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A density inversion method is presented, to obtain the constrained, optimal, local potential that
has a prescribed asymptotic behaviour and reproduces optimally any given ground-state electronic
density. This work builds upon the method of [Callow et al. J. Chem. Phys., 2020, 152, 164114.]
and differs in the expansion of the screening density in orbital basis element products instead of basis
functions of an additional auxiliary set. We demonstrated the method by applying it to densities
from DFT, Hartree-Fock, CAS-SCF and RDMFT calculations. For RDMFT, we demonstrate that
density inversion offers a viable single-particle description by comparing the ionization potentials for
atomic and molecular systems to the corresponding experimental values. Finally, we show that with
the present method, accurate correlation potentials can be obtained from the inversion of accurate
densities.

I. INTRODUCTION

In Kohn-Sham (KS) DFT theory[1] a fictitious non in-
teracting system is constructed, whose density is equal to
the density of the interacting one. The advantage of this
construction is that the kinetic energy of the non inter-
acting system is an explicit functional of the KS-orbitals.
One main aspect of this theory is that the exchange and
correlation term Exc has to be approximated and the ex-
change and correlation potential in the single-particle KS
equations is given by

vxc[ρ](r) =
δExc[ρ]

δρ(r)
. (1)

So, in KS-DFT, the functional vxc[ρ] is approximated and
the density is calculated self-consistently. An interesting
problem is the inverse KS problem, known also as the
density inversion problem, that consists in finding the
KS xc-potential vxc(r) that corresponds to a prescribed
electron density for a physical system. The uniqueness
of such a potential is justified by the Hohenberg-Kohn
theorem [2], which states that there is one to one density
to potential mapping. It should be mentioned that, like
the direct KS problem, the inverse one is also non-linear.
This non-linearity stems from the fact that the density
is the sum of the squares of the unknown orbitals. In
practice, due to the use of finite basis sets the problem
of inversion is not well posed and approximations and
regularizations should be made.

Several methods have been developed for the inverse
problem [3–13], which are of great importance, and many
of which have been shown to be connected [14]. Some
methods use as input orbitals, some wavefunctions, and
others are density-based. It has also been proposed that
Kohn-Sham potentials can be robustly constructed from
the second order reduced density matrix[15–17]. It is a

challenge for DFT to embed accurate functionals. The
potentials derived by inverting exact densities can aid
in the development of new functionals by elucidating
the weaknesses of approximate exchange and correlation
potentials in reproducing important features[5, 6]. Ad-
ditionally, inversion methods can also aid the improve-
ment of existing functionals [18]. An interesting aspect
of inversion methods is their connection with the opti-
mised effective potential (OEP) problem[19]. As stated
in Ref. [6] modification of the OEP method can lead to
density to potential inversions. Generally, applications
of inversion methods are numerous and are yet to be ex-
plored, they vary from analyzing errors of functionals to
machine learning[20].

Recently, Callow et al[21] presented a method to solve
the inverse problem in which the xc part of the inverted
potential is constrained to decay at infinity as −α/r, for a
chosen value of α. Although in principle any value (of or-
der zero or one) can be chosen for α, for the value α = 1,
the resulting potential has the expected asymptotic be-
havior of the exact KS potential. In that method, the
variation quantity is the screening density ρscr, that is
the effective density corresponding to the repulsive part
of the KS potential (Hartree, exchange, and correlation)
through Poisson’s equation. In this work, we present a
variant of the inversion method of Callow et al.[21]. More
specifically we avoid the expansion of the screening den-
sity in an auxiliary basis and instead, we adopt its ex-
pansion in products of the orbital basis elements, i.e. the
same set used for the expansion of the electron density
itself. In this way, the standard two-electron integrals
are enough to calculate potential matrix elements. In
addition, the corrections to the screening density in each
iteration do not require projection on an auxiliary basis.
Due to these differences, the present method is simpler
since no auxiliary basis is required and no additional in-
tegrals of three basis functions need to be calculated.
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We first applied the inversion method for densities ob-
tained with DFT, Hartree-Fock, and CAS-SCF. Addi-
tionally, we applied it to densities obtained by minimizing
functionals of the reduced density matrix functional the-
ory (RDMFT) [22–34]. More specifically, we have applied
the method to densities obtained from functionals such
as BBC3[29], Power[30, 31], ML[28], and PNOF5[32]. In
RDMFT [35], there is no default auxiliary single-particle
system, like Kohn-Sham in DFT, e.g. for obtaining single
particle spectrum. We show that a feasible single-particle
scheme can be obtained via density inversion.

The present paper is organised as follows: In section II,
we present the theory of our approach and the proposed
algorithm. In Section III, we have included the results
of applications by inverting LDA, HF, CAS-SCF, and
RDMFT densities while in the last Section IV, concluding
remarks have been included.

II. THEORY

As in Ref. [21], the target is to find the optimal po-
tential u that minimizes the Coulomb energy of the dif-
ference between the density, ρu, of a non interacting N
electron system with potential u and the target density,
ρt, that we want to invert,

UC[u] =
1

2

∫
dr

∫
dr′

(ρu(r)− ρt(r))(ρu(r
′)− ρt(r

′))

|r− r′|
.

(2)
Minimization of this quantity was also considered in the
derivation of the local Fock exchange (LFX) potential
(obtained from the inversion of the HF density) in peri-
odic systems [36], including metals [37]. The potential u
in the above equation and through the whole discussion
is the electron-electron repulsive part of the KS potential,
uKS = uen + u, with uen being the attractive nuclear po-
tential. The single-particle Kohn-Sham (KS) equations
that need to be solved are

[
−∇2

2
+ uen(r) + u(r)

]
ϕi(r) = ϵiϕi(r), (3)

where u stands for the Hartree plus xc potential

u(r) = uH(r) + uxc(r). (4)

The choice of minimization of UC is based on the fact
that, by doing so, the quantity

TΨ[u] = ⟨Ψ|Hu|Ψ⟩ − Eu (5)

is also minimized [38] over the effective potential u, and
the minimizing potential us is the KS potential with den-
sity ρus

equal to ρΨ. By Ψ we denote the ground state
wavefunction of the interacting system whose density is

the target density ρΨ=ρt. Hu is a many-body (interme-
diate KS) Hamiltonian with an effective local potential
uen + u and density ρu. Finally, Eu is the sum of the N
lowest eigenvalues of Hu.
Instead of u, a convenient variation quantity is the

corresponding density ρscr, that we call screening density,
associated to u through the relation

u(r) =

∫
dr′

ρscr(r
′)

|r− r′|
. (6)

As demonstrated in [21], if we correct the screening den-
sity in the direction of

∆ρscr(r) = ϵ δρ(r), (7)

where δρ = ρt − ρu and ϵ is a small positive number,
the objective function UC of Eq. (2) will decrease. So
the minimization can be performed in small consecutive
steps along the δρ direction, with ρu being updated in
each step by solving the KS problem to obtain the KS

orbitals. In this procedure, we need an initial guess ρ
(0)
scr

which corresponds to a total screening charge Q
(0)
scr =∫

dr ρscr(r). We note that, since
∫
dr ∆ρscr(r) = 0, the

screening charge remains constant,

Q(i)
scr = Q(0)

scr . (8)

In Ref [39], we proposed that the quantity Qscr is a mea-
sure for self interactions (SIs) and a necessary condition
for a SI free method is that

Qscr = N − 1, (9)

where N is the number of electrons. Equivalently, one
could only consider the exchange and correlation part
of this quantity[40–43], that equals to -1. However, we
choose to deal with the whole screening density in con-

sistency with our previous work[44–47] Choosing ρ
(0)
scr to

satisfy the above condition, the effective potential u(0)(r)
will have the correct asymptotic behavior (N − 1)/r of
Hxc part of the exact KS potential. Thus, with the
present inversion method, we find the optimal u(r) that
minimizes the objective function (2) and at the same time
satisfies the condition (9).

In the implementation presented in Ref. [21], ρscr was
expanded in an auxiliary localized basis set different than
the orbital basis. In the present, we expand ρscr in prod-
ucts of the basis set functions instead. The motivation
for this choice is that as the orbitals are already expanded
in finite basis sets with elements χk(r), then any density
(e.g. ρt, ρu) of the form ρ(r) =

∑
i ni|ϕi(r)|2, where ni is

the occupation number for the orbital ϕi, can be written
as

ρ(r) =
∑
kl

Dklχ
∗
k(r)χl(r), with Dkl =

∑
i

nic
i
kc

i
l, (10)

where cik are the orbital expansion coefficients and the
matrix D is the density matrix in the basis set represen-
tation.



3

The procedure we propose in this work is easily incor-
porated into existing atomic and molecular codes based
on a localized basis due to the following advantages: (i)
No auxiliary basis for the expansion or ρscr is required.
(ii) The usual two electron integrals, available in stan-
dard computer codes are necessary for the calculation of
the potential matrix elements. On the contrary, by ex-
panding the screening density in an auxiliary basis, as
in Ref. [21], additional three-function integrals are also
required. (iii) No additional re-expansion of δρ in any
auxiliary basis is required for the update of ρscr in every
step. (iv) The Coulomb repulsive potential can be rep-
resented exactly in terms of the basis-element products.
Thus, the optimization in terms of the total screening
density (that includes the Coulomb part) is equivalent to
the optimization in terms of the xc part alone.

We now describe the computational procedure to op-
timize the screening density and hence the repulsive po-
tential, u(r). First, we initialize the screening density
by specifically defining its corresponding density matrix
Dscr. A reasonable choice is

D(0)
scr =

N − 1

N
Dt , so ρ(0)scr =

N − 1

N
ρt, (11)

where Dt is the density matrix of the target density ρt,
and the superscript (0) denotes initial value, and sub-
sequently (i) stands for the iteration number. We note
that, in the vast majority of computational implemen-
tations of electronic structure methods, the orbitals are
expanded in basis sets rather than calculated on a grid
and thus electronic densities are traditionally represented
by the corresponding matrices of the density. The quan-
tity that we call matrix of the density (or density matrix)
represents expansion of the density in a basis. By using
orbital products at r, r′, the matrix of the density yields
also the expansion of some one-body reduced density ma-
trix in orbital basis products χ∗

k(r
′)χl(r), but this 1-RDM

is not expected to be close to the non-idempotent 1-RDM
of the interacting system (other than sharing the same
density). Minimizing the objective function of Eq. (2),
through the successive updating of the screening density
with density contributions (see Eq.(7)) confirms that the
proposed method is a density inversion method.

With this choice, the initial potential is the Coulomb
potential that corresponds to the target density, scaled
by (N−1)/N . With the above choice, the value of Qscr is
fixed during the variation to that dictated by the correct
asymptotic behavior for the local potential. Then an
iterative procedure is pursued and at each iteration, n,
the following tasks are performed:

• The matrix elements of u(n)(r) on the basis ele-
ments are calculated through the usual two electron
integrals:

U (n)
µν =

∑
kl

(D(n)
scr )kl [kl|µν], (12)

where [kl|µν] is a two electron integral over the

basis functions with indices k, l, µ, ν (chemists’
notation).

• The KS Hamiltonian is constructed, by adding the
potential matrix, U (n), to the constant sum of ki-
netic and nuclear-repulsion matrices, Hcore, and is
diagonalized:

[Hcore + U (n)] ϕ
(n)
i (r) = εi ϕ

(n)
i (r). (13)

Using the updated orbitals {ϕ(n)
i (r)}, the electronic

density ρ
(n)
u (r), and the corresponding density ma-

trix D
(n)
u are obtained (Eq. (10)).

• Using the Eq. (7), the screening density matrix

D
(n+1)
scr is updated:

D(n+1)
scr = D(n)

scr − ϵ
[
Dt −D(n)

u

]
. (14)

• The convergence is checked using a criterion that
we describe below and, in case of convergence, the
iteration procedure is terminated.

Our work has similarities, but also important differ-
ences compared to the method by Zhao, Morrison and
Parr [48, 49] (ZMP). A detailed discussion of this topic
by Callow et al. appears in Ref. [21]. In short, in the
ZMP method, the total energy functional is minimised
under the constraint that the quantity U is equal to zero;
the constraint is enforced with a Lagrange multiplier Λ,
in the total energy minimization. The KS equations are
solved for finite Λ and then Λ is extrapolated to infin-
ity. In our work, U (rather than the total energy) is the
objective function to be minimized, and its value can dif-
fer from zero at the optimal solution. Both methods use
the Fermi-Amaldi potential as a convenient initial guess,
which sets the initial screening charge equal to N − 1.
In our method, the screening density is the variational
parameter, and it is optimized in the OEP fashion. Con-
cerning Λ, our work corresponds to Λ → ∞, while the
iteration step ϵ is a small parameter that should not be
confused with Λ.

III. APPLICATION-RESULTS

The iterative procedure described in section II has been
implemented in the HIPPO computer code [50] for molec-
ular calculations that is based on gaussian basis set ex-
pansion of the molecular orbitals. In that code, DFT
functionals are implemented through the libxc [51, 52]
library while several RDMFT functionals and their min-
imization are also available. The target densities from
CAS-SCF for atomic and molecular systems were ob-
tained through the GAMESS computer code [53, 54].
For most of our study, we employed the Universal gaus-

sian basis set (UGBS) [55], a relatively large set. One
advantage of this choice is that this basis set provides
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FIG. 1. The quantity r2[ρu(r)−ρt(r)], indicating visually the
convergence, for several values of the convergence criterion c0
for Ne for the case of inverting the HF density (UGBS basis
set).

one gaussian function for each basis set element, so it al-
lows for a better representation of the densities in both
cases of regions of high and low density without imposing
additional constraints. We observed that such basis sets
lead to smoother potentials.

For the parameter ϵ, we found that for a small enough
positive constant value, convergence can be achieved. We
have chosen ϵ = 0.2, but any value of the same order is
acceptable. Alternatively, one can devise strategies for
updating ϵ during iterations. One such strategy, that we

found to work, is to scan ϵ values keeping the D
(n)
u frozen

and pick up the value that lowers mostly the objective
function. The choice of constant and small ϵ results in
slow convergence, thus a significantly larger number of
iterations as it limits the correction to the target density
in each iteration. However, in this first demonstration,
we adopted this choice in order to have better control
over convergence.

As far as convergence is concerned, the convergence
of several quantities can be considered, like the objective
function, UC, of Eq. (2) or the absolute difference ∆UC =

|U (n)
C −U

(n−1)
C | between steps n and n−1. Alternatively,

for atoms, the quantity α =
∫
r2|ρu−ρt|dr is convenient

as it suppresses the highly peaked regions near the nuclei.
In our calculations and in order to limit the effect of
the parameter ϵ in the convergence we monitored the
quantity

c =
∆UC

ϵ
, (15)

i.e. convergence is assumed when c becomes smaller than
a critical value c0. In order to chose the appropriate order
of magnitude of c0 for convergence we plotted the final
quantity r2[ρu(r) − ρt(r)] vs r for several values of c0
covering several orders of magnitude (10−14−10−7). This
analysis for Ne atom is shown in Fig. 1 and as we see c0
values of the order of 10−11 are sufficient for reasonable
convergence.
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FIG. 2. The xc part of the screening density, ρxcscr, multiplied
by r2, for Ne and Ar as a function of the distance r from the
nuclei obtained by inverting the densities that are given by
LDA, HF, and CAS-SCF. The xc screening charge is Qxc

scr =
−1 in all cases.

As first applications, we invert densities of 6 atomic
and molecular systems that are obtained by KS-LDA and
Hartree-Fock (HF). We should note that for KS-LDA the
KS potential corresponds (through Poisson’s equation) to
a screening density that integrates to Qscr = N − a with
a = 0. Although for finite basis sets, a can be different
from zero, (0 < a < 1), it still differs from the value of 1.
Thus, in the case of LDA our constrained inversion leads
to a potential that differs from the original LDA potential
and satisfies the condition (9). Extensive research on the
behavior of the system in the case of LDA, with a = 0,
has been made in Ref. [21]. On the contrary, for HF the-
ory, which is free from self-interactions, the additional
condition (9) does not pose a constraint in the optimal
inverted potential. That is reflected in Table I, where we
present the IPs obtained by inverting LDA and HF den-
sities: Although the IPs from inverting HF densities are
close to those obtained by HF eigenvalues, the IPs from
inverting the LDA density are highly improved and differ
substantially from the values obtained as LDA-KS eigen-
values. We should mention that IPs for LDA with the
present approach are close to those obtained by the con-
strained LDA method of Ref. [39] where the KS potential
is replaced by a constrained one satisfying the condition
(9).

We now turn our attention to the optimal screening
density. In Fig. 2, we show the xc part of the screen-
ing densities for Ne and Ar atoms as a function of the
radial distance from the nuclei. Clearly, for these noble
elements, the screening density from inverting HF den-
sity is close to that from CAS-SCF. On the contrary, for
LDA, there is a considerable difference, and, although
some basic features are also present, the radial depen-
dence is significantly smoothed. Such plots of the xc part
of the screening density can provide useful information.
As we see in Fig. 2, the xc screening density for Ne is neg-
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FIG. 3. The xc part of the potentials for Ne (left) and Ar (right) obtained by inverting the densities that are given by LDA,
HF, PNOF5 and CAS-SCF approximations. The label “inv. LDA” to distinguish the potential obtained by the (constrained)
inversion of the LDA density, satisfying Qxc

scr = −1, Eq. (9), from the standard local LDA potential. UGBS basis set was used
for all the inversions.

TABLE I. IPs obtained by inverting LDA and HF densities
compared with IPs obtained from the KS-LDA and HF eigen-
values

.

Inv. LDA LDA Inv. HF HF

He 21.42 15.52 24.98 24.98

Be 8.40 5.60 8.43 8.42

Ne 18.61 13.55 22.83 23.14

Ar 14.24 10.40 16.17 16.08

CO 12.81 9.20 14.51 15.28

CO2 12.79 9.35 14.75 14.69

ative for radial distances < 0.2 a.u., leading to a negative
xc screening charge accumulation close to the nuclei, fol-
lowed by a positive peak and a second region of negative
density for radial distance 0.4 a.u. < r < 2.15 a.u. For
Ar, the picture is more complicated, however, there are
two regions for r < 0.1 a.u. and 0.2 a.u. < r < 0.6 a.u.
where xc screening density is negative and separated by
two strong positive peaks. Beyond the second peak, a
decaying oscillatory behavior is found. Interestingly, the
pronounced peaks of the screening density (one for Ne
and two for Ar) correspond to the well known bumps of
the xc potential (Fig. 3). For LDA no bumps are present
for the xc potential, apparently due to the fact that the
peaks in ρxcscr for LDA are not pronounced enough.

By inverting densities from accurate multi-
configurational methods like CAS-SCF, as we show
in table II, one can obtain IPs in close agreement
with values obtained as energy differences between
the positive ion system and the neutral system, i.e.
∆E = E(N − 1) − E(N), with E(N) being the total
energy of the system with N electrons. E(N − 1) and
E(N) arise from two different and independent CAS-
SCF calculations. This is evident from the small value
of the percent average relative error, δ = 1.4%. The
xc part of the potential obtained by inverting densities

CAS-SCF

Inversion ∆E

He 23.95 23.91

Be 8.17 8.14

Ne 21.60 20.99

Ar 16.13 16.92

H2O 12.12 11.95

δ 1.4

TABLE II. IPs obtained by inverting CAS-SCF densi-
ties,using UGBS basis set,compared with values obtained as
the differences ∆E, of the energy of the neutral systems and
their positive ions. δ is the percent average relative error

δ = (100/N)
∑

i(|xi − x
(ref)
i |/|x(ref)

i |).

from LDA, HF or other methods for Ne and Ar atoms is
shown in Figs. 3. Qualitatively the potentials obtained
are the same as those in Ref. [21]. Quantitatively minor
differences may appear due to the differences between
the two methods.

We have also applied the density inversion method to
molecular densities obtained by RDMFT calculations. A
full RDMFT calculation was performed first and the con-
verged density is obtained as the diagonal of the optimal
1RDM. This density is then inverted to obtain the cor-
responding local potential. Thus, in this procedure, two
sets of orbitals are obtained, the approximate natural or-
bitals of the full minimization and a set of Kohn-Sham
orbitals from the density inversion, which correspond to
the single particle KS spectrum. For this application, we
used the cc-pVTZ basis sets, while for smaller systems
(He,Be,Ne), we also considered cc-pVQZ to investigate
the effect of a larger basis set. In table III, we present
the IPs obtained for He, Ne, Be atoms using these two dif-
ferent basis sets. As we see in table III, for these atomic
systems, the results obtained do not differ much for the
two basis sets, there is a good agreement with experimen-
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Müller BBC3 Power

TZ QZ TZ QZ TZ QZ Exp.

He 24.52 24.47 24.15 24.82 24.83 24.82 24.59

Be 7.92 9.61 9.11 9.31 8.67 8.77 9.32

Ne 19.95 19.90 21.15 21.46 20.95 21.15 21.56

δ 7.6 3.8 2.0 0.5 3.6 2.9

TABLE III. Comparison of IPs of atomic systems obtained
by inverting RDMFT densities given by 3 different function-
als (Müller, BBC3, and Power) using cc-pVTZ (TZ) and cc-
pVQZ (QZ) basis sets with experimental values[56]. δ is de-
fined in table II.

BBC3 Power ML PNOF5 Exp.

He 24.15 24.83 25.15 24.07 24.59

Be 9.11 8.67 8.61 9.46 9.32

Ne 21.15 20.95 21.56 21.24 21.56

CO 13.12 12.79 13.55 13.77 14.01

N2 15.25 15.26 15.56 15.14 15.58

H2O 10.76 7.14 12.41 12.57 12.62

CO2 13.58 12.49 13.59 13.62 13.77

CH4 13.06 13.57 13.60 12.86 12.61

C2H4 9.51 8.45 9.81 10.45 10.68

δ 5.0 11.4 3.7 1.7

TABLE IV. Comparison of IPs of molecular systems obtained
by inverting RDMFT densities given by different functionals
and using cc-pVTZ basis set with experimental values[56]. δ
is defined in table II

.

tal values, and the error δ can be very small. In table IV,
we show IPs obtained for a larger set of systems using the
cc-pVTZ basis set. Similarly, the overall agreement with
experimental values is good, with PNOF5 functional giv-
ing the most accurate values (δ = 1.7 %). The xc part of
the potentials for Ne and Ar atoms obtained by inverting
the densities from PNOF5 are included in Fig. 3.

Inverting the density obtained by a full RDMFT cal-
culation is a way to obtain a posteriori a single particle
effective system in RDMFT, leading to spectral proper-
ties like the ionization potentials. This is a different ap-
proach to local-RDMFT[45, 46, 57], a method in which
RDMFT functionals are minimized under the constraint
that the orbitals come from a single-particle scheme with
a local potential. It is thus interesting to compare the
IPs obtained by the inversion method with those from
local-RDMFT. This comparison is shown in table V, for
three different functionals. The results of local-RDMFT
in that table are obtained by employing a variant of local-
RDMFT where the screening density, ρscr which is the
optimization variable is assumed to be given as the square
of an amplitude, f , i.e. ρscr(r) = f(r)2, and the optimiza-
tion search is performed in terms of f . A discussion of
this choice and the details of this variant of local-RDMFT
will be published elsewhere[58]. As we see in table V, by
inverting the density of an RDMFT calculation in the
way proposed here, one can obtain single particle prop-
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FIG. 4. Correlation potentials and screening densities (multi-
plied by r2) of Ne (a) and Ar (b), from inverting the CAS-SCF
densities to obtain a good approximation of the xc potential
(screening density) and subtracting an approximate exchange
potential (screening density) taken from inverting the HF den-
sity. UGBS basis was used in all required calculations.

erties of similar quality to those of local-RDMFT. It is
worth mentioning that for accurate RDMFT function-
als, like PNOF5, the quality of the obtained density is
such that the IPs from our inversion method are in very
good agreement with experiment and comparable to the
CAS-SCF results in table II.
The inversion method can be used to obtain correlation

potentials, which in the case of exact densities provide a
reference for comparison of density functional approxi-
mations. To obtain the correlation potential one needs
to have a good approximation for the exchange potential
to subtract from the xc potential. Here, we used the in-
verted Hartree-Fock (LFX[36]) potential as an accurate
representation of the exact exchange potential and sub-
tracted it from the xc potential obtained from inverting
the CAS-SCF density. In Fig. 4, we show the correla-
tion potentials obtained for Ne and Ar atoms. Similarly,
the correlation component of the screening density can
be obtained as the difference between the CAS-SCF and
and HF screening densities. In Fig. 4, we also show the
correlation screening densities for Ne and Ar atoms, cal-
culated from the data of Fig. 2. The obtained correla-
tion potentials are in good agreement with similar plots
of such potentials in the literature [21, 59]. As the cor-
relation potential is a small quantity and more prone to
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Inv. BBC3 Local BBC3 Inv. ML Local ML Inv. PNOF5 Local PNOF5 Exp.

He 24.15 24.62 25.16 25.05 24.07 24.35 24.59

Be 9.11 8.93 8.61 8.74 9.46 8.72 9.32

Ne 21.15 22.34 21.78 22.76 21.24 22.58 21.56

CO 13.12 14.57 13.55 13.73 13.77 14.37 14.01

N2 15.25 16.44 15.56 16.61 15.14 16.63 15.58

H2O 10.76 12.90 12.41 13.39 12.41 13.39 12.62

CO2 13.58 14.82 13.59 15.23 13.62 14.86 13.77

CH4 13.06 14.10 13.60 14.23 12.86 14.12 12.61

C2H4 9.51 10.59 9.81 10.92 10.45 10.74 10.68

δ 5.0 4.4 3.7 6.0 1.7 5.3

TABLE V. Comparison of IPs obtained with the inversion method with those from local-RDMFT for several functional.
Experimental results are also included. δ is defined in table II

.

numerical instabilities, the quality of our results in Fig. 4
is proof of the stability of our inversion method.

IV. CONCLUSIONS

In conclusion, we presented an effective and simple
method that solves the density inversion problem, i.e.
finds an optimal potential that corresponds to a pre-
scribed ground-state density. Our method is based on
the work of Callow et al[21], i.e. it searches for the op-
timal constrained potential that corresponds to a given
screening charge. Its novelty is that it does not require
an additional auxiliary basis set for the expansion of the
screening density. Instead, in a natural way, this quantity
is expanded in products of the orbital-basis elements. We
argue that this is a significant simplification for the im-
plementation of the method in existing computer codes.
In order to demonstrate the efficiency of the inversion
method, we applied it to various ground state densities
of molecular systems obtained by HF, DFT, and CAS-
SCF calculations. Also, we applied it to invert densities
obtained with RDMFT calculations and we argue that
this is a feasible way to introduce a single-particle sys-
tem in RDMFT. For this purpose, we showed that ion-
ization potentials obtained as energy eigenvalues of the

obtained optimal potentials are in close agreement with
experimental ones. Finally, we showed that the inver-
sion method provides an efficient way to yield accurate
correlation potentials.

AUTHOR CONTRIBUTIONS

S. Bousiadi: conceptualization, funding acquisition, in-
vestigation, methodology, software, validation, writing –
original draft, writing – review and editing; N. I. Gi-
dopoulos: conceptualization, methodology, supervision,
validation, writing – original draft, writing – review and
editing; N. N. Lathiotakis: conceptualization, methodol-
ogy, software, supervision, validation, writing – original
draft, writing – review and editing.

CONFLICTS OF INTEREST

There are no conflicts to declare.

ACKNOWLEDGEMENTS

This work was supported by the Hellenic Foundation
for Research and Innovation (HFRI) under the HFRI
PhD Fellowship grant (Fellowship Number: 1310).

[1] W. Kohn and L. J. Sham, Physical review, 1965, 140,
A1133.

[2] P. Hohenberg and W. Kohn, Physical review, 1964, 136,
B864.

[3] I. G. Ryabinkin and V. N. Staroverov, The Journal of
chemical physics, 2012, 137, 164113.

[4] C.-O. Almbladh and A. C. Pedroza, Physical Review A,
1984, 29, 2322.

[5] R. Van Leeuwen and E. Baerends, Physical Review A,
1994, 49, 2421.

[6] Q. Wu and W. Yang, The Journal of chemical physics,
2003, 118, 2498–2509.

[7] A. Görling, Physical Review A, 1992, 46, 3753.

[8] D. S. Jensen and A. Wasserman, International Journal
of Quantum Chemistry, 2018, 118, e25425.

[9] B. Kanungo, P. M. Zimmerman and V. Gavini, Nature
communications, 2019, 10, 1–9.

[10] K. Peirs, D. Van Neck and M. Waroquier, Physical Re-
view A, 2003, 67, 012505.

[11] A. Kumar, R. Singh and M. K. Harbola, Journal of
Physics B: Atomic, Molecular and Optical Physics, 2020,
53, 165002.

[12] K. Finzel, P. W. Ayers and P. Bultinck, Theoretical
Chemistry Accounts, 2018, 137, 1–6.

[13] A. A. Kananenka, S. V. Kohut, A. P. Gaiduk, I. G.
Ryabinkin and V. N. Staroverov, The Journal of chemical



8

physics, 2013, 139, 074112.
[14] A. Kumar, R. Singh and M. K. Harbola, Journal of

Physics B: Atomic, Molecular and Optical Physics, 2019,
52, 075007.

[15] I. G. Ryabinkin, S. V. Kohut and V. N. Staroverov, Phys-
ical review letters, 2015, 115, 083001.

[16] R. Cuevas-Saavedra, P. W. Ayers and V. N. Staroverov,
The Journal of chemical physics, 2015, 143, 244116.

[17] E. Ospadov, I. G. Ryabinkin and V. N. Staroverov, The
Journal of chemical physics, 2017, 146, 084103.

[18] T. Naito, D. Ohashi and H. Liang, Journal of Physics
B: Atomic, Molecular and Optical Physics, 2019, 52,
245003.

[19] W. Yang and Q. Wu, Physical Review Letters, 2002, 89,
143002.

[20] Y. Shi and A. Wasserman, The Journal of Physical
Chemistry Letters, 2021, 12, 5308–5318.

[21] T. J. Callow, N. N. Lathiotakis and N. I. Gidopoulos,
The Journal of chemical physics, 2020, 152, 164114.

[22] A. Müller, Physics Letters A, 1984, 105, 446–452.
[23] S. Goedecker and C. Umrigar, Physical review letters,

1998, 81, 866.
[24] M. Buijse and E. Baerends, Molecular Physics, 2002,

100, 401–421.
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