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A deep learning approach to fight 
illicit trafficking of antiquities using 
artefact instance classification
Thomas Winterbottom1, Anna Leone2 & Noura Al Moubayed1*

We approach the task of detecting the illicit movement of cultural heritage from a machine learning 
perspective by presenting a framework for detecting a known artefact in a new and unseen image. To 
this end, we explore the machine learning problem of instance classification for large archaeological 
images datasets, i.e. where each individual object (instance) is itself a class that all of the multiple 
images of that object belongs. We focus on a wide variety of objects in the Durham Oriental 
Museum with which we build a dataset with over 24,502 images of 4332 unique object instances. 
We experiment with state-of-the-art convolutional neural network models, the smaller variations 
of which are suitable for deployment on mobile applications. We find the exact object instance of a 
given image can be predicted from among 4332 others with ~ 72% accuracy, showing how effectively 
machine learning can detect a known object from a new image. We demonstrate that accuracy 
significantly improves as the number of images-per-object instance increases (up to ~ 83%), with an 
ensemble of classifiers scoring as high as 84%. We find that the correct instance is found in the top 3, 
5, or 10 predictions of our best models ~ 91%, ~ 93%, or ~ 95% of the time respectively. Our findings 
contribute to the emerging overlap of machine learning and cultural heritage, and highlights the 
potential available to future applications and research.

Punctual identification of objects is an essential aspect of the fight against illicit trafficking, as police can only 
intervene and seize an object if they can prove it is looted by identifying its original provenance. As such, sub-
stantial efforts have been undertaken to both draw attention to and curtail the loss of cultural heritage through 
looting and trafficking over the past 50 years. The “Convention of the Means of Prohibiting and Preventing the 
Illicit Import, Export and Transfer of Ownership of Cultural Property” by UNESCO in 19701 outlines practices 
that have been favoured by recent investments into antiquities, where the purchased artefacts are expected to 
increase in value. The practices outlined in this convention have been progressively adapted and developed over 
time in response to large-scale events of concern. Notable attacks on museums and widespread looting following 
the Soviet withdrawal from Afghanistan2 motivated the “Convention of Stolen and Illegally exported Cultural 
Objects” in 19953 to specifically reinforce the 1970 convention. Despite these efforts, illicit trafficking has further 
developed in scale and strategy following the wars in Iraq, Syria, and Libya, and after the Arab spring in North 
Africa. It has been estimated that the overall income of the illicit trafficking is around $2.2 Billion USD every 
year4. Though it is difficult fully understand the details of such a black market, it is clear that it represents a major 
source of income for international terrorism. Illicit trafficking is organised through networks, and despite the 
differences between countries the process is always fundamentally the same: Goods are stolen and transferred 
with the provenance changed a few times so that the origin of the artefact cannot be determined4. In this process 
the one of the keys to the trafficker’s success are photographs. The object is photographed several times in dif-
ferent orientations and scenarios such that the object becomes extremely challenging to identify without expert 
intervention. However, the intractably difficult task of manually detecting an ever increasing set of at-risk arte-
facts at every potential checkpoint necessitates an automated solution. The creation of a system which identifies 
an object from an unseen image (despite variations in lighting or orientation) is seen as essential. Such a tool 
would be extremely important for customs police by enabling new photos of potential illicitly-trafficked artefacts 
to be rapidly compared to a very large database of at-risk objects simultaneously, while not being vulnerable to 
deliberate variations in the submitted photographs. Furthermore, such a system could be used to search and 
detect stolen objects in large online auction houses. By formulating this scenario as the problem of ‘detecting 
the exact object a never-before-seen image depicts by leveraging existing known images of that object’—that is, 
to detect the exact object instance of an image—we find a task that machine learning and computer vision are 
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well equipped to solve. Using state-of-the-art deep convolutional neural networks (CNNs), we solve the task of 
object instance classification on a large dataset of images of diverse cultural heritage artefacts from the Durham 
Oriental Museum. The dataset consists of 24,502 images of 4332 different objects from ancient Greece, ancient 
Rome, ancient Egypt, and a collection of post-medieval Oriental artefacts. To solve this 4332-class classifica-
tion task, we construct a neural network model by finetuning on pretrained EfficientNet5 and ResNet Rescaled6 
models with further ablation on Inception-v37/v48. Our experiments find that the exact correct instance can be 
identified with 72.12% accuracy—from amongst 4332 (i.e. a baseline accuracy of 0.023%)—, and that increas-
ing the minimum number of images-per-instance from 3 to 6 further increases accuracy up to 83.28%. Though 
our highest accuracy comes from a collaborative ensemble of all models (84.02%), the smaller variations of the 
EfficientNet model maintain an accuracy of ∼ 81% while being suitable for inference on mobile devices. We find 
that in the case of incorrect classifications, the correct answer is often still found in the top few guesses, i.e. we 
find the top-3, top-5, and top-10 accuracies of our strongest models are 90.53%, 92.82%, and 94.80% respectively. 
This allows our framework the flexibility to purchase an even higher accuracy with a small number of additional 
objects for manual review. Our analysis includes both: (1) a breakdown of model performance by the subcatego-
ries of the dataset, where we find that objects from the ‘Oriental’ and ‘Egyptian’ subsections are most accurately 
classified; (2) a breakdown of model performance by the number of images each instance has, where we find 
that although instances with higher image counts are significantly easier to classify, the accuracy improvements 
begin to diminish at 8 images-per-instance. Our findings suggest that though more images-per-instance will 
allow more accurate detection, 8 images may be an ideal ‘sweet spot’ to aim for if resources are limited. Though 
the very largest EfficientNet models perform best, we find that smaller models—suitable for inference of mobile 
devices—are within 2% accuracy of the larger models for a fraction of the computational cost.

“Background” section briefly introduces convolutional neural networks (CNNs) and their use in image-based 
machine learning tasks (computer vision), and highlight related machine learning vision tasks in cultural herit-
age. “Methods” section describes both the dataset and convolutional neural network (CNN) models we use in 
our experiments. “Results” section contains the experimental results of our instance classification task. “Discus-
sion” section  discusses our results and how they represent a proof-of-concept for a known artefact detection 
framework. “Limitations” section highlights the limitations of our approach and outlines desirable properties 
for future datasets.

Background
Convolutional neural networks.  CNNs refer to a neural network substantially comprised of ‘convolu-
tion’ layers that excel at processing grid-like information i.e. images. Convolution layers scan a weighted kernel 
across the regions of its input, and for each region outputs dot product of the weighted kernel and the given input 
region (Fig. 1). Convolution layers often contain multiple learnable kernels, allowing each kernel to implicitly 
learn to detect different local patterns. CNN-based modelling approaches have remained state-of-the-art for 
processing and classifying images in machine learning over the decade. Like any other computer-based neural 
network architecture, CNNs are comprised of a sequential layers of artificial ‘neurons’ that take numerical values 
as inputs, and then output another numerical value to the next layer which is controlled by ‘learnable’ weights 
and biases (i.e. weights are continually adjusted automatically by the training algorithm). The numerical inputs 
are propagated through the entire network, resulting in a final numerical output that must be interpreted in some 
way as an ‘answer’ to the input, with the weights adjusted such that correct ‘answer’ output for the specific given 
input is encouraged. The key concept to neural networks is that all inputs and outputs are purely numerical. A 
neural network can be applied to a task if the inputs and outputs can be effectively and sufficiently represented 
numerically. For our task of instance classification, we ‘classify’ a HxW dimensional image as a depiction of one 
of 4332 unique objects. The input image can be represented numerically as an RGB image object (3 colour chan-
nels) of pixel values (each 0–255) i.e. an array of dimensions (3, H, W) of numbers. Note that images are con-
venient to effectively represent numerically as they are wholly described by the pixel values that comprise them, 
whereas representing a word or sentence numerically is less intuitively obvious9. We now design the output of the 
neural network such that our task can be effectively represented numerically. As our task of instance classification 
here is an attempt to distinguish between 4332 different objects, we can choose to have our final layer give 4332 
different outputs, and then choose to interpret each of those individual outputs as a vote for one of the objects that 
the input image might be depicting. During training, a ‘loss’ (a numerical measure of how wrong the network is) 

Figure 1.   CNN architecture with an RGB image input and desired outputs representing votes for objects in of 
our instance classification task.
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is calculated from the outputs for each example in the training set (in ‘batches’) by comparing it to the correct 
answer. Each weight in the network is then updated to compensate for this loss. The training process is repeated 
over the entire training set for a number of ‘epochs’, until its ability to generalise to the task is tested on an unseen 
‘test’ dataset. The architectural designs of CNNs have evolved over the past 20 years through increasing model 
size (i.e. number of layers or ‘depth’) and architectural design innovations. The most notable of which in chrono-
logical order are: LeNet10, a very early, small, and simplistic design; AlexNet11 a much deeper design with more 
channels and a variety of kernel sizes; InceptionNet12, deeper still with extra classification layers partway through 
the network to stop the changes in weights (gradients) from vanishing; VGG13 which replaces larger convolu-
tional kernels with smaller ones stacked on top of eachother to more efficiently cover the same receptive field; 
Inception-v37 decomposes nxn kernels into 1xn and nx1; ResNet14 and Inception-v48 which introduced ‘skip 
connections’ allowing information to ‘skip’ forward to avoid vanishing gradients given the increasing depth, and 
most recently EfficientNet5, which focused on a more efficient architecture using a variety of small innovations 
(e.g. a new ‘activation function’) yielding increased performance with a comparatively smaller size.

Machine learning in cultural heritage.  Recent research efforts have surveyed applications of machine 
learning for specific domains of cultural heritage such as historical document processing15 and analysis of dance 
techniques16. Our work is similar in motivation to efforts monitoring sales activity of antiquities on auctions 
sites (e.g. eBay) through machine learning approaches such as named entity recognition17 and natural language 
processing18. In contrast to such text-based applications, our work instead focuses on images of specific objects 
and artefacts, and thus a CNN-based approach. Jain et al.19 use the ResNet-5014 CNN architecture to classify 
Indian classical dance forms. Azhar et al.20 use a collaborative ‘ensemble’ of multiple CNNs to improve their clas-
sification algorithm for batik images. See Fiorucci et al.21 for a broad review of language/vision-based machine 
learning approaches for multiple domains of cultural heritage. These research efforts focus on classification of 
images, and counteracting illicit trade of antiquities using textual data. To the best of our knowledge, ours is the 
first work to leverage instance classification of images on data focusing on cultural heritage artefacts and their 
protection. See Table 1 for a comparative breakdown of our methodology compared to that of related research.

Methods
Dataset.  Using images from the digital collection of the Durham Oriental Museum, we create a dataset 
of individual objects (instances) with multiple images each. We note that the instance classification requires a 
model correctly classify a new and unseen image of an object it has already seen. With this in mind, we require 
that each instance has at least 3 different images to ensure that the object is adequately represented in both the 
training, and validation or test splits. After discarding instances with 2 or less images, the dataset has 24,502 
images of 4332 object instances, i.e. it is 4332-class classification task. Over 75% of the instances in our dataset 
have between three and six images (see Table 2a). Note that this range equates to only 59% of total images. We 
focus primarily on the distribution of image counts of individual instances in service of our instance classifica-
tion task and it’s implication for cultural heritage. However, the images used in this dataset are also categorically 
divided (by the collections they are originate from) into four subsections: Post medieval ‘Oriental’ (Fig. 2a), 
ancient ‘Egyptian’ (Fig. 2b), ‘Fulling Mill’ i.e. ancient Greece and ancient Rome (Fig. 2c), and ‘Castle’ (Fig. 2d; see 
Table 2b). Images of individual object instance are from different orientations and views, leading certain object 
shapes to cause challenging scenarios as seen in the 4th image of Fig. 2c. The images of other instances feature 
individual parts of a whole object as in Fig. 2d, necessitating that models learn subtle stylistic patterns at different 
resolutions in addition to shapes and dimension.

Models.  We follow modern machine learning practice and take a large CNN that has already been trained 
on more general image tasks as a starting point, and then further train it on our specific dataset i.e. we ‘finetune’ 
a ‘pretrained’ state-of-the-art CNN. Our instance classification model (Fig. 3).

takes an image of an object instance as input and outputs a prediction for which object that image belongs to. 
More formally, our experimental setup is comprised of 4 sequential steps: (1) we use an RGB image of an object 
(resized to match the resolution used to train the CNN, see Supplementary Table 1) as input to the CNN, which 
outputs a ‘feature vector’ that represents the information in the image; (2) the feature vector representation is 
then further processed into a vote for the instance in the image by sequentially passing through further neural 

Table 1.   A comparative categorical breakdown of our approach compared to similar research.

Cultural heritage Data modality Task Vs. illicit trafficking

Ours ✓ Vision Instance classification ✓
15 ✓ Vision + Language N/A (srvey) ✗
16 ✓ Vision N/A (survey) ✗
17 ✓ Language Named entity recognition ✓
18 ✓ Language Language analysis ✓
19 ✓ Vision Dance form classification ✗
20 ✓ Vision Batik classification ✗
21 ✓ Vision + Language + more N/A (survey) ✓ and ✗



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13468  | https://doi.org/10.1038/s41598-022-15965-2

www.nature.com/scientificreports/

Table 2.   Structural breakdown of the dataset used in our experiments.

Images per instance Instances Images

(a) Distribution of dataset by the number of images-per-instance

3 1001 (23.11%) 3003 (12.26%)

4 853 (19.69%) 3412 (13.93%)

5 387 (8.93%) 1935 (7.90%)

6 1027 (23.71%) 6162 (25.15%)

7 507 (11.70%) 3549 (14.48%)

8 201 (4.64%) 16.08 (6.56%)

9 86 (1.99%) 774 (3.16%)

10+ 270 (6.23%) 4059 (16.57%)

Total 4332 24,502

Subcategory Instances Images

(b) Distribution of images and instances by the four subcategories

Oriental 2993 (69.09%) 17,471 (71.30%)

Egyptian 820 (18.93%) 4646 (18.96%)

Fulling Mill 309 (7.13%) 1455 (5.94%)

Castle 210 (4.85%) 930 (3.80%)

Total 4332 24,502

Figure 2.   Images from instances of each of the four subcategories: ‘Oriental’, ‘Egyptian’, ‘Fulling Mill’, and 
‘Castle’.

Figure 3.   Our end-to-end instance classification training strategy. As the CNN ‘backbone’ is the most 
substantial processing step, we follow standard practice for image classification tasks and finetune an already-
pretrained CNN. This example shows the input image being classified as ‘Object 2’.
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network layers: a batch normalisation layer22, a fully-connected linear layer, a ReLU non-linearity, a dropout 
layer23 of 0.5, and a final fully-connected linear layer that ultimately outputs a vector with dimension O where 
O is the number of object instances (i.e. classes); (3) the O-dimensional vector is passed through a log-softmax 
function, outputting an O-dimensional vector that represents a vote for each of the potential O objects the input 
image belongs to; (4) finally, we update the weights in the network by calculating and backpropagating the 
negative log likelihood ‘loss’ function of the O-dimensional vote-vector given the ‘ground truth’ correct answer. 
Given the class imbalance in our dataset (i.e. variations in the number of images per instance), we weight the loss 
function for each class (object) by the inverse of its relative occurrence such that objects with fewer images are 
weighted higher. We use the state-of-the-art EfficientNet5 and ResNet Rescaled6 as backbones for our instances 
classifiers, and further ablate with Inception-v37/v48. See Section B of the supplementary materials for more 
details of our training setup.

Results
The following subsections provide an extensive ablation study by varying both the makeup of the dataset, and 
the CNN backbone used in our model.

Images‑per‑instance.  It is important to distinguish the model’s instance classification accuracy for objects 
with many images from those with fewer images, because as the number of different images-per-instance 
increases, so too does the potential visual information for the model to learn to recognise also increase. Given 
the advantages that more images per instance can afford, in addition to experimenting with the full dataset of 
24,502 images (obtained by keeping only instances with 3 images or above as described in “Dataset” section), 
we also experiment with further restricting the minimum number of images per instance in the dataset to 4, 5, 
and 6. As shown by the general increase in accuracy at each image-per-instance subset in Fig. 4, we find that 
instances with a higher number of images are more accurately classified, as intuitively expected. We find that 
excluding instances with fewer images per instance does not substantially improve the accuracy of the higher 
image count subsets, demonstrated by the relatively close scores of each subset (the most inclusive training setup 
even scoring the highest on the subset of 9 images-per-instance). This indicates there is little risk to the overall 
performance of an object detector in including objects of lower image counts, as the lower overall accuracy 
stems from the naturally poorer classification performance of less represented objects, and not a degradation in 
performance on higher-count subsets. Though it is generally the case that performance increases as the dataset 
becomes smaller (and thus more easily solved), the similar performance between the four training setups in 
Fig. 4 imply that our strictest dataset limitation of 6 images per instance has not sufficiently reduced dataset size 
for this problem to manifest. Furthemore, we verify that the high accuracies of our models does not come from 
a small number of easy or ‘solved’ instances disproportionately carrying the overall accuracy, as demonstrated 
by the relatively small difference in accuracy between the subsets of image-per-instance counts 8, 9, and 10+.

CNN model.  As the CNN backbone is the most important part of the model design, we experiment with 
state-of-the-art EfficientNet5 and ResNet Rescaled6 models with further ablation on Inception-v37/v48 models. 
We find that all EfficientNet models perform significantly better than the other models on each training setup 
(Fig. 5), and that the larger EfficientNet models consistently achieve a higher accuracy than the smaller ones. 
Though a higher image-per-instance threshold yields gives higher performance as previously discussed, we also 
see that the model size does not significantly change the performance on different image-per-instance thresholds. 
This is depicted by the consistent spacing between each polygon in Fig. 5 across each different type of model. 

Figure 4.   The accuracy of images of each subset by image-per-instance count for our best model (from Fig. 5) 
under each dataset makeup. For example, the triangular red plots indicate the object prediction accuracy of our 
highest performing model trained on the dataset with a minimum image-per-instance cutoff of three, further 
split by subsets of objects with exactly 3/4/5... images-per-instance. The dashed red line represents the overall 
accuracy, i.e. a weighted average of accuracies of each subset.
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Instead, the change in accuracy at image-per-instance thresholds is noticeably different for the three different 
model architectures, i.e. the increase in performance from images-per-instace ≥ 3 and ≥ 6 is ∼ 19%, ∼ 11%, and 
∼ 8% for ResNet-RS, EfficientNet, and Inception architectures respectively.

High performance trade‑offs.  The strongest performing single model is EfficientNet-b4/3/4/6 for image-
per-instance dataset thresholds ≥ 3/4/5/6 respectively. However, to maintain an adequately large batch size for 
stable training, the larger EfficientNet variations require significantly larger computational resources during 
training (full details in Supplementary Table  1). Furthermore, inline with standard practice for CNN-based 
image classification models24, we find that a collaborative ensemble of models pushes accuracy even higher. 
Table 3 shows that an ensemble of the 5 best EfficientNet models gives a ~ 1–2% increase in top-1 accuracy, which 
can be exploited provided one is willing to purchase it with increases in computational resources (~ 2.5 GB of 
VRAM for inference of a single image). Even in scenarios where the predicted object is incorrect, we find that 
the correct answer is often still in the next few guesses, i.e. the top-3, top-5, and top-10 accuracies of our models 
are actually significantly higher than our regular accuracy scores. We see in Table 3 that (for the best perform-
ing single model) the more-relaxed ‘image-per-instance ≥ 3/4′ dataset scenarios yield ~ 10%, ~ 13%, and ~ 17% 
improvements for top-3, top-5 and top-10 accuracies respectively. The top-3, top-5, and top-10 accuracies show 
less relative improvement for the less relaxed image-per-instance ≥  5/6 scenarios (+ ~ 8%, + ~ 10%, + ~ 12%) as 
the baseline top-1 accuracies are already higher than image-per-instance ≥ 3/4.

Subcategories of objects.  Though the central question of this paper is about instances, we explore how 
the instance classification accuracy differs for instances in each subcategory of the dataset. We see in Table 4 that 
the Oriental and Egyptian subcategories score consistently above the overall average. Castle objects score signifi-
cantly below average (− 8% to − 32%), and Fulling Mill objects score between (− 8% to + 0.33%). The biggest var-
iations in subcategory accuracy occur in the more relaxed image-per-instance ≥ 3/4 scenarios (+ 6% to − 29.%), 
whereas the more restrictive and generally higher-performing image-per-instance ≥ 6 scenario has much less 
variation overall (+ 1% to − 8%). We note that the smaller subcategories experience the most substantial drop 
in accuracy, and that this further coincides with the average image-per-instance for each subsection (calculated 
from Table 2b): Oriental ≈  5.84, Egyptian ≈  5.67, Fulling Mill ≈  4.71, Castle ≈ 4.43. However, we cannot con-
clude that the larger size of a subcategory is the cause of increasing performance as the Egyptian subcategory 
(~ 18.93% of instances) scores higher than the much larger Oriental subset (~ 69.09% of instances). Conversely, 
we also cannot conclude that the relatively small size of the Fulling Mill ( ∼ 5.94%) and Castle ( ∼ 3.80%) sub-
categories cause their relative reduction in performance compared with overall accuracy, because the accuracy 
of these two smaller subcategories approaches the overall accuracy in the higher image-per-instance dataset 
scenarios. We hypothesise that instances of these subcategories are instead not as easily represented with less 
images-per-instance. In order to gauge the differences in image information between the subsections, we apply 
t-SNE dimension reduction25 on feature vectors extracted from the penultimate layer of the CNN in our best 
models for each image in test set. This generates a 2D point for each image which we can plot to observe any 
clusters the t-SNE reduction may have generated. We see from Fig. 6 that the plot the 2-dimensional t-SNE 
reduction generates does not strongly cluster the images by subsets, as the four colours (representing each differ-
ent subcategory) are relatively evenly distributed. However, the points instead appear cluster into a large number 
of very small neighbourhoods irrespective of their subcategory. We find this unsurprising, as the CNN has been 
trained to distinguish images by instance instead of their subcategory. This is evidence that our model is not rely-
ing on features unique to each subcategory e.g. Oriental, and is instead primarily using the distinctive features of 
each object instance as intended. See Supplementary Figs. 2 and 3 in Section D of the supplementary materials 
for PCA and UMAP dimensionality reduction respectively.

Visualising predictions with saliency maps.  We use saliency maps26 to see which regions of the input 
image were most influential in the decision the network makes, and thus allowing us to estimate how our neural 
network makes prediction for which instance it believes the image belongs to. Given an image and the class a 
model has predicted for it, we can track the origin of the signals propagating through the network that led to the 
given classification, i.e. we can highlight the image regions that most influenced the model’s instance classifica-
tion choice. Figure 7 shows saliency maps generated by our best single model (EfficientNet-b6 on images-per-
instance ≥ 6) overlaid on the original image for clarity. A higher intensity (darker red) saliency indicates that the 
pixels were highly influential in the model’s decision. Our models do not demonstrate an over-reliance on any 
one feature in its predictions: Fig. 7a shows examples where the boundary of the object, i.e. its shape, led to cor-
rect classification. Figure 7b instead shows examples where the finer details on the surface of the objects is most 
salient to correct classification. We did not find any one feature in saliency that correlates with incorrect clas-
sifications. However, it is often the case that incorrectly classified objects exhibit a more scattered saliency as in 
Fig. 7c. Such incorrect saliency maps still appear to somewhat attend to the shape/details of the objects, though 
to a much lesser degree than the correctly classified counterparts in Fig. 7a,b. For example, objects in Fig. 7c 
demonstrate regions of saliency spread thinly across the background. Yet some of the saliency is still overlaid 
around the shape of the objects (middle and right objects), or the details (seen on the base of the leftmost object 
in Fig. 7c). This behaviour is typical of a less confident prediction, where the model is still aware of the features 
in the object, but is unable to exploit them confidently in classification.
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Model Precision (%) Recall (%) F1 (%) Accuracy (%) Top-3 Acc (%) Top-5 Acc (%) Top-10 Acc (%)

Images per instance ≥ 3

EfficientNet-b05 66.86 89.30 66.21 67.39 78.41 82.04 86.00

EfficientNet-b15 68.04 89.52 67.51 67.71 78.45 82.41 86.37

EfficientNet-b25 67.88 89.77 67.53 67.80 78.82 82.41 86.41

EfficientNet-b35 71.27 90.99 70.83 71.27 81.59 84.90 88.04

EfficientNet-b45 71.31 91.47 70.74 71.18 80.86 84.54 87.88

EfficientNet-b55 71.18 91.26 70.46 71.59 80.57 84.45 88.00

EfficientNet-b65 72.37 91.02 71.46 72.12 82.65 85.67 88.90

EfficientNet-b75 71.14 91.30 70.57 71.59 82.04 84.94 88.53

ResNet-RS6 51.22 79.77 49.97 50.41 63.96 68.41 74.65

Inception-v37 59.84 85.20 59.32 59.47 72.49 76.90 82.16

Inception-v48 59.76 84.70 59.09 59.76 72.16 76.29 80.73

Ensemble (All) 66.86 89.30 66.21 70.73 80.98 83.63 87.84

Ensemble (ENet-b[3-7]) 71.27 90.99 70.83 73.22 81.96 84.73 88.73

Images per instance ≥ 4 

EfficientNet-b05 74.33 90.11 73.28 74.28 84.37 87.30 90.76

EfficientNet-b15 74.33 90.90 73.52 74.60 85.02 87.95 91.30

EfficientNet-b25 75.63 90.67 74.69 75.44 85.12 88.00 91.16

EfficientNet-b35 77.21 92.59 76.68 77.86 87.12 89.81 92.23

EfficientNet-b45 76.93 91.99 76.45 76.98 87.12 89.58 92.28

EfficientNet-b55 77.16 91.75 76.28 77.72 86.23 89.21 92.14

EfficientNet-b65 77.49 92.19 76.91 77.58 87.63 90.23 92.88

EfficientNet-b75 75.95 91.95 75.13 77.12 86.23 89.49 92.56

ResNet-RS6 59.63 83.31 58.86 58.60 71.44 76.09 80.93

Inception-v37 63.95 86.06 62.89 64.09 76.37 80.00 85.21

Inception-v48 64.00 85.82 63.16 64.23 76.47 79.72 85.12

Ensemble (All) 74.33 90.11 73.28 76.79 85.40 88.05 90.98

Ensemble (ENet-b[3-7]) 77.21 92.59 76.68 78.47 86.84 89.81 92.84

Images per instance ≥ 5

EfficientNet-b05 78.46 93.06 78.25 78.52 87.24 89.45 92.77

EfficientNet-b15 78.74 92.56 78.67 78.80 87.58 90.23 92.49

EfficientNet-b25 78.69 93.17 78.09 79.29 88.07 90.72 93.59

EfficientNet-b35 81.39 93.77 81.22 81.06 89.40 91.94 93.87

EfficientNet-b45 81.94 94.64 81.98 81.83 90.50 92.21 94.70

EfficientNet-b55 82.05 94.22 81.90 81.83 89.62 91.99 94.20

EfficientNet-b65 81.34 93.54 81.21 81.34 89.67 91.99 94.42

EfficientNet-b75 81.17 94.39 80.76 81.17 90.45 92.71 94.92

ResNet-RS6 62.73 86.04 62.44 61.07 72.45 76.92 82.05

Inception-v37 67.31 87.61 66.70 64.94 77.75 82.61 86.31

Inception-v48 66.37 87.00 66.14 66.65 77.53 81.28 85.92

Ensemble (All) 78.46 93.06 78.25 82.55 89.29 91.39 93.87

Ensemble (ENet-b[3-7]) 81.39 93.77 81.22 83.77 90.28 92.32 94.86

Images per instance ≥ 6

EfficientNet-b05 80.19 92.91 79.73 80.12 88.24 90.90 93.68

EfficientNet-b15 79.44 92.15 79.20 79.44 87.18 89.97 93.31

EfficientNet-b25 80.62 92.47 80.13 80.43 89.29 91.08 93.75

EfficientNet-b35 82.66 93.50 82.34 82.11 90.46 92.69 94.80

EfficientNet-b45 81.55 93.49 81.47 81.55 90.03 92.26 94.67

EfficientNet-b55 82.17 92.77 82.04 82.54 89.72 91.83 95.36

EfficientNet-b65 83.41 93.36 83.01 83.28 90.53 92.82 94.80

EfficientNet-b75 80.50 93.03 80.31 80.06 89.47 91.89 94.30

ResNet-RS6 65.20 85.48 64.40 63.53 77.89 81.55 86.01

Inception-v37 67.55 87.26 67.02 67.55 80.43 84.09 88.48

Inception-v48 67.80 86.19 67.27 67.80 79.26 82.48 86.44

Continued
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Model Precision (%) Recall (%) F1 (%) Accuracy (%) Top-3 Acc (%) Top-5 Acc (%) Top-10 Acc (%)

Ensemble (All) 80.19 92.91 79.73 82.79 90.03 92.45 94.18

Ensemble (ENet-b[3-7]) 82.66 93.50 82.34 84.02 90.84 93.37 95.05

Table 3.   Results for the Oriental Museum Dataset test split. ‘Ensemble’ refers to the score dervied using 
the average of class votes for all of the models. ‘Ensemble b[3-7]’ considers the strongest models only i.e. 
EfficientNet-b3,4,5,6,7. Significant values are in bold.

Figure 5.   Performance of models with respect to it’s size i.e. the number of parameters. The four dataset image-
per-instance scenarios here are the same four scenarios as in Fig. 4.

Figure 6.   t-SNE Dimension Reduction25 on the features generated from each image of the dataset, extracted 
from the penultimate layer of the CNNs used in our experiments.
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Discussion
Our experimental results represent a strong proof-of-concept for a framework to tackle the illicit movement 
of cultural heritage through the use of highly accurate and flexible instance classification. Though our findings 
indicate that greater performance for instance classification can be unlocked from larger CNNs (“CNN model” 
section) and more data (“Images-per-instance” section), our strong results with smaller CNNs—which have a 
relatively small computational footprint—indicate this framework is ideal for deployment applications on mobile 
devices. Moreover, a large increase in the number of instances and images at training time does not significantly 
increase the computational footprint of the framework at inference time (deployment), allowing our approach 
to scale with the amount of data available. The top-1 accuracy of our framework is designed to be an automatic 
detection system without the need for manual oversight. However, if so desired, our framework allows the flex-
ibility to purchase even higher instance detection (top-k) accuracy by presenting the first k objects predicted for 
manual consideration. The top-k accuracies of our ensemble of the strongest models are either equal-to, or slightly 
stronger than the top-k accuracies of our best single model. The strongest single model remains competitive with 
such an ensemble, however this performance boost is available in any scenario where computational resources are 
not a bottleneck. Figure 4 shows that the biggest increase in performance for classifying an instances comes in the 
jump between three and four images-per-instance, with diminishing returns after around seven, and eight. These 
results offer a minimum ‘ideal number’ of images-per-instance to aim for, and the respective accuracy that can be 
expected if resources are limited. Though we find some variation in the instance classification accuracy between 
objects of the four different subcategories in our images-per-instance ≥ 3/4 dataset scenarios, this difference 
rapidly decreases as the minimum number of image-per-instance increases. This implies that though different 
artefact types can perform worse with less images-per-instance, increasing the number of images-per-instance 
is a good countermeasure. The uniform backgrounds in the images we use denies our model the opportunity 
to exploit background-bias shortcuts and ensures our instance classification scores are reliable, but it also in 
turn limits this dataset’s applicability to scenarios with noisier backgrounds. We explore this point further in 
“Limitations” section. As outlined in “Subcategories of objects” section, we have evidence that predictions are 
truly considering the individual instances and not the overall subcategories.

Limitations
Though a dataset of 24,502 images is reasonably large for a domain-specific computer vision task, it is still orders 
of magnitude smaller than other computer vision datasets (e.g. ImageNet27) that contend with the largest of 
modern architectures. The large EfficientNet models can classify images during inference (deployment) relatively 
rapidly and with relatively low memory costs. However, during the training process where the neural network 

Table 4.   Accuracy of the highest overall performing model for instance classifications from each of the subsets 
comprising the whole dataset. Significant values are in bold. We provide the difference in accuracies between 
each individual class and the overall accuracy.

Subset Precision (%) Recall (%) F1 (%) Accuracy (%) Top-3 Acc (%) Top-5 Acc (%) Top-10 Acc (%)

Images per instance ≥ 3 (best model = ENet-b6)

Overall 72.37 91.02 71.46 72.12 82.65 85.67 88.90

Oriental 72.63 91.40 71.84 + 0.62 72.74 83.19 86.25 89.50

Egyptian 79.07 94.69 79.20 + 6.35 78.47 87.32 89.74 92.15

Fulling Mill 71.24 94.90 71.79 − 2.19 69.93 84.31 86.93 90.20

Castle 47.06 83.33 48.27 − 28.59 43.53 61.18 68.24 76.47

Images per instance ≥ 4 (best model = ENet-b3)

Overall 77.21 92.59 76.68 77.86 87.12 89.81 92.23

Oriental 78.05 93.23 77.63 + 0.77 78.63 87.62 90.42 92.38

Egyptian 80.68 96.33 81.15 + 2.82 80.68 90.23 91.82 93.41

Fulling Mill 75.47 93.50 75.92 − 0.50 77.36 85.85 85.85 91.51

Castle 40.91 71.95 41.67 − 32.41 45.45 60.61 72.73 86.36

Images per instance ≥  5 (best model = ENet-b4)

Overall 81.94 94.64 81.98 81.83 90.50 92.21 94.70

Oriental 82.16 94.78 82.08 + 0.18 82.01 90.40 92.28 94.90

Egyptian 85.03 97.10 85.92 + 3.20 85.03 93.22 94.07 95.20

Fulling Mill 74.12 99.32 77.88 − 7.71 74.12 87.06 89.41 92.94

Castle 63.16 92.86 64.64 − 18.67 63.16 76.32 78.95 86.84

Images per instance ≥  6 (best model = ENet-b6)

Overall 83.41 93.36 83.01 83.28 90.53 92.82 94.80

Oriental 83.54 94.39 83.48 + 0.01 83.29 90.50 92.47 94.68

Egyptian 83.96 95.74 84.53 + 1.02 84.30 91.47 94.20 95.56

Fulling Mill 83.61 94.35 83.61 + 0.33 83.61 90.16 95.08 96.72

Castle 75.00 86.84 77.74 − 8.28 75.00 85.00 90.00 90.00
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Figure 7.   Saliency maps26 generated from our best model on images-per-instance ≥ 6 (EfficientNet-b6) to 
visualise which regions in the image are most influential in choosing the instance. The saliency map is overlaid 
on the original image for clarity. The darker red regions indicate a higher intensity score.
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must update all of its weights, the largest EfficientNet models demand much more memory in order to be trained 
with an adequately large batch size i.e. NVIDIA A100. The smaller EfficientNet models e.g. can however be 
trained and inferred with much more reasonable computational resources with very little performance degrada-
tion. We have specifically curated this dataset from images of objects in a variety of different poses and angles. 
However, the backgrounds of the objects are uniform, reflecting the controlled environment that these images 
were collected in. Though this prevents our model from learning to exploit background bias shortcuts, it does 
however mean that this dataset alone would not generalise well to a real world setting. The uniform background 
settings and varying poses of this dataset allows us to accurately demonstrate our model’s instance classification 
capability, but it also follows that this dataset would need to be supplemented with other ‘noisier’ images that 
appropriately control for the background biases that will be encountered in each individual deployment scenario.

Conclusion
We introduce a framework for accurately detecting the exact object instance of an image from amongst thou-
sands of others. Our approach represents a strong proof-of-concept for an application to detect illicit movement 
of cultural heritage. We achieve 73% instance classification accuracy on a diverse dataset of images of artefacts 
with 24,502 images and 4332 unique object instances, increasing up to 83% with higher images-per-instance 
counts. Our approach offers two potential trade-offs: 84% accuracy for a higher computational footprint through 
an ensemble of the strongest models; or 95%+ accuracy by introducing a small number of objects for manual 
review. Our results demonstrate the potential in the overlap between cultural heritage and machine learning, and 
suggest even greater performance that is immediately available given an even larger and more diverse dataset.

Data availibility
The data used in our study is from the digital collection of the Durham Oriental Museum, and access can be 
requested here: https://​www.​dur.​ac.​uk/​orien​tal.​museum/​conta​ct/. Our implementation is hosted in our GitHub 
repository https://​github.​com/​Durham-​Unive​rsity-​VIVID-​Noura-s-​Lab/​artef​act_​insta​nce_​cls.
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