
1. Introduction
A common method of characterizing dike geometry is to plot their measured maximum thickness (𝐴𝐴 𝐴𝐴  ) against 
their horizontal length (𝐴𝐴 𝐴𝐴 ) (Figure 1: see Schultz et al. (2008) and references therein). A similar method has been 
applied widely to fault systems to determine critical mechanical controls on intraplate fault evolution, in which 
the maximum displacement 𝐴𝐴 𝐴𝐴max is related to 𝐴𝐴 𝐴𝐴 by 𝐴𝐴 𝐴𝐴max = 𝛾𝛾𝛾𝛾

𝑛𝑛 , where typically 𝐴𝐴 𝐴𝐴 = 1 (Cowie & Scholz, 1992; 
Schultz et al., 2008), with the difference being that 𝐴𝐴 𝐴𝐴max is a shear displacement whereas 𝐴𝐴 𝐴𝐴  is opening displace-
ment. This exponent indicates a power law 𝐴𝐴 𝐴𝐴max − 𝐿𝐿 relationship (with scatter), which is inferred to represent 
scaling under constant stress loading (Scholz, 2010, 2019). For dikes and other opening mode fractures (e.g., 
joints, veins, and sills) 𝐴𝐴 𝐴𝐴 –𝐿𝐿 scaling is typically shown as 𝐴𝐴 𝐴𝐴 = 0.5 (i.e., 𝐴𝐴 𝐴𝐴 = 𝛼𝛼

√

𝐿𝐿 ; Olson, 2003) albeit with signif-
icant scatter in aspect ratio at all data-rich length scales (Figure 1a). In contrast to the frictional control for shear 
faults, this square root scaling would be consistent with growth under conditions of constant rock properties, 

Abstract In linear elastic fracture mechanics (LEFM), veins, dikes, and sills grow in length when the 
stress intensity factor 𝐴𝐴 𝐴𝐴𝐼𝐼 at the tip reaches a critical value: the host rock fracture toughness 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 . This criterion 
is applied broadly in LEFM models for crack growth and it is often assumed that the pressure inside the 
crack is uniform. When applied to intrusion length versus thickness scaling, a significant issue arises in that 
derived 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 = 300 to 3000MPa

√

𝑚𝑚 , which is about 100–1,000 times that of measured 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 values for rocks 
at upper crustal depths. The same scaling relationships applied to comparatively short mineral vein data gives 

𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 < 10MPa
√

𝑚𝑚 , approaching the expected range. Here we propose that intrusions preserve non-equilibrated 
pressures as cracks controlled by kinetics, and therefore cannot be treated in continuum with fracture-controlled 
constant pressure (equilibrium) structures such as veins, or many types of scaled analogue model. Early stages 
of dike growth (inflation) give rise to increasing length and thickness, but magma pressure gradients within 
intrusions may serve to drive late-stage lengthening at the expense of maximum thickness (relaxation). For 
cracks in 2D, we find that intrusion scaling in non-equilibrium growth is controlled by the magma injection 
rate and initial dike scaling, effective (2D) host rock modulus, magma viscosity and cooling rate, which are 
different for all individual intrusions and sets of intrusions. A solidified intrusion can therefore achieve its final 
dimensions via many routes, with relaxation acting as a potentially significant factor, hence there is no unique 
scaling law for dike intrusions.

Plain Language Summary Magma moves vertically through Earth's crust in cracks, which grow 
as a result of magma pressure exerted on the crack walls. Models for this growth assume the magma pressure 
is uniform, as it is likely to be for water-filled cracks (veins). This assumption is appropriate for veins since 
(a) veins are short, and (b) water flows freely over such small distances to fill the crack. However, calculated 
rock-toughness values for the wall rocks of long magma-filled cracks, based on uniform magma-pressure, are 
several orders of magnitude higher than any known material, which has been a long-standing inconsistency. 
Here we model viscous magma-filled cracks with a linear pressure distribution from the middle to the ends. We 
find that such magma-filled cracks grow in two stages: (a) crack inflation, where magma volume increases and 
is accommodated by increasing length and thickness; and (b) constant-volume pressure relaxation, where crack 
length increases at the expense of thickness. In our model, rock toughness values are in line with measurements 
of natural rocks. Natural conditions of crack growth may not allow full pressure equilibration, hence solidified 
magma-filled cracks likely preserve a range of pressure gradients. This is important for reported thickness 
versus length datasets of natural magma-filled cracks, as our study shows they do not grow along the previously 
claimed simple scaling path.
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including material fracture toughness 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 (Scholz, 2010); cracks would become unstable under constant stress 
loading, therefore implying growth under constant displacement boundary conditions (Segall,  1984). Under-
standing scaling relationships therefore has significant implications for the mechanics of intrusions and other 
opening mode fractures.

Opening displacement (thickness) versus length (𝐴𝐴 𝐴𝐴 –𝐿𝐿 ) data for dikes (and veins, sills, etc., but here we focus on 
dikes) are generally interpreted using a linear elastic 2D pressurized crack model. The model assumes mechanical 
equilibrium, such that the stress intensity, 𝐴𝐴 𝐴𝐴𝐼𝐼 , at the tip of the dike is equal to the mode I fracture toughness of the 
country rock, 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 (the ability of a material containing a crack to resist fracture). Magma flows within a conduit 
down a pressure gradient, so a static (equilibrium) condition necessarily requires that the magma pressure, 𝐴𝐴 𝐴𝐴  , is 
uniform within the dike, as shown in Figure 1b. In reality, the ability of a magma to flow to relieve overpressure 
and achieve equilibrium will be directly dependent on magma viscosity, for which there is a significant range 
in nature (McLeod & Tait, 1999), rising sharply toward solidus temperatures. For our purposes here, in a 2D 
case, we will consider the length (𝐴𝐴 𝐴𝐴 ) as the maximum horizontal dimension of the dike (as opposed to the dike 
height; the maximum vertical dimension), and the thickness (𝐴𝐴 𝐴𝐴  ) as the minimum horizontal dimension of the dike 
(Figure 1b). The failure condition at constant pressure is

𝐾𝐾𝐼𝐼 = 𝑃𝑃

√

𝜋𝜋𝜋𝜋

2
= 𝐾𝐾𝐼𝐼𝐼𝐼𝐼 (1)

The maximum thickness would be at the center of this 2D dike and is given by

� = 2
�′ ��, (2)

where 𝐴𝐴 𝐴𝐴
′
=

𝐴𝐴

1−𝜈𝜈2
 is the (2D) plane strain modulus of the country rock, 𝐴𝐴 𝐴𝐴 is the Young's modulus and 𝐴𝐴 𝐴𝐴 is the 

Poisson's ratio. Combining Equations 1 and 2 gives the classic relationship between dike thickness and length 
(Olson, 2003)

𝑇𝑇 = 𝛼𝛼𝛼𝛼
0.5 (3)

where the constant of proportionality is 𝐴𝐴 𝐴𝐴 =

√

8

𝜋𝜋

𝐾𝐾𝐼𝐼𝐼𝐼

𝐸𝐸′
 . Figure 1a suggests that 𝐴𝐴 10

−2

< 𝛼𝛼 < 1

√

𝑚𝑚 encompasses the 
range of dikes observed in the field.

Measured thickness to length ratios are generally consistent with reasonable magma excess pressure estimates 
using Equation 2, in the range of 1–10 MPa (Rubin, 1995), but the large areas over which that pressure operates 
in a constant pressure model results in extremely large stress intensity at the tip, which then requires excessively 
large fracture toughness to stabilize the crack (Figure 1a). It is widely acknowledged that this model-predicted 
value for fracture toughness is much larger than the expected values for the host rock (Cruden et  al.,  2017; 
Rivalta et al., 2015), with model results typically in the region of ��� = 300 − 3000���

√

� on Earth (Schultz 
et al., 2008), with estimates up to ��� = 15, 000���

√

� on Mars (Rivas-Dorado et al., 2021); these predictions 
are compared to ∼1���

√

� measured in the laboratory (Atkinson, 1984). To appreciate how large these calcu-
lated values are, the fracture toughness of all classes of material are shown in Figure 1c, where 𝐴𝐴 𝐴𝐴 ≈ 10

−5

√

𝑚𝑚 for 
technical ceramics including glass, and 𝐴𝐴 𝐴𝐴 ≈ 10

−4

√

𝑚𝑚 for building materials such as concrete and brick, with the 
very highest values of 𝐴𝐴 𝐴𝐴 ≈ 10

−3

√

𝑚𝑚 for high-performance structural materials such as metal alloys. Predicted 
dike-model values of 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 are 2–3 orders of magnitude above the expected and measured range for rocks, and 
significantly above the toughest known materials, such as maraging steel (175 ���

√

� ) and titanium alloys (up 
to 107 ���

√

� ). Measured 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 for upper crustal rocks (0–5 km) ranges from about 0.5 − 3���
√

� (Stoeckhert 
et al., 2015), hence the equilibrium model of Equation 1 cannot explain what is physically observed using realistic 
material parameters. The high fracture toughness of metals shown in Figure 1c is due to their plasticity, and it 
could be argued that rock plasticity and/or increasing depth/temperature should increase 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 (Balme et al., 2004; 
Heimpel & Olson, 1994; Stoeckhert et al., 2015), but this is not enough to span the expectation gap, especially at 
the shallow crustal emplacement depths of the dikes plotted in Figure 1a.

Delaney et al. (1986) proposed that the discrepancy between measured and calculated fracture toughness values 
relates to the difference in size of fracture process zone between the sample-scale (small) and the field-scale 
(large). The process zone should scale with crack length, hence longer fractures should expend greater energy in 
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the creation of new fractures leading to large 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 at kilometer length-scales. It is difficult to test this argument 
directly, however, there remains a significant discrepancy in apparent fracture toughness values depending on the 
fracture type. Figure 1a shows that the fracture toughness for host rocks of 10-m long dikes (∼ 100���

√

� for 
the Ship rock dikes, hosted in shale: Delaney & Pollard, 1981) is about two orders of magnitude larger than the 
fracture toughness for 10-m long hydrous veins (∼ 3���

√

� for the Culpeper quarry and Florence lakes veins, 
hosted in siltstones and granodiorite respectively: Vermilye & Scholz, 1995). This implies that there is less energy 

Figure 1. (a) Dike scaling relationship plot of maximum thickness (maximum opening displacement) versus length. Contours for fracture toughness 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 are 
from Cruden et al. (2017) and based on Young's Modulus 𝐴𝐴 𝐴𝐴 = 100𝐺𝐺𝐺𝐺𝐺𝐺 . Graben data (Elysium data form Rivas-Dorado et al., 2021; Tharsis data from Mège 
et al., 2003) refers to dike dimensions, based on calculations using graben widths (Rivas-Dorado et al., 2021). Sudan (Babiker & Gudmundsson, 2004), Ethiopia 
(Schultz et al., 2008), and Shiprock (Delaney & Pollard, 1981) dike data and Culpeper and Florence Lake vein data (Vermilye & Scholz, 1995) were extracted from 
syntheses presented by Olson (2003) and Cruden et al. (2017). Deccan dike data is from Ray et al. (2007) and Karoo dike data is from (Coetzee and Kisters (2017). 
Sandstone (SST) dike data from Vétel and Cartwright (2010): PGIC, Panoche Giant Intrusion Complex (California, USA). (b) Pressure and dike thickness profiles for 
toughness-controlled (upper image) and kinetic-controlled (lower image) models, showing the mode I stress intensity at the dike tips, 𝐴𝐴 𝐴𝐴𝐼𝐼 , in both cases. (c) Materials 
Selection Chart (adapted from Ashby, 2009) showing 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 versus 𝐴𝐴 𝐴𝐴 for a range of materials. Note the position of 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 values predicted from equilibrium-based intrusion 
scaling relationship models relative to the position occupied by natural rocks. Full explanation is given in Section 2.
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required to form a process zone ahead of a hydrous vein than for a dike, at a given length-scale, despite dikes and 
veins being hosted in similar rock types. The GPa-scale values calculated for 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 are for already-long intrusions, 
with the stress intensity proportional to the crack length (Equation 1), hence longer intrusions should be easier to 
grow than short intrusions; a toughness-controlled equilibrium model effectively predicts that it is impossible to 
grow a short intrusion, since 𝐴𝐴 𝐴𝐴𝐼𝐼 ≪ 𝐴𝐴𝐼𝐼𝐼𝐼 at shorter length scales.

Any alternative model for dike growth must therefore predict a stress intensity at the dike tip that is within a 
realistic fracture toughness range for rocks in the upper crust—on the order of ��� ≈ 1���

√

�—which is the 
purpose of this paper. However, the existing toughness-controlled growth model would appear to be inappropri-
ate. As an illustration, taking a typical dike from Figure 1 with 𝐴𝐴 𝐴𝐴 = 6𝑚𝑚 and 𝐴𝐴 𝐴𝐴 = 1 𝑘𝑘𝑘𝑘 , the equilibrium model 
predicts that a host rock with ��� ≈ 1000���

√

� is required to sustain this dike. If we keep the magma volume 
(area in the 2D case) constant, and reduce the fracture toughness to ��� ≈ 1���

√

� then Equation 3 predicts 
that this dike would have dimensions of 𝐴𝐴 𝐴𝐴 = 6 𝑐𝑐𝑐𝑐 and 𝐴𝐴 𝐴𝐴 = 100 𝑘𝑘𝑘𝑘 at equilibrium. This shape is never likely to 
be achieved of course, since magma flow would cease due to solidification, and the final dike would be one that 
is frozen into a non-equilibrium state.

Here we revisit the assumptions of dike scaling laws, reapplying principles of kinetic (viscous) and fracture 
controls on 2D crack growth. In particular, we assess whether dikes and veins occupy the same 𝐴𝐴 𝐴𝐴 − 𝐿𝐿 scaling 
continuum, and examine the fundamental controls on their growth and preservation in the rock record that are 
manifest in such scaling plots. A range of realistic conditions for individual dike systems are modeled and show 
that no two systems are likely to follow the same scaling trajectory.

2. Kinetic-Dominated Versus Toughness-Dominated Growth
Here we will consider the growth of cracks in 2D in terms of the evolution of length and thickness, in which the 
length represents the maximum horizontal dimension, and the thickness is the minimum horizontal dimension 
(e.g., Figure 1b). Equation 1 assumes the dike is in an equilibrium state when it solidifies, that is, the fluid (magma) 
has had time to redistribute itself within the fracture to remove all pressure gradients. This toughness-dominated 
assumption is reasonable for low viscosity fluids in small fractures, since the short distances involved mean that 
fluid pressure can equilibrate quickly. However, as noted above, non-equilibrated fracture geometry results in 
the prediction of unphysically high fracture toughness, so it is necessary to look at alternative explanations. The 
principal variable in linear elasticity that has influence on 𝐴𝐴 𝐴𝐴𝐼𝐼 , and that can be changed, is the excess magma pres-
sure distribution, 𝐴𝐴 𝐴𝐴(𝑥𝑥) , where 𝐴𝐴 −

𝐿𝐿

2

≤ 𝑥𝑥 ≤
𝐿𝐿

2

 is the lateral distance from the center of the dike. The exact pressure 
profile in the dike is represented analytically by a series expansion (Spence & Sharp, 1985) but can be illustrated 
in simpler terms using the approximate solution of Spence and Turcotte (1985). They introduced a linear variation 
in the pressure such that 𝐴𝐴 𝐴𝐴(𝑥𝑥) = 𝑃𝑃 + Δ𝑃𝑃 |

2𝑥𝑥

𝐿𝐿
| , where 𝐴𝐴 𝐴𝐴  is the pressure at the center of the dike and 𝐴𝐴 𝐴𝐴 + Δ𝐴𝐴  is the 

pressure at the tip. A value of 𝐴𝐴 Δ𝑃𝑃 = −
𝜋𝜋

2

𝑃𝑃  removed the stress intensity at the tip entirely, that is, 𝐴𝐴 𝐴𝐴𝐼𝐼 = 0 , resulting 
in a negative tip pressure of 𝐴𝐴 − 0.57𝑃𝑃  , as shown in Supporting Information S1. This is illustrated in the lower 
diagram in Figure 1b. For a pressure that continually decreases away from the center, which is consistent with 
magma flowing toward the dike extremities, the excess pressure at the tip must always be negative for 𝐴𝐴 𝐴𝐴𝐼𝐼 = 0 
(note, this is only a negative excess pressure, and once lithostatic pressure 𝐴𝐴 𝐴𝐴𝐿𝐿 is included, the total pressure is still 
positive and therefore compressive). This alternate extreme is referred to as kinetic-dominated behavior, whereby 
a dike propagates in a non-equilibrium state determined by the rate at which magma is emplaced and redistributed 
within the fracture. It assumes that the fracture toughness is negligible compared to the large forces involved in 
dike propagation, such that it can be assumed that 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 is effectively zero. The primary assumption behind this 
model is that the crack tip must remain magma-filled, whereby any (low pressure) cavity that developed would 
quickly be filled or closed due to the large pressure difference between the magma or host rock and the cavity 
(Rubin, 1995). This model was first employed by Delaney and Pollard (1981), and it is generally accepted that the 
precise tip conditions in this respect are not that important (Rubin, 1995); for example, the existence of tip cavities 
that are small compared to the dike length do not change the 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 = 0 assumption.

The kinetic-dominated versus toughness-dominated argument has been discussed in the literature for some time 
(see Rivalta et  al., 2015). It is therefore useful to quantify the predicted 𝐴𝐴 𝐴𝐴 − 𝐿𝐿 scaling response where these 
regimes apply. To do this we utilize the simple 2D analytical approximation of Spence and Turcotte (1985), which 
allows for both finite toughness and finite viscosity, to model the growth of a (2D) dike with linearly increas-
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ing volume (area) 𝐴𝐴 𝐴𝐴2𝐷𝐷 = 𝑄𝑄𝑄𝑄 , where 𝐴𝐴 𝐴𝐴 is the injection rate (in units 𝐴𝐴 𝐴𝐴
2
𝑠𝑠
−1 ) as a function of time. Firstly, it is of 

particular interest to note that this allows us to obtain the same scaling relationship as Equation 3 (see Supporting 
Information S1)

𝑇𝑇 = 𝑓𝑓 (𝜆𝜆).𝛼𝛼𝛼𝛼
0.5 (4)

but with a different constant of proportionality, where 𝐴𝐴 𝐴𝐴 (𝜆𝜆) is a dimensionless scaling function which is a function 
of the dimensionless scaling parameter

𝜆𝜆 =

(

𝐿𝐿𝐾𝐾

𝐿𝐿𝜂𝜂

)
1

2

=

𝐾𝐾𝐼𝐼𝐼𝐼

(𝑄𝑄𝜂𝜂𝑄𝑄′3
)

1

4

 (5)

where �� =
(

���
�′

)2
 is the toughness-dominated length scale, and 𝐴𝐴 𝐴𝐴𝜂𝜂 =

(

𝑄𝑄𝜂𝜂

𝐸𝐸′

)
1

2 is the kinetic-dominated length 
scale. In the latter, 𝐴𝐴 𝐴𝐴 is the constant growth rate (𝐴𝐴 𝐴𝐴

2
𝑠𝑠
−1 ) and 𝐴𝐴 𝐴𝐴 is magma viscosity (𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴 ). The parameter 𝐴𝐴 𝐴𝐴 is the 

key measure of the balance between toughness-controlled (𝐴𝐴 𝐴𝐴 𝐴 1 ) and kinetic-controlled (𝐴𝐴 𝐴𝐴 𝐴 1 ) growth.

A plot of 𝐴𝐴 𝐴𝐴 (𝜆𝜆) versus 𝐴𝐴 𝐴𝐴 is shown as the blue line in Figure 2. It shows that 𝐴𝐴 𝐴𝐴 = 1 where toughness dominates, as 
expected from Equation 3, and that 𝐴𝐴 𝐴𝐴 𝐴 1 where kinetic effects dominate. The red line shows the predictions for 
the purely kinetic regime (𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 = 0 ) for which

𝑇𝑇 =

(

6

𝜋𝜋

)

1

4

(

𝑄𝑄𝑄𝑄

𝐸𝐸′

)
1

4

𝐿𝐿
0.5 (6)

in contrast to the toughness-dominated prediction of Equation 3. It is clear that systems are kinetics-dominated 
for 𝐴𝐴 𝐴𝐴 𝐴 0.2 and toughness-dominated for 𝐴𝐴 𝐴𝐴 𝐴 0.4 where 𝐴𝐴 𝐴𝐴 = 1 . There is a small transition region in between, 
but it appears this is not significant enough to warrant a combined model; that is, it is sufficient to use a 
toughness-dominated or a kinetics-dominated model. It is useful now to estimate where a particular system sits 
on this continuum, particularly when reflecting on the scaling relationships between laboratory models and natu-
ral fracture systems.

For dikes, if we assume 𝐴𝐴 𝐴𝐴 = 10
−2

− 1𝑚𝑚
2
∕𝑠𝑠 , 𝐴𝐴 𝐴𝐴 = 10

2

− 10
8

𝑃𝑃𝑃𝑃𝑃𝑃𝑃 , 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 = 10
6
𝑃𝑃𝑃𝑃

√

𝑚𝑚 and 𝐴𝐴 𝐴𝐴
′
= 1 − 10𝐺𝐺𝐺𝐺𝐺𝐺 , 

then we get 𝐴𝐴 10
−4

< 𝜆𝜆 < 10
−1 (Figure 2). Spence and Turcotte  (1985) used lower viscosities and estimated 

𝐴𝐴 𝐴𝐴 ≈ 5 × 10
−3 , but in any case, it is clear from Figure 2 that dikes are very strongly dominated by kinetics. 

Parameter 𝐴𝐴 𝐴𝐴 can have a wide range of values, depending on the specific conditions under which a dike was 
emplaced, and predicts, therefore, a wide range of observed dike aspect ratios, consistent with the wide 

Figure 2. Plot of 𝐴𝐴 𝐴𝐴 versus 𝐴𝐴 𝐴𝐴 . Thin blue line is the full solution (see Equation A.9 in Supporting Information S1). Thick red 
line is purely viscous model (𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 = 0 ) (see Equation A.10 in Supporting Information S1).



Journal of Geophysical Research: Solid Earth

GILL ET AL.

10.1029/2022JB024120

6 of 13

scatter in the observed data. This model suggests that rapid emplacement (large 𝐴𝐴 𝐴𝐴 ) of a viscous magma 
(large 𝐴𝐴 𝐴𝐴) into a compliant host (low 𝐴𝐴 𝐴𝐴

′ ) leads to the growth of a relatively short and thick dike (small 𝐴𝐴 𝐴𝐴 and 
large 𝐴𝐴 𝐴𝐴  ). The chosen viscosity range is high for a basaltic magma (typically taken as 𝐴𝐴 𝐴𝐴 = 10

2
𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ), but in 

line with phenocryst-rich andesite or rhyolite magmas (Takeuchi, 2011 and references therein). Viscosity 
is a strong function of temperature, hence the viscosity of even basaltic magmas will approach such a high 
value as they approach solidus temperatures; a condition that becomes more likely toward the periphery of 
an intrusive system. In this model, low pressure gradients and slower plug-flows would reduce the effective 
channel width of the conduit, consistent with a higher viscosity.

In vein systems formed by hydrofracture (for purposes of comparison to Figure  1a, we are referring exclu-
sively to syntaxial immobile vein systems; e.g., Bons et al., 2012), the viscosity of water at room temperature is 

𝐴𝐴 𝐴𝐴 = 10
−3

𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and much lower at higher temps. The final area (2D volume) is about 𝐴𝐴 10
−6

− 10
−3

𝑚𝑚
2 . The potential 

host lithologies are the same as for dikes, hence host rock fracture toughness and modulus are as above. Such 
a low viscosity fluid in a fracture of such small volume equilibrates almost instantly, and therefore it must be 
toughness-controlled. In large veins (>1 m aperture), complete sealing by mineral precipitation within the vein 
may occur very slowly or not at all (over years to millions of years; e.g., the calcite infills dated by Roberts & 
Walker, 2016) allowing ample time for the hydrofracture to relax toward equilibrium (if this was required). Hence 
veins are expected to be very strongly toughness-dominated (𝐴𝐴 𝐴𝐴 → ∞ ).

In the context of kinetic versus toughness-controlled growth, it is also of interest to consider scaled analogue 
(laboratory) models, which each use different host materials and magma analogs. Here we focus on examples that 
aim to model dike ascent and materials that have measured values for fracture toughness: those that use a gelatin 
host analogue, typically with a low viscosity liquid (water or paraffin oil). For instance, using the constant flux 
experiments of Taisne and Tait (2011), the injection rate (which is in 𝐴𝐴 𝐴𝐴

3
∕𝑠𝑠 so converted here to 2D by dividing 

by the dike width, which is roughly the same as the height) is 𝐴𝐴 𝐴𝐴 = 10
−5

𝑚𝑚
2
∕𝑠𝑠 and 𝐴𝐴 𝐴𝐴 = 10

−4

− 10
−1

𝑃𝑃𝑃𝑃𝑃𝑃𝑃 . The 
fracture toughness is not given, but can be determined from their Equation 7 and Figure 2 to be 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 = 33𝑃𝑃𝑃𝑃

√

𝑚𝑚 , 
and 𝐴𝐴 𝐴𝐴

′
= 10

3

𝑃𝑃𝑃𝑃 . This gives 𝐴𝐴 1 < 𝜆𝜆 < 10 . As with veins, this system is strongly toughness-dominated. Other 
analogue systems may fall outside of this range, such as those using granular mixtures (Schmeidel et al., 2017) 
or low-concentration laponite gels (Arachchige et  al.,  2021), and/or viscous fluids. The scaling mismatch in 
properties is noted elsewhere, in that for gelatine 𝐴𝐴

𝐾𝐾𝐼𝐼𝐼𝐼

𝐸𝐸′
= 10

−2

− 10

−1 (Kavanagh et al., 2013) whereas for rocks 
𝐴𝐴

𝐾𝐾𝐼𝐼𝐼𝐼

𝐸𝐸′
= 10

−4 . This has the effect of increasing 𝐴𝐴 𝐴𝐴 in those gelatine analogue models well into the fracture-controlled 
and equilibrium regime, and away from the region of natural dikes.

Taking 𝐴𝐴 𝐴𝐴 = 1 for veins in Figure 2 yields a prediction of 𝐴𝐴 𝐴𝐴 ≈ 10
−3

√

𝑚𝑚 for the host rock in these cases. Host rock 
data determined from laboratory tests for the dike and vein systems in Figure 1a suggests that 𝐴𝐴 𝐴𝐴 ≈ 10

−4

√

𝑚𝑚 in 
all cases. However, there is some evidence that modest increases in fracture toughness (by a factor of 3–5) could 
be possible at depth (Fialko & Rubin, 1997; Stoeckhert et al., 2016). Decreases in modulus are also possible at 
larger scales (Schultz, 1993) although this increase in compliance is largely due to the activity of joints which 
may be suppressed at depth. So we take 𝐴𝐴 𝐴𝐴 = 10

−3

√

𝑚𝑚 as the reference point. This is still consistent with the 
ranges assumed above, for example, 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 = 1𝑀𝑀𝑀𝑀𝑀𝑀

√

𝑚𝑚 and 𝐴𝐴 𝐴𝐴
′
= 1𝐺𝐺𝐺𝐺𝐺𝐺 . Plotting Equation 3 for values of 𝐴𝐴 𝐴𝐴 (𝜆𝜆) 

on a thickness versus length diagram (Figure 3), veins exist at about 𝐴𝐴 𝐴𝐴 ≈ 1 and dikes are about 𝐴𝐴 𝐴𝐴 = 10 − 1, 000 . 
The exact results and position for dikes will therefore be dependent not only on the host rock properties, but 
also the magma flow rate and viscosity. Hence each dike system is unique and has the potential to occupy a 
different contour in 𝐴𝐴 𝐴𝐴 (𝜆𝜆) . This finding becomes apparent on closer inspection of individual datasets for dikes in 
Figure 1a. Although the data are very scattered, power law fits are plotted with the 𝐴𝐴 𝐴𝐴 = 0.5 exponent for all data 
(Olson, 2003). The Shiprock dikes (𝐴𝐴 𝐴𝐴 = 0.44 ), Ethiopia dikes (𝐴𝐴 𝐴𝐴 = 0.48 ) and Martian Elysium dikes (𝐴𝐴 𝐴𝐴 = 0.43 ) 
each fit the 𝐴𝐴 𝐴𝐴 = 0.5 model of Equation 3 reasonably well. On the other hand, the Karoo dikes give 𝐴𝐴 𝐴𝐴 = 0.3 , the 
Sudan dikes 𝐴𝐴 𝐴𝐴 = 0.22 , and the Deccan dikes 𝐴𝐴 𝐴𝐴 = 0.06 , potentially indicating different conditions of emplacement 
for each set. In any case, dikes, veins, and analogue models, are not part of the same continuum and cannot be 
linked in these thickness versus length scaling plots.

Before progressing further, it is useful to reflect on the importance of the 2D nature of the model presented. Savitski 
and Detournay (2002) developed a higher order 3D model for kinetic-dominated growth in a penny-shaped crack 
increasing in volume over time as 𝐴𝐴 𝐴𝐴3𝐷𝐷 = 𝑞𝑞𝑞𝑞 , where 𝐴𝐴 𝐴𝐴 is a constant with units of 𝐴𝐴 𝐴𝐴

3
∕𝑠𝑠 . Taking the length to be the 

dike diameter, the scaling relationship, in this case
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𝑇𝑇 = 3.0

(

𝑞𝑞𝑞𝑞

𝐸𝐸′

)
1

4

𝐿𝐿
0.25 (7)

gives a lower exponent of 0.25. However, this apparent conflict between the 2D and 3D models is easily resolved, 
as the final 2D model volume is 𝐴𝐴 𝐴𝐴2𝐷𝐷 ≈ 𝜋𝜋𝜋

𝑇𝑇𝑇𝑇

4

 and the final 3D model volume is 𝐴𝐴 𝐴𝐴3𝐷𝐷 ≈
4𝜋𝜋

3

.
𝑇𝑇𝑇𝑇

2

8

 meaning that 
𝐴𝐴 𝐴𝐴 =

2

3
𝐿𝐿𝐿𝐿 , where 𝐴𝐴 𝐴𝐴 is the final length of the dike. Substituting this scaling relationship in Equation 7 reproduces 

Equation 6 but with a different pre-factor (2.7) for the different geometry. The change in pre-factor is of little 
consequence, but this does raise the question about whether the magma injection rate depends on the final length 
of the dike, that is, by inference, the volume of magma emplaced. In part this would depend on whether the 
entire magma volume is available throughout dike growth, and/or how long 𝐴𝐴 𝐴𝐴 can be physically sustained through 
magma supply. This is a question that cannot easily be answered, as it depends on many factors, such as the size 
of the magma packet that feeds the dike and its rate of ascent. However, it does not seem unreasonable to envis-
age that a large dike (𝐴𝐴 𝐴𝐴 ≈ 100 𝑘𝑘𝑘𝑘 ) might be fed somewhat more rapidly than a small dike (𝐴𝐴 𝐴𝐴 ≈ 10𝑚𝑚 ) due to the 
enormous difference in the quantity of magma involved. The model of a size-invariant magma line source (𝐴𝐴 𝐴𝐴 per 
meter) in this case appears to be more appropriate than a size-invariant point source (𝐴𝐴 𝐴𝐴 ). As the former is more 
consistent with observations than the latter, we will proceed to develop the 2D model further, whilst noting that 
the 3D scaling can be obtained with the substitution of 𝐴𝐴 𝐴𝐴 =

2

3
𝐿𝐿𝐿𝐿 .

To summarize, the predictions of Figure 2 and the observations in Figures 1a and 3 both support the conclu-
sion that dikes grow as non-equilibrium structures in the kinetic-dominated regime. Therefore, we now assume 

𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼 = 0 for the remainder of this paper. When considering non-equilibrium growth we propose that a dike extends 
in two phases: (1) an inflation phase, where the volume of magma in the dike increases over time; followed by (2) 
a relaxation phase, where the magma volume is fixed but the dike continues to extend, accommodated by magma 
flow, until it freezes. It is of interest to determine whether relaxation plays a significant role in dike scaling, but 
also to check that a dike cannot reach equilibrium within the predicted relaxation time. A similar model has been 
proposed previously for progression of horizontal sheet intrusions in 𝐴𝐴 𝐴𝐴 − 𝐿𝐿 space, from (thick-short) laccolith to 
(thin-long) sill geometries (Bunger & Cruden, 2011) driven by magma body forces (the weight of the magma), 
but this does not apply in dikes.

Figure 3. Interpretation of dike scaling observations using Equation 4 in terms of predicting toughness-dominated (𝐴𝐴 𝐴𝐴 = 1 ) versus kinetic-dominated 𝐴𝐴 (𝑓𝑓 𝑓 1) growth.
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3. Models for Non-Equilibrium Inflation and Relaxation 
Phases
In the context of the observed order of magnitude variation in the scaling 
relationship observations of Figure  1a, here we wish to develop a simple 
analytical solution which is a reasonable approximation of the full solution. 
The work of Spence and Turcotte (1985) provides a good starting point for 
this. The novelty of the approach here is to extend their previous analysis 
for kinetics-dominated growth to allow a general expression for the volume 
evolution, 𝐴𝐴 𝐴𝐴2𝐷𝐷(𝑡𝑡) , such that non-linear inflation and relaxation can be consid-
ered, as illustrated in Figures 4 and 5. To model inflation, we assume power 
law growth with exponent 𝐴𝐴 𝐴𝐴 , such that 𝐴𝐴 𝐴𝐴2𝐷𝐷(𝑡𝑡) = 𝑄𝑄𝑡𝑡

𝑠𝑠 (Figure 4), then the 𝐴𝐴 𝐴𝐴 − 𝐿𝐿 
relationship of Equation 6 can now be written in a more general form (see 
Supporting Information S1) as

𝑇𝑇 =

(

6

𝜋𝜋

)

1−𝑚𝑚

2

(

(3𝑠𝑠 + 1)𝑄𝑄𝑄𝑄

4𝐸𝐸
′

)
1+𝑚𝑚

6

𝐿𝐿
𝑛𝑛 (8)

where 𝐴𝐴 𝐴𝐴 =
3𝛼𝛼−1

3𝛼𝛼+1
 . Note that the exponent reduces to 𝐴𝐴 𝐴𝐴 =

1

2
 when 𝐴𝐴 𝐴𝐴 = 1 and Equation 6 is recovered.

To model the relaxation stage, we assume volumetric inflation ends at time 𝐴𝐴 𝐴𝐴 = 𝐴𝐴0 with a final magma volume 
of 𝐴𝐴 𝐴𝐴2𝐷𝐷 (𝑡𝑡0) = 𝐴𝐴0 = 𝑄𝑄𝑡𝑡

𝑠𝑠

0
 . The dike can still evolve over time even without the addition of further magma, just at a 

much-reduced rate. If this evolution occurs for an additional relaxation time 𝐴𝐴 𝐴𝐴𝑟𝑟 then the total time is 𝐴𝐴 𝐴𝐴 = 𝐴𝐴0 + 𝐴𝐴𝑟𝑟 . 
In Supporting Information S1 we find that during inflation the length increases as 𝐴𝐴 𝐴𝐴

1

6
+

𝑠𝑠

2 and during relaxation the 
length still increases but more slowly, tending toward 𝐴𝐴 𝐴𝐴

1

6 when 𝐴𝐴 𝐴𝐴𝑟𝑟 ≫ 𝐴𝐴0 . Similarly, the thickness increases during 
inflation as 𝐴𝐴 𝐴𝐴

−
1

6
+

𝑠𝑠

2 and decreases during relaxation, tending toward 𝐴𝐴 𝐴𝐴
−

1

6 when 𝐴𝐴 𝐴𝐴𝑟𝑟 ≫ 𝐴𝐴0 . As such, lengthening due to 
relaxation occurs at its fastest immediately following inflation, and will slow rapidly (e.g., Figure 5). Even with-
out accounting for the effect of cooling on viscosity, this means that a dike will not have sufficient time to reach 
equilibrium before it solidifies.

To estimate the relaxation time, we use the widely adopted model of Turcotte and Schubert (2002) for solidifi-
cation of a dike:

𝑡𝑡𝑟𝑟 =
𝑇𝑇

2

16𝜅𝜅𝜅𝜅2
 (9)

Figure 4. Schematic illustration of linear dike growth (e.g., Spence & 
Turcotte, 1985) in the which the 2D volume (area) relates to the injection rate, 

𝐴𝐴 𝐴𝐴 , as a function of time, 𝐴𝐴 𝐴𝐴 , relative to a non-linear magma injection model 
that uses a power law for the inflation stage up to time 𝐴𝐴 𝐴𝐴0 , followed by an 
additional—constant volume—relaxation period of 𝐴𝐴 𝐴𝐴𝑟𝑟 before the dike solidifies.

Figure 5. An example inflation-relaxation sequence, showing the temporal evolution of dike length, 𝐴𝐴 𝐴𝐴 , dike thickness, 𝐴𝐴 𝐴𝐴  , 
dike pressure, 𝐴𝐴 𝐴𝐴  , whereby a short, thick dike is rapidly injected over 4 days with an exponent of 𝐴𝐴 𝐴𝐴 = 1 , leading to an increase 
in both its maximum (central) thickness and its length. At the end of the inflation phase, 𝐴𝐴 𝐴𝐴0 , the dike relaxes the magma 
pressure over the following 16 days (𝐴𝐴 𝐴𝐴𝑟𝑟 ) by a further increase in length, necessarily accommodated by a decrease in dike 
maximum thickness to conserve magma volume.
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where 𝐴𝐴 𝐴𝐴 is the Stefan constant and 𝐴𝐴 𝐴𝐴 is the thermal diffusivity. Morita et al. (2006) calculated a value of 𝐴𝐴 𝐴𝐴 = 0.36 
and 𝐴𝐴 𝐴𝐴 = 10

−6

𝑚𝑚
2
𝑠𝑠
−1 . This predicts a 1 m thick dike will take roughly 5.5 days to solidify, whereas a 5 m thick dike 

would take 140 days. We now have two different time scales: (a) inflation during magmatic volume increase (𝐴𝐴 𝐴𝐴0 ); 
and (b) relaxation during constant magmatic volume (𝐴𝐴 𝐴𝐴𝑟𝑟 ). As the dike thickness reduces during relaxation, such 
that 𝐴𝐴 𝐴𝐴 (𝑡𝑡𝑟𝑟) , Equation 9 represent a quartic equation in terms of 𝐴𝐴 𝐴𝐴𝑟𝑟 (see Equation C.2 in Supporting Information S1).

4. Discussion
4.1. Theory Versus Observations

Figure 6 illustrates a number of different dike growth and relaxation trajectories in 𝐴𝐴 𝐴𝐴 − 𝐿𝐿 space. In Figure 6a 
we follow the observations of Morita et al. (2006) and take a magma injection rate 𝐴𝐴 𝐴𝐴 = 1𝑚𝑚

2
∕𝑠𝑠 , injection rate 

exponent 𝐴𝐴 𝐴𝐴 = 0.65 (i.e., 𝐴𝐴 𝐴𝐴 = 1𝑚𝑚
2
𝑠𝑠
−0.65 ), plane strain modulus 𝐴𝐴 𝐴𝐴

′
= 10𝐺𝐺𝐺𝐺𝐺𝐺 , magma viscosity 𝐴𝐴 𝐴𝐴 = 10

8
𝑃𝑃𝑃𝑃𝑃𝑃𝑃 , and 

thermal diffusivity 𝐴𝐴 𝐴𝐴 = 10
−6

𝑚𝑚
2
∕𝑠𝑠 . The blue line in Figure 6a, and subsequent plots, shows the inflation trajec-

tory, with points along it showing the dike dimensions after different growth periods. For 𝐴𝐴 𝐴𝐴 = 0.65 this has an 
exponent (slope) of 𝐴𝐴 𝐴𝐴 = 0.33 . Once a dike stops increasing in volume, it progresses downward and to the right 
(increasing 𝐴𝐴 𝐴𝐴 at the expense of 𝐴𝐴 𝐴𝐴  ) along its relaxation trajectory (the dashed lines connecting points). This termi-
nates in the green line, which signifies the end of the solidification time predicted by Equation 9. The green line 
represents an upper bound on the relaxation time, as it does not take into account cooling during growth, or any 
increase in viscosity during relaxation, though again it is noted that relaxation will be fastest when it starts. The 
full extent of relaxation is therefore hard to determine, but it is expected that a dike of a given volume will form 
somewhere between the blue line and the green line. In Figure 6a, it can be seen that these conditions envelop a 
significant portion of the observed dikes. A dike reaches the first point (a length of 59 m and a thickness of 2.8 m) 
in 20 min. The upper bound on its relaxation time is then about 4 days, substantially longer than the growth time. 
In this case, neglecting cooling during inflation is reasonable. As dikes get larger, the inflation time increases 
relative to the relaxation time, as the thickness is not increasing as rapidly as the volume. For the dike observed 
in Morita et al. (2006) inflation takes 8 days but relaxation could be as long as 100 days thereafter. The very 
largest dike shown in Figure 6a grows to a length of 63 km over 40 years, but with only a comparatively short 
8 years to relax. In this case, neglecting cooling during inflation is not reasonable, but as the amount of relaxation 
undertaken is insignificant this is not important. The relaxation curve always has a higher exponent (slope) than 
the inflation line, and in this case the exponent increases to 𝐴𝐴 𝐴𝐴 = 0.55 for the smallest dikes, converging back to 

𝐴𝐴 𝐴𝐴 = 0.33 for the largest dikes. Figure 6b shows that reducing the viscosity to 𝐴𝐴 𝐴𝐴 = 10
6
𝑃𝑃𝑃𝑃𝑃𝑃𝑃 drops the inflation and 

relaxation curves downwards, toward some of the thinner dike sets. In Figure 6c, a higher magma injection rate 
of 𝐴𝐴 𝐴𝐴 = 10𝑚𝑚

2
𝑠𝑠
−0.65 moves the growth curve upwards to encompass some of the thicker observed dikes, show-

ing that the effect of relaxation could be quite substantial even in the larger length scales under this scenario. 
Figure 6d models rapid linear (𝐴𝐴 𝐴𝐴 = 1 ) growth, for which nearly all the observed dikes sit between the inflation 
and relaxation curves. Figure 6e shows the effect of using a much lower exponent of 𝐴𝐴 𝐴𝐴 = 0.5 (slower inflation), 
that is, insignificant relaxation for large dikes. Finally, Figure 6f shows that decreasing the thermal diffusivity to 

𝐴𝐴 𝐴𝐴 = 10
−7

𝑚𝑚
2
∕𝑠𝑠 leads to slower cooling and a wider zone between the inflation and relaxation curves as would be 

expected. Conversely, an increase in the thermal diffusivity will lead to a reduction in the zone of possibility for 
observed dikes.

4.2. Comparison With Natural Intrusions

In our model, dikes can extend their length in two stages: (a) an inflation stage in which both length and thickness 
increase, and (b) a constant volume relaxation stage, in which length can only grow at the expense of maximum 
thickness. In reality the relaxation stage is likely to be highly variable, and dependent on the details of the cooling 
and solidification processes. The model shown here assumes that cooling initiates at the onset of the second stage, 
whereas for major dikes it is much more likely that parts will cool during the initial stage of volume increase, due 
to contact conduction with the host rock walls. The temperature distribution within the magma will therefore be a 
minimum at the walls and increase to a maximum at the center. The picture is further complicated by the potential 
for temperature gain through the latent heat of crystallisation, and the increase in magma viscosity with crystal 
content. Here it is assumed that dike relaxation stops once it has solidified in the middle, at the position of maxi-
mum thickness, but this is not necessarily the case. Solidification within intrusions can be unevenly distributed, 
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leading to localisation of magma flow into channels (e.g., Holness & Humphreys, 2003). This localized flow of 
hot magma can lead to remobilization of accreted materials of variable viscosity across the conduit (e.g., Walker 
et al., 2017). Toward the tips, where the dike is much thinner, freezing could occur more rapidly. If the dike length 
is still extending at a sufficient rate (Delaney & Pollard, 1981) the magma at the tip will continue to be refreshed 
by an influx of hot material, preventing freezing. As such, the exact criteria that determines when a dike stops 
lengthening requires further investigation. The relaxation trajectories for length and thickness evolution shown 
as dashed green lines in Figure 6 therefore represent the maximum bound for relaxation. In nature then,  some 
intermediary position of relaxation is probable, since a dike will undergo cooling during ascent, reheating as the 
magma crystallizes, and further cooling to an ambient geotherm, set within host rocks and accreted dike margins 
that have variable thermal diffusivity properties. Relaxation presents, therefore, an additional process that will 
result in 𝐴𝐴 𝐴𝐴 − 𝐿𝐿 scatter for individual dikes within a larger volcanic system. The history of the freezing process 
will also determine the final internal pressure distribution, which will not be uniform or linear. This will be 
expressed in the final shape of the intrusion, which could result in a form between that of a lenticular geometry 

Figure 6. Dike inflation and relaxation plots for different parameters: (a) 𝐴𝐴 𝐴𝐴 = 1𝑚𝑚
2
∕𝑠𝑠 , growth exponent 𝐴𝐴 𝐴𝐴 = 0.65 (i.e., � = 1�2�−0.65 ), 𝐴𝐴 𝐴𝐴

′
= 1𝐺𝐺𝐺𝐺𝐺𝐺 , 𝐴𝐴 𝐴𝐴 = 10

8
𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 

𝐴𝐴 𝐴𝐴 = 10
−6

𝑚𝑚
2
∕𝑠𝑠 . Plots in B–F show effects of changing individual parameters relative to (a), with: (b) reduced 𝐴𝐴 𝐴𝐴 = 10

6
𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ; (c) higher growth rate 𝐴𝐴 𝐴𝐴 = 10𝑚𝑚

2
𝑠𝑠
−0.65 ; (d) 

higher growth exponent (and rate) with 𝐴𝐴 𝐴𝐴 = 1 and 𝐴𝐴 𝐴𝐴 = 1 (i.e., 𝐴𝐴 𝐴𝐴 = 1𝑚𝑚
2
∕𝑠𝑠 ); (e) lower growth exponent 𝐴𝐴 𝐴𝐴 = 0.5 with increased 𝐴𝐴 𝐴𝐴 = 10𝑚𝑚

2
𝑠𝑠
−0.5 (note that without increasing 

𝐴𝐴 𝐴𝐴 , growth takes hundreds of years); (f) lower thermal diffusivity (which affects cooling rate) with 𝐴𝐴 𝐴𝐴 = 10
−7

𝑚𝑚
2
∕𝑠𝑠 . Observed dikes are expected to lie in the region 

between the upper (solid blue) and lower (dashed green) lines under the stated conditions. The Shiprock dikes are shown separately here as they are individual echelon 
surface segments of a larger underlying dike (Scholz, 2010) and hence are not necessarily expected to comply with the model presented here.
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with tapered tip profiles, and the elliptical to superelliptical profiles associated with an equilibrium pressure 
distribution shown in Figure 1b (Spence & Turcotte, 1985; see e.g., the schematic illustrations in Figure 5). This 
change in shape at the tip due to local magma redistribution in the final stages of freezing may change the stress 
distribution and failure mechanism at the tip (Stephens et al., 2021; Walker et al., 2021), which may affect intru-
sion lengthening, thereby introducing further scatter in 𝐴𝐴 𝐴𝐴 − 𝐿𝐿 space.

The question remains whether relaxation is evident during active intrusion and within the rock record. In active 
systems, Morita et al. (2006) provide some evidence for two stage growth in their study of earthquake swarms 
during dike intrusion in Izu Peninsula, Japan. From geodetic observations, they show that volume increase during 
dike growth occurred over 14 days, whereas associated seismicity occurred for 20 days. Based on their dimen-
sions, the relaxation model here would have a conservative prediction for relaxation on the order of 100 days 
(maximum 400 days), which is far in excess of the 6 days indicated in the Morita et al. (2006) study. There are 
two immediate explanations for the discrepancy: (a) our model is an overestimate because there is likely to be 
significant cooling and potential solidification during the volumetric growth of the dike; and (b) fracture growth 
to accommodate relaxation may fall below seismicity detection limits (i.e., it becomes aseismic), particularly if 
growth is accommodated by dominantly tensile failure in the host rock (i.e., non-double couple mechanisms) as 
opposed to the shear-fracturing (double-couple mechanisms) shown in most dike seismicity studies. The latter 
explanation appears to be the case even for the volumetric inflation stages elsewhere, such as the Bárðabunga–
Holuhran diking event in Iceland (Sigmundsson et al., 2015). Emplacement of the Bárðabunga–Holuhran dike 
induced earthquakes during growth laterally and toward the surface for about 2 weeks (Ágústsdóttir et al., 2016), 
followed by a 6-month eruption phase, and a further 6 months of post eruption seismicity along the length of 
the dike section (Woods et al., 2019). Ágústsdóttir et al. (2016) interpret post-eruption earthquakes detected at 
5–7 km depth as representing late-stage equilibration of magma pressure in the dike; that is, relaxation. Geodetic 
measurements indicate that seismicity did not capture all pre-eruptive dike growth at shallow depths, including 
that necessary for magma to reach the surface (Sigmundsson et al., 2015), hence it is conceivable that some late 
stage growth may also go undetected in the shallow crust, particularly where dike lengthening is accommodated 
by tensile failure of the host rock (Ágústsdóttir et al., 2016; Rubin et al., 1998) or by dilatation of existing struc-
tures (Taisne et al., 2011). In any case, it is worth noting that eruption will have served to reduce excess magma 
pressure in the remaining dike, in which case the actual period of relaxation should be greatly reduced compared 
to the timescales predicted in Figure 6. In addition, the formation of a graben above the dike would likely place 
further constraints on the dike's ability to relax, as thickness reduction could require reactivation, and potentially 
inversion, of the graben fault system.

Lengthening during the relaxation stage may be a cryptic feature in the rock record also, since the diagnostic 
feature of relaxation is lengthening without volume increase, requiring thinning at some position along the dike 
(e.g., Daniels et al., 2012). Field-based studies of frozen intrusions have shown the potential for late-stage length-
ening at preserved tip zones, that can be identified from overprinting textures and tip zone deformations (Stephens 
et al., 2021; Walker et al., 2021). The tip forms of such intrusions are typically blunted, with squared-ends and a 
relatively constant thickness compared to the bladed geometry that should result from rock splitting. In a linear 
elastic framework, this constant thickness would represent a constant magma pressure. However, such exam-
ples are commonly associated with distributed shear faulting at the tip, within the intruded host rock, which is 
interpreted to represent the magma front moving forward as a viscous indentor (Galland et al., 2019; Spacapan 
et al., 2017). This may still represent a constant pressure in the conduit, but could represent a plug flow of rela-
tively cool and high viscosity magma. As noted above, introducing a plug flow regime is equivalent to chang-
ing the effective channel thickness in the model, and would therefore influence the relaxation model. Viscous 
inden tation is also a relatively inefficient growth mechanism, particularly compared to elastic (tensile) splitting 
of the host rock, since the newly created fracture surfaces remain in contact and maintain a residual friction. 
Although a dike may grow by this mechanism over short distances, it is also possible that residual magma pres-
sure may activate a new and more efficient pathway elsewhere on the dike (Walker et al., 2021), leading to only 
very local lengthening, and reducing the likelihood of observing the true maximum length dimension of the dike. 
In any case, these features are not necessarily uniquely related to a relaxation stage of growth, and further study 
would be required to constrain the distribution of such features at the periphery of individual dikes relative to 
changes in the thickness.
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5. Conclusions
Toughness-dominated models for dike growth predict unreasonably large values for the rock fracture toughness, 
based on the assumption that magma pressure is constant within the dike, despite the need for pressure gradients 
to drive magma flow. However, this approach has attracted most attention in the literature as it describes a final 
equilibrium (static) state. We address this problem using a kinetic-dominated analytical approach to consider 
2D dike growth and geometry. Dike growth in a kinetic analysis can be split into two stages, with an inflation 
stage characterized by (horizontal) lengthening and thickening as the magma volume increases, followed by a 
relaxation stage in which the magma volume is fixed and pressure gradients are relieved within the dike. Conser-
vation of volume during this second stage of growth requires that increases in dike length must be met with a 
decrease in maximum thickness. Lengthening is shown to exhibit a 𝐴𝐴 𝐴𝐴

1

6 scaling over time, hence it slows quite 
rapidly, allowing ample time for complete cessation of dike growth due to solidification of the magma. We find 
that altering the conditions during dike growth (such as the magma injection rate and viscosity, and the host rock 
plane strain modulus and thermal diffusivity) within a reasonable range possible in nature, results in a range of 
potential pathways to a final thickness to length scaling ratio. Although observed exhumed dikes generally show 
a 𝐴𝐴 𝐴𝐴 = 𝛼𝛼𝛼𝛼

0.5 relationship (ultimately with significant scatter), there is no unique route by which they can achieve 
their final scaling.

Data Availability Statement
Data presented in this paper is available via the University of Leicester Figshare portal at https://doi.org/10.25392/
leicester.data.20559855.
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