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Abstract
We present a construction of partial spread bent functions using subspaces generated by
linear recurring sequences (LRS). We first show that the kernels of the linear mappings
defined by two LRS have a trivial intersection if and only if their feedback polynomials are
relatively prime. Then, we characterize the appropriate parameters for a family of pairwise
coprime polynomials to generate a partial spread required for the support of a bent function,
showing that such families exist if and only if the degrees of the underlying polynomials are
either 1 or 2. We then count the resulting sets of polynomials and prove that, for degree 1,
our LRS construction coincides with the Desarguesian partial spread. Finally, we perform
a computer search of all PS− and PS+ bent functions of n = 8 variables generated by
our construction and compute their 2-ranks. The results show that many of these functions
defined by polynomials of degree d = 2 are not EA-equivalent to any Maiorana–McFarland
or Desarguesian partial spread function.
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1 Introduction

Boolean functions play an essential role in cryptography, coding theory, and combinatorial
designs [15]. Among them, bent functions are of particular interest since they lie at the highest
possible Hamming distance from the set of all affine functions, or equivalently they reach the
highest possible nonlinearity. Even though bent functions are unbalanced, highly nonlinear
balanced functions can be derived from them [8]. For this reason, bent functions have been
used in the past for designing stream and block ciphers since highly nonlinear Boolean
functions are useful to withstand fast-correlation and linear cryptanalysis attacks [4]. Besides
cryptography, bent functions are also studied in coding theory, as they are connected to the
covering radius of first-order Reed–Muller codes, whose codewords are affine functions.

Over the last decades, many constructions of bent functions have been described in the
related literature (see, e.g., [3, 4, 15] for a survey of the main ones). A distinction is usually
made between primary and secondary constructions. Primary constructions build sets of bent
functions from scratch, usually by leveraging on related combinatorial structures. Some of the
most well-known primary constructions for bent functions include theMaiorana–McFarland
construction [14], which exploits permutations over Fn

2, and Dillon’s construction [7], based
on the class of partial spreads PS. On the contrary, secondary constructions build new bent
functions starting from existing ones. For example, the Rothaus’s construction [17] takes
three bent functions of n variables whose sum is also bent and yields a bent function of n +2
variables.

The search for novel methods to design bent functions is still an interesting and active
research area nowadays, for a twofold motivation:

– Discovering new functions Notwithstanding the multitude of existing constructions, they
only cover a tiny fraction of the total number of bent functions [15], and the complete
enumeration of bent functions remains an open question for n ≥ 10 variables [16].
Therefore, finding new constructions that yield previously unknown bent functions is still
an interesting research avenue to pursue. However, one must remark that this direction
is becoming increasingly difficult precisely because many constructions are already in
place. This makes the discovery of new bent functions both unlikely and cumbersome
since, in principle, one has to check inequivalence against a large number of known
classes.

– Finding new constructions for known functions Novel constructions that generate already
known bent functions are an interesting research line as well, for several reasons. For
example, from an implementation point of view, such constructions could highlight more
efficient ways to design the corresponding bent functions other than by classic lookup
tables. More generally, a novel construction could provide a new perspective on under-
standing the structure of a known class of bent functions and spawning new research
questions linked both to the construction of new bent functions and other interesting
combinatorial objects. As we will argue in the following, we deem our work an example
of this approach.

In this paper, we present a new primary construction of bent functions in the partial spread
class PS by using the subspaces spanned by Linear Recurring Sequences (LRS) over finite
fields. The main idea is to define a linear mapping through the feedback polynomial of an
LRS and then to use its kernel as a subspace in a partial spread. The main contributions of
this paper can be summarized as follows:

– We prove that the kernels of two linear mappings have a trivial intersection if and only
if the feedback polynomials of their LRS are pairwise coprime.
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Bent functions in the partial spread class 65

– We show that a family of pairwise coprime polynomials large enough to define a partial
spread for a bent function exists if and only if the degree of the involved polynomials is
either d = 1 or d = 2, assuming that all polynomials have a nonzero constant term.

– We prove that for degree d = 1, the functions given by our LRS construction coincide
with the Desarguesian partial spread class.

– We perform a computer search of all bent functions of n = 6, 8 variables generated by
our LRS construction, remarking that they always have maximal degree n/2. While for
PS− functions this is expected, the reason for PS+ functions lies in the fact that the
corresponding partial spreads are not maximal.

– We analyze the distribution of the 2-ranks for the LRS bent functions of n = 8 variables.
For degree d = 1, we independently verify and extend the distribution reported byWeng
et al. [19] for functions in the Desarguesian partial spread. For degree d = 2, we remark
that many of the obtained bent functions have a rank higher than 42. Thus, they are not
EA-equivalent to any Maiorana–McFarland or Desarguesian partial spread function.

The remainder of this work is structured as follows. Section 2 reviews the background
definitions on bent functions and linear recurring sequences. Section 3 defines our LRS
construction, proving that the kernels of two LRS linear mappings have a trivial intersection
if and only if the associated feedback polynomials are coprime. Section 4 characterizes
the families of pairwise coprime polynomials that are required for the LRS construction
and provides the corresponding counting result. Section 5 shows that the LRS construction
equals the Desarguesian partial spread construction when using polynomials of degree 1.
Section 6 discusses the computer search experiments for bent functions of n = 6, 8 variables
generated by the LRS construction, reporting the distribution of the 2-ranks. Finally, Sect. 7
summarizes the main results of this paper, points out several avenues for future research, and
discusses the connection with the cellular automata approach used in [9].

2 Background

This section covers the necessary background notions used throughout the paper. We begin
by introducing the basic definitions and results related to bent Boolean functions, describing
the main known primary constructions (namely, the Maiorana–McFarland construction and
Dillon’s partial spread class), the extended affine equivalence relation, and a method to check
the inequivalence of a bent function against a class of other known functions. We then move
to linear recurring sequences and their vector spaces, representing the main combinatorial
objects used to define our new construction of bent functions.

2.1 Bent functions

We refer the reader to [4] for a thorough treatment of the results recalled in this section
about Boolean functions. In what follows, let Fq be the finite field with q elements (where
q = pα is a power of a prime number) and denote by F

n
q the n-dimensional vector space

over Fq , with 0 being its null vector. For q = 2, sum and multiplication on F2 correspond
to the XOR and logical AND operations, respectively. Following the literature convention
about Boolean functions, we will denote the sum operation over F2 by ⊕, while for a generic
finite field Fq we will adopt the normal sum symbol +. On the other hand, we will denote
the multiplication operation in all finite fields by concatenation of the operands. A Boolean
function of n variables is amapping f : Fn

2 → F2. Themost naturalway to uniquely represent
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66 M. Gadouleau et al.

a Boolean function f is by means of its truth table, which is the vector � f ∈ F
2n

2 that lists
the output of f evaluated over all 2n input vectors x ∈ F

n
2 in lexicographic order. The support

of f is the subset of input vectors that map to 1, that is, supp( f ) = {x ∈ F
n
2 : f (x) �= 0},

while the Hamming weight of f is defined as wH ( f ) = |supp( f )|, i.e., the number of ones
in the truth table of f . Functions with the Hamming weight equal to wH = 2n−1 are also
called balanced since their truth table is composed of an equal number of zeros and ones,
and they play an important role in the design of stream and block ciphers [4]. The polarity
truth table � f̂ of f : Fn

2 → F2 is the truth table of the function f̂ : Fn
2 → {−1,+1} defined

as f̂ (x) = (−1) f (x) for all x ∈ F
n
2.

The Algebraic Normal Form (ANF) is another useful representation that expresses a
Boolean function f : F

n
2 → F2 as a multivariate polynomial over the quotient ring

F2[x1, . . . , xn]/(x21 ⊕ x1, . . . , x2n ⊕ xn):

Pf (x) =
⊕

I∈P([n])
aI

(
∏

i∈I

xi

)
, (1)

with P([n]) = 2[n] being the power set of [n] = {1, . . . , n}, and aI being the coefficient
of the monomial defined by the subset I ∈ P([n]). The algebraic degree of f is defined
as the cardinality of the largest subset I such that aI �= 0. In particular, affine functions are
defined as those Boolean functions with degree at most 1. Notice that the ANF is a unique
representation of a Boolean function, and in particular, one can retrieve the truth table back
from the ANF coefficients through the Möbius transform:

f (x) =
⊕

I∈P[n]:I⊆supp(x)

aI , (2)

A third common method to uniquely represent Boolean functions used in cryptography is
the Walsh–Hadamard transform. Formally, the Walsh–Hadamard transform of a Boolean
function f : Fn

2 → F2 is the mapping W f : Fn
2 → Z defined for all a ∈ F

n
2 as

W f (a) =
∑

x∈Fn
2

(−1) f (x)⊕a·x , (3)

where a · x = ⊕n
i=1 ai xi is the scalar product between a and x . One may easily see that

a function f is balanced if and only if its Walsh–Hadamard transform vanishes on the null
vector, i.e., if and only if W f (0) = 0. In particular, the Walsh–Hadamard coefficient W f (a)

quantifies the correlation between f and the linear function a ·x . The lower the absolute value
of W f (a), the lower will be the correlation of f from a · x (and from its affine counterpart
1 ⊕ a · x), and thus the higher will be the Hamming distance between the truth tables of the
two functions. In particular, the nonlinearity of a Boolean function f : Fn

2 → F2 is defined
as the minimum Hamming distance of f from the set of all affine functions, and it can be
computed as follows:

Nl f = 2n−1 − 1

2
max
a∈Fn

2

(|W f (a)|) . (4)

Therefore, a Boolean function with high nonlinearity must be characterized by a low
maximum absolute value among its Walsh–Hadamard coefficients. Parseval’s relation states
that the sum of the squared Walsh–Hadamard spectrum is constant for any Boolean function
f : Fn

2 → F2, and it equals: ∑

a∈Fn
2

[W f (a)]2 = 22n . (5)
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Bent functions in the partial spread class 67

From Parseval’s relation, one can remark that the lowest maximum absolute value of the
Walsh–Hadamard transform occurs when the constant 22n is uniformly “spread” among all
2n coefficients, that is, when each coefficient in absolute value equals 2

n
2 . This observation

yields the covering radius bound for the nonlinearity of an n-variable Boolean function:

Nl f ≤ 2n−1 − 2
n
2 −1 . (6)

Functions satisfying with equality Eq. (6)—or equivalently, whose Walsh–Hadamard coef-
ficients all equal 2

n
2 in absolute value – are called bent functions. Such functions exist only

when n is even since the Walsh–Hadamard coefficients must be integer numbers. Although
achieving the highest possible nonlinearity granted by the covering radius bound, bent func-
tions cannot be employed directly in the design of stream or block ciphers since they are
always unbalanced. As a matter of fact, we have W f (0) = ±2

n
2 for any bent function, which

means that its Hamming weight is 2n−1 ± 2
n
2 −1.

There are several ways to construct bent functions proposed in the literature. Usually,
such methods are divided in primary and secondary constructions. Recall that a primary
construction builds “from scratch” new bent functions by leveraging other kinds of com-
binatorial objects. On the other hand, a secondary construction derives new bent functions
starting from already existing ones. This paper focuses on the former case.

One of the main primary constructions investigated in the literature is the Maiorana–
McFarland construction, which is the set M of all Boolean functions f : Fn

2 → F2, with
n = 2m, defined as:

f (x, y) = x · π(y) ⊕ g(y) , (7)

for all x, y ∈ F
m
2 ,whereπ : Fm

2 → F
m
2 is anypermutationofFm

2 and g is anyBoolean function
on Fm

2 . Therefore, for any m ∈ N there are (2m)! · 22m
bent functions of 2m variables in M.

A second well-known primary construction that gives rise to a large number of bent
functions was introduced by Dillon in his PhD thesis [7], and it is based on partial spreads. A
partial spread ofFn

2,with n = 2m, is a family P ofm-dimensional subspaces S1, S2, . . . , St ⊆
F

n
2 with pairwise trivial intersection (i.e., for all i �= j one has Si ∩ S j = {0}). Further, a

partial spread is a spread if the union of its subspaces results in the whole space Fn
2. The main

result proved by Dillon is that one can construct a bent function f : Fn
2 → F2, with n = 2m,

from a partial spread P of Fn
2 by defining the support of f as the union of the subspaces

in P . Remark that the partial spread must be large enough to reach the Hamming weight
required for a bent function. In particular, a bent function f : Fn

2 → F2, n = 2m, belongs to
the class PS− if f (0) = 0 and its support is the union of t = 2m−1 subspaces of a partial
spread P of Fn

2. Functions in the PS− class reach the maximum possible algebraic degree
for a bent function of n = 2m variables, namely m. Bent functions belonging to the class
PS+ are defined similarly, with f (0) = 1 and their support being the union of t = 2m−1 +1
m-dimensional subspaces of a partial spread of Fn

2. The union of PS− and PS+ gives the
whole partial spread class PS. We formally summarize this in the following definition:

Definition 1 Let n = 2m. A bent function f : Fn
2 → F2 is of type PS− (respectively, PS+)

if its support is defined as:

supp( f ) =
⋃

S∈P

(S \ {0})
(
respectively, supp( f ) =

⋃

S∈P

S

)
, (8)

where P is a partial spread of size 2m−1 (respectively, 2m−1 + 1).
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Hence, from a practical point of view, the support of a PS+ function is obtained by taking
the union of the elements in the partial spread. For a PS− function, the support is also the
union, with the exception that the null vector is always discarded from the elements in the
partial spread.

Contrarily to PS−, functions in PS+ can have algebraic degrees other than m. More
precisely, this depends on whether a PS+ function is defined by a non-maximal partial
spread (i.e., a partial spread that can be extended by adjoining another subspace) or not. In
the former case, the resulting PS+ function also has degree m. In the latter, the degree might
be different, and in particular, when m is even, PS+ contains the quadratic bent functions.
We summarize the relationship between algebraic degree and PS bent functions in the result
below, whose proof can be found in Dillon’s thesis [7]:

Proposition 1 Let f : Fn
2 → F2, with n = 2m, be a bent function in the partial spread class

PS. Then, the following hold:

– If f ∈ PS−, then f has algebraic degree m.
– If f ∈ PS+ and its partial spread is not maximal, then f has degree m.

Currently, the structure of the class PS is still far from being completely characterized,
and several methods have been investigated to define partial spreads that are large enough
to obtain PS− and PS+ bent functions. Here, we introduce only the Desarguesian spread,
which is perhaps the best-known example of spread used to construct PS− bent functions
(see, e.g., [6] for a general overview of other partial spreads). Given n = 2m, one can use the
bivariate form to represent the Desarguesian spread [15]. The vector space Fn

2 is identified
with the Cartesian product F2m × F2m , and the Desarguesian spread is defined as:

DS = {Ea ⊆ F2m × F2m : a ∈ F2m } ∪ E∞ , where :
Ea = {(x, ax) ∈ F2m × F2m : x ∈ F2m } ,

E∞ = {(0, y) ∈ F2m × F2m : y ∈ F2m } . (9)

Then, any subset of 2m−1 elements of DS is a partial spread whose union defines the support
of a bent function. More in particular, these functions belong to the so-called class PSap

(where ap stands for “affine plane”), which is a subset of PS−. Besides reaching maximal
degree n/2, functions in the PSap class have the additional interesting property of being
hyper-bent, as shown, e.g., in [5]. A Boolean function f : F2n → F2, n even, is called
hyper-bent if the function f (xi ) is bent for all exponent i coprime with 2n −1 [20]. As such,
hyper-bent functions have the highest possible distance not only from all affine functions
(which corresponds to the case i = 1) but also from all bijective monomial functions.

Given the great variety of primary constructions available in the literature, a crucial ques-
tion when investigating a new construction is to assess whether the bent functions produced
by it are essentially different from those belonging to other known classes. This is accom-
plished by using equivalence relations. The underlying idea is to classify the bent functions
produced by the known constructions up to equivalence and then verify if the bent functions
generated by a new construction belong to any of these classes or to different ones. The main
equivalence relation used in this context is the extended affine equivalence (EA-equivalence).
TwoBoolean functions f , g : Fn

2 → F2 are EA-equivalent if there exists a linear permutation
L : Fn

2 → F
n
2, two vectors u, v ∈ F

n
2, and an element c ∈ F2 such that, for all x ∈ F

n
2,

g(x) = f (L(x) ⊕ u) ⊕ (v · x) ⊕ c . (10)

A bent function f : Fn
2 → F2, with n = 2m, belongs to the completed Maiorana–McFarland

class M# if it is EA-equivalent to a function in M.
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Bent functions in the partial spread class 69

One possible method to check the EA-inequivalence of a function against other classes
resorts to the notion of rank, introduced by Weng et al. [19]. More precisely, the 2-rank of
a Boolean function f : Fn

2 → F2 is the rank of the 2n × 2n binary matrix A f whose rows
and columns are indexed by the vectors of Fn

2, and which is defined as A f (x, y) = f (x ⊕ y)

for all x, y ∈ F
n
2. In particular, if f is a bent function, then A f is the incidence matrix of

a symmetric 2-design, and it is called the translate design of the difference set, which is
the support of f . Weng et al. proved that EA-equivalent bent functions have the same rank.
Therefore, one can prove that two bent functions are not equivalent by checking that their
ranks differ. The paper by Weng et al. further characterizes the lower and upper bounds for
different types of bent functions. In particular, the rank of any Maiorana–McFarland bent
function of n = 2m variables ranges between L BM = 2m+2 andU BM = 2m+1−2. On the
other hand, bent functions defined over the Desarguesian partial spread have ranks between
L BDS = 2m+1−2 andU BDS = ∑m

i=0

(m
i

)
2min{i,m−i}. An interesting consequence of the fact

that the two intervals overlap only on 2m+1 − 2 is that almost all bent functions arising from
the Desarguesian partial spread class are inequivalent to any Maiorana–McFarland function.
Moreover, one can show that a bent function is inequivalent to all Maiorana–McFarland and
Desarguesian spread functions by showing that its rank is higher than U BDS .

2.2 Linear recurring sequences

This section covers only the basic notions of linear recurring sequences essential to present
our construction. An excellent overview of this topic can be found in the book by Lidl and
Niederreiter on finite fields [11].

Let d ∈ N, and a, a0, . . . , ad−1 ∈ Fq . A sequence {xi }i∈N of elements in Fq is called a
linear recurring sequence (LRS) of order d if it satisfies the following relation:

a + a0xi + a1xi+1 + · · · + ad−1xi+d−1 = xi+d , (11)

for all i ∈ N. The first d elements x0, . . . , xd−1 act as the initial values of the sequence, while
all subsequent ones are determined by applying the linear recurrence defined in Eq. (11). In
what follows, we will assume that a = 0, i.e., that the LRS is homogeneous, and that Fq is a
field of characteristic 2. In this case, the feedback polynomial of the LRS (11) can be defined
as:

f (X) = a0 + a1X + · · · ad−1Xd−1 + Xd , (12)

that is, f (X) is the monic polynomial in Fq [X ] of degree d whose monomials are defined
by the coefficients of the LRS.

It is known that the family S( f (X)) of all sequences {xi } satisfying the linear recurrence
with feedback polynomial f (X) as in (12) forms a d-dimensional vector space over Fq (see
Chapter 6, Sect. 5 in [11]). In this work, we consider the projection of such sequences onto
their first 2d coordinates. Therefore, we obtain a subspace S f ⊆ F

2d
q of dimension d which

is the kernel of the linear map F : F2d
q → F

d
q defined as:

F(x0, . . . , x2d−1)i = a0xi + a1xi+1 + ... + ad−1xi+d−1 + xi+d , (13)
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for all output coordinates i ∈ {0, . . . , d − 1}. Since the map F is linear, we can describe it
as F(x) = MF · x�, where MF is the d × 2d matrix of the form:

MF =

⎛

⎜⎜⎜⎝

a0 · · · ad−1 1 0 · · · · · · · · · · · · 0
0 a0 · · · ad−1 1 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

...

0 · · · · · · · · · · · · 0 a0 · · · ad−1 1

⎞

⎟⎟⎟⎠ , (14)

Therefore, we can compactly represent the linear map F by the coefficients of the feedback
polynomial f , i.e., f 
→ MF . Notice that MF has the form of the parity-check matrix of
a cyclic code, with f playing the role of the parity check polynomial. However, the code
associated with f is not cyclic in general. This happens, in particular, if and only if the
generator polynomial (which is defined as the reciprocal of f ) divides X N − 1, where
N = 2d . On the other hand, evaluating F on a particular vector x ∈ F

2d
q corresponds

to computing the syndrome of x . In what follows, we will also consider the special cases
where the feedback polynomial is respectively Xd and 1. The former is still a feedback
polynomial of degree d—although not a typical one—and thus, the definition of the d × 2d
matrix in Eq. (14) still holds. In particular, the linear map F is defined by the matrix MF =
[0|I ], where I denotes the d × d identity matrix; the corresponding kernel is the subspace
{(x0, . . . , xd−1, 0, . . . , 0) : xi ∈ Fq}, i.e. all those vectors whose right half is set to 0. On
the other hand, the case f (X) = 1 is different since here we have a polynomial of degree 0.
However, we can still define a d × 2d matrix with d ≥ 1 of the form (14) as MF = [I |0].
The function F maps each vector of dimension 2d to its first d coordinates. Therefore,
symmetrically to the case of Xd , the kernel of the linear map for f (X) = 1 is the subspace
{(0, . . . , 0, xd , . . . x2d−1) : xi ∈ Fq}, that is, all vectors whose left half is set to 0.

Remark 1 Suppose that we have a feedback polynomial g(X) of degree d ≥ 1 and f (X) = 1.
Then, the kernels of the linear maps G and F respectively defined by g(X) and f (X) have
a trivial intersection. In fact, the rightmost d coordinates of the vectors in the kernel of G
are linear functions of the leftmost d ones. The only vector in this kernel that also has its left
half equal to 0 is thus the null vector.

As a final note, remark that F may also be regarded as a linear cellular automaton
(CA) [13]. The connection between the LRS used here to define bent functions, and the
CA approach will be briefly discussed in the conclusions.

3 The LRS construction

The first step of our construction requires characterizing when the kernels of two LRS sub-
spaces have a trivial intersection. The next result shows that this is equivalent to computing
the greatest common divisor of the respective feedback polynomials.

Lemma 1 Let f , g ∈ Fq [X ] be two polynomials over Fq both of degree d ≥ 1, respectively
defined as:

f (X) = a0 + a1X + · · · + ad−1Xd−1 + Xd , (15)

g(X) = b0 + b1X + · · · + bd−1Xd−1 + Xd , (16)
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Bent functions in the partial spread class 71

with ai , bi ∈ Fq . Further, let F, G : F2d
q → F

d
q be the linear maps defined by the polynomials

f and g, respectively. Then, the kernels of F and G have trivial intersection if and only if
gcd( f , g) = 1, i.e., if and only if f and g are coprime.

Proof The linear maps F and G are respectively defined as F(x) = MF · x� and G(x) =
MG · x� for all x ∈ F

2d
q , where MF and MG are the two d × 2d matrices of the form (14).

Define now the linear function H : F2d
q → F

2d
q as H = MH · x� for all x ∈ F

2d
q , where

MH =
(

MF

MG

)
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 · · · ad−1 1 0 · · · · · · · · · · · · 0
0 a0 · · · ad−1 1 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

...

0 · · · · · · · · · · · · 0 a0 · · · ad−1 1
b0 · · · bd−1 1 0 · · · · · · · · · · · · 0
0 b0 · · · bd−1 1 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

...

0 · · · · · · · · · · · · 0 b0 · · · bd−1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

In other words, the matrix MH is simply the superposition of the two matrices MF and
MG . It is clear that the nullspace of MH is the intersection of the nullspaces of MF and
MG . Hence, the kernels of F and G have trivial intersection if and only if MH is invertible.
Remark that MH is also the Sylvester matrix of the polynomials f and g. It is a well-known
fact that the determinant of the Sylvester matrix (also called the resultant in this context) is
nonzero if and only if f and g do not have a common factor [10]. Therefore, one has that
ker(F) ∩ ker(G) = {0} if and only if f and g are coprime. ��

Consequently, we need to find a family of pairwise coprime polynomials that is large
enough to define a bent function. Following what we recalled in Sect. 2.1, for aPS− function
we need t = 2m−1 coprime polynomials of degree d . To this aim, let us take the finite field
Fq with q = 2l , for l ∈ N. This is because a partial spread for a bent function must be
defined over the vector space Fn

2, n = 2m. In particular, each vector x ∈ F
2d
2l must also be

converted into a corresponding binary vector x ∈ F
n
2 since the union of the vectors in the

partial spread will form the support of the bent function. In other words, we require that
ld = m. By identifying F2l with the vector space Fl

2, a vector x in F
2d
2l is a 2d-tuple whose

components are in turn binary l-tuples:

x = ((x0,0, . . . , x0,l−1), . . . , (x2d−1,0, . . . , x2d−1,l−1)) . (18)

We now associate to each element x ∈ F
2d
2l an element of F2ld

2 through the flattening operator

ϕ : F2d
2l → F

2ld
2 , which simply drops the parentheses inside the vector representation of x :

ϕ(x) = (x0,0, . . . , x0,l−1, . . . , x2d−1,0, . . . , x2d−1,l−1) . (19)

It is then easy to see that ϕ is bijective. We can now characterize the partial spreads arising
from our construction:

Theorem 1 Let m, l, d ∈ N such that m = ld. If there are t = 2ld−1 (respectively, t =
2ld−1 + 1) coprime polynomials of degree d ≥ 1 over Fq where q = 2l , possibly including
the constant polynomial 1 of degree 0, then there exists a partial spread P over Fn

2 , n = 2m,
whose union of its subspaces with the null vector discarded (respectively, with the null vector
included) defines a bent function in the class PS− (respectively, PS+).
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Proof Let us first consider the case where f1, . . . , ft are all coprime polynomials of degree
d ≥ 1 over Fq , and let F1, . . . , Ft : F2d

q → F
d
q be the corresponding linear maps associated

to them. Define the following family of subspaces of Fn
2, with n = 2m = 2ld:

P = {�(ker(Fi )) ⊆ F
n
2 : 1 ≤ i ≤ t} , (20)

where �(ker(Fi )) = {y ∈ F
n
2 : y = ϕ(x), x ∈ ker(Fi )}, for 1 ≤ i ≤ t . In other terms,

the subspace �(ker(Fi )) is obtained by taking the kernel of Fi and applying the flattening
operator to each vector in it. Since the polynomials f1, . . . , ft are pairwise coprime, by
Lemma 1, the kernels of the Fi have pairwise trivial intersection. Clearly, the same property
holds for the subspaces �(ker(Fi )) in P since they are just a different representation of the
same kernels through the flattening operator. Therefore, P is a partial spread over Fn

2, and
depending on its size (t = 2ld−1 or t = 2ld−1 + 1), it can be used to define the support of a
PS− or PS+ bent function as per Definition 1.

Suppose now that one of the t polynomials is fi (X) = 1, while all others f j (X) for j �= i
are pairwise coprime polynomials of degree d ≥ 1. By Remark 1, the kernel of Fi has trivial
intersection with the kernel of Fj for all j �= i . Thus, one can construct a partial spread also
in this case using Eq. (20). ��

An alternative way of considering the inclusion of the constant polynomial f (X) = 1 in
Theorem 1 is that one can define a variant of the Sylvester resultant for two polynomials of
different degrees e < d , with d ≥ 1, such that the correspondingmatrix still has size 2d ×2d .
The idea, explained by Sylvester in [18, pp. 425–426], is to augment the matrix of the linear
map related to the polynomial of smaller degree e by postpending d − e ghost terms equal
to zero in the first row and then sliding as usual to construct the rows below. Equivalently,
in the polynomial notation the additional ghost terms are 0 · xi for e + 1 ≤ i ≤ d . This is
precisely how we defined the matrix in Sect. 2.2 for f (X) = 1, i.e. as MF = [I |0].

In the remainder of this section, we show two examples of bent functions obtained through
our construction.

Example 1 Let m = 2, n = 2m = 4, l = 1, and d = 2. Since ld = m, in this case we need
to find t = 2m−1 = 2 relatively prime polynomials f1, f2 ∈ F2[X ] of degree d = 2 to apply
our construction. Let f1(X) = X2 + 1 and f2(X) = X2 + X + 1. In this case, there is no
need to apply the flattening operator since the ground field for the polynomials is already
F2. The two linear maps F1, F2 : F4

2 → F
2
2 are respectively defined by the following two

matrices:

MF1 =
(
1 0 1 0
0 1 0 1

)
, MF2 =

(
1 1 1 0
0 1 1 1

)

The kernels of F1 and F2 are the following ones:

ker(F1) = {0000, 1010, 0101, 1111},
ker(F2) = {0000, 1011, 0110, 1101},

which clearly have a trivial intersection. Therefore, the union of ker(F1) and ker(F2) (exclud-
ing the null vector) defines the support of the Boolean function g : F

4
2 → F2 with the

following truth table:

�g = (0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1) .

The ANF of g is defined as follows:

g(x1, x2, x3, x4) = x1x3 ⊕ x2x3 ⊕ x2x4.
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It is possible to verify that this function is bent in a number of ways. For example, by
applying the linear transformation x4 ← x3 ⊕ x4 the function g is equivalent to the canon-
ical nondegenerate quadratic form g′(x1, x2, x3, x4) = x1x3 ⊕ x2x4, which by Eq. (7) is a
Maiorana–McFarland function.

Example 2 The bent function g defined in Example 1 belongs to the PS− class, since its
support is the union of 22−1 = 2 subspaces of dimension 2 with trivial intersection, stripping
out the null vector. If we want to obtain a PS+ function, we need an additional polynomial
of degree d = 2 that is coprime both to f1 and f2. To this end, we can select for instance
f3(X) = X2. The kernel of the associated linear map F3 is as follows:

ker(F3) = {0000, 0100, 1000, 1100} ,

which again has trivial intersection with both ker(F1) and ker(F2). Therefore, we can define
a PS+ bent function h : F4

2 → F2 by setting h(0000) = 1 and defining the rest of its support
as the union of the three kernels minus their trivial intersection. We thus obtain the following
truth table:

�h = (1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1) ,

with the ANF of h being:

h(x1, x2, x3, x4) = x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x2x4 ⊕ x1 ⊕ x2 ⊕ 1 .

4 Counting bent functions in the LRS construction

Recall from Theorem 1 that, given m, l, d ∈ N such that m = ld , one can construct a PS−
(respectively,PS+) bent function if there are at least t = 2ld−1 (respectively, t = 2ld−1+1))
coprime polynomials of degree d over Fq where q = 2l . Thus, the first research question is
whether for all even n ∈ N there are enough pairwise coprime polynomials to obtain a bent
function. In what follows, we focus on the case of monic polynomials with nonzero constant
term that are pairwise coprime to exploit the counting results proved in [12]. There, the
authors proposed construction for such families of polynomials based on the multiplication
of two irreducible polynomials of degree k and d −k, respectively. In particular, they showed
that the maximum size of the families that can be generated through this construction equals:

Nd = Id +
� d
2 �∑

k=1

Ik . (21)

In the formula above, Ik denotes the number of irreducible monic polynomials of degree k
and with a nonzero constant term over Fq , which is Ik = q − 1 for k = 1, while for k ≥ 2 it
is given by Gauss’s formula:

Ik = 1

k

∑

e|k
μ(e) · q

k
e , (22)

with μ denoting the Möbius function. Further, in [12], it is proved that such construction is
optimal, meaning that Nd actually corresponds to the maximum size attainable by any family
of monic coprime polynomials of degree d with a nonzero constant term over Fq . Thus, one
can study Eq. (21) with respect to the parameters l, d , and m to address the existence question
for families of polynomials that satisfy the conditions of Theorem 1. We now characterize
such families for the case of PS− functions in terms of the degrees of their polynomials:
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Theorem 2 Let l, d, m ∈ N such that ld = m, and let q = 2l . Then there exists a family of
t = 2m−1 pairwise coprime polynomials of degree d and nonzero constant term over Fq if
and only if d ∈ {1, 2}.
Proof We need to show that Nd ≥ 1

2qd if and only if d ≤ 2. We first settle the cases of d ≤ 4
one by one.

For d = 1, we obtain

N1 = I1 = q − 1 ≥ 1

2
q.

For d = 2, we obtain

N2 = I2 + I1 = 1

2
(q2 − q) + (q − 1) = 1

2
q2(1 + q−1 − 2q−2) ≥ 1

2
q2.

For d = 3, we obtain

N3 = I3 + I1 = 1

3

(
q3 − q

) + (q − 1)

<
1

3
q3 (

1 + 2q−2) ≤ 1

3
q3 3

2

= 1

2
q3.

For d = 4, we obtain

N4 = I4 + I2 + I1 = 1

4

(
q4 − q2) + 1

2
(q2 − q) + (q − 1)

<
1

4
q4 (

1 + q−2 + 2q−3) ≤ 1

4
q4 3

2

= 3

8
q4.

We now move on to the case where d ≥ 5. Denoting the smallest nontrivial divisor of d
by p, we first get the following upper bound on Id :

Id ≤ 1

d

{
qd − qd/p + (qd/p−1 + · · · + q + 1)

}
<

1

d
qd .

We also obtain the following upper bound:

�d/2�∑

k=1

Ik ≤ q�d/2�+1 ≤ qd−2 ≤ 1

4
qd .

Combining, we obtain

Nd = Id +
�d/2�∑

k=1

Ik < qd
(
1

d
+ 1

4

)
<

1

2
qd .

��
Hence, bent functions can be obtained from our LRS construction using polynomials with

nonzero constant terms for all number of variables n = 2m, where m = l when d = 1, and
m = 2l when d = 2. This leads us to the following counting result:
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Theorem 3 Let l, m ∈ N and d ∈ {1, 2} such that ld = m, and let q = 2l . Then, the
number of PS− bent functions of n = 2m variables that can be obtained by Theorem 1 with
polynomials of degree d and nonzero constant term is

(2m−1
2m−1

)
when d = 1 and

I2∑

A=0

(
I2
A

) 2m−1−A∑

B=0

(
I1
B

)(
I1 − B

2(2m−1 − B − A)

)
(2(2m−1 − B − A))!

(2m−1 − B − A)!22m−1−B−A
, (23)

where I2 = 1
2 (q

2 − q) and I1 = q − 1, when d = 2.

Proof By Theorem 2 the only cases we need to address are d = 1 and d = 2. Let d = 1
(and thus m = l). Then, by Eq. (21), the largest family F1 of coprime polynomials of degree
1 with nonzero constant term over Fq is composed of N1 = q − 1 = 2m − 1 elements. The

number of subsets of 2m−1 elements ofF1 that can be selected to apply Theorem 1 is
(2m−1
2m−1

)
.

For d = 2, any family of t = 2m−1 coprime polynomials of degree 2 with nonzero constant
term over Fq consists of:

1. A ≤ I2 irreducible polynomials of degree 2;
2. B ≤ I1 polynomials of the form f 2, where f is an irreducible polynomial of degree 1;
3. C = t − B − A polynomials of the form gh, where g and h are irreducible polynomials

of degree 1;

and obviously, the same irreducible polynomial of degree 1 only appears once. There are
(I2

A

)

choices for the first part of the family,
(I1

B

)
choices for the second part of the family, and

1

C !
(

I1 − B

2

)(
I1 − B − 2

2

)
. . .

(
I1 − B − 2C + 2

2

)
=

(
I1 − B

2C

)
(2C)!
C !2C

choices for the third part of the family. Combining all three parts, we obtain the formula. ��
The results above refer to the number of families of coprime polynomials with a nonzero

constant term that is large enough to construct PS− bent functions. Although such functions
will be the focus of our computer investigations in the next sections, one could also augment
such families with other types of polynomials, as long as they are pairwise coprime with
all the others. This could be used, for instance, to construct further PS− functions or PS+
functions with polynomials of degree d = 1, 2. Additionally, one could combine these other
types of coprime polynomials with families of degrees higher than 2.

One simple idea to achieve this is to augment each family with the constant polynomial 1
and the polynomial Xd , which we already treated in Sect. 2.2 and considered in Theorem 1.
Although the former is not of degree d while the latter does not have a constant term, it is
easy to see that they are coprime both among themselves and to all other polynomials in
the families considered in Theorems 2 and 3. This idea spawns from the orthogonal array
(OA) characterization of our construction adopted in [9], where the first two columns of the
OA correspond to the LRS subspaces defined by 1 and Xd . We will elaborate further on this
connection in the conclusions section.

We already used in Example 2 the polynomial X2 to construct a PS+ function of 4 vari-
ables, by adding it to the family {X2 + 1, X2 + X + 1}. One could also add the constant
polynomial 1, thereby obtaining a family of 4 coprime polynomials. Since to define a PS+
function of 4 variables with our LRS construction we need 22−1 + 1 = 3 pairwise coprime
polynomials, we can build

(4
3

) = 4 PS+ functions by selecting all subsets of three polyno-

mials in {1, X2, X2 + 1, X2 + X + 1}. Alternatively, one could build (4
2

) = 6 PS− functions
since, in this case, we only need a subset of two polynomials.
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The next example shows how the two polynomials 1 and Xd can be used to augment a
family of coprime polynomials with a nonzero constant term of degree d > 2 so that we have
enough of them to apply our construction.

Example 3 Let m = 3, and l, d such that ld = m. There are only two possibilities, namely
l = 3 and d = 1, and l = 1 and d = 3. The first one is already covered by Theorem 2 since
d = 1. Let us consider the case l = 1 and d = 3. From Eq. (21), we have N3 = I3 + I1 =
2 + 1 = 3 coprime polynomials of degree 3 over F2 with nonzero constant term, which are
the following ones:

f1(X) = X3 + X2 + 1

f2(X) = X3 + X + 1

f3(X) = (X + 1)(X2 + X + 1) = X3 + X2 + X + 1 .

To obtain aPS− (respectively, aPS+) function we need 23−1 = 4 (respectively, 23−1+1 =
5) coprime polynomials. By adding 1 and X3 to the set { f1, f2, f3}, we can thus build

(5
4

) = 5
PS− functions and one PS+ function.

5 Equivalence toDS functions for degree d = 1

We now show that our LRS construction coincides with the Desarguesian partial spread class
when considering polynomials of degree d = 1. In this case, to generate a bent function
f : F

n
2 → F2 of n = 2m variables, by Theorem 1 we need to find a set of t = 2m−1

irreducible polynomials of degree 1 over F2m . This basically amounts to choosing a subset
of cardinality t from the family:

I1 = {a + X ∈ F2m [X ] : a ∈ F
∗
2m } . (24)

Thus, let P = { f1(X), . . . , ft (X)} be a subset of I1. Recall that each polynomial is used as
an abstract representation for the coefficients of an LRS of order d = 1, used to define the
corresponding linear map. In particular, for fi (X) = ai + X , we have that Fi equals:

Fi (x0, x1) = ai x0 + x1 , (25)

for all pairs (x0, x1) ∈ F2m × F2m . By Theorem 1, the kernels of Fi ≡ fi for i ∈ {1, . . . , t}
form a partial spread, and each of them is obtained by taking all pairs (x0, x1) ∈ F2m × F2m

such that x1 = ai x0, since F2m is a field of characteristic 2. We have that:

ker(Fi ) = {(x0, x1) ∈ F2m × F2m : x1 = ai x0}
= {(x, ai x) ∈ F2m × F2m : x ∈ F2m } = Eai , (26)

where Eai is a member of the Desarguesian spread as defined by Eq. (9) in bivariate form.
We have thus obtained the following result:

Lemma 2 Let f : Fn
2 → F2, n = 2m, be a bent function defined as in Theorem 1 with degree

d = 1. Then, f ∈ PSap.

Therefore, when considering the family I1 of 2l − 1 irreducible polynomials of degree 1
over F2l with a nonzero constant term, our LRS construction is a particular case of the partial
spread induced by the Desarguesian spread. Further, the two classes coincide if one adds
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Table 1 Distribution of 2-ranks
for bent functions of n = 8
variables in the Desarguesian
spread, obtained through the LRS
construction with irreducible
polynomials of degree d = 1 over
F24

Rank #Functions

30 510

36 4080

40 2040

42 17,680

Total 24,310

The bold value corresponds to the upper bound for the rank of a
Maiorana–McFarland function

the polynomials 1 and X to the family I1 since in that case, one can construct
(2l+1
2l−1

) PSap

functions.
However, the above reasoning on the Desarguesian spread does not hold for degree 2. In

this case, the LRS is defined by three coefficients instead of two, with the input vector of
the linear map consisting of 4 coordinates. Consequently, the LRS is evaluated over three
variables x0, x1, x2, and there does not seem to be a straightforward way to express the kernel
of the linear map as a set of pairs of the type (x, ax). To the best of our knowledge, there are
no other constructions in the literature that represent partial spreads in a way analogous to
our construction with degree d = 2.

6 Computational results on ranks and EA-equivalence for n = 8

To investigate more in detail the bent functions induced by our LRS construction, we per-
formed a computer search for n = 6 and n = 8 variables, with polynomials of degrees
d = 1, 2, generating only PS− functions for d = 1 and both PS− and PS+ functions for
d = 2. This is due to the fact that for degree d = 1 the PS+ functions are the complements
of PS− functions. For degree d = 2, we noticed that all PS+ functions also have degree
n/2. This is because the partial spreads which define these functions are not maximal, and
therefore by Proposition 1, they must have the same algebraic degree of PS− functions.
Moreover, it is known that up to n = 6 variables, all bent functions belong to the completed
Maiorana–McFarland class [17]. Therefore, the smallest interesting case to consider is n = 8
variables.

As a first assessment, we generated all PS− functions by using families of coprime
polynomials of degree d = 1. Although by Lemma 2, we know that all such functions
are in PSap and coincide with the Desarguesian spread class, we computed their ranks to
independently verify the count reported by Weng et al. [19]. In this case, we have m = l = 4
and t = 2m−1 = 8. Hence, to construct a function from the Desarguesian spread, we need
8 coprime polynomials. Since there are 16 irreducible polynomials of degree d = 1 with
coefficients over F24 and the constant polynomial 1, one can obtain

(17
8

) = 24310 PSap

functions with our construction. Table 1 reports the distribution of the 2-ranks for all such
functions.

The upper bound on the rank of a Maiorana–McFarland function of n = 8 variables given
in [19] is 2m+1 − 2 = 30. Hence, one can see from Table 1 that most of the functions in
the Desarguesian spread are inequivalent to Maiorana–McFarland functions. Remark also
that the numbers in Table 1 are higher than those reported by Weng et al. in [19] because
we are actually considering more functions. As a matter of fact, Weng et al. computed
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the
(16
8

) = 12870 bent functions in the class PS− arising from the Desarguesian spread
components x1 = ax0, with a ∈ F24 . This corresponds to our LRS construction when
considering only the 24 − 1 irreducible polynomials of degree 1 over F24 with nonzero
constant term and the polynomial X . On the other hand, here, as mentioned above, we also
consider the polynomial 1, which is coprime with all such polynomials, although it does not
have degree 1. This allows us to construct

(16
7

) = 11, 440 additional functions. Therefore,
the distribution reported in Table 1 independently verifies and extends Weng et al.’s result
in [19]. Moreover, since the functions of PS+ type are the complements of those of type
PS−, Table 1 actually gives a complete account of the rank distribution of allPSap functions
in 8 variables.

Next, we focused our attention on coprime polynomials of degree d = 2. As we discussed
in Sect. 5, this case is not directly amenable to the Desarguesian spread, and it is, therefore,
an interesting candidate to find potentially new PS− and PS+ functions. By Theorem 2, we
have m = 4, t = 8, and l = 2. Consequently, a PS− bent function is obtained by finding a
set of eight pairwise coprime polynomials over F4 of degree 2. Let F4 = {0, 1, α, α2}, where
α is a root of a primitive polynomial p(X) ∈ F2[X ] of degree 2. Then, by Gauss’s formula,
there are six irreducible polynomials of degree 2 over F4:

p1(X) = X2 + α2X + α2 ,

p2(X) = X2 + α2X + 1 ,

p3(X) = X2 + αX + α ,

p4(X) = X2 + X + α2 ,

p5(X) = X2 + αX + 1 ,

p6(X) = X2 + X + α .

These polynomials are, of course, pairwise coprime since they are irreducible. Let us denote
them by I2 = {p1, p2, p3, p4, p5, p6}. Further, there are three irreducible polynomials of
degree 1 and nonzero constant term over F4 that can be squared to obtain polynomials of
degree 2 that are coprime among themselves and with those in I2:

p7(X) = (X + 1)2 = X2 + 1 ,

p8(X) = (X + α)2 = X2 + α2 ,

p9(X) = (X + α2)2 = X2 + α .

Analogously, we denote by I2
1 the set {p7, p8, p9}. Moreover, we can augment our set with

the polynomials 1 and X2. Although the former is not of degree 2 and the latter does not have
a constant term, they are coprime with all polynomials in I2 ∪ I2

1 . Finally, we can take the(3
2

) = 3 pairs of I1 and multiply the polynomials in them, obtaining:

p10(X) = (X + 1)(X + α2) = X2 + αX + α2 ,

p11(X) = (X + 1)(X + α) = X2 + α2X + α ,

p12(X) = (X + α)(X + α2) = X2 + X + 1 ,

with I1,1 = {p10, p11, p12}. These three polynomials are not pairwise coprime among them-
selves, but each of them is relatively prime to all polynomials in I2 ∪ {1, X2}, and to exactly
one polynomial in I2

1 . Summarizing, for the PS− case, we can construct 273 functions with
the following families of t = 8 pairwise coprime polynomials:
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Table 2 Distribution of 2-ranks
for PS− and PS− bent
functions of n = 8 variables
obtained through the LRS
construction with coprime
polynomials of degree d = 2 over
F4

Type Rank #Functions

PS− 36 20

40 24

42 28

44 123

46 78

Total 273

PS+ 40 45

44 19

46 18

Total 82

The bold value corresponds to the upper bound for the rank of the Desar-
guesian bent function

–
(11
8

) = 165 subsets of 8 elements in the union I2 ∪ I2
1 ∪ {1, X2}.

–
(3
1

)(9
7

) = 108 families obtained by choosing one element p from I1,1 and adjoining to
it 7 polynomials from I2 ∪ {1, X2} ∪ {p′

1}, where p′
1 is the one element in I2

1 which is
coprime to p.

Similarly, we can obtain 82 PS+ functions by the following families of t = 9 pairwise
coprime polynomials:

–
(11
9

) = 55 subsets of 9 elements in the union I2 ∪ I2
1 ∪ {1, X2}.

–
(3
1

)(9
8

) = 108 families obtained by choosing one element p from I1,1 and adjoining to it
8 polynomials from I2 ∪ {1, X2} ∪ {p′

1}, where p′
1 is again the one element in I2

1 that is
coprime to p.

Table 2 reports the distribution of the ranks for the PS− and PS+ functions obtained
from the families of polynomials described above.

The first significant observation that can be drawn from the table is that none of these bent
functions is equivalent to a Maiorana–McFarland function, since the smallest rank is 36. It is
even more interesting to observe that many functions are inequivalent to the ones induced by
the Desarguesian spread, namely those reaching a rank higher than 42. In particular, of the
355PS bent functions given by our construction, 238 have a rank greater than 42, so they are
not equivalent to either Maiorana–McFarland or Desarguesian spread functions. While this
is not sufficient to conclude that we found a class of previously unknown bent functions, we
consider it the first step toward that goal. Hopefully, our results will motivate further research
in this direction.

7 Conclusions and perspectives

This paper described a method to construct bent functions from linear recurring sequences.
The construction leverages on the subspaces spanned by linear mappings defined by a family
of LRS. In particular, we proved that if the polynomials defining the linear recurrence equa-
tions are pairwise coprime, the kernels of the corresponding linear mappings have a pairwise
trivial intersection. This result depends on the observation that the superposition of two LRS
mappings is the Sylvester matrix associated with their polynomials, which is invertible if and
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only if the polynomials are coprime. Consequently, the kernels induced by a family of LRS
subspaces whose polynomials are pairwise coprime form a partial spread, and thus a bent
function in the class PS.

The key question concerning our LRS construction is to determine when a large enough
family of LRS kernels exists, depending on the number of variables of the function, the
degree of the polynomials, and the extension field of their coefficients. Assuming that all
polynomials have a nonzero constant term, we showed that such families exist if and only if
the degree of the polynomials is either 1 or 2, and we derived the counting formulas for both
cases. We then remarked that at least two other polynomials can always be added to these
families, namely Xd and 1. This allows one to obtain also PS+ functions and, in certain
situations, to employ families of polynomials with degrees larger than 2. We then proved
that our LRS construction coincides with the Desarguesian partial spread when the degree
of the involved polynomials is d = 1, and thus the functions obtained in this case all belong
to the class PSap . Therefore, candidates for potentially new bent functions generated by our
construction should be sought with polynomials of degree d = 2.

After remarking that the bent functions ofn = 6, 8variables givenbyourLRSconstruction
always have maximal degree n/2 even for the PS+ case (which is explained by the non-
maximality of the related partial spreads), we performed a computational analysis of the
2-ranks of the functions for the n = 8 case, to determine the rank distributions. In particular,
for degree d = 1, we verified and extended the rank distribution reported by Weng et al. [19]
for bent functions in the Desarguesian spread, remarking that most of them are not EA-
equivalent to any Maiorana–McFarland function. For degree d = 2, we generated both PS−
and PS+ types of functions and remarked that many of them have a rank greater than 42,
which means that they are not EA-equivalent to functions in the Desarguesian spread either.
Hence, such bent functions are the most promising candidates to be potentially novel.

There are several open questions for future research on this LRS construction. The first
interesting direction is to investigate more in detail the functions obtained by polynomials
of degree d = 2. Indeed, although we showed that many of them are inequivalent to both
Maiorana–McFarland and Desarguesian spread functions, it could still be the case that they
are EA-equivalent to some other known classes. To this end, it would be interesting to
compare our functions to those generated by other partial spread-based constructions, a list
of which can be found in [15]. Besides computing the 2-rank, employingmore discriminating
invariants would also be interesting. These include, for instance, the Smith normal form of
the development of the graph G f of a Boolean function f , which is used by Polujan and
Pott in [16] to classify homogeneous cubic bent functions. The goal here would be to find a
complete invariant that allows one to give a complete classification of the equivalence classes
arising from our construction of bent functions.

We conclude by discussing the connection of our LRS construction with the cellular
automata (CA) approach that we adopted in [9]. Our initial idea was to start from a recent
construction of Mutually Orthogonal Latin Squares (MOLS) based on linear CA that we set
forth in [12]. A cellular automaton can be defined as a shift-invariant vectorial transformation,
where the same local rule is applied at all sites (or cells) of the input array. If the local rule
is linear, then the CA global function is defined by a transition matrix with the same form
of the matrix in Eq. (14). In particular, the CA global function may be regarded as the linear
map induced by an LRS kernel, with Eq. (13) representing the application of the local rule
on the i th cell of the input.

In [12], we first showed that such a linear CA F : F2d
q → F

d
q defines a Latin square of

order qd if and only if the leftmost and rightmost coefficients a0, ad−1 of its local rule are not

123



Bent functions in the partial spread class 81

null. Further, they proved that the Latin squares generated by two such CA are orthogonal
if and only if the polynomials associated with their local rules are relatively prime. Thus,
determining the maximum size of a family of pairwise coprime polynomials of degree d and
the nonzero constant term is equivalent to finding the size of the largest family of MOLS of
order qd induced by linear CA.1

The connection between MOLS generated by linear CA and bent functions traces back to
a theorem proved by Bush [2], where he showed that a large enough orthogonal array (OA,
which is equivalent to a set of MOLS) could be used to define a Hadamard matrix. It is well
known that a Boolean function is bent if and only if the polar form of its translate design is a
Hadamard matrix. What we proved in [9] is that the Hadamard matrix defined by the MOLS
of a family of linear CA indeed has the translate design structure required for a bent function.
This result is the “CA version” of Theorem 1 proved here.

The characterization through kernels of LRS is clearly a much more compact way to
describe our construction than the CA approach, and it is also more general. Indeed, in
this paper, we focused on the assumption that the feedback polynomials of the LRS have
a nonzero constant term to leverage on the counting results proved in [12] for CA-based
MOLS. However, Lemma 1 does not need this hypothesis to characterize LRS kernels with a
trivial intersection, which is what matters in the end to construct a partial spread. In particular,
one can use any family of pairwise coprime polynomials with degree d , regardless of their
constant term. This is enough to guarantee that the associated Sylvester matrix is invertible.
We implicitly dropped this assumption by augmenting our families with the polynomials Xd

and 1 since they are easily seen to be coprime with all other polynomials. However, besides
those analyzed here, several other families of coprime polynomials can be considered. We
plan to investigate this issue in future research, as we suspect that this would simplify the
counting results reported in Sect. 4 by using the q-to-1 relationship between non-coprime
and coprime pairs of polynomials over Fq proved in [1].
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