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Abstract
We establish the existence of solutions to a class of nonlinear stochastic differential
equations of reaction–diffusion type in an infinite-dimensional space, with diffusion
corresponding to a given transition kernel. The solution obtained is the scaling limit
of a sequence of interacting particle systems and satisfies the martingale problem
corresponding to the target differential equation.
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1 Introduction

1.1 Background

In this paper, we extend the main results from [4] to reaction–diffusion systems evolv-
ing on infinite sets. As in [4], the class of stochastic differential equations we consider
here is:
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⎧
⎨

⎩

dζt (x) = (
�pζt (x) − b · (ζt (x))κ

)
dt + √

a · (ζt (x))� dBx
t , x ∈ V,

ζ0 = ζ̄ ∈ [0,∞)V,
(1.1)

where a, b, κ, � are positive real numbers with κ, � ≥ 1, V is a discrete set, �p is the
Laplacian induced by a probability kernel p on V, that is,

�pζ(x) :=
∑

y∈V

(
p(y, x) · ζ(y) − p(x, y) · ζ(x)

)
, (1.2)

and {Bx· }x∈V is a family of independent standard Brownian motions on R.
This system of equations can be used to model a reaction–diffusion system asso-

ciated for instance with chemical reactions or population dynamics. In the setting of
chemical reactions, space is divided into cells, corresponding to points of V, and each
cell contains a certain density of particles. Within each cell, particles are subject to a
reaction that can lead to a change in their density. As an image, consider the evolution
of the density of ozone subject to the reaction ozone � oxygen in a confined region.
This modeling framework is inspired by auto-catalytic models as presented in Nicolis
and Prigogine [12, Chap. 7] and resembles the modeling adopted by Blount [3], the
main difference being that we keep the size of reaction cells constant. Note that the
system in (1.1) has ζ ≡ 0 as a stable point, and the interaction term −b(ζt (x))κ )
can then be interpreted as a restoring force, driving the system back to equilibrium.
Hence, a solution to (1.1) represents how these processes converge to equilibrium in
a path-wise sense.

The focus of [4] was on the finite-dimensional setting, that is, when V is finite.
Therein a sequence of interacting particle systems {ηn· }n≥1 on {0, 1, . . .}V is shown
to converge after being properly rescaled to a solution of (1.1). This solution was
moreover proved to be unique. For each n, the dynamics of ηn· can be encoded by the
following formal generator expression, for η ∈ {0, 1 . . .}V and a local function f :
{0, 1 . . .}V → R:

Ln f (η) =
∑

x,y∈V
η(x) · p(x, y) · ( f (η + δy − δx ) − f (η))

+
∑

x∈V

[
Fn,+(η(x)) · ( f (η + δx ) − f (η)) + Fn,−(η(x)) · ( f (η − δx ) − f (η))

]
.

(1.3)
In words, a pile of ηnt (x) particles occupies site x at time t ; each particle moves with

rate one according to the kernel p, and in addition, particles are born and die at x with
rates Fn,+(ηnt (x)) and Fn,−(ηnt (x)), respectively. The motion of distinct particles and
births and deaths at distinct sites are independent.

The functions Fn,+ and Fn,− are defined, for every u ≥ 0, as

Fn,−(u) := an2

2
·
(u

n

)� + min

{
an2

2
·
(u

n

)� ; bn

2
·
(u

n

)κ
}

, (1.4)

Fn,+(u) := an2

2
·
(u

n

)� − min

{
an2

2
·
(u

n

)� ; bn

2
·
(u

n

)κ
}

. (1.5)
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These rates are chosen so that, for every z ≥ 0, we have

lim
n→∞

1

n
(Fn,+(nz) − Fn,−(nz)) = −bzκ and

lim
n→∞

1

n2
(Fn,+(nz) + Fn,−(nz)) = az�.

The idea is to make it so that the interacting particle system resembles, with increasing
precision as n → ∞, a solution to (1.1). In addition, these functions satisfy other
important properties. First, Fn,−(0) = Fn,+(0) = 0, so there is no birth (and evidently
no death) of particles at empty sites. Second, Fn,−(u) ≥ Fn,+(u) ≥ 0 for all u; this
guarantees that the number of particles in the system is stochastically decreasing, so
that the dynamics has no finite-time explosion.

This leads to the result that, given a sequence {ηn0}n≥1 with 1
nηn0 → ζ̄ ∈ [0,∞)V,

and letting ηn· denote the process started from ηn0 and with dynamics governed by Ln ,
we have that the sequence of processes { 1nηn· }n≥1 converges to a weak solution of (1.1)
[4, Theorem 1]. We will review the meaning of a weak solution of the SDE (1.1) in
Section 2.4. A limit obtained through this sort of scaling procedure, where there is
no scaling of space, but the “mass” of individual particles is taken to zero, is often
referred to as a fluid limit.

1.2 Results

Here we are interested in obtaining the fluid limit described above in the case whereV
is a countably infinite set. Through this extension, one can hope to achieve a better
understanding of stability properties of the solution with respect to the underlying
space. Apart from this, the extension has theoretical interest, as it brings forward
some important challenges.

Our approach requires an assumption on the transition kernel p(·, ·), as well as a
restriction on the set of allowed initial conditions for the SDE. As in [11], we assume
that there exists a function α : V → (0,∞) such that

sup
x∈V

α(x) < ∞ and C := sup
x∈V

∑

y∈V
p(x, y)

α(y)

α(x)
< ∞. (1.6)

For instance, ifV = Z
d and p(x, y) = 1

2d ·1{x ∼ y} (nearest-neighbors diffusion),
then these conditions are satisfied by α(x) := exp{−|x |}, where ‖·‖ denotes any norm
in Rd . Next, we define

‖ζ‖ :=
∑

x∈V
α(x) · |ζ(x)| ∈ [0,∞], ζ ∈ R

V (1.7)

and the set of configurations

E :=
{

ζ ∈ [0,∞)V :
∑

x∈V
α(x) · ζ(x) < ∞

}

.
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We will only consider initial conditions of (1.1) belonging to E . Assumptions and
restrictions of this type are common in the treatment of systems involving diffusions
on infinite environments; see for instance [1, 11]. The key point here is to avoid
explosion from diffusion, that is, situations where infinite amounts of mass can enter
a finite set instantaneously due to excessive growth of the initial configuration.

The next step in establishing a fluid limit result is to construct processes ηn· on NV

0
whose limit should be a solution to the stochastic differential equation.As the dynamics
linked to the generator (1.1) has unbounded jump rates, and the spaceNV

0 is not compact
(or locally compact), such a construction does not fall into themost standard framework
of the theory, by means of the Hille–Yosida theorem, as presented in Chapter I of [9].
While there are still ways to construct the process under our assumptions (see for
instance Chapter IX of [9], or the aforementioned references [1, 11]), here we avoid
this construction issue by only constructing particle systems with finite mass. That is,
we define the (countable) set

E :=
{

η ∈ N
V

0 :
∑

x∈V
η(x) < ∞

}

(1.8)

and only consider particle systems ηn· with initial configuration in E . This way, since
the dynamics of (1.1) causes the number of particles to decrease stochastically, it ends
up producing a non-explosive continuous-time Markov chain on the countable state
space E .

We are now ready to state our main result.

Theorem 1.1 (a) Let ζ0 ∈ E and let {ηn0} be a sequence in E with ‖ 1
nηn0−ζ0‖ n→∞−−−→ 0.

For each n, let (ηnt )t≥0 denote the Markov chain on E with transitions encoded
by (1.3) started from ηn0 . Then, as n → ∞, the processes 1

nηn· converge in
distribution (with respect to the Skorokhod topology) to an E-valued process ζ·
with continuous trajectories which is a weak solution to (1.1) with initial condi-
tion ζ̄ = ζ0. The law of this process does not depend on the choice of sequence {ηn0}
with ‖ 1

nηn0 − ζ0‖ n→∞−−−→ 0.
(b) In case

∑
x∈V ζ0(x) < ∞, the process obtained through this limit is the unique

weak solution to (1.1) with initial condition ζ̄ = ζ0 in the sense that it has the
same distribution as any other solution of the same equation.

(c) The mapping E 	 ζ0 
→ (ζt )t≥0 of initial conditions to corresponding solutions
obtained through the limit of part (a) is continuous when E is endowed with the
norm ‖ · ‖ and the set of processes on C([0,∞), E) is endowed with the topology
of weak convergence of probability measures.

1.3 Outline of Methods and Organization of the Paper

Let us give an outline of ourmethods.Using generator estimates,weprove that a collec-

tion of processes {ηn· } as in the statement of Theorem 1.1(a), with ‖ 1
nηn0 −ζ0‖ n→∞−−−→ 0

for some ζ0 ∈ E , is tight. This allows us to extract convergent subsequences, say {ηnk· }
converging to a process ζ·. We then prove that the Dynkin martingales associated
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to η
nk· , as defined in Lemma 2.1, converge to processes of the form

f (ζt ) − f (ζ0) −
∫ t

0
L∗ f (ζs)ds, t ≥ 0, (1.9)

where L∗, the generator associated to (1.1), is given by

(L∗ f )(ζ ) :=
∑

x∈V
(�pζ(x)−b·(ζ(x))κ )·∂x f (ζ )+ 1

2

∑

x∈V
a ·(ζ(x))� ·∂2x f (ζ ), ζ ∈ E,

for a suitable collection of functions f . This convergence allows us to obtain that (1.9)
is a local martingale. Using classical results from the theory of stochastic differential
equations, we then conclude that the subsequential limit ζ· is a solution of (1.1).
An adaptation of the argument in [13] gives us Theorem 1.1(b), that is, that (1.1)
has at most one solution in case ζ0 has finite mass. Combining these ideas, we get
that if ζ0 has finite mass, then {ηn· } has a single accumulation point, so the whole
sequence converges. From this, we finish the proof of Theorem 1.1(a), that is, we
prove convergence for any ζ0 ∈ E with infinite mass by approximation : any ζ0 ∈ E
is arbitrarily close to configurations with finite mass.

A key tool that we rely on for this approximation and for several other arguments
is a coupling inequality, Lemma 3.4, allowing us to compare pairs of processes with
same generator but different initial configurations.

The rest of the paper is organized as follows. In Sect. 2, we review several technical
concepts and results, including notions of convergence of probability measures, local
martingales defined from Markov chains, and classical results about stochastic dif-
ferential equations. In Sect. 3, we study particle systems with finite mass on N

V

0 , and
obtain the key coupling inequality in Lemma 3.4. In Sect. 4.1, we state our tightness
result and use it to follow the rest of the outline given above, proving our main results.
In Sect. 5, we prove the tightness result. Section A. is an appendix where we include
some proofs to ease the flow of the exposition in the paper.

2 Technical Preliminaries

In this section, we collect remarks, definitions, and properties that will be useful in the
study of convergence of a family of stochastic processes as mentioned in the previous
Section.

2.1 Configuration Spaces

We letV be a countable set and p : V×V → [0, 1] be a probability transition function
(that is,

∑
y p(x, y) = 1 for all x) and assume that there exists a function α : V →

[0,∞) for which (1.6) holds. We define ‖ · ‖, E and E as in (1.7)–(1.8). Note that E
is countable, that ‖ · ‖ is a norm on the linear subspace of RV where it is finite, and
that the metric induced by ‖ · ‖ turns E into a complete and separable metric space.
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For the sake of clarity, we mostly denote the (integer-valued) elements of E by the
letter η rather than ζ and processes taking values on E by η· rather than ζ·.

It will be useful to observe that the assumptions (1.6) yield:

p(x, y) ≤ 1

α(y)

∑

z

p(x, z) · α(z) ≤ Cα(x)

α(y)
. (2.1)

This implies that, for ζ ∈ E ,

∑

x∈V
ζ(x) · p(x, y) ≤ C ·

∑

x∈V

ζ(x) · α(x)

α(y)
= C

‖ζ‖
α(y)

, y ∈ V.

In particular, �pζ(x) in (1.2) is well defined for all ζ ∈ E and all x ∈ V.

2.2 Convergence of Probability Measures on Trajectory Spaces

To study convergence of probability measures on trajectory spaces, we first define a
metric on the space of trajectories, then we consider a family of σ -algebras associated
to this metric and finally we define a distance between probability measures on such
σ -algebras.

Metric. Let X = (X , dX ) be a complete, separable metric space. In most cases,
this will be either (R, | · |) or E or E with the metric induced by ‖ · ‖. We denote
by DX = D([0,∞),X ) the space of càdlàg functions γ : [0,∞) → X , and by CX
the set of functions in DX which are continuous. The Skorokhod metric on DX is
defined by

dS(γ, γ ′) :=
∫ ∞

0
e−t · d(t)

S (γ, γ ′)dt,

where

d(t)
S (γ, γ ′) := 1 ∧ inf

ϕ

(

sup
s∈[0,t]

dX (γϕ(s), γ
′
s ) ∨ sup

r ,s∈[0,t]
log

|ϕ(r) − ϕ(s)|
|r − s|

)

,

where the infimum is taken over all increasing bijections ϕ : [0, t] → [0, t]. This turns
(DX , dS) into a complete and separable metric space, and we denote byDX its Borel
σ -algebra. We refer the reader to [2, Chapter 3] and [5, Chapter 3] for expositions on
this metric. Here let us only make one further observation, see [2, Sect. 12, p. 124]:

if {γ n}n≥1 ⊂ DX , γ ∈ CX and dS(γ n, γ )
n→∞−−−→ 0,

then sup0≤s≤t dX (γ n
s , γs)

n→∞−−−→ 0 for all t ≥ 0, (2.2)

that is, convergence in the Skorokhod topology to a continuous function implies uni-
form convergence on compact intervals.

123



Journal of Theoretical Probability

Sigma-algebras. Given a stochastic process X · on X with càdlàg trajectories, we
denote by Ft = F X

t the σ -algebra generated by (Xs)0≤s≤t and by N := {A ∈
DX : P(X · ∈ A) = 0}. We refer to (Ft )t≥0 as the natural filtration of (Xt )t≥0.

Convergence. Finally, we recall the definition of the Lèvy-Prohorov distance in the
case of two probability measures μ and ν defined on DX = (DX ,DX ):

dLP(μ, ν) := inf
{
ε > 0 : μ(A) ≤ ν(Aε) + ε and ν(A) ≤ μ(Aε) + ε for all A ∈ DX

}
,

where Aε := {y ∈ DX : dS(x, y) < ε for some x ∈ A}. Convergence in this metric
is equivalent to weak convergence of probability measures, see [5, Theorem 3.3.1, p.

108], that is, dLP(μn, μ)
n→∞−−−→ 0 is equivalent to having

∫
f dμn

n→∞−−−→ ∫
f dμ for

all continuous and bounded functions f : DX → R. Denote by C(μ, ν) the set of all
measures λ̂ on DX × DX that couple μ, ν. By [5, Theorem 3.1.2, p. 98], we remark
that

dLP(μ, ν) = inf
λ∈C(μ,ν)

inf
{
ε > 0 : λ{(γ, γ ′) ∈ DX × DX : dS(γ, γ ′) ≥ ε} ≤ ε

}
.

(2.3)

2.3 Continuous-TimeMarkov Chains andMartingales

Given a stochastic process X on DX , there is a sequence of stopping times τ X
0 := 0

and τ X
n := inf{t > τ X

n−1 : Xt �= Xt−} that exhaust the jumps of X , see Proposition
2.26 in [7, Chapter 1, p. 10]. Let τ X∞ := limn τ X

n . Following [10, Remark 2.27], we
say that a process on DX is non-explosive if

P(τ X∞ < t) = 0 for all t ≥ 0.

For the following two results, let S be a countable set and (Xt )t≥0 be a non-explosive
continuous-time Markov chain on S. For distinct x, y ∈ S, let q(x, y) ≥ 0 be the
jump rate from x to y, and let q(x, x) = − ∑

y �=x q(x, y). For a function f : S → R

satisfying ∑

y∈S
q(x, y) · | f (y) − f (x)| < ∞ for all x ∈ S, (2.4)

we define L f (x) := ∑
y∈S q(x, y) · ( f (y) − f (x)). If f also satisfies

∑

y∈S
q(x, y) · ( f (y) − f (x))2 < ∞ for all x ∈ S, (2.5)

we define Q f (x) := ∑
y∈S q(x, y) · ( f (y) − f (x))2.

Lemma 2.1 Let f : S → R be a function satisfying (2.4). Then, the process

M f
t := f (Xt ) − f (X0) −

∫ t

0
L f (Xs)ds, t ≥ 0

123



Journal of Theoretical Probability

is a local martingale with respect to the natural filtration of (Xt )t≥0. If f also satis-
fies (2.5), then the process

N f
t := M2

t −
∫ t

0
Q f (Xs)ds, t ≥ 0

is also a local martingale with respect to the natural filtration of (Xt )t≥0.

Proof Fix an arbitrary initial state x0 ∈ S, and let (� j ) j≥1 be an increasing sequence of
finite subsets of S with x0 ∈ �1 and ∪ j�

j = S. Define τ j := inf{t ≥ 0 : Xt /∈ � j }.
We then have that τ j ≤ τ j+1 for each j and, because (Xt )t≥0 is non-explosive,

τ j j→∞−−−→ ∞ almost surely. Then, under the assumptions (2.4) and (2.5), classical
arguments establish that M f· and N f· are local martingales with respect to the natural
filtration of (Xt )t≥0, see for instance [8, Appendix 1, Lemma 5.1]. ��
Remark 2.2 The martingales M f· for functions f that satisfy (2.4) are commonly
referred to asDynkinMartingales. Unless the generator L is not clear from the context,
we will omit the dependence (as we have done here) to alleviate notation.

To obtain stochastic bounds, we prove a supermartingale inequality associated to
the martingales M f· .

Lemma 2.3 Let f : S → R be a non-negative function satisfying (2.4). Assume that
there exists C > 0 such that

∑

y∈S
q(x, y) · ( f (y) − f (x)) ≤ C f (x) for all x ∈ S.

Then, the process (e−Ct · f (Xt ))t≥0 is a supermartingale with respect to the natural
filtration of (Xt )t≥0.

Proof Fix an arbitrary initial state x0 ∈ S. By the Markov property, it is sufficient to
prove that, for any t ≥ 0,

E[e−Ct · f (Xt )] ≤ f (x0).

Let (� j ) j≥1 and τ j be as in the proof of Lemma 2.1. Define the processes

X j
t :=

{
Xt if t ≤ τ j ;
� otherwise,

t ≥ 0

where � denotes a cemetery state. Then, X j· is a Markov chain on the finite state
space S j := � j ∪ {�}, with jump rates, for distinct x, y ∈ S j , given by

q j (x, y) =

⎧
⎪⎨

⎪⎩

0 if x = �;
q(x, y) if x �= �, y �= �;
∑

y∈(� j )c q(x, y) if x �= �, y = �.
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Let f j : S j → R be defined by f j (x) = f (x) for x �= � and f j (�) = 0. We have,
for any x ∈ S j\{�},

∑

y∈S j

q j (x, y) · ( f j (y) − f j (x)) ≤
∑

y∈S
q(x, y) · ( f (y) − f (x)) ≤ C f (x),

since 0 = f j (�) ≤ f (y) for y ∈ S\� j . It then follows from the elementary theory of

Markov chains that (e−Ct · X j
t )t≥0 is a supermartingale. Since f (X j

t )
j→∞−−−→ f (Xt )

almost surely, it follows from Fatou’s Lemma that

E[e−Ct · f (Xt )] ≤ lim inf
j→∞ E[e−Ct · f (X j

t )] ≤ f (x0).

��

2.4 Some Properties of Solutions of the SDE (1.1)

Let (ζt )t≥0 be a stochastic process (defined on some space (�,F ,P)) with values in E
and continuous trajectories. We say that ζ· is a weak solution to the SDE (1.1) if there
exists a space (�̃, F̃ , P̃) in which we have defined

• A process X · with values in E , continuous trajectories, and same distribution as ζ·,
and

• A family (Bx· )x∈V of independent, standard one-dimensional Brownian motions,

and moreover, P̃ almost surely we have

Xt (x) = X0(x) +
∫ t

0
(�p Xs(x) − b(Xs(x))

κ )ds

+
∫ t

0

(
a(Xs(x))

�
) 1

2
dBx

s , for t ≥ 0 and x ∈ V.

We will need the following result, which gives uniqueness for solutions of (1.1)
with finitemass. The essence of its proof is taken from [13].We present in the appendix
(Sect. A.1) the proof with slight modifications to adjust to our setting.

Proposition 2.4 Let ζ̄ ∈ E satisfy ‖ζ‖1 = ∑
x∈V ζ(x) < ∞. Let ζ 1· and ζ 2· be two

weak solutions of the SDE (1.1) with initial condition ζ̄ . Then, ζ 1· and ζ 2· have the
same distribution.

Let f : E → R be a function for which there exists a finite set {x1, . . . , xk} ⊂ V so
that f only depends on (ζ(x1), . . . , ζ(xk)), and moreover f is a twice continuously
differentiable function of this vector. Define

(L∗ f )(ζ ) :=
∑

x∈V
(�pζ(x)−b ·(ζ(x))κ )·∂x f (ζ )+ 1

2

∑

x∈V
a ·(ζ(x))� ·∂2x f (ζ ), ζ ∈ E .
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In particular, we denote by fx (ζ ) := ζ(x) the coordinate projection on x ∈ V, and
by fxy(ζ ) := ζ(x)ζ(y). Note that all those functions are indeed differentiable and
depend only on a finite number of sites.

Proposition 2.5 Let ζ· be a stochastic process with values in E and continuous trajec-
tories. Assume that for every f ∈ { fx , fxy : x, y ∈ V}, the process

f (ζt ) − f (ζ0) −
∫ t

0
L∗ f (ζs)ds, t ≥ 0.

is a local martingale. Then, ζ· is a weak solution of (1.1).

This proposition is the same as Proposition 4.6, page 315 in [7], except that here
we deal with infinite-dimensional processes, whereas the setup of the proposition in
[7] is finite-dimensional. However, largely due to the fact that the cross-variation of
our SDE is trivial (that is, the expression for dζt (x) in (1.1) does not involve dBy

t
for y �= x), the proof in [7] carries through to our setting. In order to highlight the
differences and the main steps, we sketch the proof in the appendix (Section A.2).

3 Construction of Diffusive Birth-and-Death Particle Systems

Recall that E = {η ∈ N
V

0 : ∑
x η(x) < ∞}. In this section, we will construct

continuous-time Markov chains on E that will later be used in the fluid limit for the
proof of ourmain result. Rather than having an index n and functions Fn,+ and Fn,− as
in (1.4) and (1.5), for now we will have no index, and functions F+ and F− satisfying
certain properties (see (3.1) below).

We define the set of marks

M = {(x,+), (x,−), (x, y) : x, y ∈ V}.

Marks will serve as instructions for the dynamics.Marks of the form (x,+) and (x,−)

represent the birth and the death of a particle at site x , respectively, and a mark of the
form (x, y) represents that a particle from site x jumps to site y. Marks are thus
associated with the transition operators

�x,+(η) := η + δx , �x,−(η) := η − δx , and �
(x,y)
x (η) := η − δx + δy,

where for x ∈ V, δx ∈ E is the configuration with only one particle at x . For a
configuration η ∈ E and x, y ∈ V, we define transition rates by

Rx,+(η) := F+(η(x)), Rx,−(η) := F−(η(x)), R(x,y)(η) := p(x, y) · η(x),

where we assume that the reaction functions F+ and F− satisfy

F+(0) = F−(0) = 0, 0 ≤ F+ ≤ F−,

N0 	 z 
→ F+(z) − F−(z) is decreasing. (3.1)
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We now define a continuous-time Markov chain on E with the prescription that

for each a ∈ M, η jumps to�a(η)with rate Ra(η).

Noting that
∑

a∈M Ra(η) < ∞ for any η ∈ E , this indeed describes jump rates
of a continuous-time Markov chain. The assumption F+ ≤ F− combined with a
simple stochastic comparison argument (see [4, Lemma 2]) implies that the chain is
non-explosive. It will be important to leave the initial condition explicit, so we will
denote the chain started from η ∈ E by (�t (η))t≥0.

For any function f : E → R satisfying

∑

a∈M
Ra(η) · max

(
| f (�a(η)) − f (η)|, | f (�a(η)) − f (η)|2

)
< ∞ for all η ∈ E,

(3.2)
we define

L f (η) :=
∑

a∈M
Ra(η) · ( f (�a(η)) − f (η)),

Q f (η) :=
∑

a∈M
Ra(η) · ( f (�a(η)) − f (η))2.

Recall that a function defined on a subset ofRV is called local if there exists a finite
set V′ ⊂ V such that the function depends on η ∈ R

V only through (η(x) : x ∈ V
′).

We then have

Lemma 3.1 Any local function f : E → R satisfies (3.2), and the processes

M f
t := f (�t (η)) − f (η) −

∫ t

0
L f (�s(η))ds, t ≥ 0, and

N f
t :=

(
M f

t

)2 −
∫ t

0
Q f (�s(η))ds, t ≥ 0

are local martingales with respect to the natural filtration of (�t (η))t≥0.

Proof The first statement is straightforward to check: since f is local and its argument
is an element of E , the sum in (3.2) only has finitely many non-zero terms. The second
statement then follows from Lemma 2.1. ��
Lemma 3.2 (1-norm bound in E) For any η ∈ E, the process ‖�·(η)‖1 is a super-
martingale. In particular, for any T ≥ 0 and A > 0,

P

(

sup
0≤t≤T

‖�t (η)‖1 > A

)

≤ ‖η‖1
A

. (3.3)

Proof Let f : E → Rbe given by f (η) := ‖η‖1. It is readily seen that f satisfies (3.2),
and then it follows fromLemma 2.3 that ‖�·(η)‖1 is a supermartingale. Equation (3.3)
then follows from the optional stopping theorem. ��
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Now, given a pair η, η′ ∈ E we will construct a coupled process

�̂t (η, η′) = (�̂t,1(η, η′), �̂t,2(η, η′)), t ≥ 0

on E × E so that the coordinate processes are distributed as �·(η) and �·(η′), respec-
tively. The coupling is given as the Markov chain on E × E with transition rates
described by

for each a ∈ M, (η, η′) jumps to

⎧
⎪⎨

⎪⎩

(�a(η), �a(η′)) with rate min(Ra(η), Ra(η′));
(�a(η), η′) with rate max(Ra(η) − Ra(η′), 0);
(η, �a(η′)) with rate max(Ra(η′) − Ra(η), 0).

We then define

L̂g(η, η′) :=
∑

a∈M
[min(Ra(η), Ra(η′)) · (g(�a(η), �a(η′)) − g(η, η′))

+ max(Ra(η) − Ra(η′), 0) · (g(�a(η), η′) − g(η, η′))
+ max(Ra(η′) − Ra(η), 0) · (g(η, �a(η′)) − g(η, η′))]

(3.4)

for functions g : E × E → R for which the sum on the right-hand side is absolutely
convergent for all (η, η′).

Lemma 3.3 For g(η, η′) := ‖η − η′‖, we have that L̂g is well defined and satisfies

L̂g(η, η′) ≤ C · g(η, η′) for all η, η′ ∈ E,

where C is the constant from (1.6).

Proof For this choice of g, the first line in the right-hand side of (3.4) vanishes, so we
can write L̂g(η, η′) = ∑

a∈M(�a
1 + �a

2)(η, η′), where

�a
1(η, η′) = (

Ra(η) − min{Ra(η), Ra(η′)}) · (‖�a(η) − η′‖ − ‖η − η′‖)
,

�a
2(η, η′) = (

Ra(η′) − min{Ra(η), Ra(η′)}) · (‖η − �a(η′)‖ − ‖η − η′‖)
.

Wefirst deal with the reaction terms, that is, the terms corresponding tomarks of the
form (x,+) and (x,−). Due to the nature of the rates we have chosen, the only cases
we have to look at are those for which η(x) �= η′(x). If η(x) > η′(x), the contribution
from (x,+) marks is:

(
�

(x,+)
1 + �

(x,+)
2

)
(η, η′) = [F+(η(x)) − F+(η′(x))]+ · α(x)

+ [F+(η′(x)) − F+(η(x))]+ · (−α(x))

= [F+(η(x)) − F+(η′(x))] · α(x).

Doing similarly for marks (x,−), we get:

∑

σ∈{+,−}
(�

(x,σ )
1 + �

(x,σ )
2 )(η, η′)
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= α(x) · [
(F+ − F−)(η(x)) − (F+ − F−)(η′(x))

] ≤ 0, (3.5)

where the last inequality follows fromour hypothesis (3.1) ensuring that F = F+−F−
is decreasing. Observe that we don’t need to assume (although it would be natural to)
that each F+ and F− are increasing.

The same argument shows (3.5) for the case η(x) < η′(x). We thus conclude that

∑

x∈V

∑

σ∈{+,−}
(�

(x,σ )
1 + �

(x,σ )
2 )(η, η′) ≤ 0.

Wenow turn to the diffusion terms. Fix x, y ∈ V, andfirst assume thatη(x) > η′(x).
Again, note that reaction rates are equal when η(x) = η′(x), and the contribution to
L̂g is zero in those cases. We then have �

(x,y)
2 (η, η′) = 0 and

�
(x,y)
1 (η, η′) = (η(x) − η′(x)) · p(x, y) · (‖η − δx + δy − η′‖ − ‖η − η′‖)

≤ (η(x) − η′(x)) · p(x, y) · (−α(x) + α(y)).

Treating the case η(x) < η′(x) analogously, we obtain
∑

x,y∈V
(�

(x,y)
1 + �

(x,y)
2 )(η, η′) ≤

∑

x :η(x)>η′(x)

∑

y

�
(x,y)
1 (η, η′) +

∑

x :η(x)<η′(x)

∑

y

�
(x,y)
2 (η, η′)

≤
∑

x∈V
|η(x) − η′(x)|

∑

y∈V
p(x, y)(−α(x) + α(y))

(1.6)≤ (C − 1)
∑

x∈V
|η(x) − η′(x)|α(x) ≤ C‖η − η′‖.

��
Lemma 3.4 For any η, η′ ∈ E, the process (e−Ct · ‖�̂t,1(η, η′) − �̂t,2(η, η′)‖)t≥0 is
a supermartingale with respect to its natural filtration. In particular, for any T > 0
and A > 0, we have

P

(

sup
0≤t≤T

‖�̂t,1(η, η′) − �̂t,2(η, η′)‖ > A

)

≤ eCT · ‖η − η′‖
A

. (3.6)

Proof The first statement is a consequence of Lemmas 2.3 and 3.3. To prove the second
statement, abbreviate

Yt := ‖�̂t,1(η, η′) − �̂t,2(η, η′)‖, Xt := e−Ct · Yt .

For a > 0, define τa := inf{t ≥ 0 : Xt > a}. We have ‖η − η′‖ ≥ E[Xτa∧T ] ≥
a · P(τa ≤ T ) for any T > 0 and a > 0, so

P

(

sup
0≤t≤T

Xt > a

)

≤ ‖η − η′‖
a

.
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We then obtain

P

(

sup
0≤t≤T

Yt > A

)

≤ P

(

sup
0≤t≤T

Xt > Ae−CT

)

≤ eCT · ‖η − η′‖
A

.

��

4 Convergence to Solutions of Reaction–Diffusion Equations

4.1 Sequence of Particle Systems: Definition and First Estimates

In this section, following the program outlined in the Introduction, we consider a
sequence of processes of the type constructed in the previous section and prove that
this sequence converges to solutions of the system of reaction–diffusion Eq. (1.1).

We recall that we define, for u ≥ 0,

Fn,−(u) := an2

2
·
(u

n

)� + min

{
an2

2
·
(u

n

)� ; bn

2
·
(u

n

)κ
}

,

Fn,+(u) := an2

2
·
(u

n

)� − min

{
an2

2
·
(u

n

)� ; bn

2
·
(u

n

)κ
}

.

We denote by (�n
t (η))t≥0 theMarkov chains, as constructed in Sect. 3, correspond-

ing to the rate functions F+ = Fn,+ and F− = Fn,− (we leave the diffusion part
of the dynamics constant for all n, that is, particles jump with rate one regardless
of n). Conditions in (3.1) are satisfied with this choice of rate functions. We also
denote by �̂n· (η, η′) the corresponding coupling, as described in the previous section.
Finally, we write

ϕn
t (ζ ) := 1

n�n(nζ ), ϕ̂n
t (ζ, ζ ′)

=
(
ϕt,1(ζ, ζ ′), ϕ̂t,2(ζ, ζ ′)

)
:= 1

n �̂n
t (nζ, nζ ′), ζ, ζ ′ ∈ 1

n E .

Hence, ϕn· (ζ ) and ϕ̂n
·,i (ζ, ζ ′), for i ∈ {1, 2}, are processes on 1

n E .

From (3.6), we obtain that, for any n and any ζ, ζ ′ ∈ 1
n E ,

P

(

sup
0≤t≤T

‖ϕ̂n
t,1(ζ, ζ ′) − ϕ̂n

t,2(ζ, ζ ′)‖ > A

)

≤ eCT · ‖ζ − ζ ′‖
A

. (4.1)

We have the following consequence of Lemma 3.4.
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Corollary 4.1 For every ε > 0 and T > 0, there exists δ > 0 such that, for all n ∈ N

and all ζ, ζ ′ ∈ 1
n E with ‖ζ − ζ ′‖ < δ we have

P

(

sup
0≤t≤T

∥
∥ϕ̂n

t,1(ζ, ζ ′) − ϕ̂n
t,2(ζ, ζ ′)

∥
∥ > ε

)

< ε.

We may now state a distance bound with respect to the Lèvy-Prohorov metric.

Lemma 4.2 For every ε > 0, there exists δ > 0 such that, for all n ∈ N and all ζ, ζ ′ ∈
1
n E with ‖ζ − ζ ′‖ < δ we have

dLP
(
ϕn· (ζ ), ϕn· (ζ ′)

)
< ε. (4.2)

Proof Fix ε > 0. It follows from the definition of the Skorokhod metric that

γ, γ ′ ∈ D([0,∞), E), sup
0≤t≤log(2/ε)

‖γt − γ ′
t ‖ ≤ ε

2
�⇒ dS(γ, γ ′) < ε.

Together with Lemma 4.1 (with T = log(2/ε)), this implies that there exists δ > 0
such that for any n and any ζ, ζ ′ with ‖ζ − ζ ′‖ < δ we have

P
(
dS(ϕ̂

n
1,·(ζ, ζ ′), ϕ̂n

2,·(ζ, ζ ′)) > ε
)

< ε.

The desired result now follows from (2.3) and the fact that ϕ̂n
1,·(η, η′) and ϕ̂n

2,·(η, η′)
have the same distribution of ϕn· (η), ϕn· (η′), respectively. ��

For a local function f : 1
n E → R, define

Ln f (ζ ) :=
∑

a∈M
Ra(nζ ) · (

f
( 1
n�a(nζ )

) − f (ζ )
)
,

Qn f (ζ ) :=
∑

a∈M
Ra(nζ ) · (

f
( 1
n�a(nζ )

) − f (ζ )
)2

, ζ ∈ 1
n E .

It follows from Lemma 3.1 that the processes

M f
t := f (ϕn

t (ζ )) − f (ζ ) −
∫ t

0
Ln f (ϕn

s (ζ ))ds, and

N f
t :=

(
M f

t

)2 −
∫ t

0
Qn f (ϕn

s (ζ ))ds

defined for t ≥ 0 are local martingales.
In the following lemma, we give explicit expressions for Ln and Qn applied to

functions of the form fx (ζ ) = ζ(x) and fxy(ζ ) = ζ(x) · ζ(y). We postpone the
calculations to Appendix A.3.
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Lemma 4.3 We have, for any ζ ∈ 1
n E and x ∈ V,

(Ln fx )(ζ ) = (�pζ )(x) − min
{
an · (ζ(x))�; b · (ζ(x))κ

}
(4.3)

(Qn fx )(ζ ) = a · (ζ(x))� + 1

n

∑

y �=x

(p(y, x)ζ(y) + p(x, y)ζ(x)), (4.4)

(Ln fxx )(ζ ) = (2 fx · Ln fx )(ζ ) + a · (ζ(x))� + 1

n

∑

y �=x

(ζ(y)p(y, x) + ζ(x)p(x, y)).

(4.5)

Moreover, for distinct x, y ∈ V,

(Ln fx,y)(ζ ) = ( fx ·Ln fy + fy ·Ln fx )(ζ ) − 1

n
(ζ(y)p(y, x) + ζ(x)p(x, y)). (4.6)

Finally, we state our tightness result, which will allow us to extract convergent
subsequences of a sequence of processes of the form {ϕn· (ζ n)}n≥1.

Proposition 4.4 Let ζ ∈ E and {ζ n}n≥1 be a sequence with ζ n ∈ 1
n E for each n and

‖ζ n−ζ‖ n→∞−−−→ 0. Then, the family of processes {ϕn· (ζ n)}n≥1 is tight in D([0,∞), E).

The proof of this proposition will be carried out in Sect. 5.

4.2 Limit Points are Solutions

Recall from Sect. 2.4 that we defined

(L∗ f )(ζ ) :=
∑

x∈V
(�pζ(x)−b ·(ζ(x))κ) ·∂x f (ζ )+ 1

2

∑

x∈V
a ·(ζ(x))� ·∂2x f (ζ ), ζ ∈ E

for any local and twice continuously differentiable function f . Substituting fx , fxx
and fxy gives

(L∗ fx )(ζ ) = �pζ(x) − b · (ζ(x))κ , (4.7)

(L∗ fxx )(ζ ) = (2 fx · L∗ fx )(ζ ) + a · (ζ(x))�, (4.8)

(L∗ fxy)(ζ ) = ( fx · L∗ fy + fy · L∗ fx )(ζ ) for x �= y. (4.9)

Lemma 4.5 For any f ∈ { fx , fxy : x, y ∈ V} and A > 0, we have

sup
{|(L∗ f )(ζ ) − (Ln f )(ζ )| : ζ ∈ 1

n E, ‖ζ‖ ≤ A
} n→∞−−−→ 0. (4.10)

Proof Let us fix x ∈ V and consider the case f = fx . Comparing (4.3) and (4.7), and
noting that ζ(x) ≤ ‖ζ‖/α(x), the supremum on the left-hand side of (4.10) is at most

sup
z∈[0,A/α(x)]

(
bzκ − anz�

)
· 1

{
bzk > anz�

}
n→∞−−−→ 0;
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the convergence can be checked by separately considering the cases κ > � and κ ≤ �.
Next, for f = fxx , comparing (4.5) and (4.8) and using the case of fx that we just

treated, it suffices to note that, by (5.8), we have

1

n
· sup

⎧
⎨

⎩

∑

y �=x

(ζ(y)p(y, x) + ζ(x)p(x, y)) : ζ ∈ 1
n E, ‖ζ‖ ≤ A

⎫
⎬

⎭

n→∞−−−→ 0.

Finally, the case f = fxy with given x �= y is easier: comparing (4.6) and (4.9)
and using the convergence for fx and fy , it suffices to note that

1

n
· sup {

ζ(y)p(y, x) + ζ(x)p(x, y) : ζ ∈ 1
n E, ‖ζ‖ ≤ A

} n→∞−−−→ 0.

��
Proposition 4.6 Let ζ ∈ E and {ζ n}n≥1 be a sequence with ζ n ∈ 1

n E for each n

and ‖ζ n − ζ‖ n→∞−−−→ 0. Assume that the sequence of processes {ϕn· (ζ n)}n≥1 has a
subsequence that converges in distribution in D([0,∞), E) to a process ζ ∗· . Then, the
distribution of ζ ∗· is supported on C([0,∞), E), and ζ ∗· is a solution of the SDE (1.1).

Proof of Proposition 4.6 Denote the convergent subsequence by {ϕnk· (ζ nk )}k≥1. By
Skorokhod’s representation theorem [2, p. 70], we may consider a probability
space (�̃, F̃ , P̃) with processes {Zk· }k≥1 and Z∗· so that

• For each k, Zk· has trajectories inD([0,∞), 1
n E) and samedistribution asϕnk· (ζ nk );

• Z∗· has trajectories in D([0,∞), E) and same distribution as ζ ∗· ;
• For each ω ∈ �̃, we have dS(Zk· (ω), Z∗· (ω))

n→∞−−−→ 0.

For γ ∈ D([0,∞), E) and t ≥ 0, define Jt (γ ) := sups≤t ‖γs − γs−‖, the largest
jump size of γ until time t . We have that

Jt
(
Zk· (ω)

)
≤ 2

nk
· max
x∈V α(x)

k→∞−−−→ 0 for all ω ∈ �̃,

so, by continuity of Jt in theSkorokhod topology [2, p. 125],weobtain Jt
(
Z∗
t (ω)

) = 0
for all ω and t . This implies that the trajectories of Z∗· are continuous, and we proved
the first part.

Then, using (2.2), we obtain

sup
0≤s≤t

‖Zk
s (ω) − Z∗

s (ω)‖ k→∞−−−→ 0 for all t ≥ 0, ω ∈ �̃. (4.11)

We now define, for f ∈ { fx , fxy : x, y ∈ V},

Mk, f
t := f (Zk

t ) − f (Zk
0) −

∫ t

0
Lnk f (Zk

s )ds,
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M∗, f
t := f (Z∗

t ) − f (Z∗
0) −

∫ t

0
L∗ f (Z∗

s )ds, t ≥ 0.

As observed in Sect. 4.1, we have that Mk, f· is a local martingale for each k. We now
claim that

sup
0≤s≤t

∣
∣
∣M

k, f
s (ω) − M∗, f

s (ω)

∣
∣
∣

k→∞−−−→ 0 for all t ≥ 0, ω ∈ �̃. (4.12)

Let us first show how this convergence will allow us to conclude. Since the trajectories
of M∗, f· are continuous, (2.2) and (4.12) imply that

ds(M
k, f· (ω), M∗, f· (ω))

k→∞−−−→ 0 for all ω ∈ �̃.

Since almost sure convergence implies convergence in distribution, this gives

dLP(M
k, f· , M∗, f· )

k→∞−−−→ 0.

Now, Corollary 1.19, page 527 in [6] states that if a sequence of càdlàg local
martingales converges in distribution (with respect to the Skorokhod topology), then
the limiting process is also a local martingale. We then obtain that M∗, f· is a local
martingale. By Proposition 2.5, this implies that Z∗· is a solution to the SDE (1.1).

It remains to prove (4.12). To do so, fix f ∈ { fx , fxy : x, y ∈ V}, ω ∈ �̃ and t ≥ 0.
Using (4.11), we obtain that

sup
0≤s≤t

∣
∣
∣ f (Zk

s (ω)) − f (Z∗
s (ω))

∣
∣
∣

n→∞−−−→ 0,

and also that A := sup{‖Zk
s (ω)‖ : s ≤ t, k ≥ 1} is finite. By this latter point and

Lemma 4.5, we then have that

sup
0≤s≤t

|Lnk f (Zk
s (ω)) − L∗ f (Zk

s (ω))| k→∞−−−→ 0.

Next, from the generator expressions in (4.7), (4.8) and (4.9), it follows that L∗ f is
uniformly continuous on {ζ ∈ E : ‖ζ‖ ≤ A}; this and (4.11) imply that

sup
0≤s≤t

∣
∣
∣L∗ f (Zk

s (ω)) − L∗ f (Z∗
s (ω))

∣
∣
∣

k→∞−−−→ 0.

The desired convergence (4.12) follows. ��
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4.3 Convergence to Solutions: Proof of Theorem 1.1

Proof of Theorem 1.1 We split the proof in two parts: first with finite initial condition,
then the general case.

Finite case Fix ζ̊ ∈ E with ‖ζ̊‖1 = ∑
x∈V ζ̊ (x) < ∞. Also, fix a sequence {ζ̊ n}n≥1

with ζ̊ n ∈ 1
n E for each n and ‖ζ̊ n − ζ̊‖ n→∞−−−→ 0. By Proposition 4.4, there exists a

subsequence {ζ̊ nk }k≥1 such that the sequence of processes {ϕnk· (ζ̊ nk )}k≥1 converges in
distribution to a process on D([0,∞), E). Let us denote this limiting process byψ∗· (ζ̊ ).
By Proposition 4.6, ψ∗· (ζ̊ ) has trajectories in C([0,∞), E) and is a solution to (1.1)
with initial configuration ζ̄ = ζ̊ . Then, by Proposition 2.4, any other subsequence
of {ϕn(ζ̊ n)}n≥1 which converges in distribution must have the same limit ψ∗· (ζ̊ ). This
implies that the entire sequence {ϕn(η̊n)}n≥1 converges in distribution to ψ∗· (ζ̊ ), that
is,

dLP
(
ϕn· (ζ̊ n), ψ∗· (ζ̊ )

)
n→∞−−−→ 0.

General case Now, fix ζ ∈ E and a sequence {ζ n}n≥1 with ζ n ∈ 1
n E for each n

and ‖ζ n−ζ‖ n→∞−−−→ 0.We claim that the sequence of processes {ϕn· (ζ n)}n≥1 is Cauchy
with respect to dLP. To see this, fix ε > 0. Next, choose δ > 0 such that Lemma 4.1
ensures that the left-hand side in (4.2) is smaller than ε

3 . Next, because ‖ζ n −ζ‖ → 0,
we may choose R > 0 such that

‖ζ n · 1B0(R) − ζ n‖ < δ for all n.

This implies that

dLP
(
ϕn· (ζ n · 1B0(R)), ϕn· (ζ n)

)
<

ε

3
for all n ∈ N.

Finally, using the finite case, with {ζ n · 1B0(R)}n as approximating sequence to
ζ · 1B0(R), which is finite, we may choose n0 ∈ N such that

dLP
(
ϕn· (ζ n · 1B0(R)), ϕn′

· (ζ n′ · 1B0(R))
)

<
ε

3
for all n, n′ ≥ n0.

By the triangle inequality, it follows that {ϕn· (ζ n)}n≥1 is Cauchy.
Now, from the tightness of this sequence, given by Proposition 4.4 (or alternatively,

the completeness of themetric space (D([0,∞), E), dLP)), we obtain that {ϕn· (ηn)}n≥1
converges in distribution to a process on D([0,∞), E), which we denote by ψ∗· (ζ ).
To see that this process does not depend on the sequence {ζ n}n≥1 that we fixed, take

an alternative sequence {ζ̃ n}n≥1 with ζ̃ n ∈ 1
n E for each n and ‖ζ̃ n − ζ‖ n→∞−−−→ 0, and

note that Lemma 4.1 gives

lim
n→∞ dLP

(
ϕn· (ζ n), ϕn· (ζ̃ n)

)
n→∞−−−→ 0.
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Finally, by Proposition 4.6,ψ∗· (ζ ) has trajectories inC([0,∞), E), and is a solution
to (1.1) with initial configuration ζ̄ = ζ .

It remains to prove part (c) of the statement of the theorem. Fix ε > 0, and
choose δ > 0 corresponding to ε in Lemma 4.2. Fix ζ, ζ ′ ∈ E with ‖ζ − ζ ′‖ < δ/2.
Take sequences {ζ n}n≥1, {ζ ′n}n≥1 with ζ n, ζ ′n ∈ 1

n E for each n and

‖ζ n − ζ‖ n→∞−−−→ 0, ‖ζ ′n − ζ ′‖ n→∞−−−→ 0.

In particular, forn large enoughwehave‖ζ n−ζ ′n‖ < δ, so dLP(ϕn· (ζ ), ϕn· (ζ ′)) < ε.
By the previous results, we have

dLP(ϕ
n· (ζ n), ψ∗· (ζ ))

n→∞−−−→ 0, dLP(ϕ
n· (ζ ′n), ψ∗· (ζ ′)) n→∞−−−→ 0,

so

dLP(ψ
∗· (ζ ), ψ∗· (ζ ′)) = lim

n→∞ dLP(ϕ
n· (ζ n), ϕn· (ζ ′n)) ≤ ε.

��

5 Tightness: Proof of Proposition 4.4

5.1 Aldous’Criterion

Throughout this section, we fix ζ and {ζ n}n≥1 as in the statement of Proposition 4.4.
We will abbreviate

ζ n
t := ϕn

t (ζ n), n ≥ 1, t ≥ 0.

We will prove Proposition 4.4 using Aldous’ criterion [2, p. 51]. We need to verify
that

∀t ≥ 0, ∀ε > 0, ∃K ⊂ E compact : sup
n∈N

P(ζ n
t /∈ K ) < ε, and (5.1)

∀T > 0, ∀ε > 0, lim
δ→0

sup
n∈N

sup
τ∈T n

T

P

(∥
∥
∥ζ n

(τ+δ)∧T − ζ n
τ

∥
∥
∥ > ε

)
= 0, (5.2)

where T n
T is the set of stopping times (with respect to the natural filtration of ζ n· ) that

are bounded by T .
To verify the first criterion, we will rely on a definition and a lemma. For any r > 0,

we define
�(r) := {x ∈ V : α(x) > 1/r}. (5.3)
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Lemma 5.1 (Negligible norm near infinity) For any T > 0 and ε > 0, there exists R >

0 such that

P

(

sup
0≤t≤T

‖ζ n
t · 1�(R)c‖ > ε

)

< ε for all n ≥ 1.

We postpone the proof of this lemma to Sect. 5.2.

Proof of Proposition 4.4, condition (5.1) Fix t ≥ 0 and ε > 0. Using (4.1) with ζ ′ ≡ 0,
we obtain that there exists A > 0 such that

sup
n

P
(‖ζ n

t ‖ > A
) ≤ ε

2
.

Furthermore, by Lemma 5.1, for any k ∈ N there exists Rk such that

sup
n

P

(

‖ζ n
t · 1�(Rk )

c‖ >
1

k

)

<
ε

2k+1 .

Now, defining

K := {
ζ ∈ E : ‖ζ‖ ≤ A, ‖ζ · 1�(Rk )

c‖ ≤ 1/k for all k
}
,

we have that P(ζ n
t ∈ K ) > 1 − ε for all n.

We claim that K is compact. To verify this, fix a sequence {ζ j } j≥1 of elements
of K . For every x ∈ V we have that ζ j (x) ≤ A/α(x) for every j , so, using a diagonal
argument, we can obtain a subsequence {ζ j ′ } j ′≥1 so that ζ j ′(x) is convergent for
each x . Let ζ̄ be defined by ζ̄ (x) := lim j ′ ζ j ′(x) for each x . Next, Fatou’s Lemma
gives ‖ζ̄ · 1�(Rk )

c‖ ≤ 1/k for all k, so ζ̄ ∈ E (since �(Rk) is finite) and

lim sup
j ′→∞

‖ζ̄ − ζ j ′ ‖ ≤ lim sup
j ′→∞

∑

x∈�(Rk )

α(x) · |ζ̄ (x) − ζ j ′(x)| + 2

k
= 2

k
,

which can be made as small as desired by taking k large. This shows that K is compact
and completes the proof of (5.1). ��

For the proof of (5.2), again we will need a preliminary result.

Lemma 5.2 (Oscillation of coordinates) For any T > 0, ε > 0 and x ∈ V, we have

lim
δ→0

sup
n∈N

sup
τ∈T n

T

P

(∣
∣
∣ζ

n
(τ+δ)∧T (x) − ζ n

τ (x)
∣
∣
∣ > ε

)
= 0.

We postpone the proof of this lemma to Sect. 5.3.

Proof of Proposition 4.4, condition (5.2) Fix T > 0 and ε > 0. By Lemma 5.1, we may
choose R > 0 such that, for any n,

P

(

sup
0≤t≤T

‖ζ n
t · 1�(R)c‖ >

ε

3

)

<
ε

3
.
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Next, by Lemma 5.2 and a union bound for x ∈ �(R), we can choose δ0 > 0 such
that, for any δ ≤ δ0, n ∈ N and τ ∈ T n

T , we have

P

(
‖(ζ n

(τ+δ)∧T − ζ n
t ) · 1�(R)‖ >

ε

3

)
<

ε

3
.

Therefore, by the triangle inequality,

P

(
‖ζ n

(τ+δ)∧T − ζ n
t ‖ > ε

)
≤P

(
‖(ζ n

(τ+δ)∧T − ζ n
τ ) · 1�(R)‖ >

ε

3

)

+ P

(
‖ζ n

(τ+δ)∧T · 1�(R)c‖ >
ε

3

)

+ P

(
‖ζ n

τ · 1�(R)c‖ >
ε

3

)
< ε.

Since ε is arbitrary, the proof is complete. ��

5.2 NormNear Infinity: Proof of Lemma 5.1

Let us define

ζ
n,r
t := ϕn

t (ζ n · 1�(r)), n ≥ 1, t ≥ 0.

We observe that, by (4.1), for any ε > 0, T > 0 and n ≥ 1 we have

P

(

sup
0≤t≤T

‖ζ n
t − ζ

n,r
t ‖ > ε

)

≤ eCT · ‖ζ n
0 · 1�(r)c‖
ε

. (5.4)

Proof of Lemma 5.1 Fix T > 0 and ε > 0. By (5.4), we can choose r large enough
that

sup
n

P

(

sup
0≤t≤T

‖ζ n
t − ζ

n,r
t ‖ >

ε

2

)

≤ ε

2
. (5.5)

Next, note that for any n, R and t we have

‖ζ n,r
t · 1�(R)c‖ =

∑

x /∈�(R)

α(x) · |ζ n,r
t (x)| (5.3)≤ ‖ζ n,r

t ‖1
R

,

so, for any n and R,

P

(

sup
0≤t≤T

‖ζ n,r
t · 1�(R)c‖ >

ε

2

)

≤ P

(

sup
0≤t≤T

‖ζ n,r
t ‖1 >

Rε

2

)
(3.3)≤ 2‖ζ n,r

0 ‖1
Rε

.
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Now, the assumption that ‖ζ n
0 − ζ ∗‖ n→∞−−−→ 0 implies that supn ‖ζ n,r

0 ‖1 < ∞. We
thus have

sup
n

P

(

sup
0≤t≤T

‖ζ n,r
t · 1�(R)c‖ >

ε

2

)

≤ ε

2
(5.6)

if R is large enough. Combining (5.5) and (5.6) with the bound

‖ζ n
t · 1�(R)c‖ ≤ ‖(ζ n

t − ζ
n,r
t ) · 1�(R)c‖

+‖ζ n,r
t · 1�(R)c‖ ≤ ‖ζ n

t − ζ
n,r
t ‖ + ‖ζ n,r

t · 1�(R)c‖

gives the desired bound. ��

5.3 Oscillation of Coordinates: Proof of Lemma 5.2

In the proof of Lemma 5.2, it will be useful to note that, for any n ∈ N, x ∈ V

and A > 0 we have

sup
{|Ln fx (ζ )| ∨ |Qn fx (ζ )| : ζ ∈ 1

n E, ‖ζ‖ ≤ A
}

< ∞. (5.7)

This follows from the expressions in (4.3), (4.4), the fact that ‖ζ‖ ≤ A implies |ζ(x)| ≤
A/α(x), and the bound

∑

y �=x

(ζ(y)p(y, x)+ζ(x)p(x, y))
(2.1)≤

∑

y∈V
ζ(y)· Cα(y)

α(x)
+ζ(x) ≤ C + 1

α(x)
·‖ζ‖. (5.8)

Proof of Lemma 5.2 As noted in Sect. 4.1, writing

Mn,x
t := ζ n

t (x) − ζ n
0 (x) −

∫ t

0
Ln fx (ζ

n
s ) ds, for t ≥ 0,

we have that Mn· is a local martingale. Its quadratic variation is given by

〈Mn,x 〉t =
∫ t

0
Qn fx (ζ

n
s ) ds

=
∫ t

0
a · (ζ n

s (x))� +
∑

y

p(y, x)ζ n
s (y) + p(x, y)ζ n

s (x)

n
ds, for t ≥ 0.
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Now, fix T > 0, ε > 0 and τ ∈ T n
T . Given A > 0, define τ nA := T ∧ inf{ t ∈

[0, T ] : ∥
∥ζ n

t

∥
∥ > A }. We have that, for any δ > 0,

P

(∣
∣
∣ζ

n
(τ+δ)∧T (x) − ζ n

τ (x)
∣
∣
∣ ≥ ε

)

≤ P

(∣
∣
∣Mn

(τ+δ)∧τ nA
− Mn

τ∧τ nA

∣
∣
∣ ≥ ε/2

)

+ P

(∣
∣
∣
∣
∣

∫ (τ+δ)∧τ nA

τ∧τ nA

Ln fx (ζ
n
s ) ds

∣
∣
∣
∣
∣
≥ ε/2

)

+ P(τ nA < T )

≤ 4

ε2
E

[∫ (τ+ δ)∧τ nA

τ∧τ nA

Qn fx (ζ
n
s ) ds

]

+ P

(∣
∣
∣
∣
∣

∫ (τ+δ)∧τ nA

τ∧τ nA

Ln fx (ζ
n
s ) ds

∣
∣
∣
∣
∣
≥ ε/2

)

+ P(τ nA < T ).

Now, using (5.7), we can choose δ > 0 small enough that

4

ε2
E

[∫ (τ+δ)∧τ nA

τ∧τ nA

Qn fx (ζ
n
s ) ds

]

<
ε

2
and

P

(∣
∣
∣
∣
∣

∫ (τ+δ)∧τ nA

τ∧τ nA

Ln fx (ζ
n
s ) ds

∣
∣
∣
∣
∣
≥ ε/2

)

= 0.

To conclude the proof, we choose A > 0 large enough that P(τ nA < T ) < ε
2 . ��

Acknowledgements Motivated by a question posed by Roberto Oliveira, this paper started during the first
author’s postdoc at IMPA (BR). Collaboration initiated with visits at the Mathematical Institute in Leiden
and at the Bernoulli Institute in Groningen University (NL). Important progress happened while the second
author visited the Department of Mathematical Sciences in Durham University (UK), while on leave from
Federal University of Rio de Janeiro (BR). We would like to express our gratitude for the hospitality and
support of all those institutions.

Data Availability Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


Journal of Theoretical Probability

A Appendix

A.1 Uniqueness with Finite Mass: Proof of Proposition 2.4

Let ζ ∗,1· and ζ ∗,2· be two limit points of {ζ n· }n∈V having the same initial condition
ζ ∗
0 ∈ E0, By [13, Proposition 1, p. 158], we can assume that the two processes ζ 1· and

ζ 2· of the statement of the proposition are defined in the same probability space, and
that they solve (1.1) with respect to the same Brownian family { Bx· }x∈V. This allows
us to consider the difference process Dt (x) := ζ

∗,1
t (x) − ζ

∗,2
t (x). To prove that ζ 1·

and ζ 2· have the same distribution, it is enough to show that, for all t ∈ [0, T ],

E
[‖Dt‖1

] = 0,

where ‖Dt‖1 = ∑
x |Dt (x)|. To do so, we first bound E

[∥
∥Dt∧σA

∥
∥
1

]
, where

σA := inf
{
t : ‖ζ ∗,1

t ‖1 ≥ A or ‖ζ ∗,2
t ‖1 ≥ A

}
.

As in [13, p.165], there exist a decreasing sequence (am)m≥1 of positive real num-
bers with limm am = 0 and functions ρm : [0,∞) → [0,∞) such that

0 ≤ ρm(u) ≤ 2

mu
∀u, ρm(x) = 0 for x /∈ (am, am−1),

and
∫ am−1

am
ρm(s) ds = 1.

We then define

ϕm(u) :=
∫ |u|

0

∫ y

0
ρm(s) dsdy, u ∈ R.

Note that ϕm is twice differentiable, and moreover we have
∣
∣ϕ′

m(u)
∣
∣ ≤ 1, ϕm ≤

ϕm+1, and limm ϕm(u) = |u|.
By itô’s formula,

ϕm(Dt∧σA(x)) =
∫ t∧σA

0
ϕ′
m(Ds(x))

[
�pDs(x) − b ·

((
ζ 1
s (x)

)κ −
(
ζ 2
s (x)

)κ)]
ds

+ 1

2

∫ t∧σA

0
ϕ′′
m(Ds(x))

(

a ·
((

ζ 1
s (x)

)�/2 −
(
ζ 2
s (x)

)�/2
))2

ds

+
∫ t∧σA

0
ϕ′
m(Ds(x))

(

a ·
((

ζ 1
s (x)

)�/2 −
(
ζ 2
s (x)

)�/2
))

dBx
s .

(A.1)
The expected value of the last integral is zero. To bound the first two, we note that

for every s ≤ σA and x ∈ V we have ζ 1
s (x) ≤ A and ζ 2

s (x) ≤ A. In the remainder
of this proof, CA will denote a positive constant that depends only on A, and whose
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value may change from line to line. Since both κ and � are larger than or equal to one,
we have

(
ζ 1
s (x)

)κ −
(
ζ 2
s (x)

)κ ≤ CA |Ds(x)| , and
((

ζ 1
s (x)

)�/2 −
(
ζ 2
s (x)

)�/2
)2

≤ CA |Ds(x)| .

Since

ϕ′′
m(Ds(x)) = ρm(|Ds(x)|) ≤ 2

m |Ds(x)| ,

the second integral in (A.1) is bounded by CAat
m , so

E
[
ϕm(Dt∧σA (x))

] ≤ E

[∫ t∧σA

0

∣
∣ϕ′

m(Ds(x))
∣
∣
[ ∣
∣�pDs(x)

∣
∣ + CA |Ds(x)|

]
ds

]

+CAat

m
. (A.2)

Now define vt (x) := E
[∣
∣Dt∧σA(x)

∣
∣
]
for all x ∈ V and let m → ∞ in (A.2). Since

supu
∣
∣ϕ′

m(u)
∣
∣ ≤ 1, it follows that

vt (x) ≤
∫ t

0

( ∑

y∈V
p(y, x)vs(y) + p(x, y)vs(x) + CAvs(x)

)
ds.

Summing the previous equations over all x ∈ V, interchanging the order of y and
x and recalling that

∑
x∈V p(y, x) = 1, we get that

E
[∥
∥Dt∧σA

∥
∥
1

] ≤ CA

∫ t

0
E

[∥
∥Ds∧σA

∥
∥
1

]
ds

which means, by Gronwall inequality, that

E
[∥
∥Dt∧σA

∥
∥
1

] = 0. (A.3)

Since limA→∞ σA = ∞, by Fatou’s Lemma and (A.3) we obtain

E
[‖Dt‖1

] = E

[

lim inf
A→∞

∥
∥Dt∧σA

∥
∥
1

]

≤ lim inf
A→∞ E

[∥
∥Dt∧σA

∥
∥
1

] = 0.

A.2 Solutions of Martingale Problem: Sketch of Proof of Proposition 2.5

Proof of Proposition2.5, sketch Wewrite M f
t := f (ζt )− f (ζ0)−

∫ t
0 L∗ f (ζs)ds. From

the fact that M f· is a local martingale for every f ∈ { fx , fxy : x, y ∈ V} and by
repeating the computation in [7, Eq. (4.11), p. 315], we obtain the cross-variation
processes (see [7, Def.5.5, p. 31]) given by

〈M fx· , M
fy· 〉t = 1{x=y} · a

∫ t

0
(ζs(x))

�ds, t ≥ 0. (A.4)
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We now extend the probability space in which ζ· is defined to a space (�̂, F̂ , P̂)

where an auxiliary family of independent Brownian motions {Wx· }x∈V is defined. To

keep track of this extension, we denote by ζ̂· and M̂ f· the versions of ζ· and M f· in the
larger space. We define

Bx
t :=

∫ t

0
1{ζ̂s (x) �=0} · 1

√

a(ζ̂s(x))�
d M̂ fx

s +
∫ t

0
1{ζ̂s (x)=0} dW

x
s .

Using (A.4), it can then be proved that {Bx· }x∈V is a family of continuous local mar-
tingales with cross-variation process given by

〈Bx· , By· 〉t = t · 1{x=y}, t ≥ 0.

By Lévy’s representation theorem [7, p. 157], it follows that {Bx· }x∈V is a family
of independent Brownian motions. Since, almost surely,

M̂ fx
t =

∫ t

0

(
a(ζs(x))

�
)1/2

dBx
s , t ≥ 0

and L∗ fx (ζ ) = �pζ(x) − b(ζ(x))κ , we can, almost surely, rewrite the equation

ζ̂t (x) = ζ̂0(x) +
∫ t

0
L∗ fx (ζ̂s)ds + M̂ fx

t

as

ζ̂t (x) = ζ̂0(x) +
∫ t

0

(
�p ζ̂s(x) − b(ζ̂s(x))

κ
)
ds +

∫ t

0

(
a(ζ̂s(x))

�
)1/2

dBx
s .

��

A.3 Generator Computations: Proof of Lemma 4.3

Proof of Lemma 4.3 Define

(Sa f )(ζ ) := Ra(nζ ) · (
f ( 1n�a(nζ )) − f (ζ )

)
,

for each a ∈ M, so that
(Ln f )(ζ ) =

∑

a∈M
(Sa f )(ζ ). (A.5)

Note that

(S(x,+) fx )(ζ ) = Fn,+(nζ(x)) · 1
n

= an

2
· (ζ(x))�

−min

{
an

2
· (ζ(x))�; b

2
· (ζ(x))κ

}
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and similarly,

(S(x,−) fx )(ζ ) = an

2
· (ζ(x))� + min

{
an

2
· (ζ(x))�; b

2
· (ζ(x))κ

}

.

Next, for x �= y,

(S(x,y) fx )(ζ ) = n · ζ(x) · p(x, y) ·
(

−1

n

)

= −ζ(x) · p(x, y)

and similarly,

(S(y,x) fx )(ζ ) = ζ(y) · p(y, x).

Using these expressions in (A.5), we obtain (4.3).
To prove (4.4), we observe that

Qn fx (ζ ) =
∑

a∈M
Ra(nζ ) · (

fx (
1
n�a(nζ )) − fx (ζ )

)2

=
⎛

⎝R(x,+)(nζ ) + R(x,−)(nζ ) +
∑

y �=x

(R(x,y)(nζ ) + R(y,x)(nζ ))

⎞

⎠ · 1

n2

= a · ζ(x)� + 1

n

∑

y �=x

(p(y, x)ζ(y) + p(x, y)ζ(x)).

We obtain (4.5) as a consequence of (4.3) and (4.4) and the identity Ln fxx = 2 fx ·
Ln fx + Qn fxx . Finally, assume that x �= y, and let us prove (4.6). We compute

(S(x,y) fx,y)(ζ ) = nζ(x) · p(x, y) ·
[(

ζ(x) − 1

n

)

·
(

ζ(y) + 1

n

)

− ζ(x) · ζ(y)

]

= p(x, y) ·
(

ζ(x)2 − ζ(x) · ζ(y) − ζ(x)

n

)

.

We then replace in (A.5) the above, together with the analogous expression
for S(y,x), to obtain

(Ln fx,y)(ζ ) =
∑

a/∈{(x,y),(y,x)}
(Sa fx,y)(ζ ) + p(x, y) ·

(

ζ(x)2 − ζ(x) · ζ(y) − ζ(x)

n

)

+ p(y, x) ·
(

ζ(y)2 − ζ(x) · ζ(y) − ζ(y)

n

)

.

(A.6)

Next, for each z ∈ V, let Mz := {(z,+), (z,−)} ∪ {(z, w) : w ∈ V} ∪ {(w, z) :
w ∈ V}. Note that

a ∈ Mx\My �⇒ (Sa fx,y)(ζ ) = (Sa fx )(ζ ) · fy(ζ ).
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This observation and a simple computation give

(Ln fx )(ζ ) · fy(ζ ) =
∑

a∈Mx\My

(Sa fx,y)(ζ ) + (S(x,y) fx )(ζ ) · fy(ζ )

+ (S(y,x) fx )(ζ ) · fy(ζ )

=
∑

a∈Mx\My

(Sa fx,y)(ζ ) − p(x, y) · ζ(x) · ζ(y) + p(y, x) · ζ(y)2

and similarly,

fx (ζ ) · (Ln fy)(ζ ) =
∑

a∈My\Mx

(Sa fx,y)(ζ ) − p(y, x) · ζ(x) · ζ(y) − p(x, y) · ζ(x)2.

Comparing these two expressions with (A.6) gives (4.6). ��
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