices are 
not considered in the quantification of accelerometer met-
rics. In addition to positioning, users should be cautious of 
other extraneous factors such as movement artifacts within 
the device harness, running surface (e.g., ground stiffness), 
and footwear [158].

Future work should address the overall convergent valid-
ity of MEMS-derived data to obtain an accurate estima-
tion of running strategy characteristics such as vertical 
stiffness. It is also necessary to investigate the theoretical 
framework for the sensitivity of these measures and their 
potential mechanisms (i.e., with respect to human tissue and 
gait mechanics). Furthermore, more research is required to 
examine whether protocol characteristics (e.g., exercise 
regimen, running intensity) and unit placement (e.g., center 
of mass, foot-mounted MEMS unit) can enhance measure-
ment properties, and therefore facilitate inferences regarding 
lower limb stiffness and ultimately neuromuscular fatigue 
or efficiency.

5 � Summary and Conclusions

Our review provides an overview of the literature regard-
ing SMFT in team sports, including the development of the 
SMFT definition, protocol categorization, and a systematic 
audit of protocols and outcome measures. We also provide 
a narrative synthesis of the applications of SMFT within 
the training continuum of sport teams and future research 
directions (outlined in Table 2). In summary, SMFT have 
the potential to serve as time-efficient, non-exhaustive, and 
feasible standardized tests that can be administered to a 
group of athletes simultaneously as a part of the warm-up 
and using specific drill(s) during the training session. Mul-
tivariate outcome measures such cardiorespiratory/meta-
bolic (e.g., HR-derived indices), subjective (e.g., RPE), and 
mechanical (GPS and MEMS-derived data) can be collected 
simultaneously, and in theory, provide a multifactorial evalu-
ation for athlete monitoring in team sports. Collectively, the 
literature suggests that several outcome measures collected 
during and immediately post-SMFT can inform on an ath-
lete’s physiological state. Heart rate-derived indices seem 
more appropriate to denote positive chronic training effects 
on endurance performance, whereas their role in detecting 
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negative transient effects associated with variations in ANS 
function is questionable. Despite the lack of knowledge 
about the underlying mechanisms and the inconsistent find-
ings between studies, their sensitivity appears to improve 
after days or over short periods that are characterized by sub-
stantial alterations in training stress, seemingly caused by an 
interaction between cardiac ANS status and plasma volume 
responses. Subjective outcome measures are less common in 
team-based sports and only global RPE have been adopted 
thus far. Although their validity and practicability have yet 
to be established, researchers have proposed their utility 
when measured concomitantly with other objective meas-
ures (e.g., HRex) as part of a multivariate monitoring sys-
tem. Mechanical outcome measures are relatively novel and 
have been mostly investigated using intermittent-variable 
and intermittent-fixed protocols, whereby the former primar-
ily involves GPS-derived kinematic variables (levels 1–2) 
to monitor exercise performance, while the latter includes 
response measures derived from inertial measurement units 
(level 3) to monitor lower limb neuromuscular function. 
Whilst monitoring locomotor outputs during standardized 
training drills is more feasible and has shown to provide val-
uable data on an athlete’s performance, practitioners should 
consider the large influence of various individual and con-
textual factors (e.g., technical/tactical level, motivation) that 
may undermine their interpretations. Accelerometery load 
parameters can provide sensitive indicators of acute changes 
in lower limb function and therefore neuromuscular fatigue 
and efficiency, albeit the overall validity of these outcome 
measures and the physiological mechanisms underpinning 
their changes have not yet been fully evaluated. Moreover, 
there is an absence of information on the use of all mechani-
cal metrics (levels 1–3) to monitor chronic training effects. 
Finally, future research should also examine the methodi-
cal elements (e.g., protocol characteristics, collection, and 
analytical processes) related to SMFT to derive the most 
appropriate protocol to capture reliable, valid, and sensitive 
outcome measures that provide useful inferences regarding 
an athlete’s physiological state.
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