
J. Aust. Math. Soc. (First published online 2022), page 1 of 32∗

doi:10.1017/S1446788722000167
∗Provisional—final page numbers to be inserted when paper edition is published

SIMPLY CONNECTED MANIFOLDS WITH LARGE HOMOTOPY
STABLE CLASSES

ANTHONY CONWAY, DIARMUID CROWLEY, MARK POWELL and
JOERG SIXT

(Received 8 January 2022; accepted 26 June 2022)

Communicated by Graeme Wilkin

Abstract

For every k ≥ 2 and n ≥ 2, we construct n pairwise homotopically inequivalent simply connected, closed
4k-dimensional manifolds, all of which are stably diffeomorphic to one another. Each of these manifolds
has hyperbolic intersection form and is stably parallelisable. In dimension four, we exhibit an analogous
phenomenon for spinc structures on S2 × S2. For m ≥ 1, we also provide similar (4m − 1)-connected
8m-dimensional examples, where the number of homotopy types in a stable diffeomorphism class is
related to the order of the image of the stable J-homomorphism π4m−1(SO)→ πs

4m−1.
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1. Introduction

Let q be a positive integer and let Wg := #g(Sq × Sq) be the g-fold connected sum of
the manifold Sq × Sq with itself. Two compact, connected smooth 2q-manifolds M0 and
M1 with the same Euler characteristic are stably diffeomorphic, written M0 �st M1, if
there exists a nonnegative integer g and a diffeomorphism

M0#Wg → M1#Wg.

Note that Sq × Sq admits an orientation-reversing diffeomorphism. Hence, the same is
true of Wg and it follows that when the Mi are orientable the diffeomorphism type of
the connected sum does not depend on orientations.
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A paradigm of modified surgery, as developed by Kreck [Kre99], is that one first
seeks to classify 2q-manifolds up to stable diffeomorphism, and then for each M0, one
tries to understand its stable class:

Sst(M0) := {M1 | M1 �st M0}/diffeomorphism.

The efficacy of this method was first demonstrated by Hambleton and Kreck, who
applied it to 4-manifolds with finite fundamental group in a series of papers [HK88a,
HK88b, HK93a, HK93b].

However, the Browder–Novikov–Sullivan–Wall surgery exact sequence [Wal99]
aims instead to classify manifolds within a fixed homotopy class. In general, there
is no obvious relationship between homotopy equivalence and stable diffeomorphism,
although in some cases, there are implications, for example, [Dav05]. To enable a
comparison between the two approaches, we define the homotopy stable class of M0
to be

Sst
h (M0) = {M1 | M1 �st M0}/homotopy equivalence.

Our aim is to investigate the cardinality of Sst
h (M0), and, in particular, we provide new

examples of simply connected manifolds with arbitrarily large homotopy stable class.
Throughout this article, we consider closed, connected, simply connected, smooth

manifolds. To define the intersection form and related invariants, we orient all
manifolds. When necessary, to achieve unoriented results, we later factor out the effect
of the choice of orientation.

When the dimension is 4k+2, Kreck showed that the stable class of such manifolds
is trivial [Kre99, Theorem D]. We therefore focus on dimensions 4k with k > 1
(dimension four is discussed separately below). Kreck also showed that for every such
simply connected manifold M4k, the stable class of M4k#W1 is trivial. However, as
pointed out by Kreck and Schafer [KS84, I], for k>1, examples of closed, simply
connected (2k − 1)-connected 4k-manifolds M with arbitrarily large homotopy stable
class have been implicit in the literature since Wall’s classification of these manifolds
up to the action of the group of homotopy spheres [Wal62]. These examples are
distinguished by their intersection form

λM : H2k(M;Z) × H2k(M;Z)→ Z,

which must be definite (to have inequivalent forms); moreover, to realise the forms
by closed, almost-parallelisable manifolds, they must have signature divisible by
8|bP4k |, where |bP4k | is the order of the group of homotopy (4k−1)-spheres that bound
parallelisable manifolds [MK60, Corollary on page 457].

In this paper, we consider examples where the intersection form is isomorphic to
the standard hyperbolic form

H+(Z) =

(
Z2,

(
0 1
1 0

))
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[3] Simply connected manifolds with large homotopy stable classes 3

and where there is an additional invariant, a homomorphism f : Z2 → Z. The pair
(H+(Z), f ) is an example of an extended symmetric form; see Definition 3.5. The
isometries of the rank two hyperbolic form are highly restricted: they are generated
by switching the two basis vectors and multiplying both basis vectors by −1. As such,
the unordered pair

{a, b} := { f (1, 0), f (0, 1)}/(±1),

considered up to multiplication of both integers by −1, gives an invariant of the
isometry class of the extended symmetric form (H+(Z), f ). However, in the Witt class,
or stable equivalence class, only the divisibility d := gcd(a, b) and the product A = ab
are invariants. Since a fixed number A can often be factorised in many ways as a
product of coprime integers a, b, if we can define a suitable f, this simple algebra
has the chance to detect large stable classes. In the proof of our first main theorem, we
define such an f using the cohomology ring of the manifolds we construct.

THEOREM 1.1. Fix positive integers n and k ≥ 2. There are infinitely many stable
diffeomorphism classes of closed, smooth, simply connected 4k-manifolds {[Mi]st}∞i=1,
such that |Sst

h (Mi)| ≥ n. Moreover, Sst
h (Mi) contains a subset {Mj

i}
n
j=1 of cardinality n,

where M1
i = Mi, and each Mj

i is stably parallelisable and has hyperbolic intersection
form.

Here, stably parallelisable means that the tangent bundle becomes trivial after
taking the Whitney sum with a trivial bundle of sufficiently high rank. More than
one notion of stabilisation appears in this article, one for manifolds and one for vector
bundles.

Kreck and Schafer [KS84] constructed examples of 4k-manifolds M with nontrivial
finite fundamental groups, such that the homotopy stable class of M contains distinct
elements with hyperbolic intersection forms. However, as far as we know, our
construction gives the first simply connected examples and the first for which the
homotopy stable class has been shown to have arbitrary cardinality. In a companion
paper [CCPS21], we investigate the homotopy stable class in more detail, also for
manifolds with nontrivial fundamental group, and we relate the homotopy stable class
to computations of the �-monoid from [CS11].

The manifolds we construct to prove Theorem 1.1 are shown to be homotopically
inequivalent using their cohomology rings. An alternative construction to obtain
nontrivial homotopy stable class instead uses Pontryagin classes to define the homo-
morphism f in an extended symmetric form. This was alluded to in [KS84], but not
carried through. Section 3 proves a theorem which implies the following result.

THEOREM 1.2. For every m ≥ 1, there exists a pair of closed, smooth, (4m−1)-
connected 8m-manifolds M1 and M2 with hyperbolic intersection forms that are stably
diffeomorphic but not homotopy equivalent.
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Compared with the manifolds from Theorem 1.1 (for even k), the manifolds M1
and M2 from Theorem 1.2 are not stably parallelisable; however, since they are
(4m−1)-connected and have the same intersection pairing, their cohomology rings are
isomorphic. In particular, once again, the intersection form does not help.

To show that the manifolds in Theorem 1.2 are not homotopy equivalent, we
use Wall’s homotopy classification of (4m−1)-connected 8m-manifolds [Wal62,
Lemma 8], which makes use of an extended symmetric form (H+(Z), f : Z2 → Z/jm),
where jm is the order of the image of the stable J-homomorphism J : π4m−1(SO)→
πs

4m−1; see Section 3.

REMARK 1.3. The limiting factor preventing us from exhibiting arbitrarily large
homotopy stable classes in Theorem 1.2 is that our lower bound on the cardinality
of Sst

h (M1) depends only on the number of primes dividing jm. This grows with m, but
in a fixed dimension, cannot be made arbitrarily large. However, if we instead count
diffeomorphism classes, then we show in Theorem 3.3(2) that the stable class can
be arbitrarily large for (4m−1)-connected 8m-manifolds with hyperbolic intersection
forms.

1.1. Dimension four. Dimension four was absent from the above discussion. This
is because closed, smooth, simply connected 4-manifolds M and N are stably
diffeomorphic if and only if they are homotopy equivalent. Here is an outline of why
this holds. First, two such 4-manifolds are stably diffeomorphic if and only if there
are orientations such that they have the same signatures, Euler characteristics, and
w2-types, that is, σ(M) = σ(N), χ(M) = χ(N), and their intersection forms have the
same parity (even or odd). Thus homotopy equivalence implies stable diffeomorphism.
For the other direction, σ(M) = σ(N) and χ(M) = χ(N) implies that the intersection
forms are either both definite or both indefinite. In the definite case, the intersec-
tion forms must be diagonal by Donaldson’s theorem [Don83], and so the intersection
forms are isometric and therefore the manifolds are homotopy equivalent [Mil58a,
Whi49]. In the indefinite case, the intersection form is determined up to isometry by
its rank, parity and signature, and so again M and N are homotopy equivalent. Thus,
the assumption that k ≥ 2 was essential in Theorem 1.1.

One way in which an analogous phenomenon does occur in dimension four
is by considering spinc structures. Seiberg–Witten invariants of 4-manifolds and
Heegaard–Floer cobordism maps are indexed by spinc structures. The first Chern class
c1 of the spinc structure then defines the map f in the extended symmetric forms. We
illustrate this in Section 4, using the 4-manifold S2 × S2.

THEOREM 1.4. Let C ∈ Z with |C| ≥ 16 and 8 | C. Define P(C) to be the number of
distinct primes dividing C/8. There are n := 2P(C)−1 stably equivalent spinc structures
s1, . . . , sn on S2 × S2 with c1(si)2 = C ∈ H4(S2 × S2) � Z that are all pairwise inequiv-
alent.

1.2. Organisation. Section 2 proves Theorem 1.1, Section 3 proves Theorem 1.2
and Section 4 proves Theorem 1.4.
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1.3. Conventions. Throughout this paper, all manifolds are compact, simply con-
nected and smooth. As mentioned above, we also equip our manifolds with an
orientation. For the remainder of this paper, all (co)homology groups have integral
coefficients. We write N0 := N ∪ {0}.

2. Simply connected 4k-manifolds with arbitrarily large stable class

We prove Theorem 1.1 by stating and proving Proposition 2.2 below. In the
proposition, we construct a collection of 4k-manifolds Na,b for each unordered pair
of positive integers {a, b} such that (2k)! divides 2ab. If {a, b} � {a′, b′}, then Na,b and
Na′,b′ are not homotopy equivalent. However, ab = a′b′ if and only if Na,b and Na′,b′

are stably diffeomorphic. Moreover, every manifold Na,b is closed, simply connected,
has hyperbolic intersection form and is stably parallelisable. Thus, the proposition
immediately implies Theorem 1.1.

First we have a lemma. To rule out orientation-reversing homotopy equivalences,
we appeal to the following observation.

LEMMA 2.1. Let N and N′ be closed, oriented 4k-manifolds. Suppose that a class z
freely generates H2(N) and satisfies that z2k = n for some nonzero n ∈ Z = H4k(N), and
similarly for (N′, z′). Then any homotopy equivalence f : N → N′ must be orientation
preserving.

PROOF. Assume that f is of degree ε = ±1. Since f is a homotopy equivalence, N
and N′ have isomorphic cohomology rings. In particular, H2(N′) � Z is generated by
z′ = ±( f ∗)−1(z). Since z′2k = n in H4k(N′) � Z and f ∗(z′2k) = z2k, properties of the cap
and cup products show that

n = f∗(z2k ∩ [N]) = f∗( f ∗(z′2k) ∩ [N]) = z′2k ∩ f∗([N]) = z′2k ∩ ε[N′] = εn.

Since n � 0, this implies that f must be orientation preserving. �

Now we proceed with the construction of the promised manifolds.

PROPOSITION 2.2. Fix k > 1. Given an unordered pair {a, b} of positive coprime
integers such that (2k)! divides 2ab, there exists a closed, oriented, 4k-manifold N4k

a,b
with the following properties.

(i) The manifold Na,b is simply connected and stably parallelisable.
(ii) The ring H∗(Na,b) has generators w, x, y, z and 1 of degrees 2k+2, 2k, 2k, 2 and 0,

respectively, with zk = ax + by, x2 = 0 = y2, 2abw = zk+1, xz = bw, yz = aw and
xy generates H4k(Na,b).

In particular, the intersection form of Na,b is hyperbolic and z2k = 2abxy is 2ab times a
fundamental class of Na,b. If {a, b} � {a′, b′}, then Na,b and Na′,b′ have nonisomorphic
integral cohomology rings and so are not homotopy equivalent. Moreover, ab = a′b′ if
and only if Na,b and Na′,b′ are stably diffeomorphic.
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PROOF. Note that if we have a manifold Na,b and if we choose a stable normal framing
on Na,b, then the pair (Na,b, z) corresponds to a (normally) framed manifold over CP∞

using the identification H2(Na,b) � [Na,b,CP∞]. This motivates the method we use,
constructing Na,b by framed surgery on stably normally framed manifolds over CP∞. It
then follows automatically that the manifolds we obtain are stably parallelisable, since
a manifold with trivial stable normal bundle has trivial stable tangent bundle too.

We start with S2 together with the unique framing of its stable normal bundle cor-
responding to a choice of orientation, and consider the corresponding dual orientation
class α ∈ H2(S2). Take the 2k-fold product of S2 with itself,

X0 := S2 × · · · × S2,

and define β0 ∈ H2(X0) to be the class that restricts to α in each S2 factor. This means
that under the inclusion

ιj : {∗} × · · · × S2 × · · · {∗} → S2 × · · · × S2

in the j th factor, ι∗j ( β0) = α. Equivalently, let pi : S2 × · · · × S2 → S2 be the i th
projection. Then β0 =

∑2k
i=1 p∗i (α). An elementary calculation shows that

β2k
0 = (2k)! [X0]∗ ∈ H4k(X0).

Here we write [X0]∗ ∈ H4k(X0) for the dual of the fundamental class [X0] ∈ H4k(X0).
To make this calculation, use β0 =

∑2k
i=1 p∗i (α) and note that:

(i) p∗i (α) ∪ p∗j (α) = p∗j (α) ∪ p∗i (α) for i � j;
(ii) p∗i (α) ∪ p∗i (α) = p∗i (α ∪ α) = p∗i (0) = 0 and
(iii) p∗1(α) ∪ · · · ∪ p∗2k(α) = [X0]∗.

By assumption, there is a positive integer j such that 2ab = j(2k)!. Take X1 := #jX0 to
be the framed j-fold connected sum of X0 and β1 ∈ H2(X1) to be the class that restricts
to β0 in each summand. That is, H2(X1) �

⊕j H2(X0) and β1 = ( β0, . . . , β0). Then,

β2k
1 = jβ2k

0 = j(2k)! [X1]∗ = 2ab[X1]∗ ∈ H4k(X1).

The element β1 ∈ H2(X1) and the normal framing on X1 define a normal map

( β1, β1) : X1 → CP∞,

where we take the trivial bundle over CP∞. By surgery below the middle dimension,
the normal map ( β1, β1) is normally bordant to a 2k-connected map ( β2, β2) : X2 →
CP∞. Since X0 has signature zero, the same holds for X1 and X2. Since the stable
normal bundle of X2 is framed, so is the stable tangent bundle. Therefore, the stable
tangent bundle has the trivial 2k th Wu class vanishing and so the intersection form on
X2 is even. Let z∞ ∈ H2(CP∞) be the generator restricting to α ∈ H2(CP1) = H2(S2)
via the inclusion CP1 → CP∞, and consider the Poincaré dual of β∗2(zk

∞),

u := PD( β∗2(zk
∞)) ∈ H2k(X2).
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Since β2 : X2 → CP∞ is 2k-connected, H2k(X2)→ H2k(CP∞) � Z is onto and therefore
splits since Z is free. Since all homology groups are torsion-free, the dual map can be
identified with the map β∗2 : H2k(CP∞)→ H2k(X2) on cohomology. The splitting for β2
dualises to a splitting for β∗2, so the image of a generator β∗2(zk

∞) generates a summand.
Applying Poincaré duality, we see that u ∈ H2k(X2) is a primitive element; that is, u
generates a summand of H2k(X2).

We take the connected sum with an additional copy of S2k × S2k with null-bordant
framing and trivial map to CP∞ to obtain

X3 := X2#(S2k × S2k)

and a normal map ( β3, β3) : X3 → CP∞. Note that up until this point, we have only
used the product ab, rather than the data of the pair {a, b}. This changes for the
upcoming construction of X4 = Na,b.

The intersection form λX3 of X3 has an orthogonal decomposition corresponding to
the connected sum decomposition of X3:

(H2k(X3), λX3 ) = (H2k(X2), λX2 ) ⊕ H+(Z),

where H+(Z) is the standard symmetric hyperbolic form. Note that since λX2 is even, so
is λX3 . Let {e, f } be a standard basis for H+(Z). Since a and b are coprime, we may and
shall choose integers c, d such that ad − bc = 1. We also write u = PD( β∗3(zk

∞)). Here
note that u is essentially the same element as the element u ∈ H2(X2) that we defined
above thinking of H2(X2) as a subgroup of H2(X3). Keeping this in mind, we have that

λX3 (u, u) = 〈 β∗3(zk
∞) ∪ β∗3(zk

∞), [X3]〉 = 〈 β∗3(z2k
∞ ), [X3]〉 = 〈z2k

∞ , ( β3)∗[X3]〉 = 2ab,

since z2k
∞ generates H4k(CP∞) and since ( β3)∗ sends [X3] to the same multiple of the

generator of H4k(CP∞) as that to which ( β1)∗ sends [X1]. Since u ∈ H2k(X2) ⊆ H2k(X3)
is primitive and since λX2 is nonsingular, there is an element v′′ ∈ H2k(X2) ⊆ H2k(X3)
such that

λX3 (u, v′′) = λX2 (u, v′′) = 1.

Now set v′ := (ad + bc)v′′ as well as

v := v′ + e +
2cd − λX3 (v′, v′)

2
f .

Here, we use that the form λX3 is even. Since u ∈ H2(X2) and e, f ∈ H+(Z), we observe
that λX3 (u, e) = λX3 (u, f ) = 0. As a consequence, the elements u, v span a subspace
Hu,v ⊆ H2k(X3), where λX3 restricted to Hu,v has matrix

A =
(

2ab ad + bc
ad + bc 2cd

)
,

which has determinant 4abcd − (ad + bc)2 = −(ad − bc)2 = −1. Hence, Hu,v is an
orthogonal summand of (H2k(X3), λX3 ) and a calculation shows that Hu,v is hyperbolic
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with standard basis {e1, f1}, where u = ae1 + b f1 and v = ce : 1 + d f1. To see this, let
P := ( a b

c d ) and note that P( 0 1
1 0 )PT = A.

The orthogonal complement of Hu,v, namely H⊥u,v, has signature equal to the
signature of X3, which is zero; and hence since the intersection form is even, H⊥u,v
is stably hyperbolic.

We assert that H⊥u,v maps trivially to H2k(CP∞) under β3∗. To see this, first note that
H2k(CP∞) � Z, generated by zk

∞. We have an isomorphism

zk
∞ ∩ − : H2k(CP∞)

�−→ H0(CP∞) � Z.

Recall that now u = PD( β∗3(zk
∞)) ∈ Hu,v and let x ∈ H⊥u,v. Then,

0 = λX3 (u, x) = PD−1(u) ∩ x = β∗3(zk
∞) ∩ x = zk

∞ ∩ ( β3)∗(x).

Since zk
∞ ∩ − is an isomorphism, this implies that ( β3)∗(x) = 0, which proves the

assertion.
Now, since β3 : X3 → CP∞ is 2k-connected and since H⊥u,v maps trivially to

H2k(CP∞), the Hurewicz theorem and the linked long exact sequences

· · · �� π2k+1(CP∞, X3)

�
��

�� π2k(X3)

��

�� π2k(CP∞)

��

�� · · ·

· · · �� H2k+1(CP∞, X3) �� H2k(X3)
( β3)∗ �� H2k(CP∞) �� · · ·

show that every element of H⊥u,v is represented by a map from a 2k-sphere in
π2k(X3). Hence, standard surgery arguments allow us to perform framed surgery on
( β3, β3) : X3 → CP∞ to kill H⊥u,v. We obtain a normal map ( β4, β4) : X4 → CP∞, with
intersection form isomorphic to (Hu,v, λX3 |Hu,v ). The manifold

Na,b := X4

is the required manifold, as we verify next. We use the orientation corresponding to
the fundamental class [Na,b] induced from tracking [X0] through the construction.

We have already noted at the beginning of the proof that the construction via nor-
mally framed surgery implies that Na,b is stably parallelisable. As the map β4 : Na,b →
CP∞ is 2k-connected and since there is an isomorphism θ : H2k(Na,b)→ Hu,v � Z2, the
manifold Na,b is simply connected and has the correct integral (co)homology groups.
By construction of Na,b, we can assume that θ is an isometry. To verify that Na,b has
the required cohomology ring, we set

z := β∗4(z∞), x := PD−1(θ−1(e1)), y := PD−1(θ−1( f1)).

Since u = ae1 + b f1, it follows that zk = ax + by. Since θ−1(e1), θ−1( f1) form a standard
hyperbolic basis for (H2k(Na,b), λNa,b ), it follows that xy generates H4k(Na,b) and
z2k ∩ [Na,b] > 0. Finally, since zk−1 generates H2k−2(Na,b) � Z, there is a generator
w ∈ H2k+2(Na,b) such that zk−1w = xy. The remaining properties of H∗(Na,b) follow
from Poincaré duality.
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[9] Simply connected manifolds with large homotopy stable classes 9

Finally, let 〈zk〉 ⊆ H2k(Na,b) be the subgroup generated by zk and consider the
isomorphism class of the pair (H2k(Na,b), 〈zk〉). This pair, modulo the action of the
self-equivalences of Na,b on H2k(Na,b), is a homotopy invariant of Na,b. Since z2k � 0
and since z2k ∩ [Na,b] > 0, every self-homotopy equivalence of Na,b is orientation
preserving by Lemma 2.1.

Thus, 〈zk〉 modulo the action of Aut(H+(Z)) is a homotopy invariant. We claim that
the pair {a, b} is an invariant of this action. To see this, from the form of the matrix A
above, it is easy to see that the automorphisms of the hyperbolic form are

± Id and ±
(

0 1
1 0

)
.

So automorphisms can change the sign of both a and b simultaneously, and they can
switch a and b. Then since we always take a, b > 0, the unordered pair of positive
integers {a, b} is an invariant of the homotopy type. Hence, if there is a homotopy
equivalence Na,b → Na′,b′ , then we have {a, b} = {a′, b′}.

Now we address the final statement of the proposition, which concerns stable
diffeomorphism. Observe that Z � H2(Na,b) � H2(Na,b#S2k × S2k), and that the image
of z, which we call zst ∈ H2(Na,b#S2k × S2k), satisfies z2k

st = 2ab[Na,b#S2k × S2k]. Since
this property of zst and the fundamental class are preserved under diffeomorphism, it
follows that if Na,b and Na′,b′ are stably diffeomorphic, then ab = a′b′.

However, for a fixed product ab = a′b′, the manifolds Na,b and Na′,b′ are obtained
from the 4k-manifold X3 by performing surgery on a stably hyperbolic form H⊥u,v.
Recall that u and v depend on a, b, so in particular, we may need to stabilise a different
number of times for H⊥u,v versus H⊥u′,v′ to make them hyperbolic. Let h(u, v) and h(u′, v′)
be the number of stabilisations required and let h := max{h(u, v), h(u′, v′)}. Then for
some g,

Na,b#Wg � X3#Wh � Na′,b′#Wg,

as desired. So indeed, ab = a′b′ if and only if Na,b �st Na′,b′ . �

3. (4m−1)-connected 8m-manifolds with nontrivial homotopy stable class

In this section, for every m ≥ 1, we construct (4m−1)-connected 8m-manifolds with
hyperbolic intersection form and with nontrivial homotopy stable class. Specifically,
we describe certain 8m-manifolds Ma,b, for positive integers a and b, and we give
bounds from above and below on the size of the homotopy stable class of Ma,b in
terms of a, b and m. In particular, for each m, there are infinitely many choices of a, b
such that |Sst

h (Ma,b)| > 1.
In contrast to the manifolds in the previous section, the homotopically inequivalent

manifolds constructed here have isomorphic integral cohomology rings, but are not
stably parallelisable. We detect that our manifolds are not homotopy equivalent using
a refinement of the m th Pontryagin class.
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This section is organised as follows. In Section 3.1, we recall some facts about
exotic spheres and the J homomorphism, which we need for the statement and the
proof of Theorem 3.3. We state this theorem in Section 3.2. In Section 3.3, we recall
Wall’s classification of (4m−1)-connected 8m-manifolds up to the action of the group
of homotopy 8m-spheres, then in Section 3.4, we determine the stable classification of
such manifolds, again up to the action of the homotopy spheres. Next, in Section 3.5,
we construct the manifolds Ma,b appearing in Theorem 3.3 and we prove this theorem
in Section 3.6.

3.1. Exotic spheres and the J-homomorphism. Let Θn denote the group of
h-cobordism classes of homotopy n-spheres, that is closed, connected, oriented
n-manifolds that are homotopy equivalent to Sn, with the group operation given by
connected sum. By [KM63], these are finite abelian groups. We briefly recall some of
what is known about them, focussing on dimensions n = 8m and n = 8m−1, for m ≥ 1.

Recall that bPn+1 ⊆ Θn is the subgroup of h-cobordism classes of homotopy
n-spheres that bound parallelisable (n+1)-manifolds. Kervaire and Milnor showed that
this is a finite cyclic group and, for n+1 = 4� > 4, the order of bPn+1 is given by a for-
mula in terms of Bernoulli numbers and the image of the J-homomorphism [KM63].
Following results of Adams [Ada66] and Quillen [Qui71] on the J-homomorphism,
this formula led to the computation of |bP4�|; we give more details shortly. The group
bP4� is generated by the boundary of Milnor’s E8 plumbing [Bro72, V], a 4�-manifold
obtained from plumbing disc bundles according to the E8 lattice.

Let

Jn : πn(SO)→ πs
n

be the stable J-homomorphism [Whi42, Section 3], where πs
n is the stable n-stem.

Kervaire and Milnor [KM63] showed that Θ8m � coker J8m and that there is a short
exact sequence

0→ bP8m → Θ8m−1 → coker J8m−1 → 0.

Later Brumfiel [Bru68] defined a splitting Θ8m−1 → bP8m and so proved that

Θ8m−1 � bP8m ⊕ coker J8m−1.

Consider a (4m−1)-connected 8m-manifold W with boundary ∂W ∈ Θ8m−1. Extend-
ing work of Stolz [Sto85] and Burklund et al. [BHS19], Burklund and Senger [BS20,
Theorem 1.2] proved that [∂W] ∈ bP8m, except possibly when m = 3, when they also
showed that 2[∂W] ∈ bP24. For our purposes later in this section, we also assume that
W has signature 0. This ensures that ∂W is a multiple of the homotopy sphere denoted
ΣQ by Krannich and Reinhold [KR20, Section 2]; see just below Lemma 3.9 for the
definition of ΣQ.

DEFINITION 3.1. Let bpm be the order of ΣQ in Θ8m−1.
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REMARK 3.2. The precise value of bpm can be calculated, assuming knowledge of the
relevant Bernoulli numbers, from [KR20, Lemma 2.7]. In particular, bpm | |bP8m|. This
is clear when m � 3, since ΣQ ∈ bP8m. It follows from a direct calculation when m = 3,
given that the projection of ΣQ to bP24 has order divisible by 2.

We now recall some facts about the J-homomorphism for context and later use. We
start with the stable J-homomorphism J4m−1 : π4m−1(SO)→ πs

4m−1 and write

jm := |Im(J4m−1)|.

For example,

j1 = 24, j2 = 240, and j3 = 504.

Later, we use the fact that 4 | jm, for m = 1, 2, as we see here. Since the stable homotopy
groups of spheres are finite, so is jm. Since π4m−1(SO) � Z, in fact Im(J4m−1) � Z/jm.
By [Ada66] (see, for example, [Lüc02, Theorem 6.26]), jm can be computed using
the denominator of the rational number Bm/4m, where Bm ∈ Q is the m th Bernoulli
number, defined by the generating function

et

et − 1
= 1 − t

2
+

∞∑
n=1

(−1)n+1Bn

(2n)!
t2n.

By [KM63, Section 7], |bP8m|/(24m−2(24m−1 − 1)) equals the numerator of the rational
number 2B2m/m, from which one can compute |bP8m|.

Next we consider the unstable J-homomorphism, J4m−1,4m : π4m−1(SO4m)→
π8m−1(S4m), which, along with the stable J-homomorphism, the Euler class e and
the Hopf-invariant H, fits into the following commutative diagram with exact rows:

0 �� π4m−1(SO4m)
e⊕S ��

J4m−1,4m

��

Z ⊕ π4m−1(SO)

Id⊕J4m−1

��

�� Z/2

=

��

�� 0

0 �� π8m−1(S4m)
H⊕S �� Z ⊕ πs

4m−1
�� Z/2 �� 0

(*)

The commutativity of the left-hand square in (*) is equivalent to the classical state-
ments that e = H ◦ J4m−1,4m and that the J-homomorphism commutes with stabilisation
[JW54, 1.2 and 1.3]. That e ⊕ S is injective with index 2 is reviewed in [Wal62, page
171]. That the same statements hold for H ⊕ S follows from Toda’s calculations in the
exceptional cases m = 1, 2 [Tod62, V, (iii) and (vii)] and from Adams’ solution of the
Hopf invariant 1 problem for m > 2 [Ada60]. For m > 2, both e(π4m−1(SO4m)) ⊆ Z and
H(π8m−1(S4m)) ⊆ Z are index 2 subgroups and stabilisation is a split surjection, [Ada60,
BM58]. In particular, this means that for m > 2, the Euler class e is always even for
rank 4m oriented vector bundles over S4m. When m = 1, 2, the maps e and H are both
onto and e = H ◦ J4m−1,4m ≡ S mod 2 [Wal62, page 171] and H ≡ S mod 2 by Toda’s
computations mentioned above. These computations show that for m = 1, H ⊕ S :
π7(S4) � Z ⊕ Z/12→ Z ⊕ Z/24 sends (x, y) �→ (x, x + 2y). For m = 2, the map H ⊕ S :

https://doi.org/10.1017/S1446788722000167 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000167


12 A. Conway, D. Crowley, M. Powell and J. Sixt [12]

π15(S8) � Z ⊕ Z/120→ Z ⊕ Z/240 is also given by (x, y) �→ (x, x + 2y). It follows that
H ≡ S mod 2 as asserted.

3.2. Estimating Sst

h
(M). In this section, we give upper and lower bounds for the

homotopy stable class of certain (4m−1)-connected 8m-manifolds. To state these
bounds, we require a certain amount of notation.

Let m be a positive integer and let {a, b} be a pair of positive integers. Since the
dimensions 8 and 16 are exceptional, we introduce the factor

cm :=

⎧⎪⎪⎨⎪⎪⎩2 m = 1 or 2,
1 m > 2,

to handle the exceptional dimensions. We define

d := gcd(a, b)cm

and write

acm = da′ and bcm = db′

for some coprime a′, b′. Set

A := a′b′ = abc2
m/d

2.

For a positive integer n, we let Pn be the set of prime factors of n:

Pn := {p ∈ N : p prime, p | n}.

We set jm = jm/ gcd( jm, d) and consider the sets PA, Pjm
and their intersection

PA,m := PA ∩ Pjm
,

the set of primes dividing both jm and A. We define the nonnegative integers

qA := |PA| − 1 and qA,m := |PA,m| − 1.

Now we can state the main theorem of this section. Its proof occupies the remainder
of the section.

THEOREM 3.3. Let m be a positive integer and let {a, b} be a pair of positive
integers such that bpm | ab. If d = gcd(a, b) and jm = jm/ gcd( jm, d), then the closed,
(4m−1)-connected 8m-manifolds Ma,b constructed in Section 3.5 satisfy the following:

(1) Ma,b has hyperbolic intersection form;
(2) |Sst(Ma,b)/Θ8m| = 2qA and
(3) 2qA,m ≤ |Sst

h (Ma,b)| ≤ �((jm)2 + 2jm + 4)/4�.

Adams’ work on jm [Ada66], a theorem of von Staudt and Clausen (see [IR90,
Theorem 3, page 233]) on the denominator of Bm, and a result of von Staudt on the
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numerator of Bm (see [Mil58b, Lemma 2]) combine to show that

Pjm = {p prime : (p − 1) | 2m}.

Since 2 and 3 certainly lie in the latter set, |Pjm | ≥ 2. Now define

qm := |Pjm | − 1 ≥ 1.

By choosing a and b with some care, we obtain the following corollary, which implies
Theorem 1.2.

COROLLARY 3.4. Let m be a positive integer and let {a, b} be a pair of posi-
tive, coprime integers such that bpm | ab and jm/cm | A = abc2

m. Then the closed,
(4m−1)-connected 8m-manifolds Ma,b constructed in Section 3.5 have hyperbolic
intersection form and satisfy that 2 ≤ 2qm ≤ |Sst

h (Ma,b)|.

In particular, any coprime, positive a, b such that bpm · jm/cm divides A = abc2
m

satisfy the hypotheses of the corollary. Note that changing A does not alter the lower
bound, which is purely a function of m.

PROOF. Since a and b are coprime, d = cm, jm = jm/cm and Pjm
= Pjm (using 4 | jm

for m = 1, 2). Since jm/cm = jm | A, we see that Pjm
⊆ PA and therefore PA,m = Pjm

=

Pjm , so that qA,m = qm. Since qm ≥ 1, the corollary follows from the lower bound in
Theorem 3.3(3). �

3.3. The almost-diffeomorphism classification of (4m−1)-connected 8m-
manifolds. In this section, we recall the relevant part of Wall’s classification results
for closed, (4m−1)-connected 8m-manifolds. Recall that two closed manifolds M0 and
M1 are almost diffeomorphic if there is a homotopy sphere Σ and a diffeomorphism
f : M0#Σ→ M1.

Let M be a closed, (4m−1)-connected 8m-manifold, and equip M with an orienta-
tion. The intersection form of M is a symmetric bilinear form

λM : H4m(M) × H4m(M)→ Z.

The obstruction class of M is the homomorphism

SαM : H4m(M)→ π4m−1(SO) � Z

defined by representing a homology class x by a smoothly embedded sphere S4m
x ↪→ M,

whose existence is ensured by Hurewicz theorem and [Hae61, Theorem 1(a)], and then
taking the homotopy class of the clutching map of the stable normal bundle of S4m

x .
The map SαM is the stabilisation of a map αM defined by taking the normal bundle of
S4m

x . This is important in the proof of Theorem 3.7 below. As shown by Wall [Wal62,
page 171 and Lemma 2], if m = 1, 2, then the existence of rank 4m vector bundles
over S4m with odd Euler class implies that the obstruction class is characteristic for the
intersection form; that is, if m = 1 or 2, then for all x ∈ H4m(M),

λM(x, x) ≡ SαM(x) mod 2. (†)
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For m > 2, by Wall [Wal62, page 171], there is no relation between SαM and λM . As
also shown in [Wal62, page 171 and Lemma 2], since e = H ◦ J4m−1,4m and since for
m > 2 we have that H ◦ J4m−1,4m is even, the Euler number is always even and therefore
λM(x, x) ≡ 0 mod 2 for all x ∈ H4m(M).

For the homotopy classification, we consider the stable J-homomorphism

J4m−1 : π4m−1(SO)→ Z/jm ⊆ πs
4m−1.

The homotopy obstruction class of M, Sαh
M , is the composition of SαM with J4m−1,

Sαh
M := J4m−1 ◦ SαM : H4m(M)→ Z/jm.

Since j1 and j2 are divisible by 2, the congruence of (†) implies that if m = 1, 2, then

λM(x, x) ≡ Sαh
M(x) mod 2.

We now define the invariants we use to classify (4m−1)-connected 8m-manifolds
up to almost diffeomorphism and homotopy equivalence.

DEFINITION 3.5 (Extended symmetric form). Fix a homomorphism v : G→ Z/2
from an abelian group G to Z/2. An extended symmetric form over v consists of a
triple (H, λ, p) where:

(1) H is a finitely generated free Z-module;
(2) λ : H × H → Z is a symmetric, bilinear form and
(3) f : H → G is a homomorphism such that λ(x, x) ≡ v ◦ f (x) mod 2.

Two extended symmetric forms (H, λ, f ) and (H′, λ′, f ′) are equivalent if there is an
isometry h : (H, λ)→ (H′, λ′) such that f ′ ◦ h = f : H → G.

In our applications to 8m-manifolds, the group G is either the infinite cyclic group
π4m−1(SO) � Z or the finite cyclic group Im(J4m−1) � Z/jm. Due to the existence of
rank 4m bundles over S4m with odd Euler number when m = 1, 2, and the nonexistence
of such bundles for m ≥ 3, we set v to be nonzero for m = 1, 2 (recall 2 | j1 and 2 | j2)
and zero for m > 2. Hence for m > 2, (3) is just the requirement that λM be even. With
these conventions on v, the following assignments define extended symmetric forms.

DEFINITION 3.6 (The extended symmetric forms of M). Let M be an oriented
(4m−1)-connected 8m-manifold.

(1) The smooth extended symmetric form of M is the triple

(H4m(M), λM , SαM)

with G � Z.
(2) The homotopy extended symmetric form of M is the triple

(H4m(M), λM , Sαh
M)

with G � Z/jm.

https://doi.org/10.1017/S1446788722000167 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000167


[15] Simply connected manifolds with large homotopy stable classes 15

The following result is a direct consequence of classification results of Wall [Wal62,
page 170 and Lemma 8].

THEOREM 3.7 (Wall). Let M1 and M2 be closed, oriented, (4m−1)-connected
8m-manifolds. The manifolds M1 and M2 are:

(1) almost diffeomorphic, via an orientation-preserving diffeomorphism, if and only
if their smooth extended symmetric forms are equivalent;

(2) homotopy equivalent, via a degree one homotopy equivalence, if and only if their
homotopy extended symmetric forms are equivalent.

When applying these classifications, we have to factor out the effect of the
orientation choice on the extended symmetric forms.

PROOF. We start with the almost-diffeomorphism classification (1). As mentioned
above, the homomorphism SαM is the stabilisation of a certain quadratic form, the
extended quadratic form of M, which is the map

αM : H4m(M)→ π4m−1(SO4m),

defined by representing a homology class by a smoothly embedded sphere S4m ↪→ M,
and then taking the classifying map in π4m−1(SO4m) of the normal bundle of the
embedded sphere. For all x, y ∈ H4m(M), [Wal62, Lemma 2] and the fact that e =
H ◦ J4m−1,4m prove that αM relates to the intersection form of M by the equations

λM(x, x) = e(αM(x)) and αM(x + y) = αM(x) + αM(y) + λ(x, y)τ.

Here the map e : π4m−1(SO4m)→ Z is the Euler number of the corresponding bundle
and τ ∈ π4m−1(SO4m) is the clutching function of the tangent bundle of S4m. Wall
also proved [Wal62, page 170] that the triple (H4m(M), λM ,αM) is a complete
almost-diffeomorphism invariant of M. In fact, Wall stated his classification in terms
of almost-closed manifolds: compact manifolds with boundary a homotopy sphere.
However, this also yields the almost-diffeomorphism classification, as follows. If
the extended symmetric forms of two closed (4m−1)-connected 8m-manifolds are
equivalent, then by the almost-closed classification, the manifolds are diffeomorphic
after removing a ball D8m from each. Gluing the balls back in compatibly with
the diffeomorphism might change one of the manifolds by connected sum with a
homotopy sphere, but nonetheless, the two closed manifolds are almost diffeomorphic.
However, almost-diffeomorphic manifolds are diffeomorphic after removing a ball
from each and then by the classification the extended symmetric forms are equivalent.

As mentioned above, SαM := S ◦ αM , where S : π4m−1(SO4m)→ π4m−1(SO) is the
stabilisation homomorphism. The homotopy exact sequence of the fibration SO4m →
SO4m+1 → S4m shows that the kernel of S is generated by τ [Lev85, Lemma 1.3 and
Theorem 1.4] and since

e ⊕ S : π4m−1(SO4m)→ Z ⊕ π4m−1(SO)
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is injective by (*), it follows that the pair (λM(x, x), SαM(x)) = (e(αM(x)), S(αM(x))) ∈
Z ⊕ π4m−1(SO) � Z ⊕ Z determines αM(x) for all x ∈ H4m(M). The theorem now
follows from Wall’s almost-diffeomorphism classification.

The proof of the homotopy classification is similar. By Wall [Wal62, Lemma 8],
the triple (H4m(M), λM ,αh

M := J4m−1,4m ◦ αM) is a complete homotopy invariant of the
manifolds under consideration. Since e = HJ and

H ⊕ S : π8m−1(S4m)→ Z ⊕ πs
4m−1

is injective by (*), it follows that the pair (λM(x, x), Sαh
M(x)) = (H(αh

M(x)), S(αh
M(x))) ∈

Z ⊕ πs
4m−1 determines αh

M(x) for all x ∈ H4m(M). The theorem now follows from Wall’s
homotopy classification. �

3.4. Stable almost-diffeomorphism classification of (4m−1)-connected 8m-
manifolds. In this section, we give the stable classification of closed (4m−1)-
connected 8m-manifolds up to connected sum with homotopy 8m-spheres. Define
the nonnegative integer dM by the equation

SαM(H4m(M)) = dMZ.

Equivalently, dM is the divisibility of SαM ∈ H4m(M), where, since M is (4m−1)-
connected, we may regard SαM as an element of the group H4m(M) via the inverse
of the evaluation map ev : H4m(M)→ Hom(H4m(M),Z), which is an isomorphism. In
particular, it makes sense to consider the class (SαM)2 ∈ H8m(M) � Z.

THEOREM 3.8. Two closed, oriented, (4m−1)-connected 8m-manifolds M and
N with the same Euler characteristic are almost-stably diffeomorphic, via an
orientation-preserving diffeomorphism, if and only if the following hold:

(1) dM = dN;
(2) σ(M) = σ(N);
(3) 〈(SαM)2, [M]〉 = 〈(SαN)2, [N]〉.

PROOF. First, we note that dM , the signature and (SαM)2 are invariants of
orientation-preserving almost-stable diffeomorphisms, so one implication holds.

For the other implication, we assume that M and N are such that dM = dN , σ(M) =
σ(N), and (SαM)2 = (SαN)2 and we show that M and N are stably diffeomorphic. The
normal (4m−1)-type of M and N is determined by d = dM = dN and is described as fol-
lows. Let d be a nonnegative integer. Let BO〈4m−1〉 → BO be the (4m−1)-connected
cover of BO and let p ∈ H4m(BO〈4m−1〉) � Z be a generator. We regard ρd(p), the mod
d reduction of p, as a map ρd(p) : BO〈4m−1〉 → K(Z/d, 4m) and define BO〈4m−1, dM〉
to be the homotopy fibre of ρd(p). The normal (4m−1)-type of M and N is represented
by the fibration given by the composition

BO〈4m−1, d〉 → BO〈4m−1〉 → BO.
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For brevity, use (Bd, ηd) to denote the fibration ηd : BO〈4m−1, d〉 → BO. We assert
that M and N admit unique normal (4m−1)-smoothings νM : M → Bd and νN : N →
Bd. We prove the assertion for M, as the proof for N is identical. Since M is
(4m−1)-connected, its stable normal bundle νM : M → BO lifts (up to homotopy)
uniquely to ν4m−1 : M → BO〈4m−1〉. To lift ν4m−1 to Bd, we consider the long exact
sequence (of pointed sets) of the fibration

0 = H4m−1(M;Z/d)→ [M, Bd]→ [M, BO〈4m−1〉]→ H4m(M;Z/d)→ · · · ,

where on the left, we use [M,ΩK(Z/d, 4m)] = [M, K(Z/d, 4m − 1)] =
H4m−1(M;Z/d) = 0, because M is (4m−1)-connected. The assertion is now proved
by noting that ν4m−1 ∈ [M, BO〈4m−1〉] maps to SαM ∈ H4m(M;Z/d), which is zero by
definition of the divisibility dM .

By [Kre99, Theorem 2], M and N are orientation preserving stably diffeomorphic
if

[M, νM] = [N, νN] ∈ Ω8m(Bd, ηd).

Since homotopy 8m-spheres have a unique (Bd, ηd)-structure, there is a well-defined
homomorphism Θ8m → Ω8m(Bd, ηd). Now the arguments in Wall’s computation of
the Grothendieck groups of almost-closed (4m−1)-connected 8m-manifolds [Wal62,
Theorem 2] show that there is an exact sequence

Θ8m → Ω8m(Bd, ηd)
(σ, (Sα)2)
−−−−−−−→ Z2, (Ω)

where σ([M, νM]) = σM and Sα2([M, νM]) = (SαM)2([M]). It follows that there is a
homotopy 8m-sphere Σ such that [M#Σ, νM#Σ] = [N, νN] ∈ Ω8m(Bd, η). Hence, M#Σ
and N are stably diffeomorphic and so M and N are almost-stably diffeomorphic. �

3.5. Construction of the manifolds Ma,b. In this section, we construct the man-
ifolds Ma,b appearing in Theorem 3.3. Let a and b be positive integers such that
bpm | ab. We build simply connected, closed 8m-manifolds Ma,b with the cohomol-
ogy ring of S4m × S4m by attaching handles to an 8m-ball. We attach to D8m two
4m-handles hx and hy, diffeomorphic to D4m × D4m, using attaching maps φx, φy :
S4m−1 × {0} → S8m−1 with linking number 1. Note that for m ≥ 1, 2-component links
S4m−1 � S4m−1 ↪→ S8m−1 are classified up to smooth isotopy by the linking number, an
integer [Hae62, Theorem in Section 5]. There is more data needed for the attaching
maps, which for each 4m-handle corresponds to a choice of framing for the attaching
sphere S4m−1 ⊆ S8m−1. The framings that induce a given orientation are in one to one
correspondence with homotopy classes of maps [S4m−1, SO4m], where the class of the
constant map corresponds to the framing that extends over an embedded 4m-disc
D4m ⊆ S8m−1. Recall from (*) that π4m−1(SO4m) � Z ⊕ Z, detected by e ⊕ S (although
this map is not an isomorphism). We are attaching 4m-handles hx hy; let x and y denote
the corresponding classes in (4m) th homology and let ξx, ξy ∈ π4m−1(SO4m) be the
framings for the attaching maps.
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Since we want λ(x, x) = 0, we require that e(ξx) = 0 but we are otherwise free to
choose ξx. Recall that cm = 2 if m = 1, 2 and cm = 1 if m>2, fix an isomorphism
π4m−1(SO) = Z and choose ξx such that S(ξx) = acm. By the discussion following (*),
we can find such a ξx for any choice of a. Similarly, we attach the handle hy with
e(ξy) = 0 and S(ξy) = bcm. Again, we can find such a ξy for any b. After attaching
the pair of 4m-handles, we write W := Wa,b for the resulting compact 8m-manifold
with boundary. Note that there is a homotopy equivalence W � S4m ∨ S4m. As above,
let x and y be generators of Z2 � H4m(W) and let {x∗, y∗} be the dual basis for
Z2 � H4m(W) = H4m(W)∗. The manifold W = Wa,b has smooth extended symmetric
form given by

(H4m(W), λW , SαW) =

(
Z2,

(
0 1
1 0

)
,
(

acm

bcm

)
: Z2 → Z

)
,

where the notation for SαW means that SαW(x) = acm and SαW(y) = bcm.
Alternatively, the construction thus far can be achieved by taking the two

D4m-bundles over S4m determined by ξx and ξy, and plumbing them together once.
The boundary of Wa,b is a homotopy (8m−1)-sphere, which we denote by Σa,b. In

particular, ∂W1,1 is by definition the homotopy sphere ΣQ from [KR20, Section 2].
More generally, ∂Wa,b is given as follows.

LEMMA 3.9. [∂Wa,b] = [abΣQ] ∈ Θ8m−1.

PROOF. Recall from [Wal67, Section 17] the group A〈4m〉
8m of bordism classes of

(4m−1)-connected 8m-manifolds with boundary a homotopy sphere, where the bor-
disms are required to be h-cobordisms on the boundary. Addition is via boundary
connected sum. Taking the boundary defines a homomorphism A〈4m〉

8m → Θ8m−1, and
the characteristic numbers σ and (Sα)2 of (Ω) are also well defined on A〈4m〉

8m . Indeed,
Wall [Wal62, Theorems 2 and 3] proved that σ ⊕ (Sα)2 : A〈4m〉

8m → Z2 is an injective
homomorphism. Since Wa,b satisfies σ(Wa,b) = 0 and (SαWa,b )2 = 2abc2

m, we have that
(SαW1,1 )2 = 2c2

m and so

(SαWa,b )2 = 2abc2
m = ab(SαW1,1 )2 = (Sα�abW1,1 )2,

where the last equality used that (Sα)2 is a homomorphism. Since σ ⊕ (Sα)2 is
injective, Wa,b = �

abW1,1 ∈ A〈4m〉
8m . So ∂Wa,b and ∂(�abW1,1) = abΣQ are h-cobordant and

therefore diffeomorphic. �

From Lemma 3.9 and our assumption that bpm | ab, it follows that [Σa,b] = 0 ∈
Θ8m−1, so that there is a choice of diffeomorphism f : Σa,b → S8m−1. We write
Ma,b, f = Wa,b

⋃
f D8m for the closure of Wa,b built using a diffeomorphism f : Σa,b →

S8m−1. We also use Ma,b to ambiguously denote any Ma,b, f . For any other choice of
diffeomorphism f ′, Ma,b, f and Ma,b, f ′ are almost diffeomorphic.

Let us record the values of the key invariants on Ma,b. The stable almost-
diffeomorphism invariants of Ma,b are dMa,b = gcd(a, b)cm, σ(Ma,b) = 0 and (SαMa,b )2 =
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2abc2
m. The extended symmetric form of M := Ma,b is the same as that of W:

(H4m(M), λM , SαM) =

(
Z2,

(
0 1
1 0

)
,
(

acm
bcm

)
: Z2 → Z

)
.

This completes the construction of the manifolds Ma,b.

3.6. The proof of Theorem 3.3. Now that we have constructed the (4m−1)-
connected 8m-manifolds Ma,b, we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. Let a and b be positive integers such that bpm | ab. By
construction, the oriented manifolds Ma,b have hyperbolic intersection form, so
Theorem 3.3(1) is immediate.

As before, write d := gcd(a, b)cm and define A := abc2
m/d

2. Let p1, . . . , pqA+1 be the
prime-power factors of A, which are powers of pairwise distinct primes. Then there are
2qA ways to express A as a product yizi of coprime positive integers, counting unordered
pairs {yi, zi}. We consider the 8m-manifolds

{Mi := Mdyi,dzi}2
qA

i=1.

For each i, dMi = d, σ(Mi) = 0 and 〈(SαMi )
2, [Mi]〉 = 2dyidzi = 2d2A = 2abc2

m. There-
fore, the manifolds Mi are pairwise almost-stably diffeomorphic by Theorem 3.8. A
priori they cannot all lie in Sst(Ma,b), but the ambiguity of whether they are actually
stably diffeomorphic is removed by more carefully choosing the diffeomorphisms
fi : Σi → S8m−1 used to glue on D8m in the construction of the Mi. By changing the
choice of the identification fi, we change Mi by connected sum with an exotic sphere
of our choice. The Mi are only determined up to this choice in our construction, so let
us assume we made this consistently so that Mi ∈ Sst(Ma,b) for every i = 1, . . . , 2qA . In
Sst(Ma,b)/Θ8m, this choice of the fi is in any case irrelevant.

When we discuss extended symmetric forms on Z2, we always mean with respect to
a particular choice of basis. For Mi, with its fixed choice of fundamental class [Mi], we
use a basis with respect to which the intersection form is represented by H+(Z) = ( 0 1

1 0 ).
We have constructed the Mi so that, with respect to such a basis, SαMi : Z2 → Z is
represented by ( acm

bcm
) with ab > 0 and cm ∈ {1, 2}.

The smooth extended symmetric forms of the Mi are pairwise distinct, since
isometries of the rank two hyperbolic intersection form can only change the sign and
permute the basis elements. The map SαMi : Z2 → Z is given by (dyi, dzi). Since the
unordered pairs {dyi, dzi} are pairwise distinct, by the almost-diffeomorphism classi-
fication of Theorem 3.7(1), the Mi are pairwise distinct up to orientation-preserving
almost diffeomorphism. We are able to deduce that |Sst(Ma,b)/Θ8m| ≥ 2qA once we have
factored out the effect of the choice of orientation of the Mi. In other words, we must
show that there are also no orientation-reversing almost diffeomorphisms from Mi to
Mj, for i � j, or equivalently that there is no orientation-preserving diffeomorphism
Mi � −Mj.

https://doi.org/10.1017/S1446788722000167 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000167


20 A. Conway, D. Crowley, M. Powell and J. Sixt [20]

Changing the orientation of Mj changes the smooth extended symmetric form, with
respect to the same basis for H4m(M), by altering the sign of the intersection form,
but does not affect SαMj . To see this, note that while changing the orientation of Mj

changes the induced orientation of the fibres of the normal bundle of an embedded
sphere x, SαMj (x) ∈ π4m−1(SO) is the clutching map of this normal bundle, and this is
unaffected by the orientation of the fibres.

The isometries from the rank two hyperbolic form H+(Z) = ( 0 1
1 0 ) to its negative

−H+(Z) consist of the self-isometries of the hyperbolic form, namely ± Id and
( 0 1

1 0 ), composed with either ( 1 0
0 −1 ) or ( −1 0

0 1 ). Thus an orientation-reversing almost
diffeomorphism could identify the smooth extended symmetric form characterised
by (H+(Z),±{v, w}) with one of the extended symmetric forms (−H+(Z),±{−v, w})
or (−H+(Z),±{v,−w}). However, for both Mi and −Mi, the corresponding pair of
integers is ±{v, w} = ±{dyi, dzi}, where both elements have the same sign. So our
manifolds {Mi} are indeed distinct up to almost diffeomorphism. This proves that
|Sst(Ma,b)/Θ8m| ≥ 2qA .

Next we prove that |Sst(Ma,b)/Θ8m| ≤ 2qA . Any closed 8m-manifold M that is
almost-stably diffeomorphic to Ma,b is also necessarily (4m−1)-connected, the divis-
ibility of SαM is d and the intersection form is rank two, indefinite and even, and
therefore either hyperbolic or −H+(Z). If M and Ma,b are almost-stably diffeomorphic,
then there is an orientation on M such that M and Ma,b are almost-stably diffeomorphic
via an orientation-preserving stable diffeomorphism. Use this orientation and choose
a basis for H4m(M) with respect to which the intersection form of M is H+(Z).
Observe that the manifolds Mi cover all possibilities for SαM while keeping (SαM)2

a fixed multiple of the dual fundamental class. (If SαM = ( −acm
bcm

), for example, then
(SαM)2 = −2abc2

m < 0, whereas (SαMa,b )2 = 2abc2
m > 0. This would contradict that

Ma,b and M are orientation-preserving almost-stably diffeomorphic.) It follows by
Theorem 3.7(1) that every such M is almost-stably diffeomorphic to one of the
Mi, and therefore |Sst(Ma,b)/Θ8m| ≤ 2qA as desired. This completes the proof of
Theorem 3.3(2).

To prove (3), we need to estimate the size of the homotopy stable class of Ma,b
from above and below. We begin with the upper bound. As above, every closed
8m-manifold M stably diffeomorphic to Ma,b has an orientation such that M has
hyperbolic intersection form and dM = d. The possibilities for Sαh

M , up to equivalence
of extended symmetric forms, are therefore given by an unordered pair of elements of
Z/jm, both of which are divisible by d. Such an element of Z/jm lies in the subgroup
generated by gcd( jm, d), and so there are jm = jm/ gcd( jm, d) possibilities. We assert
that there are

jm( jm + 1)
2

such pairs. To see this, there are
(

jm
2

)
= jm( jm − 1)/2 choices with distinct elements

(x, y), and jm choices of the form (x, x). Then jm( jm − 1)/2 + jm = jm( jm + 1)/2, which
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is the count asserted. Next, we also factor out the action of Z/2 on our set of unordered
pairs which multiplies both numbers by −1. In the case that jm is even, there are jm/2+1
fixed points of this action of the form (x,−x), and also (0, jm/2) is a fixed point. Thus,
there are precisely jm/2 + 2 fixed points of the Z/2 action on the set with jm( jm + 1)/2
elements. A short calculation then shows that there are

j
2
m + 2jm + 4

4

orbits. A similar calculation for jm odd gives

( jm + 1)2

4
=

⌊ j
2
m + 2jm + 4

4

⌋

orbits. The right-hand side is equal for both parities of jm and gives our desired upper
bound. Note that this upper bound does not take into account the requirement for the
product ab to be constant within a stable diffeomorphism class.

It remains to prove that 2qA,m ≤ |Sst
h (Ma,b)|. As above, let p1, . . . , pqA+1 be the

prime-power factors of A, which are powers of pairwise distinct primes. By reordering
if necessary, assume that p1, . . . , pqA,m+1 are the prime-powers of the form p�, where
p | jm. (It could be that the highest exponent of p that divides jm is less than the highest
exponent of p that divides A.) Recall that d = gcd(a, b)cm and write

d′ := d ·
qA+1∏
ι=qA,m+2

pι and A′ :=
qA,m+1∏
ι=1

pι.

Note that d′A′ = dA. There are 2qA,m essentially distinct ways to express A′ as a product
viwi of coprime positive integers, counting unordered pairs {vi, wi}. We consider the
8m-manifolds

{Mi := Mdvi,d′wi}2
qA,m

i=1 .

For each i, dMi = d, σ(Mi) = 0 and 〈(SαMi )
2, [Mi]〉 = 2dvid′wi = 2dd′A′ = 2d2A =

2abc2
m. Therefore, the Mi are pairwise almost-stably diffeomorphic by Theorem 3.8;

so, up to homotopy equivalence, they are all stably diffeomorphic. As above, the
ambiguity of whether they are actually stably diffeomorphic is removed by more
carefully choosing the diffeomorphisms fi : Σ→ S8m−1 used to glue on D8m in the
construction of the Mi. Let us assume once again that we made this choice consistently
so that Mi ∈ Sst

h (Ma,b) for every i = 1, . . . , 2qA,m .
Next we show that the Mi are distinct up to homotopy equivalence. For this, by

Theorem 3.7, we need to distinguish their homotopy extended symmetric forms, by
showing that the maps Sαh

Mi
: Z2 → Z/jm are pairwise distinct, up to precomposing

with an isometry of the hyperbolic form, or to allow for the possibility of an
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orientation-reversing homotopy equivalence, up to an isometry between the hyperbolic
form and its negative. This means we have to show that the unordered pair of elements
of Z/jm determining Sαh

Mi
and Sαh

Mj
are distinct up to changing signs.

Let Mi and Mj be two of our manifolds, for i � j. We show that they are not
homotopy equivalent. First, gcd(d, jm) divides d, so divides dvi and d′wi. As above,
write jm := jm/ gcd(d, jm). The map Sαh

Mi
: Z2 → Z/jm factors as

Sαh
Mi

: Z2 → Z/jm → Z/jm

for all i, where Z/jm → Z/jm is the standard inclusion sending 1 to gcd(d, jm).
Define

d :=
d

gcd(d, jm)
and d

′
:=

d′

gcd(d, jm)
= d ·

qA+1∏
ι=qA,m+2

pι.

We obtain

Sαh
Mi
=

(
dvi

d
′
wi

)
: Z2 → Z/jm.

It suffices to prove that for i � j, the resulting pairs {dvi, d
′
wi} and {dvj, d

′
wj} are

distinct, up to signs and switching the orders. Note that gcd(d, jm) = 1 = gcd(d
′
, jm).

Let p be a prime dividing A′. Up to possibly changing the orders of vi and wi, and
of vj and wj, assume that p divides vi and vj. If so, p does not divide wi and wj, since
gcd(vi, wi) = 1 = gcd(vj, wj).

Now let q � p be a prime dividing A′ such that either:

(i) q divides wj but q does not divide wi or
(ii) q divides wi but q does not divide wj.

Without loss of generality suppose that (i) holds. Then also q divides vi but q
does not divide vj, since both pairs (vi, wi) and (vj, wj) are coprime. There exists
such a q, unless qA,m = 0, in which case 2qA,m = 1 and we have nothing to prove
anyway. So we can assume that qA,m is positive and that such a q exists. The idea
is that the primes p and q are chosen so that they divide the same element of the
unordered pair associated with the homotopy extended symmetric form for Mi, but
divide different elements of the unordered pair for Mj. It is this distinction we want to
detect.

We consider the images of the four elements dvi, d
′
wi, dvj and d

′
wj of Z/jm under

the canonical surjections

ρp : Z/jm → Z/p and ρq : Z/jm → Z/q.
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Since p and q divide jm and gcd(d, jm) = 1 = gcd(d
′
, jm), we know that p and q do not

divide d and do not divide d
′
. Therefore, for the Z/p reductions, we have

ρp(dvi) = 0, ρp(d
′
wi) � 0, ρp(dvj) = 0 and ρp(d

′
wj) � 0,

while for the Z/q reductions, we have

ρq(dvi) = 0, ρq(d
′
wi) � 0, ρq(dvj) � 0 and ρq(d

′
wj) = 0.

We indicate one of these calculations briefly, that ρp(d
′
wi) � 0, to give the idea. If d

′
wi

are 0 modulo p, then for some a, b ∈ Z, we would have ap = d
′
wi + bjm ∈ Z. However,

p | jm and so p divides d
′
wi, which is a contradiction.

Note that switching the sign of an element in Z/jm preserves whether or not its
image under ρp or ρq is zero. Let us summarise the calculations above. For {dvi, d

′
wi},

one element is zero under the reductions modulo p and q, while the other element is
nonzero under both reductions. However, for the pair {dvj, d

′
wj}, we have shown that

precisely one element is zero under each of the modulo p and modulo q reductions.
Switching the orders of the elements and switching signs preserves these descriptions,
and therefore Mi and Mj are not homotopy equivalent. It follows that |Sst

h (Ma,b)| is at
least 2qA,m , as desired. �

4. Stably equivalent spinc structures on 4-manifolds

As explained in the introduction, the homotopy stable class is trivial for every
closed, simply connected 4-manifold. However, a parallel phenomenon occurs when
one considers equivalence classes of spinc structures on the tangent bundle. In this
section, we illustrate this on S2 × S2.

For all n ≥ 2, the group Spinn is the connected double cover of SOn and the group
Z/2 acts by deck transformations. The group Z/2 acts on U1 � S1 by {±1}. We quotient
out the diagonal action on the product to obtain:

Spinc
n := U1 ×Z/2 Spinn

There are well-defined maps

U1 Spinc
n

pr2 ��pr1�� SOn,

which are defined by pr1([λ, A]) = λ and pr2([λ, A]) = A, where (λ, A) ∈ U1 × Spinn.
There are natural inclusions Spinc

n ↪→ Spinc
n+1 and the stable spinc group is defined

by Spinc := colimn→∞ Spinc
n. There are also stable projections

U1 Spinc pr2 ��pr1�� SO,

where SO is the stable special orthogonal group. We use the same notation pr1, pr2 for
the induced maps on classifying spaces.
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DEFINITION 4.1. Let M be a closed, oriented n-manifold. A spinc structure on M is a
lift

B Spinc

pr2

��
M

s

���
�

�
�

� τM �� BSO

of the stable tangent bundle’s classifying map to B Spinc.

For more background on spinc structures on 4-manifolds, we refer to, for example,
[GS99, Section 2.4.1] and [Sco05, Sections 10.2 and 10.7].

LEMMA 4.2 [GS99, Proposition 2.4.16]. Every oriented 4-manifold admits a spinc

structure.

PROOF. In [GS99], spinc structures on 4-manifolds are defined by using B Spinc
4 in

place of B Spinc, and [GS99, Proposition 2.4.16] proves the existence of a lift of
the classifying map of the (unstable) tangent bundle to B Spinc

4. Composing with the
maps to the colimit, this implies the existence of a spinc-structure in the sense of
Definition 4.1. �

DEFINITION 4.3 (Equivalence of spinc structures). Let M be a closed, oriented
4-manifold.

(1) Two spinc structures s1 and s2 on M are equivalent if there is an orientation-
preserving diffeomorphism f : M → M such that s1, s2 ◦ f : M → B Spinc are
homotopic over BSO; that is, there is homotopy K and a commutative diagram

B Spinc

pr2

��
M × I

K
����������� τM×I �� BSO

,

where K restricts to s1 on M × {0} and s2 ◦ f on M × {1}.
(2) Two spinc structures s1 and s2 are homotopic if they are equivalent as in the

previous item, with f = IdM .

Recall that the projection onto the first component gives a compatible collection of
maps pr1 : B Spinc

n → BU1, n ∈ N. Therefore, passing to the colimit and keeping the
same notation, we obtain a map pr1 : B Spinc → BU1.

DEFINITION 4.4. Via the map pr1 : B Spinc → BU1, a spinc structure s : M → B Spinc

on a 4-manifold M determines a line bundleLs. The first Chern class of s is defined by

c1(s) := c1(Ls) ∈ H2(M).

Noting that BU1 is a K(Z, 2), c1(s) corresponds to pr1 ◦s : M → BU1 under the
isomorphism H2(M) � [M, BU1]. The map pr1 can be interpreted as a determinant and
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Ls is called the determinant line bundle of s. The next lemma follows from [GS99,
Proposition 2.4.16].

LEMMA 4.5. Let M be a closed, oriented 4-manifold.

(i) For every spinc structure s on M, reduction modulo 2 is such that:

H2(M)→ H2(M;Z/2)

c1(s) �→ w2(M),

where w2(M) is the second Stiefel–Whitney class.
(ii) There is a transitive action of H2(M) on the set of homotopy classes of spinc

structures on M, such that for x ∈ H2(M),

c1(x · s) = c1(s) + 2x ∈ H2(M).

(iii) If H1(M) is 2-torsion free, then this action is free.

PROOF. As mentioned during the proof of Lemma 4.2, in [GS99], spinc structures
are defined by using B Spinc

4 in place of B Spinc and therefore the Chern class
of a spinc-structure is defined using pr1 : B Spinc

4 → BU1. However, since the map
B Spinc

4 → BU1 factors through B Spinc, both definitions of the Chern class coincide
and so the lemma follows from [GS99, Proposition 2.4.16]. �

As a consequence, every characteristic cohomology class y ∈ H2(M) can be realised
as the first Chern class of some spinc structure on M, and if H1(M) is 2-torsion
free, then this spinc structure is uniquely determined by y. Here recall that y being
characteristic means that 〈x ∪ x, [M]〉 ≡ 〈x ∪ y, [M]〉mod 2 for every x ∈ H2(M).

The next lemma is immediate from the fact that the Chern class is an invariant of a
spinc structure, and is natural.

LEMMA 4.6. If two spinc structures s1 and s2 on a closed, oriented 4-manifold M are
equivalent, then there is an isometry of the intersection form on H2(M) sending c1(s1)
to c1(s2). �

To define stable equivalence of spinc structures, fix once and for all the preferred
spinc structure sg on Wg := #gS2 × S2, to be the spinc structure with c1(sg) = 0 ∈
H2(Wg). Such a spinc structure exists by Lemma 4.5.

DEFINITION 4.7 (Stable equivalence of spinc structures). Two spinc structures s1 and
s2 on a closed, oriented 4-manifold M are stably equivalent if there exists g ∈ N0 such
that the induced spinc structures on M#Wg, extending s1 and s2 using the fixed spinc

structure sg on Wg, are equivalent.

The stable classification of spinc structures s on simply connected 4-manifolds M is
analogous to the almost-stable classification of (4m−1)-connected 8m-manifolds from
Theorem 3.8 and we want to apply Kreck’s stable diffeomorphism theorem [Kre99,
Corollary 3]. Since Kreck works with the stable normal bundle, while it is convenient
for us to work with the stable tangent bundle, we make some brief general remarks
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about moving between tangential and normal bundle data in the modified surgery
setting; for the analogous discussion in classical surgery, see, for example, [CLM,
Lemma 6.39].

REMARK 4.8. Recall that given a fibration ξ : B→ BSO and an oriented manifold M, a
normal ξ-structure on M is a lift ν : M → B of the stable normal bundle νM : M → BSO
and ν is called a normal k-smoothing if it is (k+1)-connected [Kre99, Section 2].
Note that the fibration ξ is not required to be (k+1)-coconnected so that, in Kreck’s
terminology, the fibration ξ need not be the normal k-type of M. Now let i : BSO→
BSO be the map classifying the passage from a stable bundle to its stable inverse. Since
the Whitney sum τM ⊕ νM of the stable tangent and normal bundles of M is canonically
trivialised, we have νM = i ◦ τM . Setting −ξ := i ◦ ξ, it follows that if ν : M → B is a
normal (−ξ)-structure on M, then τ = ν defines a stable tangential ξ-structure on M, and
vice versa. We call a stable tangential ξ-structure τ : M → B a tangential k-smoothing
if it is (k+1)-connected. With these observations and definitions, we can pass freely
between (stable) tangential ξ-manifolds and normal (−ξ)-manifolds, applying Kreck’s
results to the latter. In particular, if (M0, τ0) and (M1, τ1) are n-dimensional tangential
k-smoothings in (B, ξ) that are tangentially (B, ξ)-bordant, then the corresponding
normal k-smoothings in (B,−ξ) are normally (B,−ξ)-bordant; and so when n = 2q and
k = q−1, we may conclude that (M0, τ0) and (M1, τ1) are stably (B, ξ)-diffeomorphic.

REMARK 4.9. We also note that the stable spinc structure sg defined above on
Wg corresponds to the normal structure νc on Wg defined in [Kre99, page 721],
which is used in Kreck’s stable diffeomorphism results [Kre99, Theorem 2 and
Corollary 3]. Moreover, the discussion just prior to [Kre99, Theorem 2] and its proof
show that [Kre99, Theorem 2 and Corollary 3] can be strengthened to include the
normal (B,−ξ)-structure; specifically, they yield respectively s-cobordisms and stable
diffeomorphisms of normal (B,−ξ)-manifolds, where stabilisation is with the normal
(−ξ)-manifold (Wg, νc). As a consequence, below we obtain stable diffeomorphisms of
tangential B Spinc manifolds, where the stabilisation is with (Wg, sg).

Returning to 4-manifolds, note in particular that a 1-smoothing has to be
2-connected. While we work with simply connected 4-manifolds, so π1(M) = 1 =
π1(B Spinc), the map M → B Spinc classifying a spinc structure need not be surjective
on π2. To mitigate this, we make the following definition.

Given (M, s), we define the divisibility d(s) ∈ N0 of c1(s) by the equation

c1(s)(π2(M)) = d(s)Z.

Let B Spinc(d) be the homotopy fibre of the mod d spinc first Chern class, so that there
is a fibre sequence

B Spinc(d)
π−→ B Spinc → K(Z/d, 2).

By construction, π : B Spinc(d)→ B Spinc is a fibration, and the universal stable
bundle over B Spinc pulls back to a stable bundle over B Spinc(d).
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DEFINITION 4.10. Let M be a closed, oriented n-manifold. A spinc(d) structure on M
is a lift

B Spinc(d)

pr2 ◦ π
��

M

s(d)
���

�
�

�
� τM �� BSO

of the stable tangent bundle’s classifying map to B Spinc(d). We denote a manifold
with a spinc(d)-structure by (M, s(d)) and the corresponding bordism groups by
Ω

Spinc(d)
∗ .
For example, the trivial spinc structure sg on Wg used in Definition 4.7 lifts to the

trivial spinc(d) structure sg(d) on Wg.

LEMMA 4.11. The following assertions hold:

(1) π2(B Spinc(d)) = Z for d � 0 and π2(B Spinc(d)) = 0 for d = 0;
(2) if (M, s) is a simply connected spinc manifold, then M admits a spinc(d) structure

s(d) for d := d(s) such that the map s(d) : M → B Spinc(d) is 2-connected. In
particular, s(d) defines a tangential 1-smoothing into B Spinc(d).

PROOF. We have π2(B Spinc) � Z, and so the long exact sequence of a fibration in
homotopy groups yields

0 = π3(K(Z/d, 2))→ Z→ Z� Z/d = π2(K(Z/d, 2)) −→ 0.

Since also π1(B Spinc)=1, we have that B Spinc(d) is 1-connected and π2(B Spinc(d))�
Z for d � 0. A similar calculation shows that π2(B Spinc(0)) = π2(B Spin) = 0. In fact,
it then follows from Whitehead’s theorem that the map B Spin→ B Spinc(0), obtained
from factoring the canonical map B Spin→ B Spinc through B Spinc(0), is a homotopy
equivalence. This concludes the proof of the first assertion.

We now assume that (M, s) is a simply connected spinc manifold and prove the
second assertion. The first point follows by observing that in the exact sequence

[M, B Spinc(d)]→ [M, B Spinc]→ [M, K(Z/d, 2)] = H2(M;Z/d),

the spinc structure s ∈ [M, B Spinc] is mapped to zero, by definition of d(s). It only
remains to show that s(d) is 2-connected. Since this is clear for d = 0, we assume
that d � 0. As we know that π2(B Spinc) = Z and π2(B Spinc(d)) = Z, the long exact
sequence of the fibration and the definition of d = d(s) imply that Im(s∗) = dZ ⊆ Z =
π2(B Spinc) and therefore s(d) is surjective on π2, as required. �

Our aim is now to construct an injective mapΩSpinc(d)
∗ → Z ⊕ Z. The first component

of this map is the signature, while the second arises as a characteristic number obtained
from s(d) : M → B Spinc(d) by pulling back a universal class c1/d ∈ H2(B Spinc(d))
that we now define. For d � 0, Lemma 4.11 implies that H2(B Spinc(d)) is an infinite
cyclic group. It is generated by a class c1/d ∈ H2(B Spinc(d)) such that the pullback
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π∗(c1) of the spinc first Chern class, satisfies

d(c1/d) = π∗(c1) ∈ H2(B Spinc(d)). (�)

For d = 0, H2(B Spinc(0)) = H2(B Spin) = 0 and we set c1/d = 0. As is conventional
for characteristic classes, given a spinc(d) structure s(d) : M → B Spinc(d), we write
c1/d(s(d)) := s(d)∗(c1/d) ∈ H2(M). For example, the trivial spinc(d)-structure sg(d) on
Wg is characterised by c1/d(sg(d)) = 0.

LEMMA 4.12. There is an injective homomorphism

Θ : ΩSpinc(d)
4 → Z ⊕ Z,

[N, s(d)] �→ (σ(N), 〈(c1/d(s(d)))2, [N]〉).

PROOF. The given map is a homomorphism, and is a bordism invariant because the
signature is bordism invariant and because c2

1 is a characteristic number and therefore
so is (c1/d)2.

It remains to prove injectivity of Θ. Let (M, s(d)) be a spinc(d)-manifold with
vanishing signature and (c1/d(s(d)))2 = 0. Since π1(B Spinc(d)) = 1, after preliminary
surgeries over B Spinc(d) we may assume that M is simply connected. Since σ(M) = 0,
the homeomorphism classification of smooth simply connected 4-manifolds [Fre82]
means that we can assume that M is homeomorphic to one of the following model
manifolds:

M �TOP

⎧⎪⎪⎨⎪⎪⎩Wg d even,
Xg d odd,

where Xg := #gS2×̃S2. In other words, M is a possibly exotic Wg or Xg. Now, exotic
pairs of simply connected 4-manifolds are h-cobordant [Wal64, Theorem 2], and the
spinc(d)-structure on M propagates along an h-cobordism to a spinc(d) structure on
either Wg or Xg, as appropriate. Hence, we may assume that (M, s(d)) is diffeomorphic
to either (Wg, s′g(d)) or (Xg, s′′g (d)) for some spinc(d) structure s′g(d) or s′′g (d). Now, M
has a standard coboundary N, ∂N = M, where

N �

⎧⎪⎪⎨⎪⎪⎩Yg d even,
Zg d odd.

Here Yg := �gD3 × S2 and Zg := �gD3×̃S2, where D3×̃S2 → S2 is the nontrivial
bundle. By assumption, (c1/d(s(d)))2 = 0 and it follows that c1/d(s(d)) ∈ L, for
some lagrangian L ⊆ H2(M). Now, the automorphisms of the intersection form act
transitively on the set of lagrangians (see, for example, [Wal64, pages 144–145]);
and Wall [Wal64, page 144] also showed that every isometry of the intersection
form of H2(M) is realised by a diffeomorphism. Hence, we may assume that
c1/d(s(d)) ∈ H2(M) lies in the standard lagrangian of H2(M), and so is the restriction
to the boundary of c for some c ∈ H2(N). Since H2(N)→ H2(M) is onto a summand, it
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follows that N admits a spinc(d)-structure sN(d) that restricts to s(d). Hence, (N, sN(d))
is a spinc(d) null-bordism of (M, s(d)), and so Θ is indeed injective. �

Next, using Lemma 4.12, we deduce the stable classification of spinc structures on
simply connected 4-manifolds.

The fibration sequence defining B Spinc(d) gives rise to an exact sequence

[M,ΩK(Z/d, 2)]→ [M, B Spinc(d)]→ [M, B Spinc]→ [M, K(Z/d, 2)].

If M is simply connected, then [M,ΩK(Z/d, 2)] � [M, K(Z/d, 1)] � H1(M;Z/d) = 0,
so if a lift of spinc structure s to a spinc(d) structure s(d) exists, then it is essentially
unique.

A spinc(d) structure s(d) on M induces a spinc(d) structure on M#Wg, for any
g: as in Definition 4.7, we extend the associated spinc(d) structure on M by the
spinc(d) structure on Wg with c1 = 0. By the previous paragraph, since Wg is simply
connected, there is an essentially unique such spinc(d) structure on Wg. Then a lift to
a spinc(d) structure on M determines such a lift on M#Wg. We can therefore define
stable equivalence of spinc(d) structures. The definition is identical to the definition
for spinc(d) structure, just replacing Spinc with Spinc(d) throughout Definition 4.3(1)
and Definition 4.7.

THEOREM 4.13. Let M be a closed, oriented, simply connected 4-manifold. Two spinc

structures s1 and s2 on M are stably equivalent if and only if d(s1) = d(s2) ∈ N0 and
c1(s1)2 = c1(s2)2 ∈ H4(M).

PROOF. For the forward direction, the square of the Chern class and its divisibility
are preserved by stable equivalence because we fixed the spinc structure on Wg to be
the structure with trivial first Chern class, and because equivalence of spinc structures
preserves Chern numbers and the divisibility.

For the reverse direction, by Lemma 4.12, for a fixed 4-manifold M, two spinc

structures s1 and s2 on M with d(s1) = d(s2) = d determine spinc(d)-structures s1(d)
and s2(d), and therefore elements of ΩSpinc(d)

4 . Since c1(s1)2 = c1(s2)2, it follows that
(c1/d(s1(d)))2 = (c1/d(s2(d)))2: for d = 0, this is automatic; for d � 0, apply π∗ to
c1(s1)2 = c1(s2)2 and use (�). Therefore, since σ(M) is independent of tangential
structures, by Lemma 4.12, (M, s1(d)) and (M, s1(d)) are bordant over B Spinc(d).
Using Remark 4.8, we transfer to stable normal structures and apply Kreck’s stable
diffeomorphism theorem [Kre99, proof of Theorem 2 and Corollary 3], which in the
current situation implies that spinc(d) structures on M are stably equivalent if they are
bordant. Here we use that the maps M → B Spinc(d) are 1-smoothings by Lemma 4.11
and that stabilisation is with (Wg, sg(d)). Via the map π : B Spinc(d)→ B Spinc, a
stable equivalence of spinc(d) structures determines a stable equivalence of spinc

structures. �

Now we are ready to prove the main result of this section. Let C ∈ Z be such
that |C| ≥ 16 and 8 | C. Define P(C) := |PC/8|, namely the number of distinct primes
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dividing C/8. We consider S2 × S2 with a fixed orientation. This determines an
identification H4(S2 × S2) = Z.

THEOREM 4.14. For every C ∈ Z with |C| ≥ 16 and 8 | C, there are n := 2P(C)−1 stably
equivalent spinc structures s1, . . . , sn on S2 × S2 with c1(si)2 = C ∈ H4(S2 × S2) = Z
that are all pairwise inequivalent.

PROOF. Let M := S2 × S2. Let x, y ∈ H2(M) � Z2 be generators dual to [pt×S2] and
[S2 × pt] respectively. So xy = 1 ∈ H4(M) while x2 = y2 = 0. Henceforth, we identify
H4(M) � Z. Let Q := C/8. There are P(C) prime powers dividing Q. Up to switching
the order and multiplying both by −1, there are 2P(C)−1 ways to write Q as a product of
coprime integers Q = q1q2. For each such factorisation, let si be a spinc structure with

c1(si) = 2q1x + 2q2y.

Such spinc structures exist by Lemma 4.5: every characteristic element of H2(M) can
be realised as the first Chern class of some spinc structure. Note that

c1(si)
2 = 8q1q2 = 8Q = C ∈ Z = H4(S2 × S2)

and d(si) = 2 for every i. Thus by Theorem 4.13, all the si are stably equivalent to one
another. However, as we saw in the proof of Proposition 2.2, there is no isometry of the
intersection pairing of M that sends (2q1, 2q2) to (2q′1, 2q′2) in H2(M) � Z2 for distinct
unordered pairs {q1, q2} and {q′1, q′2}. By Lemma 4.6, it follows that the {si} are pairwise
inequivalent spinc structures. �
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