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A B S T R A C T

Demand response is one of the most promising tools for smart grids to integrate more renewable energy
sources. One critical challenge to overcome is how to establish pricing and control strategies for integrating
more electric vehicles (EVs) and renewable energy sources. This paper proposes a dynamic optimal operation of
a solar-powered EV charging station where onsite solar generation, number of EVs in the system, historical EV
response to price, EV technical specifications and EV driving behaviour vary. A bi-level optimisation approach
is proposed, where pricing tariffs ensure an economic and price responsive operation, then EV charging
schedules are computed for energy bidding capacity to provide balancing services. Simulations are conduced
to evaluate the performance of unidirectional and bidirectional EV charging at different charging speeds and
demand elasticity. Results demonstrate the potential of extra revenue streams coming from the participation in
energy markets compared to that of EV charging alone. Additionally, limitations of energy bidding with battery
size, trip requirements and charging ratings are discussed to show insights into the operation of charging
stations.
1. Introduction

As the transportation sector moves towards the replacement of the
combustion engine with an electric one, the power sector also moves
from high-carbon emission energy generation sources to low-carbon
emission ones, such as wind, solar and biomass energy. However, this
transition brings significant challenges to power systems’ reliability and
resilience due to the increasing complexity of balancing energy demand
and supply [1]. This increasing complexity could come from both
intermittent renewable energy sources and increasing power demand,
for instance as a result of more electric vehicles (EVs) [2]. Conse-
quently, more frequent control requirements and reformed ancillary
services provision are required to improve and maintain the operations
of power networks [3,4]. The development of EV charging technology
and demand response programs bring an opportunity to aggregate EVs’
power demand to participate in current and emerging energy markets,
which facilitate the transition to decarbonisation of the transportation
sector [5–7].

Recent innovation projects have proposed to use the flexibility of
EV charging for participating in energy markets to benefit from EV
batteries to the grid. Vehicle to grid (V2G) technology allows EVs to dis-
charge electricity back to the power grid given the bidirectional power
flow capability. The report [8] explored projects with V2G technology
and noted that only one project is currently at commercialisation stage.
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Some ongoing projects aim to test for the feasibility of V2G support to
the network, e.g., the new Electric Nation V2G trial in Wales, UK [9].
There still exists research gaps for integrating EVs with the power
grid, for example, efficient demand response of EVs and smart charging
strategies at charging stations.

Recent research has shown the advances in energy bidding and
pricing depending on market designs and the business models of the
charging station operator: Sortomme et al. [10] designed a bidding
mechanism to model all possible V2G capability for frequency regu-
lation and spinning reserves to maximise charging operator revenues.
Nakano et al. [11] proposed aggregation of EVs and plug-in hybrid
vehicles using a home energy management system for residential house-
holds to participate in a regulation market with different time scale
control mechanisms. Mizuta et al. [12] proposed a model for balanc-
ing services at the distribution level to mitigate voltage imbalance
using ordinary differential equations to represent distribution voltage.
Data uncertainties when aggregating EVs for balancing services have
also been considered using bias measurements of regulation signals as
proposed by Cui et al. [13] and pricing regulation predictions using
seasonal auto regressive integral moving average model as proposed
by [14]. These research works have provided contributions in terms
of control for energy bidding of EVs parked in residential locations
and uncertainties in the system; however, pricing mechanisms that
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engage customers in balancing services have not been considered, nor
have the stochastic behaviour and demand response nature of EVs been
explored.

In order to influence customers according to grid requirements,
demand response programs have been used as promising tools to en-
hance penetration of more renewable energy sources in the grid, while
encouraging certain patterns in customer energy demand [15,16]. Fol-
lowing forecasting of market clearing price and ancillary service prices,
Chandra Mouli et al. [17] proposed aggregation of EVs parked in build-
ings integrated with solar panels to maximise the charging operator
revenues. Lui et al. [18] proposed a dynamic pricing model for an
EV aggregator using a reinforcement learning algorithm that considers
updates from a spot market, price elasticity from users to compute
energy prices and EV load changes. Tawfiq Masad et al. [19] proposed
a real time pricing scheme using inverse demand curve to account
for price changes when microgrids are congested. Chen et al. [20]
proposed pricing schemes using cooperative and non-cooperative game
formulations in order to achieve market equilibria. These works have
adequately considered how EV schedules can be adapted to pricing
signals set by the charging station operator. However, prices for auc-
tion markets have not been explored; and pricing to influence driver
behaviour and charging responses to price changes have not been
effectively considered.

To continue with research in demand side management mechanisms
that aim to influence EV user demand and/or improve EV charging
service, Li et al. [21] proposed using congestion pricing and waiting
time options to EV users to model geospatial charging via a navigation
system. Hou et al. [22] proposed using short term and long term
contracts, as well as time of use tariffs and price discounts to shape
EV charging scheduling. Zhang et al. [23] proposed another pricing
mechanism to incentivise coordination in EV charging stations and
minimise service dropping rate modelled in a queuing system. Simi-
larly, Zhao et al. [24] modelled charging stations using queue theory
to create pricing scheme to maximise quality of service of charging
stations. In terms of EV consideration of user preferences for charging,
Selim et al. [25] proposed using charging price preferences of EV users
following real time electricity price to compute EV charging scheduling.
These works adequately modelled pricing and incentive mechanisms
to shape smart charging schemes and ensure charging coordination.
However, they did not consider pricing mechanisms for vehicle to grid
capability of EV battery integration with ancillary services and the
respective pricing mechanisms for auction bids programs such as the
ones used in the UK. As described before, there are critical research
gaps in pricing schemes for balancing services offered by EV charging
as there is limited research that has integrated engaging pricing for EV
discharging considering EV users expected responses to price.

In addition, financial modelling represents one of the biggest barri-
ers to the commercialisation of V2G technology [8] even though flexi-
bility potentials with this technology are higher than with G2V technol-
ogy only. To address the aforementioned challenges and research gaps,
this paper proposes a dynamic, customer responsive pricing scheme for
commercial charging stations with onsite solar generation. This pricing
scheme can be used in auction based markets, where charging operators
send price and energy bidding information to grid operators. This paper
offers the following key contributions:

• A novel dynamic pricing scheme is developed to create a tariff that
changes using grid analytics from historical EV user responses to
price and maximisation of revenues from the charging station. Key
variables for economical operation of the charging operator con-
sider onsite solar generation profitable financial relationships and EV
users charging availability to set bid aggregation for ancillary service
provision
This scheme provides an economical and customer engaging solution
that addresses the pricing dilemma for EV charging, profitable incen-
tives to increase or decrease charging rate, and auction bidding prices
for participating in balancing services.
2

Fig. 1. Proposed bi-level optimisation model with activities and communication
between stakeholders involved and variable inputs for the pricing and EV charging
optimisation modules.

• A new bi-level optimisation approach is proposed for managing pric-
ing and control mechanisms for EV charging and integration energy
bids with ancillary services. Compared to other pricing mechanisms
such as stackelberg approaches, separation of pricing and EV charging
control offer a more applicable and realistic method where price
equilibrium could be imposed externally by independent energy reg-
ulator. Pricing is the first optimisation module to set pricing from the
charging station operator, aiming to have additional revenue streams
to EV charging when participating in balancing services. Then, the EV
charging module is the second optimisation that estimates an optimal
charging rate from the EV user’s perspective, following the pricing
signals while meeting customer and charging technology restrictions.

• A new control strategy to plan the stochastic EV charging bids com-
bined with EV charging scheduling is proposed to manage unidirec-
tional grid to vehicle (G2V) and bidirectional V2G charging tech-
nologies. It provides potential revenue streams and energy bidding
capability to support balancing services. This control strategy is able
to handle probabilistic arrivals, departures, trip requirements, EV user
availability, battery size restrictions and varying charging rates.

The remaining parts of this paper are organised as follows. The
proposed model is introduced in Section 2, including the dynamic
pricing scheme and EV charging control compliant with V2G and G2V
technologies. Section 3 shows simulation setup, and then the simulation
results of proposed schemes are evaluated. Discussions and conclusions
are presented in Section 4.

2. Proposed model

The proposed model consists of an EV aggregator or charging station
operator of a group of EVs with connection to the transmission or distri-
bution system operator. Fig. 1 summarises the activities and exchange
of messages for the operation of the charging station participating in
balancing services when using EVs as flexible loads. It also presents the
bi-level optimisation approach used by the charging operator. The EV
aggregator could be the owner of the charging station that is capable of
buying electricity from the grid, of producing onsite solar generation,
of selling/buying electricity to EV users and of selling energy to the
grid for balancing services provision. With the use of Information and
Communication Technologies, the EV aggregator can know in advance
important information for the charging station operation such as EV
drivers response to price, arrivals, departures, trip requirements and
solar power forecast.

This information is used as a data driven approach for estimation of
price strategies that maximise revenues based on historical customer
response to price during a day. Given the price optimisation, energy
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bidding coming from EVs is estimated using a control optimisation
that evaluates demand response of EV drivers. Finally, the potential
revenues from V2G and G2V charging technology are presented to com-
prehend EV driver response to prices given a predetermined dynamic
pricing strategy.

The business model of the charging station operator proposed in
this paper is applicable for big parking lots such as the ones in office
buildings or supermarkets. The revenues of the charging station opera-
tor come from charging of EVs and from participating in balancing grid
services. The three stakeholders involved are charging station operator,
grid operator and EV customers, as shown in Fig. 1. One example of the
grid operator is National Grid which is the transmission system operator
in the UK. Firstly, the charging station process expected estimates;
response to price from EVs, EV driver profile and solar power for
the following day. Secondly, this information is then used in the first
optimisation; dynamic time of use pricing which uses a regression
analysis of price and charging quantities for EV charging to maximise
revenue curves by using Calculus, a popular approach used in mi-
croeconomics. This optimisation uses cost, demand response estimates,
and economic boundaries to estimate pricing for EV charging and for
ancillary services. Thirdly, the charging operator uses the second opti-
misation that is the EV charging, formulated with linear programming.
This optimisation estimates EV charging scheduling charging strategies
assuming customers will respond to price signals by charging when
energy is cheaper and as long as restrictions, e.g., charging availability,
driving requirements, charging and battery limits, are ensured. Finally,
the outputs from the second optimisation are then used by the charging
operator to charge EVs and aggregate energy bids for ancillary services.
The two modules in the bi-level optimisation are explained in more
detail in the following subsections.

2.1. Time of use dynamic pricing

The pricing module is the first part of the model where prices is
created when learning from historical price information. This price
methodology uses the fundamentals of microeconomics of a monopoly
where the EV aggregator is able to set prices and EV users are price
takers. The model uses the information of price and demand curves,
energy costs from the grid and stochastic onsite solar generation to use
for EV charging, for every hour in a day. A time of use pricing tariff
approach is proposed to encourage EV charging behaviour response
from price differences in time with more expensive and cheaper prices.
When looking closely at the stochastic variables of the model, i.e., the
number of EVs in the charging station and variation of solar generation,
the pricing model is able to compute a dynamic behaviour of the
tariff results for both pricing to announce to EV users and to a grid
operator. Thus, a combination of dynamic and time of use tariff is used
to encourage charging shifts to timings where ancillary services occur
and when energy is cheaper for the charging station operator. These
pricing outputs of the model are computed to make the operation of
charging station economically feasible and to optimise revenues. The
formulation of the pricing module considers the study of an average
EV user 𝑖 and changes in the dynamics of the charging station in time
𝑡. The main goal of the EV aggregator in (1) is to find the optimum
values of quantity 𝑄∗

𝑡 that will maximise utilities 𝑢𝑡 when evaluating
revenues 𝑟𝑡 and costs 𝑐𝑡 for every hour in a day as follows

ax
𝑄𝑡

𝑢𝑡(𝑄𝑡) = 𝑟𝑡(𝑄𝑡) − 𝑐𝑡(𝑄𝑡). (1)

The utilities are subject to the revenues at hour 𝑡 estimated by

𝑟𝑡(𝑄𝑡) = 𝑝𝑡(𝑄𝑡) ⋅𝑄𝑡. (2)

The inputs for revenues are historical price 𝑝𝑡 and energy demand 𝑄𝑡.
To optimise for an optimum quantity, price is computed as a function
of quantity from historical EV customer response to price represented
as a linear regression by

𝑝 (𝑄 ) = 𝛽 + 𝛽 ⋅𝑄 , (3)
3

𝑡 𝑡 0𝑡 1𝑡 𝑡
where 𝛽0𝑡 and 𝛽1𝑡 are the corresponding coefficients from predicted
price and charging demand estimations. The principles of this linear
regression relationship which are based on microeconomic theory [26,
27] are key in the pricing scheme proposed to estimate better de-
mand response pricing strategies. Microeconomic fundamentals are
used in this paper to measure predicted customer response to price from
variations of historical charging demand and costs in a day.

The costs in (1) are computed from the cost of the charging station
per energy unit to buy from the grid 𝑐𝑔𝑡 and taking into account the
available onsite solar power generation 𝑃𝑠𝑡 per solar panel 𝑛, that can
be used for charging available EVs at the charging station as below

𝑐𝑡(𝑄𝑡) = 𝑐𝑔𝑡 ⋅ (𝑄𝑡 − 𝑛 ⋅ 𝑃𝑠𝑡). (4)

EV availability is studied as the available time 𝑎𝑣𝑡. An EV can be
charged from arrival 𝑎𝑟 to departure 𝑑𝑒 at the charging station accord-
ing to EV driver behaviour in time 𝑡. Thus the availability of each EV
is defined by

𝑎𝑣𝑡 =

{

1, if 𝑎𝑟 ≤ 𝑡 ≤ 𝑑𝑒
0, otherwise.

(5)

To find an optimal charging demand 𝑄∗
𝑡 from (1), following price and

charging demand optimisation principles of microeconomic theory, it
is required to equal marginal revenue 𝑟′𝑡 and marginal cost 𝑐′𝑡 as follows

𝑄∗
𝑡 = 𝑎𝑟𝑔(𝑟′𝑡 − 𝑐′𝑡 = 0). (6)

With some rearrangements as detailed in Appendix, we can find this
optimal energy demand quantity as below

𝑄∗
𝑡 = (𝑐𝑔𝑡 − 𝛽0𝑡)∕(2 ⋅ 𝛽1𝑡). (7)

Given the optimal charging demand, we obtain the optimal price from
the linear regression function estimated from historical demand as
below

𝑝∗𝑡 = 𝛽0𝑡 + 𝛽1𝑡 ⋅𝑄
∗
𝑡 . (8)

As the charging operator aims to have an additional revenue stream
to charging EVs which is obtained from bidding energy for balancing
services, definition of both profitable prices and charging rating limits
is key. Thus, if we define charging ratings as charging demand turn
down as 𝑄𝑑𝑡, and demand turn up as 𝑄𝑢𝑡, the required charging ratings
o have positive utilities must be within the following boundaries

𝑑𝑡 ≤ 𝑄∗
𝑡 − min(𝑥𝑡), (9)

𝑢𝑡 ≤ max(𝑥𝑡) −𝑄∗
𝑡 , (10)

here min(𝑥𝑡) and max(𝑥𝑡) state the minimum and maximum energy
imits so that utility function 𝑢𝑡(𝑄𝑡) is positive. Thus, these two quantity
oundaries can be estimated from solving 𝑢𝑡(𝑄𝑡) = 0. To illustrate these
oundaries, Fig. 2 shows an example of the positions of min(𝑥𝑡), max(𝑥𝑡)
nd 𝑄∗

𝑡 in a price per energy unit (p/kWh) and charging demand (kWh)
raph that also shows their relation to functions of utilities, revenues,
ost and the inverse demand curve.

To compute the demand response prices for the time of use dynamic
ariff, the same linear regression for the optimum price is used. For
racticality, energy balancing services when influencing EVs to charge
ore energy are referred as energy turn up, and energy turn down
hen influencing EVs to charge less energy or discharge energy with
2G technology. Calculations are made to find a profitable maximum
nd a minimum demand relation to price to provide incentives to EV
ustomers. Prices for either energy turn down (𝑝𝑑𝑡) or energy turn up
𝑝𝑢𝑡) are estimated as follows

𝑑𝑡 = 𝛽0𝑡 + 𝛽1𝑡 ⋅ (𝑄∗
𝑡 −𝑄𝑑𝑡) (11)

𝑢 = 𝛽 + 𝛽 ⋅ (𝑄∗ +𝑄𝑢 ). (12)
𝑡 0𝑡 1𝑡 𝑡 𝑡
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Fig. 2. Mathematical relationship of variables in pricing optimisation.

The pricing matrix for the time of use dynamic tariff is computed from a
combination of the optimum price and demand response prices, when-
ever is more convenient for the charging station to provide balancing
services in a day, according to a charging station utilisation parameter
𝜌𝑡. The final price matrix (𝑝𝑓 ) is given by

𝑝𝑓 =

[

𝑝∗1 ... 𝑝∗𝑡𝑖−1 𝑝𝑑𝑡𝑖 ... 𝑝𝑑𝑡𝑓
... 𝑝𝑢𝑡𝑗 ... 𝑝𝑢𝑡𝑒 𝑝∗𝑡𝑒+1 ... 𝑝∗24

]

,
(13)

which is integrated from the optimum price (𝑝∗𝑡 ) since the start of the
day and before the time where energy turn down starts at 𝑡𝑖−1, then 𝑝𝑑𝑡
and 𝑝𝑢𝑡 prices are integrated accordingly to then go back to the optimal
tariff from the end of the energy turn up period at 𝑡𝑓 +1, and until the
end of the day.

Utilisation parameter from the hourly capacity (𝜌𝑡) of the charging
station is considered in order to decide which timings are better for
either providing energy turn down or energy turn up. The utilisation is
classified in high (ℎ𝑡), medium (𝑚𝑡) and low (𝑙𝑡) based on the charging
availability between arrival and departure of EVs regardless of their
charging status. Balancing services are provided only when capacity at
the charging station is at high levels because the availability of EVs
at the charging station is key to provide the corresponding flexibility
services. The number of hourly periods at high level is divided by
two periods with priority of providing cheaper tariffs to customer. For
instance if there are 7 periods of time where there are parking spaces
occupied with capacity greater than 2/3, then there are 3 time periods
for energy turn down (higher prices) and 4 time periods for energy turn
up (lower prices). Thus utilisation at the charging station is estimated
by

2∕3 ⋅ 𝜌𝑡 ≤ ℎ𝑡 ≤ 𝜌𝑡 (14)

1∕3 ⋅ 𝜌𝑡 ≤ 𝑚𝑡 ≤ 𝜌𝑡 ⋅ 2∕3 (15)

0.1 ⋅ 𝜌𝑡 ≤ 𝑙𝑡 ≤ 𝜌𝑡 ⋅ 1∕3. (16)

The next stage for pricing calculation is the computation of prices
for participation in balancing services in auction mechanisms, for in-
stance the ones to announce to National Grid in the UK. Flexibility
service companies are expected to provide price, capacity and timings
for energy turn down or energy turn up provision [28]. Given the
structure of the market, the EV aggregator is able to provide prices and
bidding quantities. The expectation is that balancing services are used
as additional revenue streams. Consequently, the utilities obtained from
Grid Operator should balance the loss of revenues of EV charging when
using the demand response prices 𝑝𝑑𝑡 and 𝑝𝑢𝑡, in other words when
deviating from the optimum price and quantity. Therefore, prices to
announce to Grid Operator are computed based on equivalent revenue
deviations from the optimal revenue from EV charging. The price
4

estimation is computed from making equal optimum utilities (𝑢∗𝑡 ) and
expected utilities to obtained from Grid Operator for energy turn down
(𝑢1𝑡) and energy turn up (𝑢2𝑡) as below

𝑢∗𝑡 = 𝑢1𝑡 (17)

𝑢∗𝑡 = 𝑢2𝑡, (18)

where utility functions for energy demand turn down and turn up can
be given by

𝑢1𝑡 =

{

𝑝𝑔𝑑𝑡 ⋅ |𝑄𝑑𝑡| − 𝑝𝑑𝑡 ⋅ |𝑄𝑑𝑡|, if 𝑄𝑑𝑡 ≤ 0
𝑝𝑔𝑑𝑡 ⋅𝑄𝑑𝑡 − 𝑐𝑔𝑡 ⋅ (𝑄𝑑𝑡 − 𝑛 ⋅ 𝑃𝑠𝑡), otherwise

(19)

𝑢2𝑡 = 𝑝𝑔𝑢𝑡 ⋅𝑄𝑢𝑡 − 𝑐𝑔𝑡 ⋅ (𝑄𝑢𝑡 − 𝑛 ⋅ 𝑃𝑠𝑡). (20)

The costs for energy turn down in (19) vary when it is economically
possible to discharge an EV, in this case the corresponding costs are
energy paid to EV users. In the case when the charging rate is positive,
costs are estimated according to grid energy costs and available solar
power at the charging station.

Thus, the prices for bidding energy for balancing services of energy
turn down 𝑝𝑔𝑑𝑡 and energy turn up 𝑝𝑔𝑢𝑡 are computed as follows

𝑝𝑔𝑑𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑢𝑡(𝑄∗
𝑡 )+𝑝𝑑𝑡⋅|𝑄𝑑𝑡|
|𝑄𝑑𝑡|

(1 + 𝛿), if 𝑄𝑑𝑡 ≤ 0

𝑢𝑡(𝑄∗
𝑡 )+𝑐𝑔𝑡⋅(𝑄𝑑𝑡−𝑛⋅𝑃𝑠𝑡)

𝑄𝑑𝑡
(1 + 𝛿), otherwise

(21)

𝑝𝑔𝑢𝑡 =
𝑢𝑡(𝑄∗

𝑡 ) + 𝑐𝑔𝑡 ⋅ (𝑄𝑢𝑡 − 𝑛 ⋅ 𝑃𝑠𝑡)
𝑄𝑢𝑡

(1 + 𝛿). (22)

The calculations of these prices are obtained when solving for 𝑝𝑔𝑑𝑡
and 𝑝𝑔𝑢𝑡 from the substitution of (19) and (20), in (17) and (18). To
allow a profit from participating in balancing services, a margin of
utility 𝛿 is added to Grid Operator prices 𝑝𝑔𝑑𝑡 and 𝑝𝑔𝑢𝑡 to cover for
additional complexities of management control. This is a reasonable
addition to pricing because the charging station sets prices for bidding
in an auction market considering a cost based strategy.

2.2. EV’s charging control

The control strategy which is used for planning of energy bids
to submit to the grid operator (e.g., National Grid), is constructed
to follow pricing signals received from the charging station operator
in a day ahead timeline, by minimising costs from charging an EV.
The control strategy, which was initially inspired by the work of
Sortomme et al. [29], has been adapted to be able to work with
different charging rates limits, battery state of charge (SOC) restrictions
and stochastic variables for EV requirements. These additions allow
accurate simulations of driver behaviour during a day with different
charging capabilities. The objective function of the charging control is
the minimisation of costs (𝑐𝑖) for the complete charging period the 𝑖th
EV parked at the charging station given by

Min
𝑞∗𝑖,𝑡

𝑐𝑖 =
𝑇
∑

𝑡=1
𝑝𝑓 ⋅ 𝑞𝑖,𝑡, (23)

where the charging rate 𝑞∗𝑡 is the decision variable in the formulation
that determines the charging schedule of each EV every hour. This
decision variable can become negative and discharge the EV battery
when the charging station aims to provide balancing services to the
grid and when the EV is conveniently available for discharging. It is
expected that EVs will get not only positive values from the costs in the
objective function but also negative values (EV revenues) when getting
paid for V2G provision if allowed.

To meet technology constraints of the charging station and the EV,
we define the charging rate limits for the charging schedule with 𝑎𝑡, as
the maximum charging rate and 𝑏 , as the minimum charging rate of 𝑞
𝑡 𝑡
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when evaluating the charging rate of an EV (𝑦𝑡) and charging rate of
the charging station pole (𝑧𝑡) as below

𝑎𝑖,𝑡 = min(𝑦𝑖,𝑡, 𝑧𝑖,𝑡), (24)

𝑏𝑖,𝑡 = max(−𝑦𝑖,𝑡,−𝑧𝑖,𝑡). (25)

The state of charge of the EV is also considered, where 𝑠𝑜𝑐𝑖,𝑡 is 𝑖th EV’s
battery state of charge at time 𝑡 that considers charging efficiency 𝑒𝑓
when charging rate is positive 𝑞+𝑖,𝑡 or negative 𝑞−𝑖,𝑡 as follows

𝑠𝑜𝑐𝑖,𝑡 = 𝑠𝑜𝑐𝑖,𝑡−1 + 𝑞+𝑖,𝑡 ⋅ 𝑒𝑓 + 𝑞−𝑖,𝑡 ⋅ (2 − 𝑒𝑓 ) (26)

Note that efficiency is modelled from the charging operator perspective,
where it has to charge more energy, and discharge less energy to avoid
taking advantage of EV users over payment charges, and to balance
power losses. For instance, for 7.2 kW charge with 0.9 of charging
efficiency, the charging operator should provide charging of 10% more
of 7.2 kW, and for discharging, the charging rate should be 10% less
charge than the optimum charging rate metered in the charging station
pole. Consequently, charging optimisation limits 𝑞𝑖,𝑡 are subject to

𝑞𝑖,𝑡 ≥ 𝑏𝑖,𝑡 ⋅ 𝑎𝑣𝑖,𝑡, if 𝑞𝑖,𝑡 ≤ 0
𝑞𝑖,𝑡 ≤ 𝑎𝑖,𝑡 ⋅ 𝑎𝑣𝑖,𝑡, if 𝑞𝑖,𝑡 > 0

(27)

here 𝑎𝑣𝑖,𝑡 = {0 or 1} is a binary matrix per EV that states its
vailability (arrival to departure) at the charging station as described
n the pricing optimisation. The usage of the charging rate limits in
27) allow the modelling of charging and discharging constraints for
pecific periods of time and thus, allow the modelling of V2G and G2V
echnology. Battery size limits 𝑤𝑖 are ensured by taking into account
he state of charge of an EV by

.01 ⋅𝑤𝑖 ≤ 𝑠𝑜𝑐𝑖,𝑡 ≤ 𝑤𝑖. (28)

V trip requirements are formulated when calculating state of charge
energy levels) by

𝑟𝑖𝑝𝑖 = 𝑠𝑜𝑐𝑓𝑖 − 𝑠𝑜𝑐𝑖𝑖, (29)

here 𝑠𝑜𝑐𝑖 is the initial state of charge and 𝑠𝑜𝑐𝑓 is the final state of
harge of an EV.

.3. Vehicle to grid and grid to vehicle analysis

To evaluate potential utilities from the price strategy proposed in
he time of use dynamic pricing subsection, the responses to prices from
V drivers described in the EV charging control subsection are evalu-
ted against V2G (bidirectional) and G2V (unidirectional) technology.
s described before, the EV charging control optimisation can evalu-
te charging rate restrictions for both unidirectional and bidirectional
harging. Thus, given the different charging rate of the EVs, revenues
nd costs vary as well as the interactions with the available solar power
eneration at the charging station. The time of use dynamic tariff can
e used for testing EV driver response according to current technology
vailable in the market.

Revenues with V2G technology capability (𝑟𝑣𝑔) are integrated from
ales coming from aggregated bidding for energy turn up (first term),
nergy turn down (second term) and EV charging (third term) when
he charging rate is positive (𝑞+𝑡 ) by

𝑣𝑔 =
𝐼
∑

𝑖=1

{ 𝑡𝑒
∑

𝑡=𝑡𝑗
𝑝𝑔𝑢𝑡 ⋅ 𝑞𝑖,𝑡 +

𝑡𝑓
∑

𝑡=𝑡𝑖
𝑝𝑔𝑑𝑡 ⋅ 𝑞𝑖,𝑡 +

24
∑

𝑡=1
𝑝𝑓 ⋅ 𝑞+𝑖,𝑡

}

, (30)

here 𝐼 is the set of EVs to be charged by the charging station
perator. Balancing service timings are defined by an initial hour 𝑡𝑗
nd 𝑡𝑖, and final hour 𝑡𝑒 and 𝑡𝑓 for energy turn up and turn down
eriods respectively. Costs for providing balancing services with V2G
echnology capability come from energy paid to EV users when the

−

5

harging rate is negative (𝑞𝑖,𝑡), and when energy must be bought from r
Table 1
Simulation parameters.

Parameter Value

Charging station size 35 EVs
Time periods in a day 24, for every hour
EV arrivals 𝑎𝑟 ∼  (𝜇 = 8, 𝜎2 = 1) [30]
EV sojourn time 𝑡𝑠 ∼ 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝜇 = 0.27, 𝑠 =

0.06), 𝑚𝑛 = 5, 𝑚𝑥 = 18.52 [30]
Solar panel rating 4 kW [31]
Number of solar panels 70
Initial state of charge Empirical cdf [32]
Trip requirements Empirical cdf [32]
Fast charging 1, 2 and rapid
ratings

7, 22 and 50 kW [33]

Mitsubishi Outlander charging
ratings/battery size

3.7 and 22 kW/ 12 kWh [34]

Nissan Leaf charging
rating/battery size

6.6 and 50 kW/40 kWh [35]

BMW 330e charging
ratings/battery size

3.7 kW/12 kWh [36]

Tesla 3 charging ratings/battery
size

11 and 100 kW/60 kWh [37]

Electricity price 10 p/kWh [38]
Utility from balancing services 10%

the grid (𝑞+𝑖,𝑡) when referencing to available solar power generation at
he charging station as below

𝑣𝑔 =
𝐼
∑

𝑖=1

{ 24
∑

𝑡=1
𝑝𝑓 ⋅ |𝑞−𝑖,𝑡| +

24
∑

𝑡=1
𝑐𝑔𝑡 ⋅ (𝑞+𝑖,𝑡 − 𝑃𝑖,𝑡)

}

, (31)

here 𝑃𝑖,𝑡 is the average available solar energy that can be used to
harge an EV which can be estimated by

𝑖,𝑡 = 𝑛 ⋅ 𝑃𝑠𝑡∕
𝐼
∑

𝑖=1
𝑎𝑣𝑖,𝑡. (32)

In contrast, revenues from provision of balancing services with G2V
echnology capability come from sales from energy turn up and sales
rom EV charging by

𝑔𝑣 =
𝐼
∑

𝑖=1

{ 𝑡𝑒
∑

𝑡=𝑡𝑗
𝑝𝑔𝑢𝑡 ⋅ 𝑞𝑖,𝑡 +

24
∑

𝑡=1
𝑝𝑓 ⋅ 𝑞𝑖,𝑡

}

. (33)

ompared to V2G technology costs, G2V costs come only from buying
nergy from the grid when needed as below

𝑔𝑣 =
𝐼
∑

𝑖=1

24
∑

𝑡=1
𝑐𝑔𝑡 ⋅ (𝑞𝑖,𝑡 − 𝑃𝑖,𝑡). (34)

. Case studies and evaluations

.1. Simulation setup

Table 1 summarises the simulation parameters. To test the time
f use dynamic pricing and the EV charging control optimisation al-
orithms, different cases are proposed to show applicability of the
odel to real case scenarios and to compare EV charging business
odels with balancing services. As the charging speed rating increases
ith EV charging types, the price for providing energy may also in-

rease. In addition, customers may respond to prices differently, for
xample when there is competition in an area or when EV drivers
hange charging behaviour. To take into account these possibilities,
he pricing strategies are evaluated with different elasticities of three
nverse demand curves; an original demand from real data, a theoretical
ore elastic and a more inelastic demand. The original demand curve is

lso used to create demand curves when testing for increasing charging

ates. The EV charging control strategy is used to test EV responses to
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Fig. 3. Stochastic number of EVs and average hourly solar power generation with PV
system at the charging station for workplace location.

prices and energy bidding capacity, the results are evaluated comparing
the capability of V2G and G2V technology.

EV driver behaviour was generated from real world projects to
provide accurate simulations. Fig. 3 shows stochastic number of EVs
available for charging from an aggregated availability matrix of all EVs
for the specific case of charging at work. This figure was generated
considering a total of 35 EVs. For simulation purposes, EV profiles are
created with 30, 35 and 25 EVs that arrive at the charging station
in a 24 h period assuming demand changes from an original, more
elastic and more inelastic demand curves respectively. The EV profiles
were created from EV arrivals (𝑎𝑟) and sojourn timings (𝑡𝑠), defined
s departure minus arrival time, from the work analysed by Develder
t al. [30]. The available onsite power generation forecast of all seasons
nd the size of the solar system adopt the data from [31]. Average
ourly variations of solar power variations were included to account for
ntermittency of solar generation during a day as it also can be observed
n Fig. 3 where EV availability for work location overlaps considerably
ith solar generation in a day. As seasonal changes of solar power
ccounted for small changes in price, for practicality, average hourly
easonal solar power generation in the Northeast of UK was analysed.
owever, this paper propose to forecast EV behaviour and solar power
eneration with prediction algorithms such as ARIMA, neural networks,
ay ahead, etc. Definitions for initial state of charge of EVs and trips
ere estimated with empirical distribution functions using EV charging
ata of the workplace cluster information from ‘‘My Electric Avenue’’
roject [32], kindly provided by EA technology. Charging rate limits
or both the charging station and EVs use two selected charging rates
f fast charging and one from rapid charging as explored in [33]. The
ercentage mix of EVs in the simulation used parameters of charging
ates and battery size of Mitsubishi Outlander PHEV (40%), Nissan leaf
30%), BMW 330e (20%) and Tesla 3 (20%).

The demand and price curves were estimated with 40 observations
ith results showing significant coefficients with a 𝑝 value close to

ero of the linear regression model and an adjusted R-squared value
f 0.815. Raw data for these calculations were estimated using real
ata from trial 3 of ‘‘Electric Nation’’ project [39], also provided by EA
echnology. To estimate elasticity variations to price from EV drivers,
he coefficients in the demand curve were decreased and increased by

third in order to create a more elastic and more inelastic demand
urves. Prices and demand data sets for different charging rates were
ultiplied by 1/2 (fast charging 2), 2/3 (rapid charging) for price, and

y 4 (fast charging 2), 10 (rapid charging) for demand in order to match
rices close to real data in the current market available in [40]. The
ost for energy from the grid was assumed to be fixed at a rate of 10
6

/kWh (pence per kilowatt hour) as proposed in [38]. Once the profiles
for driver behaviour, PV forecast and demand curves are created, the
pricing and EV charging optimisations are used to compute results for
the cases where demand curve elasticity changes as well as charging
speed varies with V2G and G2V technology. Analysis and discussion of
results are presented in the next two subsections.

3.2. Pricing with stochastic variables

The merits of the pricing and EV charging algorithm are evaluated
in this subsection to show their potential usage in different EV driver
demand response behaviour with three different elasticity levels of
inverse demand curves and different charging technology with three
charging speeds and V2G/G2V capabilities. The contributions towards
carbon neutrality in this section can be observed in the slight dif-
ferences of dynamic time of use tariff proposed EV charging and in
the bidding potential from low carbon technologies coming from EV
batteries as these are integrated in balancing services. First, solar power
contribution towards the charging station is reflected in EV charging
price, where charging schedules follow pricing signals established by
the charging station. Second, carbon emissions savings coming form
participating in ancillary services could be compared to the related
carbon emissions in the technologies used for balancing mechanisms.
Being coal and gas the most used technologies for this purpose for
instance in the UK [41], carbon emission savings can vary based on EV
availability, carbon grid factor, charging rating, and in the technology
used for balancing services. In the best case carbon savings could be
up to 573.6 CO2eq emissions per kWh when comparing equivalence of
coal (820 CO2eq/kWh) against the lowest carbon grid factor intensity
(e.g July 3, 2022 was 222.4 CO2eq/kWh) used for EV charging and
related impact of storage CO2eq technologies (24 CO2eq/kWh).

Fig. 4 is a representation of the basic functions used for calculation
of the different pricing strategies that include an inverse demand curve,
revenues, costs and utilities. The original inverse demand curves for the
fast charging 1, fast charging 2 and rapid charging scenarios present
the different responses to prices from an average EV at any time. The
three inverse demand curves show that as prices increase per kWh, EVs
would respond with charging less energy and as price decreases EVs
would aim to charge more energy. The figure also shows more average
revenues and utilities are obtained from rapid charging compared
to fast charging 2, and more with fast charging 2 compared to fast
charging 1. An explanation of this trend is a result of using higher
prices and quantities with faster services of EV charging. The costs for
the three charging ratings remain the same as the three cases assume
the same fixed energy cost per energy unit and the same available free
energy from onsite solar generation power to charge EVs.

The proposed time of use dynamic tariff in this paper includes tariffs
for periods of peak, off peak and normal hours. Peak and off peak
periods during a day are intended to be synchronised with timings for
balancing services for energy turn down and energy turn up require-
ments, other timings are irrelevant for balancing services purposes.
Fig. 5 shows that in the cases of the original demand curve, from 9:00
to 11:00 h energy is more expensive and from 12:00 to 14:00 h energy
is cheaper. Timings with the more elastic curve are increased by one
hour when energy is cheaper compared to timings with the original
curve. Timings with the more inelastic curve are reduced by one hour
in both expensive and cheap timings compared to timings with the
original curve. The reason for these changes are related to availability
of demand with different EV numbers determined by price elasticity
where balancing timings are set when there is sufficient capacity at
the charging station as established by the pricing algorithm. The three
cases where energy is obtained with an original curve, a more elastic
and more inelastic curve aim to represent changes from demand. This
is an essential consideration for demand response mechanisms, because
knowing how customers will respond to pricing and by which quantity
is critical to determine an appropriate use of tariffs for balancing

services. The different elasticity cases for each different inverse demand
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Fig. 4. Inverse demand response, utilities, revenues and costs of EV charging for three different charging ratings.
Fig. 5. Dynamic time of use tariffs used to incentivise EVs based on demand inverse
urves and charging type cases.

urve could represent when EVs may be subject to substitution effects,
or instance when EVs have other options in the area for charging
elastic demand), or when EVs prefer charging from one specific day of
he week for personal preference regardless of price (inelastic demand).
he results of the dynamic time of use pricing strategy illustrated

n Fig. 5 adapt accordingly with varying requirements of demand
lasticity, timings for balancing services and charging rating. The prices
uring balancing services change slightly with cost variation due to
vailable onsite generation of energy per each EV.

.3. EV response to price

Fig. 6 shows the response from EVs with V2G capability at different
harging rates. Fast charging 1 limitations for EV charging shows EVs
7

discharge energy when energy is expensive, this allows EVs to get
paid for energy provision to the grid at a high price, a reasonable
consideration for battery compensating for degradation when using
V2G technology. The charging rate during energy turn down period
with fast charging rate 1 is negative and therefore balancing services
can be provided from 9:00 h to 11:00 h. However, this changes with fast
charging rate 2 because EVs can take more advantage of savings when
buying energy at 10:00 h to then discharge power at 11:00 h. Similarly,
rapid charging allows EVs to charge at 10:00 h to then discharge at
11 h with a greater energy bid at 9:00 h and 11:00 h compared to fast
charging 1 and 2. During energy turn up periods, EVs charge energy
taking advantage of the cheap prices. As the charging rate increases
EVs charge with the required trip requirements faster. Charging outside
balancing services occur in case driver requirements were not met by
the end of the turn up period which is the case of fast charging 1 rating.
Rapid charging has the biggest bid per hour followed by fast charging
2 and fast charging 1. It is important to point that a smaller charging
rate could maintain more average capacity for longer periods of time
as it is observed in fast charging 1 and 2 charging rate cases. However,
bidding potential occurs for fewer periods of time with higher charging
ratings as trip requirements are met at a higher speed.

To continue with the responses results of EV drivers, Fig. 7 il-
lustrates the EV aggregated charging schedule when EVs have unidi-
rectional charging and using an original demand curve for pricing.
EV profiles show the majority of EV charging happens when energy
is cheaper, which is also when energy turn up provision is needed.
However, aggregated biding for every hour is not greater than the V2G
option as charging is employed to meet energy requirements without
the need to discharge EVs. The charging scheduling is concentrated
at 12:00 h as availability at the charging station indicates EVs need
to be charged before expected departures. Similar to the V2G case, a
greater energy bid is performed with rapid charging, followed by fast
charging 2 and 1 respectively. It can also be observed in Fig. 7 that
the charging schedule of fast charging 1 and 2 indicate some charging
needs to happen outside turn up periods. Thus a greater charging rate is
needed to fully take advantage of getting revenue from charging and for
participating in balancing services at the same time. When comparing
the overall charging schedules from Figs. 6 and 7 we can see that V2G
offers greater hourly bidding capacity for both energy turn down and
energy turn up. This can be attributed to the possibility to discharge an
EV and charge it again when needed at later times as opposed to just

charge it to meet trip requirements with unidirectional charging. Thus
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Fig. 6. EV charging profiles as a response to prices with original demand curve using
different charging type cases and bidirectional capability.

Fig. 7. EV charging profiles as a response to prices with original demand curve using
different charging type cases and unidirectional capability.

energy bid capacity is more limited with unidirectional technology but
it is still feasible to have some bidding capacity during turn up period.

Fig. 8 was created with new stochastic EV profiles from an average
user type with a more elastic demand curve, the aim of the pricing
scheme is to attract more EV users to the charging station, for instance
when there is competition or when the charging station aims to influ-
ence EV users to charge at a specific day of the week. Fig. 8 shows that
overall energy bidding capacity for energy turn up is greater compared
to the original demand curve EV profiles as there are more cars which
are influenced to arrive at the charging station. However, most periods
for energy turn down of Fig. 8 are smaller compared to Fig. 6, this
8

Fig. 8. EV charging profiles as a response to prices with more elastic demand curve
using different charging type cases and bidirectional capability.

means EVs optimise revenues by taking advantage of the extended
turn up periods (cheap energy). Greater bidding capacity is achieved
with rapid charging, however for less periods of time compared to fast
charging 1 and 2. The energy bids for fast charging 1 and 2 overall
have less capacity than the ones with rapid charging but they are still
able to provide energy to turn up balancing services from 12:00 h to
15:00 h. The extension of cheap prices during energy turn up periods
compared with the original curve results could mean that with the more
elastic curve results, EVs have more cost savings, however EV revenues
obtained from energy to sell to the charging station should also be
considered.

Fig. 9 shows the charging profiles resulted from using a more
inelastic EV demand curve with less demand compared to the previous
charging figures due to the influence of higher prices on charging
station selection. Lower demand at the charging station indicates the
timings for energy turn up and energy turn down are shorter. Therefore,
Fig. 9 shows more charging happens outside the peak and off peak
timings compared to Figs. 6–8 where there are longer periods for bal-
ancing services. EVs aim to charge before the energy turn down period
if possible to discharge power at high prices when the charging station
provides energy turn down services. Compared to previous graphs
where EV profiles during energy turn down period were positive with
fast charging 2 and rapid charging ratings during one hour, EV profiles
in Fig. 9 show negative bidding is feasible for the whole energy turn
down period (two consecutive hours). However more positive charging
occurs outside energy turn up period as the timings of this period are
not sufficient for charging most EVs to meet EV trip requirements.
Capacity bidding with the more inelastic demand curve case is less than
the capacity bidding in the cases where there are more EVs arriving at
the charging station with an original and more elastic EV user type
demand curve. The reason for this is fewer EV arrivals and fewer hours
for making energy exchange for energy turn up and turn down periods
in the more inelastic demand curve case in Fig. 9.

In order to compare the bi-level optimisation model proposed in
this paper, a simple fixed tariff of 30 p/kWh is used to compare
bidding capacity in Fig. 10. This is the closest comparison to existing
research work where a fixed tariff is used to influence driver behaviour
to participate in balancing services. It is important to mention that
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Fig. 9. EV charging profiles as a response to prices with more inelastic demand curve
using different charging type cases and bidirectional capability.

flexibility has been used to maximise revenues of the charging station
and not EVs necessarily, which is not convenient for EV users and the
charging station ends up taking advantage of charging and pricing as
in the work of Sortomme et al. [29]. The profiles were created using
the data inputs from the original demand curve with V2G technology.
The results show almost lack of influence over EV charging profiles
for energy turn up periods, where charging happens only to meet trip
requirements subject to departures. Overall capacity bidding is smaller
compared to Fig. 6 as a result of EV users not influenced to discharge
and then charge as much energy as possible with a tariff difference.
To conclude, it can be observed in Fig. 10 that EV charging has been
modelled given a fixed tariff, which does not provide a significant
influence over charging of EV users in order to both charge EVs and
bid energy into auction balancing service markets.

3.4. Revenues, costs and utilities

Fig. 11 shows percentages of costs and revenues with V2G (bidi-
rectional) technology at different charging ratings, and three inverse
demand curves. Revenues come from energy turn down, energy turn
up and EV charging, while costs come from energy paid to EVs (energy
turn down periods only) and energy purchase from the grid. The
biggest revenue from all cases comes from energy turn down followed
by EV charging and energy turn up, except for the fast charging 1
with the original demand case where revenue sources from energy
turn up are greater than EV charging. The biggest costs for all cases
comes from energy paid of EV drivers for V2G provision. Overall cost
percentages increase when demand is more elastic and decrease with
a more inelastic demand. In contrast, percentage of overall revenues
are greatest with the more inelastic demand curve of EVs followed by
the original demand curve and then the more elastic curve, except for
the rapid charging case where overall revenues are slightly higher in
percentage with the more elastic curve than with the more inelastic
curve. This difference in percentages of costs and revenues from Fig. 11
can be attributed to pricing strategies at varied demand elasticity and
expected demand at the charging station.

Having described costs and revenues in previous paragraphs, total
utilities or net profits in Fig. 12 provide values in pounds (£) for a better
9

Fig. 10. EV charging profiles as a response to fixed prices with original demand curve
using different charging type cases and bidirectional capability.

Fig. 11. Potential revenues and costs from different charging type cases with pricing
strategies using different inverse demand curves and bidirectional capability.

comparison between all cases. The V2G or bidirectional cases with
the more inelastic curve are the most profitable cases, and specifically
the case of rapid charging is more profitable than the other charging
ratings, this could be a result of the use of increasing prices and overall
greater bidding capacity to offer for balancing services compared to
the other charging ratings. The V2G case with the original demand
curve represents the second place in terms utilities and the case with
the more elastic curve is third place. Similar to the V2G cases, G2V
or unidirectional cases with greater net profits come from the more
inelastic curve for the charging ratings of fast charging 1 and 2,
however for the case of rapid charging rating the most profitable case is
the original curve. The differences between revenues is more notorious
in the V2G cases than in the G2V cases, such differences suggest higher
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Fig. 12. Net profits with pricing using the three inverse demand curves and charging
ases.

rices of energy turn down provide greater revenues. It is assumed
owever that energy markets for instance balancing services of Grid
perator accept the proposed bidding at the capacity, price and time

pecified from the EV charging station operator.

. Conclusions

In this paper, a bi-level optimisation is proposed for pricing and for
ggregating energy bidding of a low carbon charging station participat-
ng in balancing services. First, pricing strategies are developed for en-
rgy bidding to enter in Grid Operator auctions and for generating a de-
irable charging response from EV drivers. EV charging prices are cre-
ted to promote charging during energy turn up timings and to promote
ischarging during energy turn down timings. Second, an EV charging
ptimisation control strategy is used to determine the charging sched-
les with bidding quantities during the balancing services periods. Both
trategies worked together to announce bids and prices in a day ahead,
iven historical information to the operation of the charging station
.g., quantity responses to price, PV power forecasting, stochastic vari-
bles of EVs (arrivals, departures, trip requirements, state of charge)
nd charging rate limits from both the charging station and EVs.

The proposed dynamic pricing strategies have demonstrated that
Vs can be influenced to provide balancing service provision. Positive
evenues are obtained from all cases evaluated, which means the pric-
ng strategies can adequately manage to create economically feasible
perations of a low carbon charging station with participation in bal-
ncing or ancillary services using different charging technologies. V2G
echnology has been shown to be the best strategy in terms of bidding
apacity. Directions for future research may include consideration of
ompetition impact on revenues, for example EVs can be assumed to
now price comparison of several charging stations before arriving.
emand curves could be explored further to create tariffs for different
ustomers with more elastic or more inelastic demand responses.
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Appendix. Expanded calculation of 𝑸∗
𝒕

To find an optimal charging demand 𝑄∗
𝑡 , we have

∗
𝑡 = 𝑎𝑟𝑔(𝑟′𝑡 − 𝑐′𝑡 = 0).

From the derivative of revenues and costs,

𝑝′𝑡(𝑄𝑡) ⋅ (𝑄𝑡) + 𝑝𝑡(𝑄𝑡) ⋅ (𝑄′
𝑡) − 𝑐𝑔𝑡 = 0.

rice terms are then substituted,

1𝑡 ⋅𝑄𝑡 + 𝛽0𝑡 + 𝛽1𝑡 ⋅𝑄𝑡 − 𝑐𝑔𝑡 = 0.

0𝑡 + 2 ⋅ 𝛽1𝑡 ⋅𝑄∗
𝑡 − 𝑐𝑔𝑡 = 0.

olving for 𝑄𝑡, the optimal charging demand quantity is obtained
∗
𝑡 = (𝑐𝑔𝑡 − 𝛽0𝑡)∕(2 ⋅ 𝛽1𝑡).
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