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1 Introduction

A key development in the holographic study of black holes was Maldacena’s identification
of the thermofield double state with the eternal black hole [1]. The thermofield double state
(TFD) is an entangled state in two copies HL ⊗HR of a quantum system,

|TFDβ〉 = Z−1/2 (β)
∑
n

e−βEn/2 |n〉L |n〉R . (1.1)

This state can be prepared by a Euclidean path integral over an interval of length β/2 in
Euclidean time. In a holographic system, an uncharged black hole provides a bulk saddle-
point for these Euclidean boundary conditions; in situations where this is the dominant
saddle-point, on continuation to the Lorentzian picture the eternal maximally extended
black hole then provides the dual description of the state (1.1). This connection is a key
motivating example for the idea that entanglement is related to connection of the bulk
geometry [2]. There are two-point functions involving operators in the two copies of the
system 〈OLOR〉 which have non-zero values in this state; in the connected bulk geometry,
influences can propagate from one boundary to the other, while in the boundary quantum
theory, the two-point functions can be non-vanishing in the absence of any interaction due
to the entanglement of the state [3].

We would like to know more generally what states in HL⊗HR can have such a wormhole
description. Entanglement is clearly necessary (in its absence, correlations 〈OLOR〉 in non-
interacting systems would vanish), but it has been argued that it is not sufficient. In [4, 5],
it was argued that in a generic state with the same degree of entanglement as the TFD,
the correlations of simple operators between the two boundaries is exponentially small, so
generic entangled states do not have a geometric wormhole description. Some studies have
considered small departures from the TFD, finding that these lead to longer wormholes.
This was first explored in [6], who considered a local operator insertion on the TFD evolved
in Lorentzian time. A related investigation in [7] considered operator insertions in the
Euclidean path integral defining the TFD state. We will review these studies in the
next section.

Our aim in this paper is to further explore when states in two copies of a holographic
system have a bulk wormhole description. We will argue that as we move away from the
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TFD, it is natural to consider mixed states on HL ⊗HR.1 For small departures from TFD,
this is motivated by noting that the geometry obtained in [6] or [7] doesn’t depend on the
details of the operators considered, so the bulk geometry can be related to a density matrix
obtained by averaging over the operators. Density matrices are usually written as a sum
over states in HL ⊗ HR; we refer to this as the state frame of the density matrix. The
density matrices corresponding to different bulk geometries should have disjoint support in
the space of quantum states. Different states drawn from the same density matrix have the
same gravitational profile, but differ in microscopic data.

We will argue that in considering two-sided correlations like 〈OLOR〉, it is also useful
to rewrite the same density matrix as a sum of products of pairs of operators, one acting on
HL and the other on HR, We will refer to this way of writing as the operator frame of the
density matrix. We can then view the density matrix as an object which takes an operator
on HR and gives us a corresponding operator on HL; that is we think of the density matrix
in terms of operator conversion from one side to the other. If this operator conversion is
close to diagonal, then two-sided correlations like 〈OLOR〉 will be of the same order as
single sided correlators (like 〈OROR〉). Thus, we argue that the density matrices of interest
are those which 1) average in an appropriate way over microscopic details, 2) have disjoint
support in the space of quantum states, and 3) have an approximately diagonal operator
conversion for simple operators for which we expect to have gravitational duals. Going to
the density matrix is essential in order to be able to formulate the last criteria, which goes
beyond just entanglement. These general ideas are developed in section 2.

We will explore these questions explicitly in the context of the SYK model [10–13], and
in a related model where the Majoranas are replaced by Pauli matrices (see for example [14]).
The SYK model is a quantum mechanical system with N Majorana fermions, with an
all-to-all interaction of p fermions at a time, where the strength of each such p-interaction
is an independent random Gaussian. In the Pauli matrices model there are N spin 1/2
Hilbert spaces with a general random k-local interaction made out of Pauli matrices. In the
large N limit, the SYK model has a nearly-conformal symmetry in the IR, and fluctuations
around it are described by a Schwarzian effective action, which is the same dynamics
that describes JT gravity on NAdS2 [15, 16]. This provides a useful context for studying
holographic relations where we can do some calculations directly in the quantum mechanical
system. One of our main aims is to study semiclassical generalizations of the TFD from
the boundary perspective, in contrast with earlier works which have focused primarily on
calculation in the bulk holographic picture. We will mainly do calculations in a double
scaled limit of SYK [14, 17], where we take p and N to infinity with p2/N fixed, using the
chord diagram approach to calculations in this limit discussed in [18, 19], but the main
conclusions carry over to the usual SYK large N limit. The models and this calculational
approach are reviewed in section 3.

Part of going from a state on the doubled Hilbert space to desntity matrices on it,
has to do with averaging over microscopic information (keeping macroscopic data of the

1Mixed states generalising TFD were considered from a different perspective in [8]. A similar density
matrix to the ones we consider was also recently considered for different purposes in [9].
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wormhole, such as its length, fixed). An important clue for how to do so is the following.
After averaging over couplings, the SYK model has an O(N) symmetry under rotation
of the basis of fermions, ψi = Ojiψj . When we consider two copies of the SYK model,
because we have a single average over the couplings, the averaged system is invariant under
a diagonal O(N) symmetry which rotates both the left and right fermions simultaneously.
There is a similar symmetry in the random spin model. We will argue that this rotation
is an example of the kind of microscopic details we should average over in constructing
duals of bulk wormholes — two configurations that differ by an O(N) rotation will look the
same gravitationally. Thus we will consider O(N)-invariant density matrices ρ, or more
precisely, density matrices where the only terms which break the O(N) symmetry are explicit
insertions of the Hamiltonian. In section 4 we set up the specific class of density matrices
we consider, and in section 5 we use the chord diagram approach to calculate two-sided
correlation functions in this class of density matrices. We show that in a suitable limit the
results obtained from our microscopic calculation reproduce the holographic calculation of
correlations in a shockwave perturbation of TFD in [6].

In the following section 2 we summarize the main points of the paper in more detail.

2 Summary of main points — from TFD to density matrices on the
doubled Hilbert space

We wish to consider generalisations of the thermofield double state from a microscopic
perspective, and explore which ones could be dual to a semiclassical wormhole geometry
in AdS spaces [20]. Our main aim is to study this explicitly in the context of the SYK
model, where calculations in the microscopic quantum theory are (somewhat) tractable.
But before setting up the details of our study in the SYK context, in this section we will
set out the kind of generalisation we want to consider in a more general context and make
contact with related work.

We will consider states and density matrices in a bipartite quantum system with Hilbert
space HL ⊗ HR. We consider theories with decoupled dynamics, so the Hamiltonian is
H = HL + HR; the connection between the two copies of the system comes only from
entanglement in the quantum state.2

Our main points are that 1) for the purposes of understanding the gravitational
dynamics of the wormhole it is useful to go to a density matrix on HL ⊗HR, and 2) there
is a simple characterization of whether a density matrix corresponds to a semi-classical
wormhole, which is not strictly the entanglement between the Right and Left spaces. From
now on when we say density matrix we will refer to a density matrix on HL ⊗HR.

2.1 A short review of deformations of the TFD

In [6], small modifications of the TFD state were studied, introducing a perturbation by
acting on one side with an operator W (t) = e−iHtwOeiHtw , where O is some local operator.

2This is in contrast to the work of [21, 22], which considered a coupling between the two theories such
that a state close to TFD is the ground state, or [23, 24] where two space connections were examined by
looking at connected contribution to the spectral form factor.
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Figure 1: On the left, the construction of the PETS by a Euclidean path integral, and the
dual bulk geometry. The t = 0 slice of the Euclidean geometry provides initial data for the
Lorentzian geometry on the right.

This “timefold” operator corresponds to evolving the TFD state at t = 0 back into the past
for a time tw, inserting O and then evolving forward in time by tw back to t = 0 to produce
a modified state. In the limit of large tw, the dual of this construction is a geometry with
a lightlike shock propagating from the boundary at early times into the black hole. The
back-reaction of this shock lengthens the wormhole. This investigation was extended to
consider multiple shocks in [25].

A related investigation in [7] considered what they termed the “partially entangled
thermal state” (PETS)

|Ō〉 =
∑
m,n

e−
1
2βLEm−

1
2βREnŌn,mΘ|m〉L|n〉R, (2.1)

where Ōn,m are the matrix elements of some local operator Ō between energy eigenstates
and Θ is an anti-unitary operator, for example CPT. The construction of this state is
essentially a Euclidean variant of the previous construction: it’s given by a Euclidean path
integral with evolution over a period βR/2 in Euclidean time, followed by insertion of the
operator Ō, and further evolution over a period βL/2 in Euclidean time, as depicted in
figure 1. This state was introduced as an interesting generalization of both the TFD state
and the “thermal pure states” considered in [26].

In [7], these states were studied from the spacetime dual perspective using JT gravity:
it was argued that the dual of such states is a bulk geometry with a particle emitted
into the bulk by the insertion of the operator Ō. They considered the regime where this
particle is heavy (the dimension of the operator Ō scales with the central charge in the
holographic large central charge limit) so the emission of this particle back-reacts on the
trajectory of the “boundary particle” in JT gravity, modifying the geometry. The modified
geometry looks like a black hole from the perspective of each asymptotic region, but with a
separation between the two horizons, producing a lengthened wormhole, see figure 1. In [7],
the entanglement entropy and entanglement wedges of this bulk geometry were investigated
using the replica trick, showing that the entanglement entropy is given by the smaller of
the two horizon entropies.
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A similar lengthening of the wormhole was also obtained in [5] when the state in
the doubled theory was slightly rotated away from thermofield double, and in [27] when
entangling a non-gravitating system and a gravitating (with JT gravity) one, and including
the backreaction on the geometry.

2.2 A convenient purification

Usually, when going from a single to the two-sided discussion of a black hole, one purifies
the thermal density matrix with another copy of the same Hilbert space. For us it will be
more convenient to use a slightly different purification. Starting from the thermal density
matrix on a single space ρ(β) = ∑

e−βEi |i〉〈i|, we purify it using an additional copy of the
Hilbert space and a Hamiltonian with the same spectrum as the original Hamiltonian. This
is true for another copy of H but it is equally true if we take H† for the second copy, and
we will take our purifying space to be the latter.

That is, we just purify the density matrix by a state on H†L ⊗HR which we write as

|ψ(β)〉 =
∑

e−βEi/2|i〉R ⊗ L〈i| ∈ H†L ⊗HR. (2.2)

This choice of purification arises naturally from a Euclidean path integral perspective. This
is true in any dimension, but in the context of 2D gravity, this is particularly simple. Two
sided black holes can be created by cutting a Euclidean space, whose boundary in the past
is an open 1D surface (as in figure 1 on the left). This 1D boundary is can be chosen to have
an orientation (any of the two will do). It is then natural to associate different orientations
to the edges of this 1D surface, which translates into doubling H on one side by an H† on the
other. One example of the usefulness of this choice is that we can modify a wormhole by the
insertion of operators on this surface, and in this purification prescription the concatenation
of operators action is straightforward and does not require any anti-unitaries. We can then
generate a host of other states, such as states discussed in figure 15 of [7]:

e−β3HOe−β2HOe−β1H =

Euclidean
 time evolution

(2.3)

There is a one-to-one correspondence between this description using H†L ⊗HR and the
description where we purify using HL ⊗ HR (adopted for example in (2.1)) by mapping
from H† to H as

〈n|L ←→ Θ |n〉L , (2.4)

where Θ is an anti-unitary isometry, for example CPT . The need for this anti-unitary is
because the time-evolution on HL and H†L are reversed in relation to each other. We will
work in the H†L ⊗HR purification scheme.

– 5 –



J
H
E
P
0
8
(
2
0
2
2
)
0
5
1

2.3 Going to density matrices on the doubled Hilbert space

The examples in section 2.1 share the feature that they focus on pure states on the doubled
Hilbert space, which we take to be H†L⊗HR. The goal of this paper is to show that certain
questions clarify significantly when going further to density matrices on H†L ⊗HR. The
idea is that deforming away from the thermofield double involves introducing an excitation
in the bulk spacetime, but the excited wormhole geometry does not depend on many of the
details of how we do it; that is, the same gravitational profile can be generated in various
ways, and we can hence identify this geometry with some density matrix on H†L ⊗HR.

A concrete example would be taking the state (2.1) of [7] and averaging over the
operator. The bulk geometry in [7] depends only on the mass of the particle, that is on
the operator dimension, and not on the details of which particular operator we insert.
It therefore seems natural to consider a duality not between the bulk spacetime and an
individual pure state of the form (2.1), but between the spacetime and a density matrix
ρ = ∑

i ci|Ōi〉〈Ōi|, where we average over all operators with conformal dimensions in some
window, with some appropriate weights.

The reverse direction is more interesting: suppose that we have a way of associating a
density matrix to each geometric profile of a wormhole. Given a density matrix ρ in some
Hilbert space, here H†R ⊗HL, it defines a probability on the states in that Hilbert space.3
We can then consider generic states by this measure. I.e., there would be states whose
probability will decrease like 1/eS , where S in the entropy of the density matrix, and there
would be states where the probability will be much smaller. The former are the generic
states in the density matrix. The dual of any of these generic states will look like the same
gravitational wormhole.

Working with density matrices in the doubled Hilbert space will simplify the discussion,
as it removes the dependence on some of the microscopic details. More interestingly it
highlights a criterion for the existence of a semiclassical wormhole which is complementary
to entanglement, which we discuss next.

2.4 The state frame and the operator frame

We will argue next that we can give a criteria (beyond entanglement) for when the wormhole
is semi-classical in terms of this density matrix. The criteria reflects the more detailed
structure of the algebra of operators in the theory.

There are two complementary ways of viewing the density matrix, corresponding to
different perspectives on the emergence of a wormhole in the bulk. A density matrix on
H†L ⊗HR is an object

ρ ∈ H†L ⊗HR ⊗HL ⊗H
†
R. (2.5)

We can write the density matrix as a sum over pure states in H†L ⊗HR. We will call this
the state frame

ρ =
∑
αβ

Mαβ |α〉〈β|, |α〉, |β〉 ∈ H†L ⊗HR. (2.6)

3One way is to diagonalize the density matrix and say that we get an eigenvector with the associated
probability. Another way is to use the density matrix to define a measure on the unit sphere in the
Hilbert space.
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As each state entagles left and right d.o.f, it emphasizes the entanglement structure between
left and right.

Alternatively we can write the density matrix as a sum of a product of operators acting
on H†L and on HR. We will call this the operator frame, and it emphasizes the correlators
〈OLOR〉 between operators on the two boundaries. The relation between the sum of states
and the correlator is well understood for the TFD, but in the generic case, we argue that the
existence of a semiclassical wormhole is better addressed from the latter perspective. Just
requiring entanglement (the first point of view) does not imply large correlation functions.

In more detail, the operator frame is obtained instead by expanding (2.5) as a sum
of products of terms, one in HR ⊗H†R and one in H†L ⊗HL — i.e. a sum of products of
operators, one acting on HR and one on H†L:

ρ =
∑
a,b

CabOaRÕbL, (2.7)

where OaR are a list of operators acting on HR, and ÕbL the similar list of operators acting
on H†L. Given a rich enough set of operators we can expand any ρ like this4 with some
coefficients Cab. In this form, the density matrix implies an operator conversion between
the two spaces, to which we turn next.

2.5 Operator conversion/pairing

A common probe of the connectedness of the bulk spacetime geometry is to consider the
two-point function of a simple operator 〈OLOR〉; if the dimension of the operator O is much
larger than one (but not scaling with the central charge, so we can neglect its back-reaction),
the boundary correlator can be calculated in the bulk using the geodesic approximation,
and the correlator will measure the (regularised) length of a geodesic connecting the two
boundaries. Thus, such two-point functions being order one,5 and being independent (at
leading order) of the details of the operator considered, is a useful diagnostic of the existence
of a bulk dual.

Consider now (2.7). This object gives a pairing of an operator from the right and from
the left. If we compute a two point function then

〈OROL〉 =
∑
a,b

Cab〈OROaR〉R〈ÕbLOL〉L. (2.8)

Concrete examples of this are discussed in section 4. A semiclassical, weakly coupled,
wormhole corresponds to a density matrix which has Cab ∝ δab, as will be explained later.

Another way of phrasing it is as a conversion of the operators in HR into operators on
HL. A density matrix on the doubled Hilbert space literally plucks an operator from space

4Actually, for gravity purposes we care about the part of the expansion where these are single trace
operators or otherwise objects that go through the wormhole without perturbing it much.

5Order one meaning that it does not scale with central charge in the large central charge limit, for
conventionally normalized operators where the two-point function 〈OLOL〉 is fixed in the large central
charge limit.
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R and inserts it into space L. To see this take (2.7) and consider it as a map of operators

ρ : OR → OL =
∑
a,b

Cab〈OROaR〉RÕbL. (2.9)

The interpretation is that if we start with an operator in R and move it through the
wormhole, we will obtain the image OL on the left hand space. For example if we start with
the particle that corresponds to OR and move it through the wormhole it will correspond
to the superposition of particles encoded in the image OL.

Clearly here again we see that a weakly coupled, semiclassical wormhole, is characterized
by Cab being close to diagonal (for any OR that corresponds to a low energy field). The
size of the diagonal Cab tells us what is the length of the wormhole.

2.6 Invariance

We argued before that the key advantage of going to a density matrix is that it clumps
together many pure states, so we can avoid considering features of the pure state which are
not relevant to the gravitational profile of the wormhole. In cases like the SYK model this
can be made more precise. The theory has an O(N) action which rotates the fermions, and
it is broken by the random couplings in the Hamiltonian. After we average over couplings,
this symmetry is restored. If we consider two copies of the theory, since we consider a
single average over couplings, it is only the diagonal O(N) symmetry which acts on both
copies which is restored. Since gravity captures averaged quantities, it is sensitive to objects
that are invariant under O(N), so it is natural to consider density matrices which are
invariant under O(N) — for example, we can average (2.1) over all operators related by
the O(N) rotations. Note that this is only possible once we consider density matrices; the
Hilbert space H†L ⊗ HR has just one singlet state which is invariant under the diagonal
O(N) symmetry (we will denote it by |s〉). But there are non-trivial O(N) invariant density
matrices, allowing us to focus on the gravitational data.

Technically, we will not restrict strictly to O(N) invariant density matrices; we will also
consider density matrices where the O(N) symmetry is broken only by explicit insertions of
factors of the Hamiltonian. For example, the infinite temperature limit of the thermofield dou-
ble state is the O(N) invariant singlet state |s〉, but in |TFD〉〈TFD| = e−βH/2|s〉〈s|e−βH/2,
the O(N) symmetry is broken by the insertions of the Hamiltonian. We are interested in
objects which generalise the thermofield double state so we allow breaking of O(N) by the
Hamiltonian in our more general density matrices as well.

This can probably be generalized to higher dimensions, with the O(N) symmetry
restrictions replaced by algebraic structures in the theory such as the OPE, but we leave
this for future work.

3 The models, symmetry and chord diagrams

In this section we review the two models that we use — the SYK Majorana fermion [10–13]
and the Pauli matrices model [14, 18, 19]. We will be interested in the case of the two
sided black hole and hence the space is doubled. We will then review the chord diagram
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techniques for these models, in the double scaling limit. Our main conceptual points do not
rely on the double scaling limit, but it will be useful computationally.

3.1 Two decoupled SYK models and their symmetry

The Sachdev-Ye-Kitaev model is a quantum mechanical system in 0+1 dimensions, con-
structed of N Majorana fermions with all-to-all interactions, and random (disordered)
couplings. Denote the Majorana fermions by χi, i = 1, · · · , N . These satisfy the algebra{

χi, χj
}

= 2δij . (3.1)

For some integer p ∈ 2N, we define the ordered multi-index I ≡ (i1, · · · , ip) (with 1 ≤ i1 <
i2 < · · · < ip ≤ N), and the Majorana string χI = χi1 · · ·χip . The Hamiltonian of the
system is given by

H = ip/2
(
N

p

)−1/2

J
∑
|I|=p

JIχ
I , (3.2)

where J is the coupling constant, but by choosing the appropriate scale we set this to one.
The sum is over all possible multi-indices of length p. The J ’s are taken to be Gaussian
random variables with zero mean and normalized variance. We denote the expectation
value over these by 〈·〉J , such that we have

〈JIJI′〉J = δI,I′ . (3.3)

This is a slightly different normalization than, say, in [13] but going between the conventions
is straightforward.

Since we would like to study the dual of the wormhole geometry, which has two
boundaries, we are going to deal with two decoupled copies of this model, correlated by the
fact that we have the same random coupling on both sides. We label the two boundaries as
L and R (left and right), and mark it as a subscript. The Hamiltonians are the same on
the two spaces, i.e., 

HL = ip/2(N
p

)−1/2∑
|I|=p JIχ

I
L,

HR = ip/2(N
p

)−1/2∑
|I|=p JIχ

I
R ,

(3.4)

and we take the Majorana fermions on the two sides to anticommute with each other, i.e.,
{χL, χR} = 0.

We will be intersted in states in the doubled theory. There is an independent O(N)
symmetry rotating each set of Majorana fermions, which is broken by the Hamiltonian.
The average over the random couplings restores the diagonal O(N) symmetry which rotates
both χiL and χiR at the same time (it is only the diagonal symmetry which is restored as
the couplings in the two theories are correlated).

– 9 –



J
H
E
P
0
8
(
2
0
2
2
)
0
5
1

3.2 Random spin model

The random spin model in 0+1 dimensions is a close relative of the SYK model, where spin
1/2 degrees of freedom assume the role of the Majorana fermions. The relevant operators
that appear in the Hamiltonian are then Pauli matrices acting on the various spins, i.e.,
σaii , i = 1, · · · , N , and ai = 1, 2, 3. Let e = (i1, · · · , ip) be a vector of length p of distinct
integers defining a subset of the N sites (again we take 1 ≤ i1 < · · · < ip ≤ N), and let
a = (a1, · · · , ap) be a second vector of length p, with ai = 1, 2, 3. Denoting the pair (e, a)
by I, we define σI = σ(e,a) = σa1

i1
· · ·σapip . The Hamiltonian is now

Hrandom spin = 3−p/2
(
N

p

)−1/2

J
∑
|I|=p

JIσI , (3.5)

where again the sum runs over all possible choices for I, and J sets an energy scale which
we normalize to 1. As in section 3.1, the JI ’s are taken to be independent random Gaussian
variables with zero mean and unit variance, such that we have (3.3).

In the IR at finite p, the model was argued on quite robust grounds to not support
a non-fermi liquid phase [28]. In fact, a related model, at fixed p, is reviewed in [29], and
exhibits a plethora of complicated IR behaviors. However, we will be interested in the
double scaling limit p ∝

√
N where it shows the same universal dynamics as the double

scaled SYK model which has nearly conformal physics in the IR.
We take two decoupled random models (3.5) but with the same random coupling, as in

the Majorana SYK case. The Hamiltonian we are interested in is therefore6


HL = 3−p/2(N

p

)−1/2∑
|I|=p JIσ

I
L,

HR = 3−p/2(N
p

)−1/2∑
|I|=p JIσ

I
R .

(3.6)

For later reference, we can clump together degrees of freedom associated with spin i from
the left and from the right Hilbert space into a single four dimensional Hilbert space, which
we denote as Hi.

The symmetry of the system after averaging over the random coupling is SU(2)N o SN ,
where each SU(2) acts on Hi (which is made out of an singlet and a triplet under this
action), and SN is the permutation of the N species of Pauli matrices on the left and the
right boundaries at the same time.

3.3 Probe operators

Once we map the set of states that correspond to some wormhole, we would like to start
probing it. A set of convenient probes are two sided correlation functions, but we still need
to choose of which operators.

6Actually, a refinement is needed for the left operator to act on H† — see appendix A.
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The operators that we will choose as probes are random operators. A random operator
M of length p̃ is defined to be

M =


3−p̃/2(N

p̃

)−1/2∑
|I|=p̃ J̃IσI Random spin model

ip̃/2(N
p̃

)−1/2∑
|I|=p̃ J̃IΨJ Majorana SYK,

(3.7)

where the couplings J̃I are again random Gaussians with zero mean and normalized variance,〈
J̃I J̃I′

〉
J̃

= δI,I′ , (3.8)

where 〈·〉J̃ denotes the ensemble average. Notice that the coefficients J̃I are independent of
the coefficients JI .

We could consider instead the operators to be “monomials” σI or ΨJ for a specific I
or J — nothing would have changed in that case, since we can view the random operator
above as computing the properties of a generic monomial.

There is, however, a deeper reason for choosing such operators. Consider the case
that we have some higher dimensional theory that flows to a (near) extremal background
of the form AdS2 ×M , and suppose that this IR can be thought of as an SYK model in
some variables (which may not be related to the original UV d.o.f). The set of observables
correspond to fields defined in the UV of the entire background. The local energy-momentum
is one of them, but it is typically part of a whole tower of similar (”single trace”) operators.
If the Hamiltonian in the full theory flows to some random Hamiltonian on the near extremal
BH degrees of freedom, then we can expect the same to be true of all other UV operators.
So the natural probes are random operators in a statistical class similar to the Hamiltonian,
except that we allow them to have different quantum numbers, which in this case is just
the conformal dimension/length of the operator p̃ (more precisely, the conformal dimension
of the operator in the IR is p̃/p, where p is the length of the Hamiltonian).

3.4 The double scaled limit and chord diagrams

In this work, we will be interested in computing quantities of the form Z =
〈
Tr(e−βH)

〉
J
,

where the subscript J means averaged over the ensemble of random couplings. We will also
be interested in the 2-sided correlation functions in the density matrices discussed above.

This computation will prove to be especially simple in the limit in which we take
N →∞, and scale p ∼

√
N . We refer to this limit as the double scaled limit. Namely, we

keep fixed the parameter

λ =


2p2

N Majorana SYK

4
3
p2

N Random spin model,
q ≡ e−λ. (3.9)

We can define analog quantities to λ, q for probe operators other than the Hamiltonian by

λ̃ =


2pp̃
N Majorana SYK

4
3
pp̃
N Random spin model,

(3.10)
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Figure 2: An example of a chord diagram for k = 8. With the numbering in the figure,
this diagram means that I1 = I2, I3 = I6, I4 = I8 and I5 = I7.

where p̃ is the length of the new operator, and for both models we define q̃, ˜̀ by

q̃ = e−λ̃ = q
˜̀
, ˜̀= p̃

p
. (3.11)

The main advantage of working in this limit is that it enables us to use chord diagrams
in order to compute various quantities. These computations have already been performed
in [18, 19], and the following summary of the methods used will serve as the basis for the
computation in the rest of the work.

As an example, we’d like to compute the partition function.7 First we Taylor expand
Z = ∑

k
(−β)k
k!

〈
Tr(Hk)

〉
J
, and then we evaluate each of the moments

mk ≡
〈
Tr(Hk)

〉
J
. (3.12)

Since the coefficients JI are random Gaussians, upon taking the ensemble average we Wick
contract them. Together with the cyclic structure of the trace, this allows us to represent the
moment mk as a sum of chord diagrams, as in figure 2. The chord diagram then determines
the arrangement of repeating Majorana fermions or Pauli matrices inside the trace. A little
combinatorics is then needed to show that in the double scaled limit, the value of every
such chord diagram is given by the number of chord intersections, so

mk = dim(H)×
∑

CD(k)
q#intersections, (3.13)

where CD(k) represents chord diagrams with k nodes, and #intersections is the number of
pairwise intersection of chords in the diagram. This sum can be evaluated using a transfer
matrix method in which one goes linearly along the circle, adding a new chord or closing a
chord (with appropriate weight) at each node. A full explanation of the chord techniques is
given in appendix D.

7We will present for the formulas for correlations functions when we need them.
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The advantage of this limit is that, in our application, it “combinatorizes” the geometric
relation between the two universes. In the one side case, generally, the chords are the
objects that carry correlations of the different terms in the Hamiltonian from one time to
another, i.e, from one boundary point to another in the dual GR picture. When we have
two spaces we can have chords stretching between pieces of the Hamiltonian on the two
different sides. This is a combinatorial manifestation of a bridge in spacetime that forms
between the two systems.

4 Microscopics of wormhole density matrices

In this section we discuss the density matrices that are relevant to the Pauli matrices model
(sections 4.1 to 4.3) and to the Majorana case (section 4.4). We discuss their form in the
state frame and in the operator frame, and their entanglement, which is easily read form
one frame, vs. their length, which is easily read from the other frame.

4.1 Density matrices in the random spin model

Let us set up the states and density matrices we want to consider in the random spin model.
We will begin by setting up our conventions with a single spin, and then go on to consider
N spins and the limit of large N .

4.1.1 Hilbert space structure of the two qubit system

Basis of pure states. As a toy model, let us study a double copy of a system with
a single spin. We think of the two copies as living on the left and the right boundaries.
Remembering that our random spin model had the symmetry SU(2)N o SN after ensemble
averaging, we will construct SU(2) invariant density matrices.

We will start with pure states. The doubled Hilbert space of a single spin has four
states, which split into a singlet and a triplet under the diagonal SU(2). Pure states on
H†L ⊗HR can be represented as operators from HL to HR (or operators on H since HL,R
are isomorphic). In the present case, the identification of states with operators is

|s〉 ≡ 1√
21,

|t,m〉 ≡ 1√
2τ

a,
(4.1)

where m takes values in −1, 0, or 1, corresponding to the three Pauli matrices τa. An
element g of the diagonal SU(2) acts on the operators as O 7→ gOg†, so 1 is a singlet and
τa are a triplet under the action of SU(2).

Invariant density matrix. We are interested in the density matrix which is invariant
under the diagonal SU(2). The most general invariant density matrix is

G(Â) = (1− Â)|s〉〈s|+ (Â/3)
∑

m=0,±1
|t,m〉〈t,m| (4.2)

and positivity of the density matrix implies 0 ≤ Â ≤ 1.

– 13 –



J
H
E
P
0
8
(
2
0
2
2
)
0
5
1

This object lives in
(
HL⊗H†R

)
⊗
(
H†L⊗HR

)
. Alternatively we can write in the crossed

channel (HL ⊗H†L)⊗ (HR ⊗H†R). Let (1σL,R , ~σL,R) and (1τI,O , ~τI,O) be Pauli matrices and
the identity, defined in the following spaces

1τI , ~τI ∈ H
†
L ⊗HR, 1τO , ~τo ∈ H

†
R ⊗HL,

1σR , ~σR ∈ HR ⊗H
†
R, 1σL , ~σL ∈ HL ⊗H

†
L. (4.3)

Using this notation, we can write the correspondence

1
2 1τI 1τO ↔ |s〉 〈s| ,

1
2τ

m
I τ

m
O ↔ |t,m〉 〈t,m| , (4.4)

so the density matrix becomes

G(Â) = 1− Â
2 1τI 1τO +Â

6 ~τI · ~τO. (4.5)

This is the form of the density matrix in the state frame.

The operator frame. We can translate this to the crossed channel using the Fierz identity

1σL 1σR +~σL · ~σR = 21τI 1τo , 1τI 1τo +~τI · ~τO = 21σL 1σR . (4.6)

This gives us the density matrix in the crossed channel notation

G
(
Â
)

= 1
4 (1σR 1σL +A ~σR · ~σL) , A = 1− 4

3Â, −1
3 ≤ A ≤ 1. (4.7)

This is the form of the density matrix in the operator frame.
In terms of the variable A, the density matrix has the singlet with probability 1+3A

4 ,
while each triplet has a probability of 1−A

4 .

4.1.2 Invariant density matrix of the large N random spin model
(single shot)

Let us now move to our main interest, which is the N spin system. We take N copies of
the spin-1/2 system, i.e., H = (C2)N . The symmetry of the two-sided system here is, as we
have already explained, G = SU(2)N o SN , where each SU(2) is the diagonal symmetry on
the two copies of Hi, and SN is the permutation of fermion species.

The simplest G-invariant density matrix is attained by taking the product of N copies
of the single spin density matrix above, with the same value A for each spin:

G(A) = 1
4N

N∏
i=1

(
1σR,i 1σL,i +A~σR,i · ~σL,i

)
. (4.8)

Our investigations will focus on this case, which we will refer to as single shot density
matrices. In appendix B, we consider a more general class of G-invariant density matrices,
where we take different values of A for different spins, and argue that (4.8) is preferred
as the largest entropy density matrix for fixed wormhole length. Thus, this represents
the broadest coarse-graining over the microstates, and is a natural candidate for a dual
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of a smooth semi-classical geometry, which does not distinguish between microstates. In
section 4.3, we discuss the generalization to multi shot density matrices, which we leave for
future work.

To make contact with the thermofield double, we need to include thermal factors on
the left and on the right to suppress contributions from high energy states, considering the
density matrix

G(A, βL, βR) = Z−1e−βLHL/4−βRHR/4G(A)e−βLHL/4−βRHR/4 (4.9)

where Z normalizes it to have trace 1. We will use G when discussing these specific density
matrices, and we will reserve ρ for discussing density matrices in general.

For A = 1 (that is, Â = 0), G(1) = |s〉〈s|, where |s〉 = ∏N
i=1 |si〉 is the product of

invariant singlet states, which is the purification of the infinite temperature thermal density
matrix (i.e., the identity matrix on HR). Thus adding these thermal factors converts it
into the thermofield double state with temperature β = (βL + βR)/2, as also discussed in
section 2.6. For A = 1 the density matrix depends only on βL + βR, but for a general A it
depends on both separately.

Thus, (4.9) is an interesting direction to generalize the thermofield double. The
SU(2)N o SN symmetry is broken only by the explicit insertions of the Hamiltonian. As
discussed in section 2.3, this density matrix can be thought of as taking the PETS state (2.1)
and averaging over a class of operators. We will argue below that (4.9) are good candidates
for the dual of semi-classical wormholes on the gravity side, where we keep the gravitational
profile of the wormhole and forget about the microscopics of the particles that created it.

4.2 Properties of the single shot density matrices

We now discuss several properties of the single shot density matrix: we comment on a
matching property for A = 1, calculate the entropy of these density matrices, briefly discuss
the length of the corresponding bulk wormhole — arguing that for A < 1 the wormhole gets
longer, as in previous studies of generalisations of the thermofield double — and argue that
the overlap of these density matrices for different values of A vanishes in the large N limit.

TFD and matching property. For G(1), we have

(HL ⊗ 1R−1L⊗HR)G(1) = G(1)(HL ⊗ 1R−1L⊗HR) . (4.10)

This means that if we act with HR on G then we can convert it into an action of HL. This
can be viewed as the technical reason why the thermal state has zero length in the interior
of the wormhole. In fact, this is more general. The length of the wormhole corresponding
to G(1) is zero for any operator, which means that something like (4.10) should hold for
any operator and not just H. We will refer to this the matching property. It is easy to
verify that for any Pauli matrix,(

σµL ⊗ 1R−1L⊗σ
µ
R

)
G(1) = G(1)

(
σµL ⊗ 1R−1L⊗σ

µ
R

)
. (4.11)

This means that any operator on HR made out of a string of Pauli matrices can be matched
with (or fully converted into) an operator on the left Hilbert space. This is done with
relative strength 1, which translates into a zero length wormhole.
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When we discuss the thermofield double with finite temperature, we conjugate G(1)
with e−βL,RHL,R . The core of G(1) still matches operators in left and right but now there
is an additional contribution of the thermal suppression factors which we interpret as a
contribution in Left and Right separately outside the horizon.

This matching property is distinct from the general operator conversion we discussed in
section 2.5, and is special for G(1) and the thermofield double. When we consider G(A 6= 1),
we will not have such a matching between operators on the left and the right. We can
always use the operator conversion property introduced in section 2.5 to push an operator
on the right through the density matrix to an operator on the left, but we can’t in general
find a (simple) operator acting on the density matrix on the left whose action matches that
of an operator on the right as in (4.10).

Indeed, already for a general pure state in H†L ⊗ HR such a matching may not be
possible; matching an operator on the left to an operator on the right requires sufficient
entanglement, and will fail for example for product states. But when we consider density
matrices, the matching problem is more severe: a relation like (4.10) is a four-index tensor
equation. If we try to solve it for the left operator OL given a right operator, we have far
fewer variables than equations, and there is no general reason to expect a solution to exist.
As we consider A 6= 1, we have a superposition of pure states in the density matrix; if the
solution of matching for different states in the superposition is different, no solution will
exist for the density matrix itself.

Entropy. From (4.5), the single species density matrix G(A) contains the singlet with
probability 1− Â and each basis of the doublet Â/3, Â = 3

4(1−A). This means that the
entropy of the large N density matrix is

S(A) = −N
(1− 3A

4 log 1− 3A
4 + 31 +A

4 log 1 +A

4

)
(4.12)

If we take A to be fixed in the large N limit, the entropy scales like N . This is too
large because summing over ecN states is expected to correspond to additional horizons
embedded in the background. In the explicit calculations, we will study the models in a
double scaling limit of large N, p, with fixed p2/N . We will find (see next section) that the
density matrices of interest in the double scaling limit have A = 1 − a/p for fixed a, i.e,
A = 1−O(1/

√
N), in which case the entropy is

S(A) = −3Na
4p ·

(
log
( a
4p
)
− 1

)
(4.13)

which scales like
√
N log(N). The same argument holds qualitatively for the finite p model

(see section 5.2).
The origin of this entropy is the following: recall that in order to obtain a wormhole

we are inserting some source which backreacts on the geometry. The entropy is just the
entropy associated with this source. We will see below that a also determines the length of
the wormhole, so in this case there is a straightforward relation between the entropy of the
states that can generate a specific geometry and its length. This might be related to how
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one identifies complexity in the bulk [30, 31], but for this one would have to make a more
precise relation between complexity and the entropy in (4.13), as well as study it for more
general density matrices.

When we turn on temperature, G(A) gets dressed to become G(A, βL, βR). Since
the dressing is by conjugating G(A) the basic structure of the gluing remains the same.
Actually, a formal number of singlets and triplets can be defined in the dressed operator,
by computing the expectation value of an appropriate projection operator but we will not
pursues this further in the current paper. We expect however that the entropy will pick up
some βL, βR dependence but that the N scaling will remain the same.

Length of the wormhole. We will argue that the length of the throat is proportional to
− log(A). A more precise discussion of the length of the wormhole will be given in section 5,
but for now let us give the gist of the argument.

On the gravity side, if we have an operator which corresponds to a particle of mass
m, then a two sided correlator (at time zero on both sides) will receive a contribution of
the form

〈ML(tL = 0)MR(tR = 0)〉 ∝ e−mL, (4.14)

where L is the length of the wormhole, and ML(MR) is the insertion of the operator on the
left (right). For simplicity we will take m� 1 such that mRAdS ∼ ∆, the dimension of the
operator.

We realize an operator with conformal dimension ∆ as a random operator of length
p̃ = ∆ · p, as discussed in 3.3. We would like to identify a contribution of the form (4.14) to
the two sided correlator when evaluated with G(A), A 6= 1. I.e., in the QM side we compute

〈ML(0)MR(0)〉G(A) = TrH†L⊗HR
(
G(A)ML(0)MR(0)

)
. (4.15)

and focus on terms which look like the r.h.s. of (4.14).
We explain the computation a bit more in section 5, but the structure is clear. To get

a non-zero answer, we need to have the same monomial of Pauli matrices both on ML and
MR — say that it is characterized by an index set Ĩ (of length p̃). For each index i1, . . . ip̃
in the set Ĩ we need to use the AσLσR term in that index to get a non-zero answer. This
means that we get a contribution of the form

〈ML(0)MR(0)〉G(A) ∝ A
p̃ = emRAdS·p·log(A) . (4.16)

We equate this with e−mL to obtain that L/RAdS ∝ −p · log(A). This is the case for
any p. Thus, we see that taking A < 1 decreases the value of the two-sided correlator,
corresponding to a longer wormhole in the gravitational dual. In the double scaling limit
we consider in the explicit calculations in the next section, A = 1 − a/p for fixed a, and
hence L/RAdS ∼ a.

Overlaps of G(A)’s. Providing the gravitational data for any semi-classical gravitational
background will determine a density matrix. But since different semiclassical wormholes
correspond to different quantum states, then it should be that the overlap in the support of
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two such measures is small. One can verify that this is the case. Consider G(A1) and G(A2)
for A1 6= A2. Since A determines the length then these two density matrices corresponds to
wormholes with different length — i.e, they correspond to different semiclassical geometries
that are macroscopically different. Recall that for each species G(Ai) = αiPs + βiPt, where
Ps,t are projection operators on the singlet/triplet (αi+ 3βi = 1), then a reasonable measure
of the overlap of the density matrices8 is given by

Tr
(
G (A1)1/2G (A2)1/2

)
=
(
α

1/2
1 α

1/2
2 + 3β1/2

1 β
1/2
2

)N
→ 0 (4.17)

in the large N limit for (α1, β1) 6= (α2, β2). Actually, in the double scaling limit we have to
be a little more careful since αi ∼ 1− ai/p, but the overlap still goes to zero.

4.3 Transition matrices and multi shot spaces

Transition Matrices: our starting point was to consider an object in ρ ∈ (H†L ⊗HR)⊗
(HL ⊗ H†R) either as a pairing of operators, one on HR and one on H†L (the operator
frame) or as a density matrix on H†L ⊗HR (the state frame). The semiclassical nature of a
wormhole manifests itself simply in the first approach, and the entanglement structure in
the second approach.

In the state frame ρ = ∑
α cα|ψα〉〈ψα| where |ψα〉 are some states in H†L ⊗HR. The

sum over α averages all the ways that we build a wormhole with a fixed given gravitational
profile. It is clear, however, that we can just as well build a mixed state transition matrix
(or Pseudo-entropy [32])

ρ =
∑
α

cα|φα〉〈ψα| (4.18)

where |φα〉 are a distinct set of states than |ψα〉. The only requirement that we impose
is that (4.18) has no explicit violations of the symmetry other than by insertions of
the Hamiltonian.

The simplest example is the following. Consider (4.9) or (4.21). For β1 = β2 it describes,
in Minkowski space, a symmetric L↔ R configuration with a massive particle sitting in the
middle. This is a density matrix of the form ∑

α cα|ψα〉〈ψα|. Suppose we want to change
its initial entry point and its final point — this would be of the form (4.18). This would
then be given by the expression

G ≡ e−(β1+4itp)H1/4−(β2+4itp)H2/4G(A)e−(β1−4itf )H1/4−(β2−4itf )H2/4. (4.19)

where tf , tp parameterize the entry/deprature point of the massive particle.
Multishot wormholes: the single shot density matrix (4.9) and its generaliza-

tion (4.19) can be graphically depicted as in the first line of figure 3. The labels on
the external lines encode which Hilbert space is associated with them. The ⊗ on the
external legs indicate an action of some e−βiH , where βi can be complex.

If we want to have two, more or less parallel, heavy particles generating a wormhole,
we can use the expression in the second line of that figure (the arrangement of the external

8G(A)1/2 ∝
∏

(a
1
2
i Ps,i + b

1
2
i Pt,i).
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Figure 3: Single shot density matrix (first line), multishot density matrix (2nd line) and a
more general wormhole (third line).

legs is the same). We can think about it as if we introduced another Hilbert space of states
that live in the interior of the wormhole — let’s call it I. We can then think about the
density matrix as a single shot linking R to I and then another shot linking I to L. The two
shots are invariant (under SU(2)N o SN or under SO(N)) but they are linked by insertions
of a Hamiltonian evolution, which is the only source of symmetry breaking.

The latter is the simplest configuration. Clearly the most general transition matrix —
and we conjecture, the most general semicalssical gravitational background that corresponds
to a transition matrix — is given by a complicated network of shocks connected between
themselves in different ways — for example the third line of that figure. In this case it
describes 5 shots, some of which cross others. A general gas of particles in a wormhole
will be described by a dense net of shots connected to each other in different ways, which
encode the initial and final states of the wormhole. Multishot density matrices appeared
recently in the context of Hawking radiation [33]. We are going to leave the study of these
networks for future work.

4.4 The Majorana SYK model

So far we have been working on the random spin model introduced in section 3.2. Let us
now consider the Majorana model of section 3.1 and discuss it in a parallel way. In this
section, we define a class of density matrices for the SYK model, which turns out to have
the similar property as the ones we’ve discussed before.

– 19 –



J
H
E
P
0
8
(
2
0
2
2
)
0
5
1

As in the random spin model, we are interested in density matrices invariant under the
symmetry of the two-sided system. For the Majorana model, this symmetry is a diagonal
O(N) which rotates the left and right spinors simultaneously. Finding invariant density
matrices is again equivalent to splitting H†L ⊗HR into irreducible representations of this
group. This is a cleaner representation theory problem than in the spin model case, and we
have worked out the general invariant density matrices in appendix C. We find there that a
convenient basis for the space of invariant density matrices is provided by the

GM (A) =
∏
i

[
1 + iAχiLχ

i
R

]
. (4.20)

In the large N limit, density matrices with different values of A have disjoint support,
and we take the density matrices GM (A) for different A as our candidates for the dual of
gravitational wormholes, analogous to the G(A) in the random spin model defined in (4.8).

We can add a temperature by defining the density matrices

GM (A, βL, βR) = e−(βRHR+βLHL)/4GM (A)e−(βRHR+βLHL)/4. (4.21)

4.4.1 Properties of GM (A)

Eigenvalues and entropy of GM (A). In order to study the eigenvalues of

GM (A) ≡ 1
2N

∏
i

[
1 + iAχiLχ

i
R

]
≡ 1

2N
∏
i

GM,i (4.22)

we represent the Majorana fermions in terms of Pauli matrices. The convenient representa-
tion for us is

χ2j−1
L =

j−1∏
i=1

(
σ3
i,L ⊗ σ3

i,R

)
⊗
(
−σ1

j,L ⊗ 1j,R
)
⊗

N∏
i=j+1

(1i,L ⊗ 1i,R) (4.23)

χ2j−1
L =

j−1∏
i=1

(
σ3
i,L ⊗ σ3

i,R

)
⊗
(
σ2
j,L ⊗ 1j,R

)
⊗

N∏
i=j+1

(1i,L ⊗ 1i,R) (4.24)

χ2j−1
R =

j−1∏
i=1

(
σ3
i,L ⊗ σ3

i,R

)
⊗
(
σ3
j,L ⊗ σ2

j,R

)
⊗

N∏
i=j+1

(1i,L ⊗ 1i,R) (4.25)

χ2j
R =

j−1∏
i=1

(
σ3
i,L ⊗ σ3

j,R

)
⊗
(
σ3
j,L ⊗ σ1

j,R

)
⊗

N∏
i=j+1

(1i,L ⊗ 1i,R) (4.26)

Here, σj,L lives on the Hilbert space with the (2j−1)-th and (2j)-th left Majorana fermions,
and likewise for the right Majorana fermions.

By using this representation, we have

GM (A) =
∏
j

(
1−Aσ1

j,L ⊗ σ1
j,R −Aσ2

j,L ⊗ σ2
j,R −A2σ3

j,L ⊗ σ3
j,R

)
. (4.27)

This is the density matrix in the operator frame.
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In the state frame (or in order to understand how ρ(A) can be prepared using the
Euclidean path integral) we repeat the Fierz identity exercise as in the Pauli matrices and
write the density matrix as

GM (A) =
∏
j

(
(1+A)2

4 1j,I⊗1j,O+ 1−A2

4
(
τ1
j,I⊗τ1

j,O+τ2
j,I⊗τ2

j,O

)
+ (1−A)2

4 τ3
j,I⊗τ3

j,O

)
,

(4.28)

where τa are defined the same way as in section 4.1.1.
The entropy of this density matrix can also be computed, which is

S = −N2

[
(1−A) log

(1−A
2

)
+ (1 + A) log

(1 +A

2

)]
. (4.29)

Special values of A and TFD states. It is immediate from the eigenvalue decompo-
sition of ρ(A), the density matrix is pure at A = ±1. This is in contrast to the random
spin model, where A = 1 corresponds to a pure state, while the other end of the spectrum,
A = −1/3, was not a pure state, due to three states in the triplet.

Let us start from A = 1. This is, in the Euclidean preparation, having the unit operator
inserted in the thermal half cycle. This therefore corresponds to a TFD state at infinite
temperature. We can also think about it in the following way, that we have the relation(

χiL − iχiR
)
GM (A = 1) = 0 (4.30)

and since GM (A = 1) = |Ψ+〉 〈Ψ+| is pure, this gives us the defining relation for the TFD
state [21], (

χiL − iχiR
)
|Ψ+〉 = 0. (4.31)

The case A = −1 is similar, but with a little twist. This corresponds to inserting the
fermion parity operator between the two half spaces when preparing the state (still as in
figure 1), and this has the effect of changing the definition of parity between the left and
the right boundary. This operator GM (A = −1) ≡ |Ψ−〉 〈Ψ−| satisfies(

χiL + iχiR

)
GM (A = −1) = 0⇐⇒

(
χiL + iχiR

)
|Ψ−〉 = 0. (4.32)

which is yet another choice of the TFD state given in [21].
The difference between A = ±1 is simply the difference in definitions of the TFD state,

if we twist the choice of the CPT operator using the fermion number, in the definition of
the TFD, |TFD〉 = ∑

n |n〉 ⊗ CPT |n〉.

PETS interpretation. Equation (4.28) also gives us access to what operators we need
to insert if we want to construct this space a-la PETS states [7]. This means that the
density matrix can be understood as inserting the operator 1 with probability (1+A)2

4 , τ1 or
τ2 with probability 1−A2

4 , and the fermion parity operator with probability (1−A)2

4 . For the
density matrix to be unitary, we need −1 ≤ A ≤ 1.

– 21 –



J
H
E
P
0
8
(
2
0
2
2
)
0
5
1

This is favourable, since the number of these operators inserted in the path integral
follows the multinomial distribution, similar to the Pauli matrix case. For example, the
probability of finding operator ψ for K times follows the probability of

p(K) =
(
N/2
K

)(
1−A2

2

)K (1 +A2

2

)N/2−K

(4.33)

and the distribution has a peak at large N .

5 Explicit correlators in two-sided systems

In this section we will evaluate the partition function and two sided correlation functions in
our proposed (unnormalised) density matrices in the random spin model, i.e.,〈

TrH†L⊗HR [G(A;βL, βR)]
〉
J
,

〈
TrH†L⊗HR [G(A;βL, βR)OLOR]

〉
J
, (5.1)

with G(A;βL, βR) defined in (4.9). We would like, for example, to see how the length of the
wormhole depends on A. We will set up the machinery mainly in the double scaling limit
(and will also comment on the scaling of A in the regular large N limit). We will focus on
the random spin model — the result of the Majorana SYK model is exactly parallel.

5.1 Integrating over the random couplings

We will begin with the partition function〈
TrH†L⊗HR [G(A;βL, βR)]

〉
J

=
〈
TrH†L⊗HR

[
e−βLHL/4−βRHR/4G(A)e−βLHL/4−βRHR/4

]〉
J
.

(5.2)

By expanding everything as a power series in HL,R, we will generally have to compute
the moments

mkL,kR ≡
〈
TrH†L⊗HR(G(A)HkL

L HkR
R )

〉
J
. (5.3)

In appendix A we detail how G, HL and HR are contracted in order to implement the trace.
The upshot is that we can rearrange the insertions of HL to bring it to the ordinary form
of a matrix product where a lower index is contracted with an upper index of a matrix to
the right. We will denote this by Tr with no subscript. If we have some insertions of an
additional operator then we need to keep track of their location. For example,〈
TrH†

L
⊗HR

(
G(A,βL,βR)OR(tR)OL(tL)

)〉
J

=
〈
Tr(e−βLHL/4e−iHLtLOL(0)eiHLtLe−βLHL/4G(A)e−βRHR/4eiHRtROR(0)e−iHRtRe−βRHR/4)〉

J

(5.4)

where we defined OL(tL) = e−iHLtLOL(0)eiHLtL and OR(tR) = eiHRtROR(0)e−iHRtR (for
more details see appendix A).
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Figure 4: Chord diagram description of TrH†L⊗HR (G(A)σR,I1σR,I2σR,I3σR,I2σL,I3σL,I1σL,I4σL,I4) =
Tr (σL,I4σL,I4σL,I1σL,I3G(A)σR,I1σR,I2σR,I3σR,I2), contributing to m4,4. Note that the ordering
of operators in space L is with respect to the their ordering in the ordinary trace. This is
the 3rd line of (5.5).

Next, we proceed as usual by using the fact that
〈
JIJĨ

〉
J = δI,Ĩ . We then have

mkL,kR =
〈
TrH†L⊗HR

[
G(A)HkR

R HkL
L

]〉
J

= 3−pk/2
(
N

p

)−k/2 ∑
pairings of I

∑
I1,··· ,Ik/2
|Ii|=p

TrH†L⊗HR
[
G(A)σR,I1 · · ·σR,IkRσL,IkR+1 · · ·σL,Ik

]

= 3−pk/2
(
N

p

)−k/2 ∑
pairings of I

∑
I1,··· ,Ik/2
|Ii|=p

Tr
[
σL,Ik · · ·σL,IkR+1G(A)σR,I1 · · ·σR,IkR

]
,

(5.5)

where k = kL + kR. In the last equality we changed to an ordinary trace over H, by
flipping the order of operators in space L. We have written the sum as a sum over all the
possible pairings, and over the composition of the index sets. We denote the set of all chord
diagrams with k nodes as CD(k), such that the sum over k pairs of I’s can be rewritten as∑

pairings of I = ∑
CD(k).

We can now apply the chord technology as in appendix D: the σ matrices on the right
“bubble” chords in HR. When we reach G, we are typically left with some chords open,
i.e., an odd number of Pauli matrices in some of the species. We now need to take G into
account and carry out the trace on HR. Whenever there is an odd number of Pauli matrices
in a species, we need to use the A~σR~σL (for that species index) which will convert it into
an incoming single σL. So the role of G(A) is to convert,9 in the species needed, an index
from HR to the same index in H†L. After G(A) converts chords from space R to space L
we then continue the bubbling process in space L. Of course various weights, associated
with A, are incurred during this conversion — we will discuss them in a moment. This is
illustrated in figure 4.

9Or, more precisely, pair.
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In this diagrammatic language, we can now present the different weights associated
with chord intersections.

Weights of chord diagrams in the double scaling limit. As discussed in appendix D
we can neglect the overlap of three index sets and treat each overlap of two index sets as
independent. We can now start computing the contribution from two chords, and then
multiply each contribution to evaluate a specific chord diagram.

Let I1, I2, . . . denote the index sets associated to the different chords. We decompose
the Hilbert space into site-wise components which we denote by the index i. Traces are
always ordinary traces.

• If i does not appear in any of the chords
The contribution from the Hilbert space Hi is simply

Tri [G (A)] = 1. (5.6)

• If i appears only once in just one chord — I1

In this case we have two possibilities. If I1 starts and ends in space R (or likewise in
space L), the contribution from Hilbert space Hi is

1
3
∑
a

Tri [G (A)σaRσaR] = 1. (5.7)

(The prefactor 1/3 takes care of the prefactor in (5.5).)
Meanwhile, if I1 starts in space L and ends in space R, we get

1
3
∑
a

Tri [σaLG (A)σaR] = A. (5.8)

• If i appears both in two chords — I1 and I2

Similarly, we list all the possible contribution from Hilbert space Hi when i appears
both in I1 and I2:

1
32
∑
a,bTri

[
G (A)σaRσaRσbRσbR

]
= 1

32
∑
a,bTri

[
σaLσ

a
Lσ

b
Lσ

b
LG (A)

]
= 1

1
32
∑
a,bTri

[
σbLσ

b
LG (A)σaRσaR

]
= 1

1
32
∑
a,bTri

[
σbLG (A)σaRσaRσbR

]
= 1

32
∑
a,bTri

[
σbLσ

b
Lσ

a
LG (A)σaR

]
= A

(5.9)


1
32
∑
a,bTri

[
G (A)σaRσbRσaRσbR

]
= 1

32
∑
a,bTri

[
σaLσ

b
Lσ

a
Lσ

b
LG (A)

]
= −1

3
1
32
∑
a,bTri

[
σbLG (A)σaRσbRσaR

]
= 1

32
∑
a,bTri

[
σbLσ

a
Lσ

b
LG (A)σaR

]
= −A

3
1
32
∑
a,bTri

[
G (A)σaRσbRσbRσaR

]
= 1

32
∑
a,bTri

[
σaLσ

b
Lσ

b
Lσ

a
LG (A)

]
= 1

(5.10)


1
32
∑
a,bTri

[
σaLG (A)σaRσbRσbR

]
= 1

32
∑
a,bTri

[
σaLσ

b
Lσ

b
LG (A)σaR

]
= A

1
32
∑
a,bTri

[
σaLσ

b
LG (A)σaRσbR

]
= 1−2A

3
1
32
∑
a,bTri

[
σbLσ

a
LG (A)σaRσbR

]
= 1+2A

3

(5.11)
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In order to get the total contribution of the two chords, we can multiply contributions from
each of the species’s Hilbert spaces. An index set contains p indices, and so a chord running
inside space 1 or 2 gets a factor of 1, and a chord running from space 1 to 2 gets a factor of
Ap
′ , where p′ is the number of species that don’t appear in any other chord, as one can see

from (5.7) and (5.8).
In the double scaling limit p′ differs from p by some additive finite amount (whereas

they both scale like
√
N). We now also set A = 1 − a/p. Hence the final result in the

double-scaling limit is
B = Ap

′ = e−a. (5.12)

This can conveniently be summarized in figures as

(5.13)

We depicted chords weighing 1 in blue, while the ones weighing Ap in green. The red line is
there to remind us that we are computing the chord diagram in the presence of G(A).

Now that we assigned a value to each chord of two types above, we discuss the
contribution coming from the intersections between two chords: as in appendix D, we can
change variables in (5.5) from I1, · · · , Ik/2 to the index overlaps mij , with i, j = 1, · · · , k/2,
and change the measure accordingly. As discussed there, the measure is the Poisson
distribution with parameter p2/N , and the factor

(N
p

)−k/2 ensures this distribution is
properly normalized. This means that in order to find the contribution of a pair of chords,
we take the relevant factor from (5.9) for each overlapping index, and the total number of
indices follows the Poisson distribution. The results are summarized in figure 5.

In conclusion the moment mkL,kR is given by

mkL,kR =
∑

CD(kL,kR)
q# intersectionsB# crossings, (5.14)

where CD(kL, kR) are chord diagrams with 2 regions involving kL, kR nodes respectively,
and by crossings we mean chords that cross from left to right.

Transfer matrix method. Next we would like to use the transfer matrix method in
order to compute the moment (5.14). To do so we use the same auxiliary Hilbert space
and transfer matrix defined in appendix D. The similarity between (D.9) and (5.14) means
that we need to do only small modifications to the moment computed by the transfer
matrix (D.12). Indeed, the new ingredient is B#crossings, which can be accounted for simply
by an operator insertion between the two regions. This means that we can compute the
moment mk1,k2 by

mkL,kR = 〈0|T kLBN̂T kR |0〉 , (5.15)
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Figure 5: Factors of chord configurations in the two space construction. We com-
pute the relevant factors by multiplying the factors from (5.9) by the number of
times they appear, which follows a Poisson distribution, and setting A = 1 − a

p , as
we’re working in the double scaled limit. For example, the third diagram is given by

e−p
2/N

∞∑
m=0

A2p−2m (p2/N)m
m!

(1 + 2A
3

)m
= B2e

p2
N

( 1+2A
3A2 −1) = B2, where we’ve

used the fact that in the double scaled limit p2/N is finite, as well as A = 1− a
p .

where

N̂ |n〉 = n |n〉 . (5.16)

The insertion BN̂ is to account for the number of green chords, and T is the transfer matrix
defined in (D.11).

The moment (5.15) was previously computed in [18], where it arises in the computation
of the two-point function of a random operator in a single copy of the system: if MB is a
random operator of length p′, the two-point function involves

mkL,kR = 2−N
〈
TrH(HkLMBH

kRMB)
〉
J,J̃

, (5.17)

which was shown in [18] to be given by (5.15) with p′ = −p logB
λ . This is in line with our

expectation that the partition function of the two sided space is given by an insertion and
extraction of a massive operator when taking the Euclidean boundary to be a circle (as in
figure 1).

This correspondence can be generalized to include higher point functions. For example
one just takes the 2nd line in equation (5.4) and converts it into a chord prescription

〈0|e−(βL/4−itL)TOLe
(−βL/4+itL)TBN̂e(−βR/4−itR)TORe

(−βR/4+itR)T |0〉 (5.18)

and we take OL = OR, an Hermitian random operator of length p̂, which is replaced by a
chord whose index set is of this length. This can also be written as a four-point function in

– 26 –



J
H
E
P
0
8
(
2
0
2
2
)
0
5
1

a single SYK copy

2−N
〈
TrH

(
MBe

−βL4 HOL (tL) e−
βL
4 HMBe

−βR4 HOR (tR) e−
βR
4 H

)〉
J,J ′,J̃

. (5.19)

We will borrow the formulas for this expression from [19].
In a similar manner, the n-point function evaluated in a doubled system over the density

matrix G(A) can be mapped to n+ 2 point functions evaluated in a single copy.

5.2 Size of correlators and length of wormholes

We would like to get some sense of the relation between the length of the wormhole and the
parameter A appearing in G(A, βL, βR) in (4.9). The computation was basically done in
section 4.2, but we have just now derived all the factors in a more systematic way.

Consider a two-sided two-point function of an operator O made from a sum over strings
of p̃ Pauli matrices with random coefficients as defined in (3.7). Given that the operator is
made out of p̃ symbols, its IR conformal dimension is p̃/p. We will place this operator in
the Left and Right Hilbert spaces at times tR = tL = 0. First take βL = βR = 0. Then as
in the discussion in the previous section, each Pauli matrix that gets converted from Left
to Right by G(A) gives a weighting by A, so the conversion of an operator with p̃ Pauli
matrices gives

Tr[G(A)OLOR] = Ap̃ = Bp̃/p. (5.20)

Adding temperature to the system (by going to ρ(A, βL, βR)) will slightly modify the
calculation, but we still need to have that the chord of the probe operator goes from
Right to Left, hence we will still have a contribution like (5.20). There will be a modified
prefactor that depends on the β’s, but the p̃ scaling of the r.h.s. of (5.20) and the qualitative
dependence on B will remain similar.

On the gravity side, the two-point function behaves as e−mL, where L is the length of
the wormhole, and for heavy operators the mass m is related to the conformal dimension
by m = ∆/RAdS = p̃/pRAdS. Hence we have

e−mL ∝ Bp̃/p → L/RAdS ∝ − log(B) = a (5.21)

When A = 1, then the wormhole is of length 0 as we expect, and the wormhole becomes
longer as we move away from the thermofield double.

This is consistent with the observation above for the entropy of ρ(A) that as A
moves away from 1 the entropy of the density matrix increases — as the length of the
wormhole increases, then more states can be accommodated in the wormhole (with the
same gravitational profile).

The formulas given above are for the double scaling limit. In the finite p case, one might
worry that the situation is different because B = Ap is finite for any value of A and not just
A close to one (p is a fixed integer and need not be particularly large). We would like to
argue however that a semiclassical wormhole still exists only for A close to 1 (as some power
of 1/N). The reason is that for finite p, one obtains semiclassical gravity by going to low
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temperatures, which means a high power of H if we use the moment method. In fact one
has to take the number of H’s to scale like a positive power of N . To have a semiclassical
wormhole we similarly require a large number of chords going between the right and left
spaces. I.e, the number of chords that go from left to right scale like nLR ∼ Nα, for some
α > 0. In order to have a finite BnLR we need again to take A = 1− a/Nα.

5.3 Partition function and two point functions

By using the transfer matrix and the expression for the moments given above, we can
compute the partition function and the 2-point functions of the two-sided random spin
system. Because of the discussion above, we can just cite the result given in [18] to get the
final result.

Partition function. For the partition function, the result is

〈
TrH†L⊗HR [G(A;βL, βR)]

〉
J

= 2−N
〈
TrH

[
e−

βL
2 HMBe

−βR2 HMB

]〉
J,J̃

=
∫ π

0

2∏
i=1

{
dθi
2π

(
q, e±2iθi ; q

)
∞

exp
(
−βjE(θj)

2

)} (
B2; q

)
∞(

Bei(±θ1±θ2); q
)
∞
.

(5.22)

where E(θj) = 2 cos θj√
1−q , (a; q)∞ are q-Pochammer symbols, defined by

(a; q)n ≡
n−1∏
k=0

(1− aqk), (a; q)∞ ≡
∞∏
k=0

(1− aqk)

(a1, a2, . . . , ak; q)n ≡
k∏
i=1

(ak; q)n , (e±iθ; q) ≡ (e+iθ; q)(e−iθ; q)
(5.23)

and further details are given in appendices D and E.

For later convenience, we will define a new quantity `B by

B ≡ q`B (5.24)

This corresponds to the conformal dimension of the operator MB.
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Double-sided two-point function. For the double-sided two-point functions we can
cite the results for the crossed four-point function〈

TrH†L⊗HR [G(A;βL, βR)ML(tL)MR(tR)]
〉
J,J ′

=
〈
TrH

(
e−

βL
4 HM (tL) e−

βL
4 HMBe

−βR4 HM (tR) e−
βR
4 HMB

)〉
J,J ′,J̃

=
∫ π

0

4∏
j=1

{
dθj
2π (q, e±2iθj ; q)∞ exp (−γjE(θj))

} (Be−i(θ2+θ3), q̃Bei(θ3±θ1), q̃Bei(θ2±θ4); q
)
∞(

q̃2Bei(θ2+θ3); q
)
∞

×
(
q̃2, q̃2, B2; q

)
∞(

Bei(±θ2±θ3), Bei(±θ1±θ4), q̃ei(±θ1±θ2), q̃ei(±θ3±θ4); q
)
∞

× 8W7

(
q̃2Bei(θ2+θ3)

q
;Bei(θ2+θ3), q̃ei(θ2±θ1), q̃ei(θ3±θ4); q,Be−i(θ2+θ3)

)
,

(5.25)

with γ1 = βR
4 + itR, γ3 = βL

4 + itL and γ2 = γ∗1 , γ4 = γ∗3 . Remember that q̃ = e−2 pp̃
N , as

defined in (3.11). The basic hypergeometric series 8W7 is defined in (E.5). We can also
check that it reduces to the partition function when we take `M → 0.

5.4 Low energy limit

The formulas above are quite general, and can be generalized further to any correlator across
the wormhole, and in fact, using a discussion similar to 4.3, can be generalized to particles
entering from the past singularity or leaving through the future singularity. Here we will
have a more modest goal of just testing our machinery using the two sided correlator in the
shock wave [6]. The shock wave is a particularly convenient background as the two-sided
correlation function was evaluated for any length/shockwave strength, and it plays a key
role in the study of quantum chaos in black holes.

We will first review some formulas that have to do with the low energy limit and then
we will specialize them to the shock wave in the next subsection.

5.4.1 Useful formulae

The low-energy limit we take is the same as in [19], where one takes q → 1 and the low-energy
limit at the same time in a consistent way, and is known to reproduce the result of the
Schwarzian quantum mechanics, or equivalently, of JT gravity. We summarize below all the
necessary formulae without derivation, for which the reader is referred to [19] and references
therein.

First take q = e−λ and take λ→ 0. At the same time, take

θj ≡ π − λyj (5.26)

so that

E(θj) ≡
2 cos θj√

1− q = E(θ = π) + λ
3
2 y2
j (5.27)
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This E(θ) is the energy eigenvalue of the SYK model in the double-scaling limit, as discussed
in the previous sections. In the following, for the sake of simplicity, we shift E(θ = π) to 0.

Also, in the λ→ 0 limit, we have∫ π

0

dθi
2π

(
q, e±2iθi ; q

)
∞

= λ(q; q)3
∞(1− q)2

2π2

∫ ∞
0

d
(
y2
)

sinh(2πy) (5.28)

and (
B2; q

)
∞(

Bei(±θ1±θ2); q
)
∞

= (1− q)−3+2`B

(q; q)3
∞

· Γ(`B ± iy1 ± iy2)
Γ(2`B) . (5.29)

where B = q`B . This `B can be understood as the operator dimension of the fictitious
operator MB introduced in the previous subsection. In particular, in the double-scaling
limit A = 1− a

p , we have

B = e−a ≡ q`B = e−λ`B ⇐⇒ `B = a

λ
. (5.30)

Here a = O(p0), but can still depend on λ non-trivially. We have also defined `M by using
q̃ ≡ q`M , and it is the dimension of the random operator, whose two-point function we
compute later.

We will eventually use the saddle-point approximation to evaluate the forthcoming
integrals — the consistency of the saddle-point approximation is that we are in the low
temperature limit, which is

λ−
1
2 � β � λ−

3
2 (5.31)

In principle, this should be checked every time one does the saddle-point approximation,
but we refer the reader to [18] and proceed.

5.4.2 The low-energy limit and the shock wave

Double-sided two point function. We first compute the low energy limit of the un-
normalised double-sided two point function. We begin with expression (5.25), for the two
sided correlator with R and L insertions at t̃L,R + td. We will eventually take td to infinity,
but we shift the dependence on td into a time evolution of MB. This shifts the entry and
exit point of the defect in the past and future singularities. In other words, we have the
unnormalised density matrix

ρ ≡ e−(βL+4itd)HL/4−(βR−4itd)HR/4G(A)e−(βL−4itd)HL/4−(βR+4itd)HR/4. (5.32)

The expression that we get is therefore (with a small cyclic rearrangement of the terms)

〈Tr [ρML(tL)MR(tR)]〉

= 〈Tr
[
e−

βR
4 HM(tR)e−

βR
4 HMB(−td)e−

βL
4 HM(tL)e−

βL
4 HMB(−td)

]
〉

= 〈Tr
[
e
−
(
βR

4 −i(tR+td)
)
H
Me
−
(
βR

4 +i(tR+td)
)
H
MBe

−
(
βL

4 −i(tL+td)
)
H
Me
−
(
βL

4 +i(tL+td)
)
H
MB

]
〉

(5.33)
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We now take the low energy limit using the formulas presented above.

〈Tr [ρML(tL)MR(tR)]〉

=
(
λ

2π2

)4
(q; q)3

∞(1− q)−1+2`M+2`B

×
∫ 4∏

j=1

{
dy2
j sinh(2πy2

j )
}

× exp
(
−λ

3
2βM − βLλ

3
2

2 ωB −
(
βR
4 + i(tR + td)

)
λ

3
2ω1 −

(
−βL4 + i(tL + td)

)
λ

3
2ω2

)

× Γ(`B − i(y3 ± y2))Γ(`B + i(y1 ± y4))
Γ(2`B)

Γ(`M + i(y3 ± y4))Γ(`M − i(y1 ± y2))
Γ(2`M )

×
∫ i∞

−i∞

du

2πiq
u−`M+i(y3−y4) Γ(−u+ `B + i(y4 − y1))Γ(−u+ `M + i(y4 − y3))

Γ(u+ `B − i(y4 − y1))Γ(u+ `M − i(y4 − y3))

× Γ(u)Γ(u− i(y2 + y4 − y1 − y3))Γ(u− 2iy4)Γ(u+ i(y1 + y2 + y3 − y4))
(5.34)

where

y2
1 ≡M + ωB, y2

2 = M + ωB − ω2, y2
3 = M + ω1, y2

4 = M. (5.35)

This is equivalent to [34]. As in the single-sided case, we can a posteriori justify that ω1,2,B
are much smaller than M (for further justification see [18]). The integral over u can be
done using the contour integral — at large M , it can been shown that the only relevant
poles are at u = 0 and at u = i(y2 + y4 − y1 − y3) [34]. More precisely, the other poles are
suppressed for any td, and between these two poles, one of them is dominant depending
on whether td goes to ∞ or −∞. This corresponds to the two possible orientations of the
shockwave.

We first analyze the u = 0 pole.

Tr [ρ0MR(tR)ML(tL)]
∣∣∣∣
u=0 pole

=
(
λ

2π2

)4
(q; q)3

∞(1− q)−1+2`M+2`B

×
∫
dM dνB dν1 dν2 (4M)`M+`B exp

(
2π
√
M − λ

3
2βM + πνB

(
βR − βL
βL + βR

))
× exp

(
−πν1

(1
2
βR − βL
βL + βR

+ 2i(tR + td)
β

)
+ πν2

(1
2
βR − βL
βL + βR

− 2i(tL + td)
β

))
×
(
2
√
M
)i(ν1+ν2)

e
λ`M− 2πi

√
λ

β
ν1

× Γ(`B − iνB)Γ(`B + i(νB − ν1 − ν2))Γ(`M − iν1)Γ(`M − iν2)Γ(i(ν1 + ν2))
Γ(2`M )Γ(2`B)

(5.36)

where as always νB,1,2 ≡ ωB,1,2
2
√
M

.
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The νB integral can be performed by using `B, νB � ν1, ν2 at the saddle point and
then using the contour integration,

∫ ∞
−∞

dνB
2π e

πνB

(
βR−βL
βL+βR

)
Γ(`B−iνB)Γ(`B+i(νB−ν1−ν2))

Γ(2`B) =

 1
2cos

(
π
2
βR−βL
βL+βR

)
2`B

`
−i(ν1+ν2)
B .

(5.37)

We get

Tr [ρ0MR(tR)ML(tL)]
∣∣∣∣
u=0 pole

=
(
λ

2π2

)4
(q;q)3

∞(1−q)−1+2`M+2`B
∫
dM dν1 dν2 (4M)`MM `B exp

(
2π
√
M−λ

3
2βM

)
×exp

(
−2πi

β
(tRν1+tLν2)

)

×Γ(`M−iν1)Γ(`M−iν2)Γ(i(ν1+ν2))
Γ(2`M ) ×

(
`B

2
√
M
e

2πtd
β

)−i(ν1+ν2)
 1

2cos
(
π
2
βR−βL
βL+βR

)
2`B

.

(5.38)

The u = i(y2 + y4 − y1 − y3) pole can likewise be evaluated. It is much smaller then u = 0
when we take td →∞ (it is the dominant pole when td → −∞).

We can now do the M integral, which is localised at the saddle-point

√
M0 ≡

πλ−
3
2

β
= πλ−

3
2T, (5.39)

and the final expression becomes

Tr [ρ0ML(tL)MR(tR)] = C

∫
dEL dER e

−itLEL−itRER

×
Γ
(
`M − iEL

2πT

)
Γ
(
`M − iER

2πT

)
Γ
(
i(EL+ER)

2πT

)
Γ(2`M ) ×

(
λ

3
2 `B

2πT e2πTtd

)−i(EL+ER)
2πT

,

(5.40)

where

EL ≡ λ
3
2ω2, ER ≡ λ

3
2ω1 (5.41)

and

C ≡
(
λ

2π2

)4
(q;q)3

∞(1−q)−1+2`M+2`B (4M0)`MM `B exp
(
π2λ−3/2T

) 1
2cos

(
π
2
βR−βL
βL+βR

)
2`B

(5.42)

Finally, we need to normalize by the partition function. Since we get the partition function
by taking `M = 0, and hence taking the saddle where E1 = E2 = 0 in the integral in the
above expression, we simply get

Tr[ρ] = C. (5.43)
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It therefore follows that the normalised two-point function in the low-energy
limit becomes

〈ML(tL)MR(tR)〉=
∫
dEL dER e

−itLEL−itRER

×
Γ
(
`M− iEL

2πT

)
Γ
(
`M− iER

2πT

)
Γ
(
i(EL+ER)

2πT

)
Γ(2`M ) ×

(
λ

3
2 `B

2πT e2πTtd

)−i(EL+ER)
2πT

,

(5.44)

which should be used in the next subsection, where we compare with the gravity computation.
A comment is in order. Our result indicates that the normalised two-point function

does not depend on the difference between β1 and β2. This is natural, because we demanded
that `M is much smaller than `B . In the dual gravity picture, changing β1− β2 corresponds
to changing the location of the end-of-the-worldline created by a particle of mass `M [34].
In the approximation we are using, this is too light to affect the two-point function
that we are computing. The effect will be visible at subleading order in the saddle-
point approximation, since the cancellation of

(
2 cos

(
π
2
βR−βL
βL+βR

))−2`B between the partition
function and the unnormalised two-point function is due to the approximation `M , νB � νM
in the νB integral.

5.4.3 Comparison to JT gravity

In the previous section we started from a particle going from the past region of the black
hole to the future region. This is slightly different than the construction in [6] where one
throws in the particle from the spatial (field theory) boundary. Still, in the limit td →∞
the particle grazes the horizon and we expect it to converge to the shock wave geometry.

The two-point function that we would like to compare is determined by the renormalised
geodesic distance d of two boundary points in the shockwave geometry,

〈ML(tL)MR(tR)〉 ∼ e−mprobed, (5.45)

where mprobe is the mass of a probe particle. Since JT gravity is an s-wave reduction of the
three-dimensional Einstein gravity [35], we can use the result from [6], which is

e−mprobed =
(

cosh
(
πTBH

(
t̃R − t̃L

))
+ αshock

2 e−πTBH(t̃R+t̃L)
)−2mprobe`AdS

. (5.46)

where the operators are inserted at times t̃L,R on the two sides, and TBH = RBH/2πl2AdS.
αshock quantifies the strength of the shock and is given by αshock = (E/MBH)e2πTBH t̃w

where t̃w is the time of shock and we take it to infinity as we take E/MBH → 0 keeping
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αshock fixed.10 By Fourier transforming in terms of t̃L,R, this can be rewritten as

e−mprobed = 1
(2πTBH)2

∫
dω̃L
2π

dω̃R
2π e−it̃Lω̃L−it̃Rω̃R (αshockwave)

− i(ω̃L+ω̃R)
2πTBH

×
Γ
(
mprobe`AdS − iω̃L

2πTBH

)
Γ
(
mprobe`AdS − iω̃R

2πTBH

)
Γ
(
i(ω̃L+ω̃R)

2πTBH

)
Γ (2mprobe`AdS)

(5.47)

This expression is of the same form as (5.44), which supports the claim that the density
matrix (5.32) is dual to the shockwave geomtry in JT gravity. The parameters between the
two are matched by

ω̃L,R ⇐⇒ EL,R

t̃L,R,w ⇐⇒ tL,R,d

mprobe`AdS ⇐⇒ `M

TBH ⇐⇒ T

αshockwave ⇐⇒
λ

3
2 `B

2πT e2πTtd

(5.48)

6 Summary and outlook

We have studied generalizations of the thermofield double state, looking for suitable
density matrices on a doubled Hilbert space that could correspond to smooth semi-classical
wormholes in a dual gravitational description. We argued that in generalising the thermofield
double state, it is natural to consider density matrices on the doubled Hilbert space, averaging
over microscopic details that do not affect the gravitational profile in the bulk dual. Studying
density matrices also makes it possible for us to translate from a state frame description to
the operator frame description, which allowed us to formulate a criterion for the existence
of a wormhole in the dual description in terms of the operator conversion properties in the
operator frame description.

We have considered these questions explicitly in the context of the SYK model and a
related random spin model. These models have a diagonal symmetry after averaging over
the random couplings — O(N) for the SYK model and SU(2)N o SN for the random spin
model — and we argued that we should consider density matrices invariant under these
symmetries up to explicit insertions of the Hamiltonian. We focused our considerations on
a one-parameter family of invariant density matrices in each model, (4.9) for the random
spin model and (4.21) for the SYK model.

The minimal length of the wormhole is simply encoded in the parameter of the density
matrix (and can also be simply related to its entropy). The ER bridge is encoded by

10The computation was done in the theory of three-dimensional gravity, but since they considered the
shockwave to be S-wave, we can do the dimensional reduction and then the result is the same as in JT gravity.
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correlations of the random terms of the Hamiltonians on the two sides, and the length is
encoded by the extent to which correlations are suppressed.

For the random spin model, we calculated the two-sided correlation function for probe
operators in this density matrix directly in the spin system, and found a nice correspondence
with previous gravitational calculations of shock wave deformations of the eternal black
hole in a low energy limit. The result is actually the same for the Majorana once we reduce
the latter to the same chord prescription, as in [19]. This provides a proof of principle
calculation demonstrating that our proposed density matrices have the expected properties
to correspond to semiclassical wormholes.

There are number of potential directions for further development:

• It would be interesting to further study the properties of our density matrices and
understand their dual gravitational description in more detail.

• The density matrices we considered are “single shot”: they correspond to a single
localised perturbation in the wormhole in the bulk. It would be interesting to extend
our study to the “multi shot” transition matrices introduced in section 4.3 and relate
to previous discussion of wormholes with multiple shocks in the bulk.

• From the point of view of the invariance property, there are many possible general-
izations of the simple density matrices we considered. The most general invariant
density matrices probably do not have a simple gravitational description, but there
may be other classes which do; it would be valuable to explore this space further.

• These density matrices correspond to wormholes with two boundaries. It would
be interesting to also understand the general description of multi-boundary worm-
holes [36–38], in particular if we could shed some further light on the nature of the
entanglement structure in the dual of these geometries. In the SYK or spin models, it
is straightforward to set up density matrices on a Hilbert space with k factors, but it is
less clear in this case what are the natural density matrices to consider. Our operator
conversion and invariance discussions do not have a straightforward extension.
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A Some comments on indices and the matching of operators between
right and left

Purifying the state with H† is a bit non-standard so we would like to go over the associated
index conventions.

1. Suppose we choose some basis in H — let us call it ea. The vector of coefficients
is then some ψa. The dual basis in H† is ea, and the vector of coefficients in H† is
then wa. With these convention, the matrices in (4.3) have the following index structure
(τI)aRbL , (τO)aLbR , (σR)aRbR , (σL)aLbL . The τ matrices used in (4.1) are τI ’s.

For example, an operator HR → HR, which is an object in HR ⊗H†R, is given by

Oabe1,a ⊗ e†1
b
∈ HR ⊗H†R , ψaea →

(
Oabψ

b
)
ea . (A.1)

An operator from H† to itself is given by

U a
b e
†,b ⊗ ea ∈ H† ⊗H, w′b = U a

b wa (A.2)

However, both O and U are really defined in the same class of objects and can be identified.
In short, an operator on H can be used to define an operator on H† when we act with the
other index on the vector of coefficients.11

2. Returning to our density matrices, G now carries the indices

GaRaLbRbL
(A.3)

where indices bL, aR are indices of a vector of coefficient in H†L ⊗HR, and aL, bR are the
indices in the dual space. This means that if we have several operators Oi : HR → HR and
several operator Uj : H†L → H

†
L then the trace which computes 〈O1 . . . OlU1 . . . Ul′〉G is

GaRaLbRbL
(O1)bRcR,1 . . . (Ol)

cR,l−1
aR

(U1)cL,1aL
. . . (Ul′)bLcL,l′−1

(A.4)

3. When we compute a two sided correlator of some Hermitian operator, then we are
given such an operator on H and we know what to insert in the right Hilbert space. As we
discussed before, an operator on HR can be used just as well to define an operator on the
left side Hilbert space H†L

Uab = Oab . (A.5)

So suppose we are given some Hermitian operator on HR. In an AdS/CFT context, in the
bulk it would correspond to a real field. Now take the field and move it to the left side.
The operator that we get is the operator just defined.

For example consider the Hamiltonian on HR, and it has a series of eigenvectors
and eigenvalues

Ha
b ψ

b
i = Eiψ

a (A.6)
11If we have a preferred basis and use it to define anti-unitary transformation which identifies vectors in
H and H†, then the definition above is the transpose in that basis — but we do not need to use such a map
in our conventions.
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Then the Hamiltonian as it acts on H†L is

wiaH
a
b = λiw

i
b (A.7)

where wi is the dual basis of ψi
wiaψ

a
j = δij (A.8)

So the prescription above indeed keeps the eigenvalues of the Hamiltonian (or any other
Hermitian operator).

4. Time evolution for H† looks a bit unusual in these conventions

States : ψa (t) =
(
e−iHt

)a
b
ψb (0) , wb (t) =wa (0)

(
e−iHt

)a
b

Operators : (O1 (t))ab =
(
eiHt

)a
c

(O (0))cd
(
e−iHt

)d
b
, (U2 (t))ab =

(
eiHt

)c
b
(U2 (0))dc (e−iHt)ad

(A.9)

Note that the identification (A.5) is such that it identifies Oab (t) = Uab (−t) as expected from
the overall invariance of the background when A = 1.

B Motivating restriction to G(A)

In our discussion of the Pauli spin model, we focused on the simple invariant density matrix
introduced in (4.8), which is simply the product of invariant density matrices for each of
the spins with the same value of A. In this appendix, we consider generalising this to allow
different values of A for different spins; this gives an SU(2)N invariant density matrix

ρ =
N∏
i=1

(
1 +Ai~σ

i · ~σi
)

4 . (B.1)

We can obtain SU(2)N o SN invariance by summing over all permutations of the indices
with equal weight. So we consider

ρ = 1
|SN |

∑
p∈SN

N∏
i=1

(1 +Ap(i)~σ
i · ~σi). (B.2)

This gives us an N parameter family of SU(2)N o SN invariant density matrices. Writ-
ing (B.2) more explicitly in terms of states, it is

ρ = 1
|SN |

∑
p∈SN

N∏
i=1

((
1− Âp(i)

)
|s〉〈s|+

Âp(i)
3

∑
m

|m, t〉〈m, t|
)
. (B.3)

Taking the product, there are
(N
K

)
3K states with K of the modes in triplet states. All these

states have the same probability pK ,

pK = 1
3K |SN |

∑
p∈SN

N−K∏
i=1

(1− Âp(i))
N∏

i=N−K+1
Âp(i). (B.4)
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We now argue that setting the Ai equal maximises the entropy of the density matrix,
for fixed strength of the correlation between the two boundaries, providing some additional
motivation for this choice.

For simplicity, we will give an explicit calculation where we consider just two possible
values for Âi, that is there are two values Â and B̂ which appear in NA, NB of the species
(NA + NB = N). We define αA,B = NA,B/N . It should be straightforward, although
probably messy calculationally, to extend the argument to more general cases.

We want to consider varying Â− B̂ holding fixed the “length of the wormhole” in the
dual description. We take the size of double-sided two-point correlations as a proxy for
this length, as in the bulk, these are related to the length of geodesics between the two
boundaries, as seen in (5.45). Let Mi be a random boundary operator of length p̃, according
to the definition in (3.7). Consider now the double sided 2-pt function 〈M1(t1)M2(t2)〉. On
the SYK side we can use appendix D to see that in the double scaled limit

〈M1(0)M2(t)〉 ∝ AαAp̃BαB p̃. (B.5)

Thus, our condition is that we vary Â− B̂ holding fixed

W = AαABαB = (A/B)αAB =
(

3/4− Â
3/4− B̂

)αA (
1− 4

3B̂
)
. (B.6)

We consider a density matrix

ρ= 1
|PN |

∑
p∈PN

((
1−Â

)
|s〉〈s|+ Â

3
∑
m

|m,t〉〈m,t|
)NA((

1−B̂
)
|s〉〈s|+ B̂

3
∑
m

|m,t〉〈m,t|
)NB

.

(B.7)
There are

(N
K

)
3K states with (N −K) states in the singlet and K states in the triplet. After

summing over permutations, all these states enter the density matrix ρ with probability
pK = p̃KF (z), where

p̃K =
(NB
K

)(N
K

)
3K

(1− Â)NA(1− B̂)NB−KB̂K , z = A(1−B)
B(1−A) ,

F (z) = 2F1(−K,−NA, 1−K +NB; z).
(B.8)

The entropy for the density matrix is

S = −
N∑
K=0

(
N

K

)
3KpK ln pK . (B.9)

We consider varying Â, B̂, holding W = ANABNB fixed. Let’s consider the variation
around some common value Â = B̂ = Ĉ. At linear order, Â = Ĉ + α−1

A γ, B̂ = Ĉ − α−1
B γ,

and the first derivative of the entropy is

∂S

∂γ
= 1
αA

∂S

∂Â
− 1
αB

∂S

∂B̂
= −

N∑
K=0

(
N

K

)
3K(1 + ln pK)( 1

αA

∂pK

∂Â
− 1
αB

∂pK

∂B̂
). (B.10)
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We have
∂pK

∂Â
= ∂p̃K

∂Â
F (z) + pK

∂z

∂Â

dF

dz
,

∂pK

∂B̂
= ∂p̃K

∂B̂
F (z) + pK

∂z

∂B̂

dF

dz
, (B.11)

and dF
dz (z = 1) = KNA

N F (z = 1). This gives, at γ = 0,

α−1
A

∂pK

∂Â
= α−1

B

∂pK

∂B̂
=
(
−N −K

(1− Ĉ)
+ K

Ĉ

)
pK . (B.12)

Thus, α−1
A

∂pK
∂Â
− α−1

B
∂pK
∂B̂

= 0 at γ = 0, and hence ∂S
∂γ = 0; γ = 0 is an extremum of the

entropy.
To see whether it’s a minimum or a maximum, we need to consider the second

derivative. First, work out the dependence on γ to second order: if Â = Ĉ + α−1
A γ + aγ2,

B̂ = Ĉ − α−1
B γ + bγ2, the variation will have constant ANABNB if

αAa+ αBb = − 4
6Cα

−1
A α−1

B . (B.13)

Now we correct our previous formula for the first derivative to
∂S

∂γ
= (α−1

A + 2aγ)∂S
∂Â

+ (−α−1
B + 2bγ) ∂S

∂B̂
, (B.14)

so
∂2S

∂γ2 |γ=0 = 2a∂S
∂Â

+ 2b ∂S
∂B̂

+ α−2
A

∂2S

∂Â2
− 2α−1

A α−1
B

∂2S

∂Â∂B̂
+ α−2

B

∂2S

∂B̂2
. (B.15)

After some calculation, we find

∂2S

∂γ2 |γ=0 = −2(NAa+NBb) ln
(

Ĉ

3(1− Ĉ)

)
= 8Nα−1

A α−1
B

6(1− 4
3 Ĉ)

ln
(

Ĉ

3(1− Ĉ)

)
. (B.16)

This gives a negative second derivative, indicating a maximum.
This gives a motivation for preferring the simple density matrix (4.8). We should note

however that the most general SU(2)N o SN invariant density matrix is more complicated
than (B.2). In the basis of singlet and triplet states, the general density invariant density
matrix is block diagonal, as in (B.3), but the states with K triplets do not form an irreducible
representation of the symmetry, so the most general density matrix is not proportional to
the identity on the space of states with K triplets. The irreducible representations of SN on
the space of states with K triplets are labelled by Young tableaux with up to two rows, and
the second row has up to L boxes, where L = min(K,N −K). So there are L+ 1 irreps in
the space of states with K triplets, and the general SU(2)N oSN invariant density matrix is

ρ =
N∑
K=0

L∑
I=0

pK,IρK,I , (B.17)

where ρK,I are the projectors onto the irreps. For N even, this has 1
4(N + 2)2 parameters

pK,I , subject to the overall constraint ∑K

∑
I pK,I = 1.12 We will not explore this more

general family of invariant density matrices here; we see no reason to expect these more
refined objects have a nice geometrical dual.

12For N odd, it’s 1
4 (N + 1)(N + 3).
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C O(N) invariant density matrices in the Majorana model

We here discuss the symmetry-invariant density matrices for the Majorana model. The
effective symmetry for the Majorana SYK model is O(N). This is the symmetry of rotating
the index of Majorana fermions in each space at the same time. One may also require that
the density matrix be symmetric under the exchange of spaces R and L.

Representation structure. Let us now briefly remind the reader the representation
structure of O(N) (we will use the notations of [39]). We can write the total space as
a tensor product of the left and right spaces. Restricting for concreteness to even N ,
then each Hilbert space is the sum of the two spin representations of O(N) with different
chiralities. We will refer to them as S and S′. So in total the doubled Hilbert space is
(S ⊕ S′)R ⊗ (S ⊕ S′)L.

There is one word of caution, however. Since χL and χR anticommutes rather than
commutes, χR also acts and flips the chirality of the left Hilbert space. Instead, (−)FLχR
commutes with χL and hence acts trivially on the left Hilbert space.

Next consider an SO(N)-invariant density matrix on this space. First recall that

S ⊗ S = [0]L + [2]L + . . . [N/2]+

S′ ⊗ S′ = [0]R + [2]R + . . . [N/2]−

S ⊗ S′ = [1]L + [3]L + . . .+ [N/2− 1]L

S′ ⊗ S = [1]R + [3]R + . . .+ [N/2− 1]R

(C.1)

where [. . .] are the antisymmetric tensor representations and [N/2]± is the (anti) self dual
tensor rep. See that under SO(N) there is no meaning to the subindex L/R, and the
representations are equivalent. This means that(

H†L ⊗HR
)

SO(N)
= 2[0] + 2[1] + . . .+ 2[N/2− 1] + [N/2]+ + [N/2]− (C.2)

so overall there are (N/2 + 2) different SO(N) representations in the product. Note
that the two seemingly degenerate antisymmetric tensor representations L/R are in fact
inequivalent13 if we think of them as the representations of the O(N) group. However, we
will not distinguish between [N/2]±. This gives us a total of N + 1 representations for an
O(N) invariant density matrix. We can label these representations by(

H†L ⊗HR
)
O(N)

= [0] + [1] + · · ·+ [N ] (C.3)

In order to build an O(N) invariant density matrix, we need to sum up all the states
in the same representation with same weight. Namely, the general density matrix can be
written as a linear sum of projectors on each representation,

ρ =
N∑
i=0

aiρi (C.4)

13And map to each other under the parity operator P ∈ O(N), such that the symmetric combination
[r]L + [r]R = [r]O(N) and the anti-symmetric combination [r]L − [r]R = [N − r]O(N).

– 40 –



J
H
E
P
0
8
(
2
0
2
2
)
0
5
1

where ρi denote the projectors on N + 1 different representations of O(N) included in the
tensor product, while ai are arbitrary positive coefficients, such that Tr[ρ] = 1.

Basis of O(N) invariant density matrices. Although ρi comprise a set which spans
the possible density matrices, there is more convenient option, which is similar to the Aσσ
that we used before. Consider the operator

Q = i
N∑
i=1

χiLχ
i
R. (C.5)

We will see that we can achieve any density matrix (C.4) by taking linear combinations of
Qn.

First of all, Q2 is related to a quadratic Casimir14 C2 of SO(N). Recalling that the
SO(N) generators Σij are given by Σij ≡ − i

2

(
[χiL, χ

j
L] + [χiR, χ

j
R]
)
, then

C2 ≡
1
4
∑
i<j

(
Σij
)2

= 1
2
∑
i<j

(
1 + χiLχ

i
Rχ

j
Lχ

j
R

)
= 1

4
(
N2 −Q2

)
. (C.6)

For the antisymmetric representation of rank 0 ≤ r ≤ N , C2 is C2 = Nr − r2, which means

Q2 =
∑
r

(N − 2r)2ρr. (C.7)

One should also note that Q2 is the same for rank r and rank N − r representations, and
that Q2 = 0 for the rank N/2 rep, irrespective of self-dual or anti-self-dual representations.

Now, since Q itself is an O(N) invariant operator, this can also be written as a sum of
projection operators onto individual representations. Also, since Q has a single left fermion
and a single right fermion we understand that it changes the chirality of the left and the
right spinor at the same time. We see that Q exchanges the two representations of the same
dimensionality which were not distinguished by Q2,

[l] ∈ SL ⊗ SR ↔ [l′] ∈ S′L ⊗ S′R

[l] ∈ SL ⊗ S′R ↔ [l′] ∈ S′L ⊗ SR
(C.8)

This means that there is a basis in which

Q = (N − 2r)
(
O 1

1 O

)
(C.9)

on a given representation of SO(N), and upon diagonalization, Q distinguishes the two
representations of the same dimensionality with the sign of their eigenvalues. We now
conclude that

Q =
N∑
r=0

(N − 2r)ρr. (C.10)

We used the Hermiticity of Q here. This means that Qn spans the complete basis for the
O(N) invariant density matrix, for 0 ≤ n ≤ N , thus establishing our claim above.

14The Pauli case G(A)’s can also be written using the quadratic casimir of SU(2).
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Convenient basis of O(N) invariant density matrices. We have seen that the O(N)
invariant general density matrix is a function of Q ≡∑i χ

i
Lχ

i
R,

ρ = F

[∑
i

χiLχ
i
R

]
. (C.11)

Since QN+1 ⊆ Sp{Q0, · · · , QNˇ, such a function is always of the form

ρ = F

[∑
i

χi1χ
i
2

]
=

N∑
i=0

aiQ
i, (C.12)

where Tr[ρ] = 1. One can also take a more convenient basis

ρ = F

[∑
i

χiLχ
i
R

]
=

N∑
k=0

bk exp [iαkQ]
Tr [exp [iαkQ]] (C.13)

where ∑N
k=0 bk = 1 to ensure Tr[ρ] = 1.

We can also rewrite this by using

exp [iαkQ]
Tr [exp [iαkQ]] =

∏
i

[
1 + iAkχ

i
Lχ

i
R

]
≡ ρ(Ak) (C.14)

where Ak = tanh(αk), so that

ρ = F

[∑
i

χiLχ
i
R

]
=

N∑
k=0

bkρ(Ak) (C.15)

The choice of Ak is arbitrary, but it is usually convenient to take it so that Ak = −1 + 2k
N .

In the limit of N →∞, the basis of O(N) invariant density matrices becomes ρ(A), and we
can take A continuously from −1 to 1.

D Crash course on chord diagrams

In this appendix we will review the chord diagram techniques for the models introduced
in 3, in the double scaling limit.

Consider the moments of the Hamiltonian (this is a re-iteration of (3.12))

m̂k = 2−Nmk = 2−N
〈
Tr(Hk)

〉
J
. (D.1)

Let us now see how the double scaled limit allows us to compute it.
We will proceed with the random spin model as it will be useful for later discussion,

but the discussion is very similar in the Majorana SYK model, and performed in full in [19].
We plug the Hamiltonian (3.5) into (3.12), in order to get

m̂k = 3−kp/2
(
N

p

)−k/2

2−N
∑

I1,··· ,Ik

〈I1 · · · Ik〉J Tr(σI1 · · ·σIk). (D.2)
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Due to the Gaussian distribution (3.3), the expectation value over the coefficients is given
by a sum over Wick contractions. This in turn means that the moment mk is given by all
possible traces involving k/2 operator strings σI , each of which appears twice in mk, as

mk = 3−kp/2
(
N

p

)−k/2

2−N
∑

Wick contractions

∑
I1,··· ,Ik/2

Tr(σI1σI2 · · ·σI1 · · · ). (D.3)

Each term in the sum over Wick contractions can be represented using a chord diagram.
Let each of the k operators σI define a node on a circle. Each node is labelled by an index
j = 1, · · · , k. We then connect the nodes in pairs, to designate which pairs have identical
sets of sites Ii. See figure 2 for an example of a chord diagram.

Now focus on a specific term in the double sum, i.e, a specific chord diagram (Wick
contraction) with some specific choice of indices. We compute the trace by commuting the
trace on each of the species. The obstruction to doing so is that some of the sites i appear
in more than a single index set I; if two chords do not intersect they contribute

Tr(σI1σI1σI2σI2), (D.4)

whereas if they intersect they give a factor proportional to

Tr(σI1σI2σI1σI2). (D.5)

If there is a non-trivial overlap I1 ∩ I2 6= ∅ then these factors will be different.
In the double scaled limit described above, [14] showed that there are two major

simplifications in computing this sum over chord diagrams:

1. The number of overlapping indices between any two index sets mij ≡ |Ii ∩ Ij | is
Poisson distributed with parameter p2/N .

2. With probability 1, the intersection of any three index sets vanishes, namely |Ii ∩
Ij ∩ Ik| = 0, for i 6= j 6= k. This statement is summarized in lemma (9) there, and
subsequent discussion.

These two statements are just a consquence of the double scaling p ∝
√
N , and they hold

in both the models described above.15

These simplifications imply the following. Consider now the sum over all index sets in
some specific chord diagram, namely

3−kp/2
(
N

p

)−k/2 ∑
I1,··· ,Ik/2

Tr(σI1σJ2 · · ·σJ1 · · · ), (D.6)

for some specific pairing, and start carrying out the traces in each of the species’s
Hilbert spaces.

If a species appears only in a single chord, then the trace contributes 1
3 · 3

∑
aTr(σaσa) =

1 to m̂k. Next, due to property (2) above, we can change the variables in the sum over
15This is what determines the prefactors (3.9) for the two cases.
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I1, · · · , Ik/2 to the size of the overlap between pairs of index sets mij = |Ii ∩ Ij |, with
i, j = 1, · · · , k/2, along with the measure which is the probability of having a given overlap.
Due to property (1) above, we know that this is exactly the Poisson distribution with
parameter p2/N . The

(N
p

)−k/2 factor precisely turns counting of appearances of a certain
type in the sum into probabilities of such events. Each overlap for a given intersection gives
a factor of

3−2
3∑

a,b=1

1
2Tr

(
σ(a)σ(b)σ(a)σ(b)

)
= −1

3 , (D.7)

relative to 1 when the ordering is aabb, which originates from a pair of non-intersecting
chords. Therefore, each intersection in the chord diagram gives a factor of

∞∑
m=0

(p2/N)m
m! e−p

2/N (−1/3)m = e−λ = q. (D.8)

This factor is given for each chord intersection in a diagram. This allows us to bring the
moment (3.12) to the final form

m̂k =
∑

CD(k)
q#intersections, (D.9)

where CD(k) represents chord diagrams with k nodes.

Transfer matrix method. Next we will use some linear algebra in order to compute
the weighted sum over all chord diagrams (D.9). Consider cutting the circle open at some
point and going sequentially along the line. We define the Hilbert space Haux, which is
spanned by {|n〉}∞n=0, along with the diagonal inner product 〈n|n′〉 = δnn′ . We can think of
|n〉 as a state representing n open chords, and a vector in the Hilbert space will be denoted
by ∑n≥0 vn|n〉.

Define T : Haux → Haux the Transfer matrix on Haux. We think of T as acting on a
state |n〉 by opening a new chord or closing an existing one, see figure 7. We can reproduce
the sum (D.9) if we decide that:

1. T always opens a new chord below all existing chords. This means that chords cannot
intersect when they open.

2. Whenever a chord closes and intersects another chord, it does so with a factor of q.

This means that as we go over a node, the coefficients vn change by

vn(i+ 1) = vn−1(i) + 1 · vn+1(i) + q · vn+1(i) + · · ·+ qn · vn+1(i)

= vn−1(i) + 1− qn+1

1− q vn+1(i).
(D.10)
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Figure 6: The vector |n〉 represents n stacked chords.

Figure 7: Acting with T .

In this basis the matrix T is given by

T =



0 1−q
1−q 0 0 · · ·

1 0 1−q2

1−q 0 · · ·
0 1 0 1−q3

1−q · · ·
0 0 1 0 · · ·
...

...
...

... . . .


(D.11)

Combining all of the above we see that in order to reproduce the sum appearing in (D.9) of
all chord diagrams of length k, we need to consider the element

mk =
〈

0|T k|0
〉
. (D.12)

The task of finding the moment mk reduces to diagonalizing the matrix T and taking
its k’th power. This is done in [18], and we will not repeat the derivation here, but merely
cite the results. We have

mk =
∫ π

0
dθ

(q; q)∞|(e2iθ; q)∞|2
2π ·

( 2 cos θ√
1− q

)k
, (D.13)

where (a; q)n is the q-Pochammer symbol, defined by

(a; q)n ≡
n−1∏
k=0

(
1− aqk

)
, (D.14)

and when n =∞ we extend the product to an infinite product. By resumming the mk into
the thermal partition function, we get

Tr[e−βH ] =
∫ π

0

dθ

2π (q, e±2iθ; q)∞ exp
[
−β 2 cos θ√

1− q

]
, (D.15)

where (a1, a2, . . . , ak; q)n ≡
∏k
i=1(ak; q)n, and (e±iθ; q) ≡ (e+iθ; q)(e−iθ; q). We refer the

reader to [19] for the computation of two and four-point functions.
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E Special functions

In this section we assume |q| < 1 and use the following variables:

x, y, xi ∈ [−1, 1], θ, φ, θi ∈ [0, π],
x = cos(θ), y = cosφ, xi = cos θi.

(E.1)

A q-Pochhammer symbol is defined as

(a; q)n ≡
n∏
k=1

(
1− aqk−1

)
, (E.2)

and we use a standard shorthand for their products

(a1, a2, · · · ; q)n = (a1; q)n(a2; q)n · · · . (E.3)

In these formulas n can be also set to infinity and the product converges.
A q-gamma function is defined via the q-Pochhammer symbol as

Γq(x) ≡ (q; q)∞
(qx; q)∞

(1− q)x, 0 < q < 1. (E.4)

The definition extends to |q| < 1 by using principal values of qx and (1− q)1−x. One can
show that limq→1− Γq(x) = Γ(x).

We will use the standard shorthand for a basic one-variable well-poised hyper-
geometric series

8W7 (a; b, c, d, e, f ; q, z) ≡
∞∑
n=0

(
a,±qa1/2, b, c, d, e, f ; q

)
n(

±a1/2, qa/b, qa/c, qa/d, qa/e, qa/f, q; q
)
n

zn. (E.5)

With an additional condition of very-well-poisedness

bcdefz = q2a2, (E.6)

this function posses a W (D5) symmetry in its parameters, which is a bit hidden in any
of the hypergeometric representations (E.5) (with just an W (A5) ≡ S5 part manifest).
The additional symmetry generator corresponds to a so-called (limiting case of) Bailey
transform [40]:

8W7

(
a; b, c, d, e, f ; q, a

2q2

bcdef

)
=

(
aq, aqef ,

λq
e ,

λq
f ; q

)
∞(

aq
e ,

aq
f , λq,

λq
ef ; q

)
∞ 8

W7

(
λ; λb

a
,
λc

a
,
λd

a
, e, f ; q, aq

ef

)
,

(E.7)

where λ ≡ qa2/bcd and we require∣∣∣∣aqef
∣∣∣∣ < 1,

∣∣∣∣λqef
∣∣∣∣ < 1 (E.8)

for convergence.
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The following Mellin-Barnes-Agarwal integral representation for very-well-poised 8W7
is known [40]

8W7
(
qA;qa, qb, qc, qd, qe;q,qB

)
= sin [π (a+b+c−A)]

×

(
q1+A, qa, qb, qc, q1+A−a−b, q1+A−b−c, q1+A−a−c, q1+A−d−e;q

)
∞

(q,qa+b+c−A, q1+A−a−b−c, q1+A−a, q1+A−b, q1+A−c, q1+A−d, q1+A−e;q)∞

×
∫ i∞

−i∞

ds

2πi
πqs

sin(πs)sin(π [a+b+c−A+s])

(
q1+s, q1+A−d+s, q1+A−e+s, qa+b+c−A+s;q

)
∞

(qa+s, qb+s, qc+s, q1+A−d−e+s;q)∞

for the parameters satisfying B = 2 + 2A− a− b− c− d− e, such that

ReB > 0, Re(s log q − log(sin πs sin π(a+ b+ c−A+ s))). (E.9)

If the last condition is not satisfied on the entire imaginary line, the contour should be
indented according to a usual Mellin-Barnes prescription (i.e. separating poles going to right
from going to the left). When phrased in terms of gamma and q-gamma functions, the above
integral representation is immediately seen to reduce in q → 1− limit to a Mellin-Barnes
representation of the corresponding (undeformed) well-poised hypergeometric 7F6(1), i.e. a
Wilson function [41] (up to appropriate Pochhammer factors).

E.1 R-matrix, integral form

Here we would like to obtain a convenient integral form for (5.25). First, we rewrite it as

∫ π

0

4∏
j=1

{
dθj
2π

(
q,e±2iθj ;q

)
∞

}
e−β1(E(θ4)+E(θ3)−β2(E(θ2)+E(θ1))

×
( (

B2;q
)
∞

(Bei(±θ1±θ4);q)∞

(
B2;q

)
∞

(Bei(±θ2±θ3);q)∞

(
q̃2;q

)
∞

(q̃ei(±θ1±θ2);q)∞

(
q̃2;q

)
∞

(q̃ei(±θ3±θ4);q)∞

)1/2

R
(q)
θ4θ2

[
θ3 `M
θ1 `B

]
,

(E.10)

with

R
(q)
θ4θ2

[
θ3 `M
θ1 `B

]
= (Be−i(θ2+θ3), Bq̃ei(θ3±θ1), Bq̃ei(θ2±θ4); q)∞

(Bq̃2ei(θ2+θ3); q)∞

× (q̃2; q)∞
[(Bei(±θ2±θ3), Bei(±θ1±θ4), q̃ei(±θ1±θ2),q̃ei(±θ3±θ4) ]1/2

×8 W7

(
Bq̃2ei(θ2+θ3)

q
;Bei(θ2+θ3), q̃ei(θ2±θ1), q̃ei(θ3±θ4); q,Be−i(θ2+θ3)

)
.

(E.11)
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Let us now use the In section 6 of [19], it is shown how to use the symmetries of the 8W7
function, as well as the integral representation (E.9) in order to write the R-matrix as

R
(q)
θ4θ2

[
θ3 `M
θ1 `B

]

= − (1− q)−2

Γ(1 + `M − `B + iy1 − iy3)Γ(`B − `M + iy3 − iy1)
1(

q, qq̃B e
i(θ1−θ3), Bq̃ e

i(θ3−θ1); q
)
∞

×
√

(Bei(θ3±θ2), Bei(−θ1±θ4), q̃ei(θ1±θ2), q̃ei(−θ3±θ4))∞
(Bei(−θ3±θ2), Bei(θ1±θ4), q̃ei(−θ1±θ2), q̃ei(θ3±θ4))∞

×
∫
C

ds

2πiq
sΓ(1 + s)Γ(−s)Γ(s+ 1− `B + `M + iy1 − iy3)Γ(−s+ `B − `M − iy1 + iy2)

× Γq(s+ `M + iy1 − iy2)Γq(s+ `M − iy3 ± iy4)Γq(s+ `M + iy1 + iy2)
Γq(s+ 1)Γq(s+ `B + `M + iy1 − iy3)Γq(s+ 2`M )Γq(s+ 1 + `M − `B + iy1 − iy3) ,

(E.12)

where the yi are defined in (5.26). Notice we use these variables even though we don’t
necessarily restrict ourselves to the low energy limit. The contour C is a deformation of
the contour going along the imaginary axis, such that the poles that come from Gamma
functions with (+s) arguments are to the left of C, and those that come from Gamma (−s)
are to the right of it (a usual Mellin-Barnes prescription). Then we shift the integration
variable s→ s− `+ iy3 − iy4 (with no other contributions because of the Mellin-Barnes
prescription) and express all the q-Pochhammers in terms of Γq, to get

R
(q)
θ4θ2

[
θ3 `M
θ1 `B

]

=− 1
(q;q)3

∞(1−q)3 ·
Γq(1+`M−`B+iy1−iy3)Γq(`B−`M+iy3−iy1)
Γ(1+`M−`B+iy1−iy3)Γ(`B−`M+iy3−iy1)√

Γq(`B−iy3±iy2)Γq(`B+iy1±iy4)Γq(`M−iy1±iy2)Γq(`M+iy3±iy4)
Γq(`B+iy3±iy2)Γq(`B−iy1±iy4)Γq(`M+iy1±iy2)Γq(`M−iy3±iy4)∫
C

ds

2πiq
s−`M+iy3−iy4 Γ(s+1−`M+iy3−iy4)Γ(s+1−`B+iy1−iy4)

Γq(s+1−`M+iy3−iy4)Γq(s+1−`B+iy1−iy4)

Γq(s)Γq(s−2iy4)Γq(s+iy1+iy3−iy4±iy2)Γ(−s+`M−iy3+iy4)Γ(−s+`B+iy4−iy1)
Γq(s+`B+iy1−iy4)Γq(s+`M+iy3−iy4) .

(E.13)
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