## RESEARCH ARTICLE

# GhTCE1-GhTCEE1 dimers regulate transcriptional reprogramming during wound-induced callus formation in cotton 

Jinwu Deng ${ }^{1,4}$, Weinan Sun ${ }^{1,4}$, Boyang Zhang ${ }^{1}$, Simin Sun ${ }^{1}$, Linjie Xia ${ }^{1}$, Yuhuan Miao ${ }^{1}$, Liangrong $\mathbf{H e}^{2, *}$, Keith Lindsey ${ }^{\mathbf{3}, *}$, Xiyan Yang ${ }^{1, *}$, Xianlong Zhang ${ }^{1}$<br>${ }^{1}$ National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R. China<br>${ }^{2}$ College of Plant Science, Tarim University, Alaer, Xinjiang 843300, P.R. China<br>${ }^{3}$ Department of Biosciences, Durham University, South Road, Durham DH1 3LE, United Kingdom<br>${ }^{4}$ These authors contributed equally to this work<br>*Corresponding authors: Xiyan Yang, Keith Lindsey \& Liangrong He yxy@mail.hzau.edu.cn, keith.lindsey@durham.ac.uk \& hlrzky@163.com. Author for contact: Xiyan Yang, yxy@mail.hzau.edu.cn<br>Short title: Regulation of callus cell development by GhTCE1/GhTCEE1-GhLTP-mediated ROS homeostasis<br>One-sentence summary: In cotton, the basic helix-loop-helix (bHLH) transcription factor GhTCE1 forms part of a unique regulatory network involving ROS homeostasis and cell wall metabolism that acts as a molecular switch to determine cell fate between unorganized callus growth versus organized development.<br>The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (https://academic.oup.com/plcell/pages/General-Instructions) is: Xiyan Yang, Email address: yxy@mail.hzau.edu.cn.


#### Abstract

Wounded plant cells can form callus to seal the wound site. Alternatively, wounding can cause adventitious organogenesis or somatic embryogenesis. These distinct developmental pathways require specific cell fate decisions. Here, we identify GhTCE1, a basic helix-loop-helix (bHLH) family transcription factor, and its interacting partners as a central regulatory module of early cell fate transition during in vitro dedifferentiation of cotton (Gossypium hirsutum). RNAi- or CRISPR/Cas9mediated loss of GhTCE1 function resulted in excessive accumulation of reactive oxygen species (ROS), arrested callus cell elongation, and increased adventitious organogenesis. In contrast, GhTCE1-overexpressing tissues underwent callus cell growth, but organogenesis was repressed. Transcriptome analysis revealed that several pathways depend on proper regulation of GhTCE1 expression, including lipid transfer pathway components, ROS homeostasis and cell expansion. GhTCE1 bound to the promoters the target genes GhLTP2 and GhLTP3, activating their expression synergistically, and the heterodimer TCE1-TCEE1 enhances this activity. GhLTP2and GhLTP3-deficient tissues accumulated ROS and had arrested callus cell elongation, which was restored by ROS scavengers. These results reveal a unique regulatory network involving ROS and lipid transfer proteins, which act as potential ROS scavengers. This network acts as a switch between unorganized callus growth and organized development during in vitro dedifferentiation of cotton cells.


## Introduction

Developmental plasticity in response to environmental conditions is a key distinguishing feature of plants, and this is seen clearly in the response to mechanical wounding. Following wounding, differentiated somatic cells undergo redifferentiation either to form wound callus that seal the wound site to prevent infection or to undergo de novo organogenesis, such as adventitious rooting or, during tissue culture, somatic embryogenesis (SE) (e.g. Chen et al., 2014; Yu et al., 2017). A major question is how decisions are made at the molecular level to determine the choice of alternative pathways of either disorganized growth (callus formation) or organized growth, such as de novo meristem formation and SE.

External stimuli such as wounding are critical for callus initiation via cell division, and exogenous hormones are necessary for the propagation of callus in vitro and for the experimental induction of SE (Ikeuchi et al., 2017; Xu et al., 2018). Various environmental stresses such as drought, salt and ROS can accelerate adventitious organogenesis or SE by repressing nonembryonic callus proliferation and promoting the transition from nonembryonic callus to callus with morphogenic potential. This can lead to the development of somatic embryos or root or shoot meristems (Jin et al., 2013; Fehér and Attila, 2015; Altpeter et al., 2016).

Adventitious organogenesis is under finely tuned regulation, whereby somatic cells re-enter the cell cycle and exhibit pluripotency via chromatin reprogramming (Lee and Seo, 2018). Callus induction is a prerequisite for this, and the callus induction rate, callus cell morphology and the rate of callus proliferation all influence regeneration efficiency (Li et al., 2013; Zhang et al., 2019). Auxin and cytokinin signaling pathways are essential during organized development from callus (Yang et al., 2012; Liu et al., 2016). Gene expression related to stress responses, control of cell identity, and chromatin remodeling is also required (Ikeuchi et al., 2019). Several genes that function during SE and other types of organ regeneration have been identified via forward and reverse genetic approaches in Arabidopsis thaliana (Arabidopsis, Ikeuchi et al., 2017 and Ikeuchi et al., 2019). More than half of these genes encode transcription factors (TFs), and given that TFs account for less than $6 \%$ of total protein-coding genes (Riechmann, 2002), it is likely that TF networks are of central importance as regulators during de novo organogenesis. To date, thousands of genes have been found to be expressed during SE or organogenesis (Yang et al., 2012; Du et al., 2019), but only a
small number of them have been verified experimentally for function. Furthermore, callus has typically been studied as a single tissue even though it is heterogeneous in terms of cell morphology, metabolism and developmental potential (Lindsey and Yeoman, 1983).

In a previous study in cotton (Gossypium hirsutum), we found that dedifferentiated callus cells are very different morphologically from highly organized somatic cells, and 466 TFs were identified as differentially expressed genes (DEGs) at different stages of SE (Yang et al., 2012). In the current study, we focused on the cell fate transition at an early stage of callus formation during in vitro dedifferentiation, and found that a basic helix-loop-helix (bHLH) family transcription factor, GhTCE1, specifically promotes callus cell elongation by activating interacting lipid transfer and ROS homeostasis pathway genes and repressing adventitious organogenesis. Our results provide an important new role for lipid transfer proteins and ROS signaling in regulating early cell fate transitions following wound-induced cell division.

## Results

## GhTCE1 promotes callus cell elongation during dedifferentiation of cotton cells

GhTCE1 (Gh_D06G2316) was identified during an RNA-seq profiling analysis during cotton SE (Yang et al., 2012), and was chosen for further study because, as a potential transcription factor, it might play a role in early events during callus formation or SE. The $996-\mathrm{bp}$ cDNA encodes a predicted bHLH family transcription factor of 331 amino acid residues. The expression pattern of GhTCE1 was determined in cotton root, stem, leaf, anther, and at different time points during SE from cultured hypocotyl explants, and at earlier time points after explant wounding. GhTCE1 was expressed at low levels in vegetative and reproductive organs, but much more strongly during different stages of SE (Figure 1A). Moreover, it was induced at earlier time points after wounding, with the increased expression being detectable within 60 min , and very strong by 720 min , after wounding (Figure 1B), suggesting a role in the reprogramming process.

Gh_D06G2316 and Gh_A06G0241 are paralogues on the D and A subgenomes of tetraploid cotton, sharing $98.8 \%$ sequence identity (Supplemental Figure 1). In order to explore the function of GhTCE1, we created RNAi (Ri) lines, overexpression (OE) lines, and CRISPR-mediated GhTCE1D/A (Gh_D06G2316/Gh_A06G0241) double mutants. Two Ri lines (Ri1 and Ri2), two OE lines (OE1 and OE3), a wild type line (WT), as
well as an Ri-negative line (Null) that segregated from Ri1 in the $\mathrm{T}_{1}$ generation, were selected for detailed analysis. Immunoblotting analyses revealed that each of these Ri and OE transgenic lines contain a single-copy T-DNA insertion (Figure 1C). The expression levels of GhTCE1 decreased to $24.0 \%$ of WT levels in Ri1 and to $21.6 \%$ in Ri2, and increased in the overexpression lines by $833.8 \%$ (OE1) and $1036.2 \%$ (OE3) compared to WT (Figure 1D). In addition, we created two double mutant lines kol5 and ko18 using CRISPR/Cas9-mediated gene editing. These were confirmed by highthroughput sequencing as frame-shift mutations and were selected for further study (Figure 1E). OE and RNAi mature plants were morphologically similar to WT (Figure 1F).

Wounded explants from different transgenic lines were cultured on MSB medium according to our previous methods (Yang et al., 2012). At 20 d post wounding, significantly more adventitious roots were produced and a higher ratio of adventitious root regeneration was observed on Ri and mutant explants compared to WT plants. In contrast, the OE lines showed callus growth but no adventitious organogenesis (Figure 2A and Supplemental Figure 2). Both the callus proliferation rate (CPR), which is a measure of the fresh weight of callus tissue produced over time, and callus cell length were measured at 20 d post wounding. The CPR of lines Ri1 and Ri2 was reduced to $45.3 \%$ and $56.9 \%$ respectively compared with WT, and was even lower in kol5 (24.5\%) and kol8 (30.7\%) mutants (Figure 2B). However, the CPR increased 173.1\% in OE1 and $182.9 \%$ in OE3 respectively compared with WT (Figure 2B). Callus cell length was correspondingly reduced in loss-of-function lines compared to WT to $46.3 \%$ (Ri1), 37.9\% (Ri2), $42.3 \%$ (kol5) and 51.8\% (kol8), and it increased to $144 \%$ in OE1 and $135 \%$ in OE3 (Figure 2C, D). These results show that GhTCE1 promotes callus cell growth and fresh weight (principally a reflection of increased cell length) but represses adventitious organogenesis.

## GhTCE1 modulates ROS but not auxin homeostasis during cotton cell dedifferentiation

Reactive oxygen species (ROS) and auxin play essential roles in cell fate determination and growth (Chapman et al., 2019). To examine the possible role for ROS, we monitored its accumulation by DCFH-DA staining. DCFH-DA can permeate cell membranes and then be oxidized by ROS into impermeant DCF, which is fluorescent under UV light. The GhTCE1-Ri lines and mutant lines showed strong green
fluorescence after DCFH-DA staining, but none was seen in WT or OE lines (Figure $2 \mathrm{E}) . \mathrm{H}_{2} \mathrm{O}_{2}$ concentrations were assayed and found to be significantly higher in Ri lines than in WT, and were significantly lower in OE lines than WT (Figure 2F). This demonstrates that GhTCE1 is a regulator of ROS accumulation, and that high levels of GhTCE1 expression are associated with reduced ROS accumulation, increased callus cell growth, and reduced adventitious organogenesis.

To determine the possible role of auxin in GhTCE1-mediated cell reprogramming, we measured IAA concentrations in the different lines at 20 d post wounding. Whereas one Ri line and one OE line had altered IAA levels, the IAA concentrations in all other lines were comparable, and on average similar to levels in WT (Supplemental Figure 3A). We also treated the explants with a synthetic auxin analogue indole-3-butyric acid (IBA) to explore whether auxin treatment can mimic the phenotypes of wounded transgenic tissues. Whereas exogenous auxin promoted cell dedifferentiation and callus proliferation at 10 d post wounding, it promoted adventitious root formation in a concentration-dependent manner, and inhibited callus cell proliferation, at 20 d post wounding (Supplemental Figure 3B). Therefore, exogenous auxin treatments phenocopied the OE-like phenotype at 10 d and the Ri-like phenotype at 20 d post wounding (Supplemental Figure 3B). This suggests that auxin may function during organogenesis, but it is not likely be the cause of differential cell proliferation between GhTCE1 transgenic lines.

## GhTCE1 targets and activates the expression of cell elongation-related genes

 during cotton cell dedifferentiationTo explore the underlying mechanism by which GhTCE1 promotes disorganized cell growth, we conducted a transcriptomics analysis using the explants of the different transgenic lines at 7 d post wounding. Differences in cell dedifferentiation among WT, Ri and OE were first apparent at this stage (Supplemental Figure 4). DEGs were defined based on a false discovery rate (FDR) of $\leq 0.05$ and fold change of $\left|\log _{2}\right| \geq 1$. We identified 331 up-regulated and 168 down-regulated DEGs in OE, and 63 up-regulated and 166 down-regulated DEGs in Ri compared with WT; 62 DEGs overlapped between OE-up and Ri-down DEGs, and included GhTCE1 (Figure 3A). GhTCE1 is expected to exhibit transcriptional activation activity, and so the remaining 61 DEGs identified were considered as potential GhTCE1 targets. Their expression levels as fragments per kilobase per million mapped (FPKM) are presented in Supplemental Data Set 1.

Nearly half of the candidates (29 of 61) have annotated functions in sterol synthesis, cell wall modification, cell expansion, ROS homeostasis, and lipid transfer (Figure 3B, Supplemental Data Set 1). These functions are all potentially related to cell elongation, and were considered as candidate targets of GhTCE1. The expression levels of the 29 candidate targets were verified by qRT-PCR analysis, and all were upregulated in both OE1 and OE3, and 28 were downregulated in both Ri1 and Ri2 (Figure 3C). The expression levels from RNA-seq highly correlated with qRT-PCR results (Supplemental Figure $5, \mathrm{R}^{2}=0.9258$ ). The remaining 32 DEGs are involved in various processes such as cellular metabolism, signal transduction or protein modification (Supplemental Table 1). It is notable that no differentially expressed auxin metabolismor signal transduction-related genes were found.

GhTCE1 is annotated as a bHLH transcription factor, and subcellular localization assays show that it is localized to the nucleus (Supplemental Figure 6A). bHLH family transcription factors can bind the E-box (5'-CANNTG-3') or G-box (5'-CACGTG-3') of target gene promoters, depending on sequences in the basic region (Toledo-Ortiz et al., 2003), and sequence analysis suggests GhTCE1 belongs to the E-box binding subfamily. To confirm the transcriptional activity of GhTCE1, activation assays were carried out in yeast (Saccharomycess cerevisiae). The full length GhTCE1 coding sequence was fused to a GAL4 DNA binding domain (BD), designated Full:BD. The yeast strain Y2HGold harboring Full:BD can activate the GAL4 reporter gene (Supplemental Figure 6B), demonstrating that GhTCE1 is a transcriptional activator. To profile the region responsible for its transcriptional activation, we constructed a series of truncated GhTCE1:BD sequences in yeast Y2HGold and mated yeast strains containing them with yeast strain Y187 harboring the empty vector pGADT7 (Supplemental Figure 6C). In diploid yeast, the N-terminal region (1-160 aa) can activate the reporter gene while the C-terminal region (161-331 aa) cannot (Supplemental Figure 6D). Sequences comprising either $80-240$ aa or $80-331$ aa can also activate the reporter gene, suggesting that the region from 80-160 aa is critical for GhTCE1 transcriptional activation activity (Supplemental Figure 6D).

We downloaded $2-\mathrm{kb}$ promoter region sequences (i.e. upstream of the translation start site) of 29 candidate target genes with potential roles in cell elongation from the cotton genome database (https://cottonfgd.org/) and the determined the presence and number of E-boxes. The number of E-boxes ranged from 2 to 13 (Supplemental Table 2). We cloned 26 promoters from the 29 candidates for testing in transactivation studies,
which used a luciferase (LUC) reporter activation system in tobacco (Nicotiana benthamiana) leaves (Figure 3D). Of the 26 candidate promoters, 14 were activated by GhTCE1 to relatively low levels, less than two-fold above basal levels (Figure 3E). One possible explanation for this relatively low activation is that the full transcriptional activation of downstream targets may require protein partners which are absent in leaf.

As GhLTPs are the most abundant members among the candidate GhTCE1 targets, and both GhLTP2 and GhLTP3 are highly expressed during SE, we selected the promoters of GhLTP2 and GhLTP3 for transcriptional activation assays with both full length GhTCE1 and the N-terminal truncated GhTCE1 ( $\triangle$ GhTCE1). The results show that GhTCE1 can interact with the promoters of both GhLTP2 $\left(L T P 2_{p r o}\right)$ and GhLTP3 $\left(L T P 3_{p r o}\right)$, promoting LUC expression in tobacco leaves. In contrast, the N-terminal truncated version of GhTCE1 did not activate $L T P 2_{\text {pro }}$ and $L T P 3_{\text {pro }}$ (Figure 4A-B). Meanwhile, we analyzed the activated expression of $L T P 2_{\text {pro }}$ and $L T P 3_{p r o}$ by GhTCE1 and $\triangle$ GhTCE1 in cotton callus protoplasts using the LUC expression system, and our results show that GhTCE1 can activate LUC expression, but $\Delta$ GhTCE1 was unable to activate LUC expression (Figure 4C). To confirm that GhTCE1 can interact with the promoters of LTP2 and LTP3, we carried out yeast-one-hybrid experiments. There was no detectable interaction between GhTCE1 and the empty pGAD vector on SD/-Trp-Leu-His medium. However, in the presence of 3-amino-1,2,4-triazole (3-AT) GhTCE1 interacted with $L T P 2_{\text {pro }}$ and $L T P 3_{\text {pro }}$ (Figure 4D), confirming that GhTCE1 can bind to the promoters of LTP2 and LTP3.

GhTCE1 belongs to the E-box ( $5^{\prime}$-CANNTG-3') binding bHLH transcription factor family, and in order to identify directly the transactivation region, we used a LUC reporter activation system in tobacco leaves and cotton callus protoplasts using the fulllength and truncated GhLTP2 promoter ( $L T P 2_{p r o} 41$ to $L T P 2_{p r o} \Delta 4$ ) regions and the Eboxes denoted as V-I respectively (Figure 4E). The results showed that, in addition to the full-length promoter, $L T P 2_{\text {pro }} \Delta 1, L T P 2_{\text {pro }} 42$ and $L T P 2_{p r o} 43$ can each be activated for target LUC fusion expression in tobacco leaves (Figure 4F). Similarly, we examined $L T P 3_{p r o}$ and its two truncated forms $\left(L T P 3_{p r o} \Delta 1\right.$ to $\left.L T P 3_{p r o} \Delta 2\right)$ and the E-boxes II and I (Figure 4G). The results show that both $L T P 3_{\text {pro }} \Delta 1$ to $L T P 3_{\text {pro }} \Delta 2$ can be activated for LUC expression (Figure 4H). To further verify the specificity of binding between GhTCE1 and the CANNTG motif, we generated a series of 26 bp probes for different E-boxes in the $L T P 2_{\text {pro }}$ and $L T P 3_{\text {pro }}$ to conduct EMSA (Figure 4I). Probes V-II, but not I, of $L T P 2_{\text {pro }}$, and both I and II of $L T P 3_{p r o}$ were bound by the GhTCE1 protein (Figure

4J-K). In addition, ChIP-qPCR analysis shows that the promoter region of E-box II-IV of $L T P 2_{\text {pro }}$ and E-box I-II of $L T P 3_{\text {pro }}$ were enriched after immunoprecipitation of GhTCE1 (Figure 4L-M).

The activation of other candidate targets of GhTCE1 in leaf or other tissues which undergo cell expansion or dedifferentiation following wounding were also investigated. The expression of GhTCE1 was barely detectable in young leaves of WT and RNAi lines, whereas high expression levels (comparable to those seen in SE-7d tissues) were detected in the OE lines (Supplemental Figure 7A). Among the 29 candidate target genes, only six were expressed at higher levels in OE leaves than in WT (Supplemental Figure 7A). However, the expression levels of all the activated genes in young leaf were much lower than in callus at 7d post wounding (SE-), and the average relative expression ratio of the activated candidates between young leaf and callus 7d post wounding (Leaf/SE) ranged from 0.0008 to 0.0764 (Supplemental Figure 7A). This suggests that GhTCE1 cannot fully activate its candidate targets in young leaves, an idea consistent with the lack of morphological differences between GhTCE1 overexpression, RNAi lines and wildtype (Figure 1F). To investigate GhTCE1 expression during cell dedifferentiation, callus formation was induced by stem grafting (Supplemental Figure 7B). Expression of GhTCE1 changed a little during graftinginduced callus formation (Supplemental Figure 7C). Among the 29 candidate target genes of GhTCE1, seven were induced during callus formation (Supplemental Figure 7C), suggesting possible roles in cell dedifferentiation and callus formation, but in a GhTCE1-independent manner. Given that overexpression of GhTCE1 inhibits organogenesis from wounded explants, we conclude it must be down-regulated after the early callus induction phase and prior to organogenesis.

Reduced expression of GhLTP2 and GhLTP3 results in increased ROS accumulation and reduced callus cell growth during dedifferentiation
The above analysis shows that GhTCE1 activates the expression of both GhLTP2 and GhLTP3. To determine whether GhLTP2 and GhLTP3 (GhLTP2/3) also function in the control of callus formation or cell differentiation in cotton, GhLTP2-Ri13/Ri16 and GhLTP3-Ri8/Ri10 transgenic lines were obtained by RNAi, and their expression was highly suppressed (Figure 5A-B). The wounded explants from different transgenic lines showed significantly decreased CPR compared with WT, having smaller cell size during callus formation (Figure 5C-F). DCFH-DA staining showed that callus from
both GhLTP2 and GhLTP3 RNAi lines accumulate more ROS than WT, and $\mathrm{H}_{2} \mathrm{O}_{2}$ concentrations increased significantly in the RNAi lines (Figure 5G-H).

To further investigate the possible role for GhTCE1-GhLTP2/3 in the regulation of ROS homeostasis and a link with cell elongation, tissues were grown in the presence of the ROS scavenger 1,3-dimethylthiourea (DMTU) to determine any effects on callus formation or growth. All GhLTP2 and GhLTP3 (GhLTP2/3) RNAi lines, but particularly GhLTP2-Ri13 and GhLTP2-Ri16, had more callus growth in the presence of 10 mM DMTU than did mock controls at 20 d post induction, but they had no additional lateral roots (Figure 5D, I). The cell length of the RNAi lines was also significantly greater in the presence of DMTU (Figure 5F, J). GhLTP2/3 RNAi lines both exhibited less ROS fluorescence in the presence of DMTU, with $\mathrm{H}_{2} \mathrm{O}_{2}$ concentrations also lower than those seen with mock control treatments (Figure 5H, K). In addition, we also analyzed the ratio of adventitious root regeneration of GhLTP2/3 transgenic lines and WT plants, and the results were consistent with those for knockout or RNAi GhTCE 1 tissues. Compared to WT plants, $L T P 2 / 3$ RNAi lines showed a higher the ratio of adventitious root regeneration, and this was significantly reduced in the presence of 10 mM DMTU (Supplemental Figure 8). These results further indicate that GhLTP2/3 expression is associated with low ROS accumulation and increased disorganized cell growth.

## GhTCEE1 enhances the activation ability of GhTCE1 by forming heterodimers

We have shown here that GhTCE1 activates cell elongation-related genes during somatic cell dedifferentiation and callus formation, whereas the activation of these genes by GhTCE1 is much weaker in cotton and tobacco leaves (Figure 3E). This suggests that GhTCE1 alone is not sufficient for full transcriptional activation and that other partners may be also involved during cell reprogramming. To identify potential partner proteins, the activation domain-truncated version of GhTCE1 (C-terminal from 161 to 331 aa), which contains the bHLH domain, was used as bait for yeast two-hybrid screening with the prey library constructed from callus cDNA isolated early after wounding. A total of 10 GhTCE1 candidate interacting proteins were identified (Supplemental Table 3). It has been reported that bHLHs usually regulate downstream targets by dimerization (Toledo-Ortiz et al., 2003), and so we focused on members of this family of TFs. We found that three bHLH proteins (Gh_D11G3523, Gh_D11G0415 and Gh_D11G0650) interacted with GhTCE1 (Figure 6A; Supplemental Figure 9). The
interaction between GhTCE1 and GhTCEE1 (Gh_D11G3523) was further verified by bimolecular fluorescence complementation ( BiFC ) (Figure 6B). Consistent with interaction between the two proteins, the expression of GhTCEE1 was induced at earlier time-points after wounding, was detectable within 540 min after wounding and increased strongly beyond this to 720 min after wounding, showing a co-expression pattern with GhTCE1 (Supplemental Figure 10).

The LUC reporter activation assay was also used to verify the enhanced activation ability of GhTCE1 by GhTCEE1. The results showed that GhTCEE1 can activate GhLTP $2_{\text {pro }}$ and $G h L T P 3_{p r o}$ for LUC expression in a similar way as does GhTCE1 (Figure 6C). Furthermore, co-expression of GhTCE1 and GhTCEE1 led to significantly higher levels of GhLTP2 $2_{p r o}$ and $G h L T P 3_{p r o}$ for LUC expression than either GhTCE1 or GhTCEE1 alone (Figure 6D), showing that GhTCE1 and its interacting protein GhTCEE1 function cooperatively to activate the expression of both GhLTP2 and GhLTP3.

## Discussion

GhTCE1 regulates callus and adventitious root formation in an antagonistic manner

Callus and adventitious roots are typically induced following wounding or exogenous hormone application. The mutants alf4-1 and clf-50 swn-1 are defective in callus formation and also failed to produce adventitious roots, suggesting that callus and adventitious roots share some common genetic pathways (Liu et al., 2014). It has also been suggested that callus, formed from multiple organs, shares a gene expression pattern with some similarities to the root meristem (Sugimoto et al., 2010). LATERAL ORGAN BOUNDARIES DOMAIN (LBD) proteins are key transcriptional regulators for both lateral root development and callus induction, and their expression is directly regulated by WUSCHEL RELATED HOMEOBOX11 (WOX11) and WOX12 (Fan et al., 2012; Liu et al., 2014; Liu et al., 2018). In addition, WOX13 also plays a key role in callus formation and organ reconnection following grafting by regulating cellular reprogramming and cell wall modification (Ikeuchi et al., 2021). LBDs can interact with specific bHLH proteins to co-regulate downstream targets (Husbands et al., 2007). GhTCE1 acts as a bHLH protein and was found to interact with multiple transcription factors in yeast two-hybrid screens (Supplemental Figure 7). Future studies could
determine whether GhTCE1 also interacts with LBDs during callus or adventitious organ development.

Although callus and adventitious roots are regulated by some common factors, there exists an antagonism between extensive callus formation, in which differentiated cells reprogramme and undergo elongation as they lose their original differentiated state, and adventitious root formation, in which cells form de novo meristems which, in contrast to callus cells, are small and highly organized. High concentrations of the auxin indole butyric acid (IBA) promote callus production while lower concentrations promote adventitious roots (Supplemental Figure 2B), consistent with previous reports for indole acetic acid (IAA) treatment (Liu et al., 2014). Previously we found that GhL1L1 promotes adventitious root development rather than callus proliferation (Xu et al., 2019). In the current study, we show that explants expressing reduced levels of GhTCE1 showed reduced callus proliferation but enhanced adventitious root formation (Figure 2A), suggesting that GhTCE1 has an opposite or competing function to GhL1L1, further illustrating the antagonistic relationship between callus formation and adventitious root development.

## GhTCE1 regulates callus cell proliferation and elongation by regulating multiple pathways

The transcriptomic analysis presented shows that multiple pathways linked to cell proliferation and elongation are regulated by GhTCE1. Among the 61 DEGs activated by GhTCE1, genes related to sterol synthesis, cell wall modification, cell extension/expansion, ROS homeostasis and lipid transfer were highly enriched. Sterols such as brassinosteroids (BRs) are required for cell elongation and plant growth (Clouse, 2002). BR treatment of cultured cotton ovules results in a significant increase in fiber length, while the BR synthesis inhibitor BRZ strongly inhibits fiber elongation (Sun et al., 2005). BR-defective mutants show extremely dwarfed phenotypes with reduced cell length (Azpiroz, 1998). The BR-inducible gene EXORDIUM (EXO) was also found among the DEGs. EXO was originally identified in a promoter trap screen for early embryo genes in Arabidopsis (Farrar et al., 2003), and it encodes an extracellular protein required for cell expansion in Arabidopsis (Schroder et al., 2009).

Cell wall modification and cell expansion pathways regulate cell elongation. The identified DEGs contain genes predicted to be involved in cell wall metabolism, including pectin methylesterase, putative pectin acyl transferase, $\beta$-1,3-glucanase, and

BBE-like enzyme for monolignol oxidation, expansion and extension. Pectin demethylesterification is important for hypocotyl and internode cell elongation in Arabidopsis (Pelletier et al., 2010; Peaucelle et al., 2011). Also, pectin acetylation is involved in hypocotyl elongation, and mutation of pectin acyltransferase results in short hypocotyls under dark growth conditions (Sinclair et al., 2017). Callose ( $\beta$-1,3- glucan) can accumulate under stress conditions to impregnate the cell wall and restrict cell growth (Piršelová and Matušíková, 2012). Degradation of callose by $\beta-1,3$-glucanase can increase cell wall flexibility and promote pollen tube germination and elongation (Parre and Geitmann, 2005). BBE-like was reported to participate in the oxidation and mobilization of monolignols (Daniel et al., 2015), and a direct target of bZIP59-LBD16 in Arabidopsis is required for callus initiation during early SE (Xu et al., 2018), suggesting that cell wall metabolism is important for cell dedifferentiation and callus growth. Extensins and expansins are involved in cell wall assembly and are required for elongation of root hairs and hypocotyl cells (Cannon et al., 2008; Zdanio et al., 2020). We found that two homologous genes, encoding an extensin and an expansin, were activated by GhTCE1 during dedifferentiation of cotton somatic cells (Figure 3E). RNAi of the extensin gene (Gh_D09G1992) resulted in decreased callus proliferation and cell elongation (Supplemental Figure 11). These data show that GhTCE1 likely promotes callus cell growth, at least in part, by regulating the cell wall modification machinery.

## LTPs participate in cell fate switching via ROS homeostasis

A key feature of this work is the discovery that GhTCE1 regulates the transcription of the lipid transfer protein genes LTP2 and LTP3 through promoter binding (Figure 4), and data strongly suggest a link with ROS homeostasis in cell fate determination. ROS, including hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$, singlet oxygen $\left({ }^{1} \mathrm{O}_{2}\right)$, the superoxide anion $\left(\mathrm{O}_{2}{ }^{-}\right)$ and the hydroxyl radical $\left(\mathrm{OH}^{\bullet}\right)$, can either promote or repress cell growth according to the particular species and distribution (Passardi et al., 2004). $\mathrm{H}_{2} \mathrm{O}_{2}$ promotes cell differentiation and strengthens the cell wall by promoting the crosslinking of cell wall components (Raggi et al., 2015). In contrast, $\cdot \mathrm{OH}^{\bullet}$ promotes cell elongation by cleaving polysaccharides or activating calcium channels (Foreman et al., 2003; Muller et al., 2009). In the current study, two NADPH oxidase and six peroxidase genes were identified as candidate targets of GhTCE1. NADPH oxidase participates in the production of $\mathrm{O}_{2}^{-}$, which can be converted into $\mathrm{H}_{2} \mathrm{O}_{2}$ spontaneously or by superoxide
dismutase (SOD). Peroxidases are involved in $\mathrm{H}_{2} \mathrm{O}_{2}$ scavenging by substrate oxidation or in the production of $\cdot \mathrm{OH}^{\bullet}$ via the Haber-Weiss reaction (Shigeto and Tsutsumi, 2016). We provide evidence that GhTCE1 is also involved in ROS homeostasis, and potentially promotes cell elongation by activating the expression of peroxidases and NADPH oxidase.

LTPs represent other potential participants in cell elongation, but their functions have not been well characterized. A number of possible mechanisms by which they influence cell elongation should be considered. LTPs are small compact proteins with lipid binding and transport activity (Edqvist et al., 2018). They are usually localized to extracellular spaces, with targeting mediated by N-terminal signal peptides (Boutrot et al., 2008). LTPs are involved in the deposition of wax and lipid-based polymers in the defense response, as well as in cell wall loosening during cell elongation (Liu et al., 2015). LTPs can interact with, and promote the activity of the pectin-degrading enzyme polygalacturonase (PG), thereby loosening the cell wall (Tomassen et al., 2007). The lipid binding hydrophobic cavity of LTP may also interact with hydrophobic cell wall compounds, thereby disrupting their noncovalent bonding and promoting cell wall extension (Nieuwland et al., 2005). In the current study, reduced expression of LTP2 and LTP3 by RNAi resulted in ROS accumulation and restricted callus cell growth, demonstrating a role for LTPs in mediating dedifferentiation control via ROS. Of particular significance here is the previously reported potential role for LTPs as ROS scavengers (e.g. Wang et al., 2014; Gangadhar et al., 2016; Xu et al., 2018). These studies describe how LTPs are upregulated under a range of abiotic stress conditions and can confer stress tolerance by scavenging ROS. Our data are consistent with a role for LTPs in scavenging ROS, regulating the transition from differentiated cell type (in the explant) to disorganized callus growth following wounding.

## In vitro dedifferentiation of somatic cells post wounding is orchestrated by TFs

Callus induction is a clear example of plant developmental plasticity in which wounding leads to cell dedifferentiation, requiring a reprogramming of gene expression by induced TFs. Auxin response factor- (ARF-) and cytokinin response factor- (CRF-) mediated auxin and cytokinin responses are essential for callus formation under appropriate auxin/cytokinin ratios. The arf7 arf9 double mutant displays defective callus initiation, but ectopic expression of their downstream targets $L B D 16 / 17 / 18 / 29$ is sufficient to induce autonomous callus production in the absence of exogenous
phytohormones (Fan et al., 2012; Xu et al., 2018). Ectopic expression of CRF3 also results in autonomous callus formation (Xu et al., 2012). Furthermore, ARF10 represses the expression of ARABIDOPSIS RESPONSE REGULATOR 15 (ARR15) to promote callus initiation, highlighting the interplay between auxin and cytokinin (Liu et al., 2016). To date, more than 50 TFs have been reported to function during regeneration from callus in Arabidopsis, and nearly half of them participate in the regulation of callus growth itself (Ikeuchi et al., 2019). In the current study, we show that GhTCE1, with its partner protein GhTCEE1, is a part of a critical regulatory module involving LTPs and ROS. This module promotes cell dedifferentiation and callus growth in an auxinindependent manner, and it acts as a molecular switch to determine cell fate control by promoting callus growth and repressing more organized meristematic growth (Figure 7).

## Materials and methods

## Plant materials, vector construction and genetic transformation

The cotton used in this study is Gossypium hirsutum cv YZ1. Transgenic lines were planted in the greenhouse at Huazhong Agricultural University, Wuhan, China. The greenhouse was kept at $26^{\circ} \mathrm{C}-32^{\circ} \mathrm{C}$, 14 h light $/ 10 \mathrm{~h}$ dark photoperiod. The explants from transgenic lines and tobaccos that were used for LUC reporter assays were grown at $25^{\circ} \mathrm{C}$ in a light cultivation room ( 16 h light $/ 8 \mathrm{~h}$ dark photoperiod, 3000 lex). RNAi vectors for GhTCE1 and GhLTP2/3 were constructed in the pHellsgate 4 vector (Wesley et al., 2001). The overexpression construct for GhTCE1 was in the pK2GW7 (Karimi et al., 2002) vector. The CRISPR-Cas9 mediated gene editing vector was constructed as described previously (Wang et al., 2018). All the primers used for vector construction are listed in Supplemental File 1. Transgenic plants were created by Agrobacterium-mediated transformation as described previously (Jin et al., 2006). The expression levels of GhTCE1 and GhLTP2/3 in transgenic plants were determined by qRT-PCR, using explants at 7 d post wounding, using GhUB7 as an internal control. TDNA insertion copy numbers were determined by immunoblotting as described previously (Wang et al., 2018). The mutation analysis of GhTCE1 CRISPR-Cas9 transgenic plants was achieved by the Hi-TOM method as described previously (Liu et al., 2019). Mutants of $\operatorname{GhTCE1}(A / D)$ carrying frameshift mutations were chosen for phenotypic analysis.

Callus induction, callus proliferation rate (CPR), cell length analysis and adventitious root formation

Hypocotyls of etiolated seedlings were cut into $5-7 \mathrm{~mm}$ sections as explants for culture on MSB (MS medium plus $\mathrm{B}_{5}$ vitamins) medium and growth conditions of explants as described previously (Yang et al., 2012). The callus proliferation rate (CPR) represents the gained weight of per unit weight explants at 20 d post wounding induction. Callus cells were separated in 1x PBS ( 10 mM sodium phosphate, $137 \mathrm{mM} \mathrm{NaCl}, 2.7 \mathrm{mM}$ $\mathrm{KCl}, \mathrm{pH} 7.5)$ and photographed under a light microscope (ZEISS, AXIO Scope A1). Cell length was measured from the micrograph using Image J software (Rha et al., 2015). Adventitious root formation was measured as a ratio of the frequency of roots formed per explant cultured.

## DCFH-DA treatment, ROS staining and $\mathrm{H}_{2} \mathrm{O}_{2}$ measurement

Hypocotyls of etiolated seeding were cut into $5-7 \mathrm{~mm}$ sections as explants, $10 \mathrm{mM} 1,3-$ dimethylthiourea (DMTU) was added to MSB medium as the treatment group, and MSB medium lacking DMTU was the negative control.

For ROS staining, fresh callus cells were collected 20 d post wounding and stained in the 2,7-dichloro-dihydrofluorescein diacetate (DCFH-DA) solution described below for 5 min . Stained cells were rinsed three times in $\mathrm{ddH}_{2} \mathrm{O}$ and examined under a fluorescence microscope (Nikon, SMZ25) with 480 nm excitation, and 100 ms exposure time was used for each image. The DCFH-DA storage solution ( pH 7.5 ) was $10 \mathrm{mmol} / \mathrm{L}$ prepared in DMSO (dimethylsulfoxide), and it was diluted 1000 -fold with $1 x$ PBS for ROS staining. The concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ from fresh callus was determined using a $\mathrm{H}_{2} \mathrm{O}_{2}$ quantification kit (\#C500069, Sangon Biotech, Shanghai, China).

## Endogenous IAA concentration assays and IBA treatment

Explants were collected 20 d post wounding and the IAA levels were determined by HPLC-MS as reported previously (Xu et al., 2019). In standard MSB medium, the IBA concentration $(0.5 \mathrm{mg} / \mathrm{L})$ was defined as 1 x . The final concentrations of IBA used were $0,0.5,1,2.5,5,10 \mathrm{mg} / \mathrm{L}$ in MSB medium and defined as $0 \mathrm{x}, 1 \mathrm{x}, 2 \mathrm{x}, 5 \mathrm{x}, 10 \mathrm{x}, 20 \mathrm{x}$ respectively for IBA treatments. Explants were photographed 10 d and 20 d post wounding.

## RNA-seq

Hypocotyls of WT and GhTCE1 RNAi and overexpression lines were used for RNA extraction 7 d post wounding. RNA-seq was performed by the Beijing Genomics Institute (BGI). Differentially expressed genes (DEGs) were determined using the threshold of $P \leq 0.05$ and the absolute value of the $\log _{2}$ fold change $\geq 1$. The annotations of DEGs were based on the functions of their homologues in Arabidopsis unless known in cotton.

## Subcellular localization

Full length GhTCE1 was cloned into the vector pMDC43 with GFP fused to the Nterminus (Cai et al., 2015). The $35 S_{\text {pro: }}$ GFP-GhTCE1 construct was transiently expressed in tobacco epidermal cells following Agrobacterium-mediated transfection. The pMDC43 empty vector harboring $35 S_{p r o}: G F P$ was used as control. GFP fluorescence was detected under a confocal microscope (Olympus FV1200) at two d following Agrobacterium transfection.

## Bimolecular Fluorescence Complementation (BiFC) Assay

For the BiFC assay, the full-length sequences of GhTCE1 and GhTCEE1 were cloned into pDONR vector (Invitrogen ${ }^{\mathrm{TM}}$ ), then into the destination vector pBiFCt -2in1-NC by Gateway technology (Grefen and Blatt, 2012). The recombinant vectors were transformed into Agrobacterium tumefaciens strain GV3101, and transient expression was performed in tobacco epidermal cells. The YFP fluorescence in BiFC assays was examined by confocal microscopy (Olympus FV1200).

## Autoactivation analysis of GhTCE1

The full-length sequence of GhTCE1 was inserted into the pGBKT7 vector to produce the Full:BD construct. Full:BD was transferred into the Y2HGold yeast strain and cultured on SD-T/X- $\alpha$-gal plates for 3 d to detect its autoactivation (based on colony color). To further investigate the autoactivation in detail, four different truncated GhTCE1 versions were constructed in pGBKT7 and designated 1-160, 161-331, 80240, 80-331 according to the amino acid fragments contained in each. The different constructions of GhTCE1 were transferred into the Y2HGold yeast strain and mated with Y187 yeast harboring the pGADT7 empty vector. The positive and negative
controls used were according to the manufacturer's instructions (Clontech, PT4084-1). The diploid yeasts were cultured in SD-TL and SD-TLHA/X- $\alpha$-gal plates for 3 d to detect autoactivation. SD means synthetically defined medium, SD-T/TL/TLHA represent SD dropouts $\operatorname{Trp}$, $\operatorname{Trp} /$ Leu, $\operatorname{Trp} /$ Leu/His/Ade respectively.

## Transactivation assays using the LUC reporter system

Transactivation assays were conducted as reported previously (Hu et al., 2018). In brief, the promoters of GhTCE1 candidate targets were cloned and inserted upstream of sequences encoding the LUC reporter in the pGreenII 0800-LUC vector. $35 S_{\text {pro }}$ :REN in the same vector was used as an internal control. GhTCE1 and GhTCEE1 were cloned downstream of the cauliflower mosaic virus 35 S promoter ( $35 S_{\text {pro }}$ ) in pGreenII 62-SK and the same vector without GhTCE1 was used as control. Activation of E-box motifs assays were conducted using the 2,000 -bp full-length GhLTP2 promoter with five Ebox motifs (I, II, III, IV, and V) and the GhLTP3 promoter with two E-box motifs (I and II). The truncation promoters were created by successively deleting one E-box in turn from the $5^{\prime}$ end, and were named $L T P 2_{p r o} \Delta 1$ to $L T P 2_{p r o} 14$ for deletions of $G h L T P 2_{p r o}$ and named $L T P 3_{\text {pro }} 41$ to $L T P 3_{\text {pro }} 42$ for $G h L T P 3_{p r o}$. The truncated promoters were cloned into the pGreenII 0800-LUC vector. All plasmids were transformed individually into A. tumefaciens strain GV3101 for transient expression in tobacco (Nicotiana benthamiana). The concentration of A. tumefaciens harboring the pGreenII 0800-LUC or pGreenII $62-\mathrm{SK}$ vectors were adjusted to the same concentration (for example, pGreenII 62-SK:GhTCE1, OD $=0.2$, pGreenII 0800:LTP2 pro, $\mathrm{OD}=0.2$ ) and mixed in volumes of $1: 1$ (pGreenII 0800-LUC: pGreenII 62-SK), and all of the pairs of the suspensions carrying the appropriate constructs were adjusted to the same $\mathrm{OD}_{600}=0.6$ prior to coinfiltration into tobacco leaves with same infiltrated areas to ensure comparability. The infiltrated plants were grown at $25^{\circ} \mathrm{C}$ in a light cultivation room (16 h light $/ 8 \mathrm{~h}$ dark photoperiod, irradiance of $135 \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-1} \cdot \mathrm{~s}^{-1}$ ). After 60 to 72 h , the LUC luminescence of leaves was detected using a cryogenically cooled CCD camera (Lumazome PyLoN 2048B). For each tobacco leaf, one half was transfected with experimental vectors and the other half with control vectors by agroinfection. However, for four truncations, 62-SK:GhTCE1+ pGreenII 0800:LTP2 $2_{\text {pro }} \Delta$. constructs were evenly distributed on one leaf. Three biological replicates were carried out for each combination.

The LUC assays in cotton protoplasts were performed as described (Hellens et al., 2005). In brief, vector each of effector (1:1) and reporter constructs (total effectors:reporter $=1: 1$ ) were cotransformed into protoplasts using $40 \%$ polyethylene glycol $4000(\mathrm{v} / \mathrm{v})$ (Sigma), then cultured at $25^{\circ} \mathrm{C}$ in darkness for 16 h . LUC and REN activity were detected (the relative ratio of the LUC/REN ratio with GhTCE1 and GhTCEE1 vs. the LUC/REN ratio without GhTCE1s and GhTCEE1) were detected for transactivation assays using GhTCE1 and its candidate targets) by using the dualluciferase assay reagents (Promega, Madison, WI) with the Multimode Plate Reader (Perkin-Elmer).

## Yeast Two-Hybrid Screening

The activation domain of truncated GhTCE1 (C-terminal from 160 to 331 aa) was cloned into pGBKT7 (designated pGBKT7- $\Delta$ GhTCE1) and transformed into yeast strain Y2HGold. The cDNA library from early time points after wounding were constructed in pGADT7 and transformed into yeast strain Y187. Yeast two-hybrid screening was performed according to the manufacturer's instructions (Clontech, PT1172-1, PT4084-1). The vectors from positive clones were recovered and transferred into Escherichia coli for sequencing. After removing the unmatched or frameshift preys, the remaining protein coding preys (designated prey-AD) were transferred into the Y187 strain separately and mated with the Y2H strain containing either the pGBKT7 empty vector (BD) or pGBKT7- $\Delta$ GhTCE1 ( $\Delta \mathrm{GhTCE} 1-\mathrm{BD}$ ). Both prey-AD/BD and prey-AD/ $\Delta \mathrm{GhTCE} 1-\mathrm{BD}$ combinations showing activated reporter genes were considered as false interactions. Only prey-AD $+\Delta$ GhTCE1-BD activated reporter genes while the prey- $\mathrm{AD} / \mathrm{BD}$ did not were considered as true interactions.

## Electrophoretic Mobility Shift Assays (EMSA)

Biotin-labelled single-stranded DNA was synthesized and annealed to produce double strands. For EMSA, a sequence encoding full length GhTCE1 was cloned ino the pET28a (Novagen) vector, and His-tagged proteins were induced and expression in Escherichia coli and proteins were purified by chromatography. Binding reactions were carried out using the LightShift ${ }^{\circledR}$ Chemiluminescent EMSA Kit (Thermo scientific, 20148). Signals were captured by X-ray film and the film was developed according to the manufacturer's instructions. The primers used for vector construction are listed in Supplemental File 1.

## Chromatin-Immunoprecipitation Quantitative PCR (ChIP-qPCR)

For ChIP experiments, GhTCE1-GFP transgenic lines were used for chromatin extraction and immunoprecipitation as described previously by Huang et al. (2018). Briefly, the samples were fixed with $1 \%(\mathrm{v} / \mathrm{v})$ formaldehyde (Sigma, Cat.\# F8775) for 10 min at room temperature, and neutralized with 0.125 M glycine for 5 min . The samples were collected by centrifuging (Beckman Coulter, Avanti JXN-26) at 1,000 g at $4^{\circ} \mathrm{C}$ for 5 min . A Bioruptor (KQ5200DE) was used at high power with $30-\mathrm{s}$ on/30-s off cycles for fifteen times until the average chromatin size was approximately 300 bp . $\backslash$ Anti-GFP (ABclonal, AE012) antibodies ( $5 \mu \mathrm{~g}$ antibodies were added per $25 \mu \mathrm{~g}$ chromatin DNA) were used to perform immunoprecipitations. The immunoprecipitated chromatin fragments were isolated and preabsorbed with sheared salmon sperm DNA/protein A-agarose (Sigma-Aldrich) to remove nonspecific binding (IP). After DNA purification, the GhTEC1 binding sites on $L T P 2_{\text {pro }}$ and $L T P 3_{\text {pro }}$ was evaluated using qPCR and normalized by total chromatin (Input). The fold enrichment calculated as the ratio between the samples of Input and IP samples. GhUBQ7 $7_{\text {pro }}$ was used as reference promoter, and the primers are listed in Supplemental File 1.

## Yeast-one-hybrid ( Y 1 H ) assay

Y1H screening was performed using the Matchmaker ${ }^{\circledR}$ Gold Yeast One-Hybrid Library Screening System User Manual (Clontech, PT4087-1). The full-length sequence of GhTCE1 was cloned into the pGADT7 vector and transformed into yeast strain Y187 the promoter sequences of $L T P 2_{\text {pro }}$ and $L T P 3_{\text {pro }}$ were cloned into the pHis 2 vector and transformed into yeast strain AH109, and the pGAD-empty vector was used as negative control vector. $10 \mu 1$ each for combined yeast strain Y187 and AH109 were cultured in $200 \mu \mathrm{l}$ YPDA liquid medium (1 L YPDA contains 10 g yeast extract, 20 g tryptone, 20 g glucose, 100 mg adenine, fill $\mathrm{ddH}_{2} \mathrm{O}$ to $1 \mathrm{~L}, \mathrm{pH}=6.5$ ) at $30^{\circ} \mathrm{C}$ for $20-24 \mathrm{~h}$. Then, 6 $\mu \mathrm{L}$ yeast that mated successfully was spotted onto SD-Trp-Leu-His containing 200 mM 3-AT (3-amino-1,2,4-triazole) solid medium at $30{ }^{\circ} \mathrm{C}$ for $3-5 \mathrm{~d}$, then analyzed the interaction between GhTCE1 and $L T P 2_{\text {pro }}$ and $L T P 3_{\text {pro }}$. The primers used for vector construction are listed in Supplemental File 1.

## Accession numbers

Sequence information for the cotton genes in this study can be found in the Cotton Genome Database (https://cottonfgd.org/, Gossypium hirsutum AD1, upland cotton, NAU assembly) according to the accession numbers as shown in Supplemental Data Set 1 and Supplemental Tables 1, 2, and 3.

## Supplemental Data

Supplemental Figure 1. Protein sequence alignment of Gh_D06G2316 (GhTCE1D) and GhA_06G0241 (GhTCE1A).

Supplemental Figure 2. GhTCE1 is involved in adventitious root regeneration during wound-induced callus formation.

Supplemental Figure 3. Auxin detection in GhTCE1 transgenic plants.
Supplemental Figure 4. Callus formation in GhTCE1 transgenic lines.
Supplemental Figure 5. Correlation analysis of 29 DEGs comparing RNA-seq vs. qRT-PCR.

Supplemental Figure 6. Subcellular localization and autoactivation analysis of GhTCE1.

Supplemental Figure 7. Expression analysis of GhTCE1 and its candidate targets in different tissues.

Supplemental Figure 8. GhLTP2 and GhLTP3 are involved in adventitious root regeneration during wound-induced callus formation

Supplemental Figure 9. Yeast two-hybrid screening for proteins interacting with GhTCE1.

Supplemental Figure 10. Expression pattern of GhTCEE1 at early time points following wounding.

Supplemental Figure 11. EXT1A and EXT1D are involved in cell elongation during SE.

Supplemental Data Set 1. FPKM values of 62 differentially expressed genes (DEGs) identified by RNA-seq analysis.

Supplemental Data Set 2. Statistical analysis tables.
Supplemental Table 1. Function annotation of 32 left candidate targets of GhTCE1.
Supplemental Table 2. Characterization of 29 GhTCE1 candidate targets.

Supplemental Table 3. Annotation of proteins interacting with GhTCE1 from Yeast two-hybrid screening.

Supplemental File 1. List of primers used in this study.

## Acknowledgements

This work was supported by funding from the National Key Project of Research and the Development Plan of China (2018YFD1000907) and Fundamental Research Funds for the Central Universities (2662020ZKPY011).

## Author contributions

X.Y., L.H. and X.Z. designed and guided the project. J.D. and W.S. performed experiments and wrote the draft manuscript. B.Z., S.S. and L.X. helped perform LUC assays. Y.M. helped in measuring ROS and auxin contents. K.L. organized the results and revised the manuscript.

## Competing interests

The authors declare that they have no competing interests.

## References

Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, Lemaux PG, Medford JI, OrozcoCardenas ML, Tricoli DM, Van Eck J, Voytas DF, Walbot V, Wang K, Zhang ZJ, Stewart CN, Jr. (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28: 1510-1520

Azpiroz, R. (1998) An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell 10: 219-230

Boutrot F, Chantret N, Gautier MF (2008) Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genomics 9: 86

Cai Y, Goodman J M (2015) Arabidopsis SEIPIN Proteins Modulate Triacylglycerol Accumulation and Influence Lipid Droplet Proliferation. Plant Cell 27: 2616-36

Cannon MC, Terneus K, Qi H, Tan L, Wang Y, Wegenhart BL, Chen L, Lamport D, Chen Y, Kieliszewski MJ (2008) Self-assembly of the plant cell wall requires an extensin scaffold. Proc Natl Acad Sci USA 105: 2226-2231

Chapman JM, Muhlemann JK, Gayomba SR, Muday GK (2019) RBOH-depndent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses. Chem Res Toxicol 32: 370-396.

Chen X, Qu Y, Sheng L, Liu J, Huang H, Xu L (2014) A simple method suitable to study de novo root organogenesis. Front Plant Sci 5: 208.

Clouse SD (2002) Brassinosteroids. Arabidopsis Book 1: e0009
Daniel B, Pavkov-Keller T, Steiner B, Dordic A, Gutmann A, Nidetzky B, Sensen CW, van der Graaff E, Wallner S, Gruber K, Macheroux P (2015) Oxidation of monolignols by members of the berberine bridge enzyme family suggests a role in plant cell wall metabolism. J Biol Chem 290: 18770-18781

Du X, Fang T, Liu Y, Huang L, Zang M, Wang G, Liu Y, Fu J (2019) Transcriptome profiling predicts new genes to promote maize callus formation and transformation. Front Plant Sci 10: 1633.

Edqvist J, Blomqvist K, Nieuwland J, Salminen TA (2018) Plant lipid transfer proteins: are we finally closing in on the roles of these enigmatic proteins? J Lipid Res 59: 1374-1382

Fan M, Xu C, Xu K, Hu Y (2012) LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res 22: 1169-1180

Farrar K, Evans IM, Topping JF, Souter MA, Nielsen JE, Lindsey K (2003) EXORDIUM - a gene expressed in proliferating cells and with a role in meristem function, identified by promoter trapping in Arabidopsis. Plant J33: 61-73.

Fehér, Attila (2015) Somatic embryogenesis - Stress-induced remodeling of plant cell fate. BBA-Gene Regulatory Mechanisms 1849: 385-402

Foreman J, Demidchik V, Bothwell J, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones J (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442-446

Gangadhar BH, Sajeesh K, Venkatesh J, Baskar V, Abhinandan K, Yu JW, Prasad R, Mishra RK (2016) Enhanced tolerance of transgenic potato plants overexpressing non-specific Lipid Transfer Protein-1 (StnsLTP 1) against multiple abiotic stresses. Front Plant Sci 7: 1228.

Grefen C, Blatt MR (2012) A 2in1 cloning system enables ratiometric bimolecular fluorescence complementation (rBiFC). Biotechniques 53: 311-314

Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, Karunairetnam S, Gleave AP, Laing WA (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1: 13

Hu Q, Zhu LF, Zhang XN, Guan QQ, Xiao SH, Min L, Zhang XL (2018). GhCPK33 Negatively Regulates Defense against Verticillium dahliae by Phosphorylating GhOPR3. Plant Physiol 178: 876-889.

Huang K, Fang C, Yi K, Liu X, Qi H, Tan Y, Zhou J, Li Y, Liu M, Zhang Y, Yang J, Zhang J, Li M, Kang C (2018) The role of PTRF/Cavin1 as a biomarker in both glioma and serum exosomes. Theranostics 8: 1540-1557.

Husbands A, Bell EM, Shuai B, Smith HM, Springer PS (2007) LATERAL ORGAN BOUNDARIES defines a new family of DNA-binding transcription factors and can interact with specific bHLH proteins. Nucleic Acids Res 35: 6663-6671

Ikeuchi M, Favero DS, Sakamoto Y, Iwase A, Coleman D, Rymen B, Sugimoto K (2019) Molecular mechanisms of plant regeneration. Annual Review of Plant Biology 70: 377-406

Ikeuchi M, Iwase A, Ito T, Tanaka H, Favero DS, Kawamura A, Sakamoto S, Wakazaki M, Tameshige T, Fujii H, Hashimoto N, Suzuki T, Hotta K, Toyooka K, Mitsuda N, Sugimoto K (2021) Wound-inducible WUSCHEL RELATED HOMEOBOX 13 is required for callus growth and organ reconnection. Plant Physiol 181: 425-441

Ikeuchi M, Iwase A, Rymen B, Lambolez A, Kojima M, Takebayashi Y, Heyman J, Watanabe S, Seo M, De Veylder L, Sakakibara H, Sugimoto K (2017) Wounding
triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiol 175: 1158-1174

Jin F, Hu L, Yuan D, Xu J, Gao W, He L, Yang X, Zhang X (2013) Comparative transcriptome analysis between somatic embryos (SEs) and zygotic embryos in cotton: evidence for stress response functions in SE development. Plant Biotechnol $J$ 12: 161-173

Jin S, Zhang X, Nie Y, Guo X, Liang S, Zhu H (2006) Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biologia Plantarum 50: 519-524

Karimi M, Inzé D, Depicker A (2002) GATEWAY ${ }^{\mathrm{TM}}$ vectors for Agrobacteriummediated plant transformation. Trends Plant Sci 7: 193-195

Lee K, Seo PJ (2018) Dynamic Epigenetic Changes during Plant Regeneration. Trends Plant Sci 23: 235-247

Li S, Yan S, Wang AH, Zou G, Huang X, Han B, Qian Q, Tao Y (2013) Identification of QTLs associated with tissue culture response through sequencing-based genotyping of RILs derived from 93-11 $\times$ Nipponbare in rice (Oryza sativa). Plant Cell Reports 32: 103-116
Lindsey K, Yeoman MM (1983) The relationship between growth, differentiation and alkaloid accumulation in plant cell cultures. J Exp Bot 34: 1055-1065.

Liu F, Zhang X, Lu C, Zeng X, Li Y, Fu D, Wu G (2015) Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. $J$ Exp Bot 66: 5663-5681

Liu J, Hu X, Qin P, Prasad K, Hu Y, Xu L (2018) The WOX11-LBD16 pathway promotes pluripotency acquisition in callus cells during de novo shoot regeneration in tissue culture. Plant Cell Physiol 59: 734-743

Liu J, Sheng L, Xu Y, Li J, Yang Z, Huang H, Xu L (2014) WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell 26: 1081-1093

Liu Q, Wang C, Jiao X, Zhang H, Song L, Li Y, Gao C, Wang K (2019) Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Science China(Life Sciences). Sci China Life Sci 62(1): 1-7

Liu Z, Li J, Wang L, Li Q, Lu Q, Yu Y, Li S, Bai MY, Hu Y, Xiang F (2016) Repression of callus initiation by the miRNA-directed interaction of auxin-cytokinin in Arabidopsis thaliana. Plant $J$ 87: 391-402

Muller K, Linkies A, Vreeburg RA, Fry SC, Krieger-Liszkay A, Leubner-Metzger G (2009) In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiol 150: 1855-1865

Nieuwland J, Feron R, Huisman BA, Fasolino A, Hilbers CW, Derksen J, Mariani C (2005) Lipid transfer proteins enhance cell wall extension in tobacco. Plant Cell 17: 2009-2019

Parre E, Geitmann A (2005) More than a leak sealant. The mechanical properties of callose in pollen tubes. Plant Physiol 137: 274-286

Passardi F, Penel C, Dunand C (2004) Performing the paradoxical: how plant peroxidases modify the cell wall. Trends Plant Sci 9: 534-540

Peaucelle A, Louvet R, Johansen JN, Salsac F, Morin H, Fournet F, Belcram K, Gillet F, Hofte H, Laufs P, Mouille G, Pelloux J (2011) The transcription factor BELLRINGER modulates phyllotaxis by regulating the expression of a pectin methylesterase in Arabidopsis. Development 138: 4733-4741

Pelletier S, Van Orden J, Wolf S, Vissenberg K, Delacourt J, Ndong YA, Pelloux J, Bischoff V, Urbain A, Mouille G, Lemonnier G, Renou JP, Hofte H (2010) A role for pectin de-methylesterification in a developmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls. New Phytol 188: 726-739

Piršelová B, Matušíková I (2012) Callose: the plant cell wall polysaccharide with multiple biological functions. Acta Physiologiae Plantarum 35: 635-644

Raggi S, Ferrarini A, Delledonne M, Dunand C, Ranocha P, De Lorenzo G, Cervone F, Ferrari S (2015) The Arabidopsis Class III peroxidase AtPRX71 negatively regulates growth under physiological conditions and in response to cell wall damage. Plant Physiol 169: 2513-2525

Rha EY, Kim JM, Yoo G (2015) Volume measurement of various tissues using the Image J Software. J Craniofac Surg 26: e505-6

Riechmann JL (2002) Transcriptional regulation: a genomic overview. The Arabidopsis Book 1: e0085

Schroder F, Lisso J, Lange P, Mussig C (2009) The extracellular EXO protein mediates cell expansion in Arabidopsis leaves. BMC Plant Biol 9: 20

Shigeto J, Tsutsumi Y (2016) Diverse functions and reactions of class III peroxidases. New Phytol 209: 1395-1402

Sinclair SA, Larue C, Bonk L, Khan A, Castillo-Michel H, Stein RJ, Grolimund D, Begerow D, Neumann U, Haydon MJ, Kramer U (2017) Etiolated seedling development requires repression of photomorphogenesis by a small cell-wallderived dark signal. Curr Biol 27: 3403-3418 e3407

Sugimoto K, Jiao Y, Meyerowitz EM (2010) Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18: 463-471

Sun Y, Veerabomma S, Abdel-Mageed HA, Fokar M, Asami T, Yoshida S, Allen RD (2005) Brassinosteroid regulates fiber development on cultured cotton ovules. Plant Cell Physiol 46: 1384-1391

Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15: 1749-1770

Tomassen MM, Barrett DM, van der Valk HC, Woltering EJ (2007) Isolation and characterization of a tomato non-specific lipid transfer protein involved in polygalacturonase-mediated pectin degradation. J Exp Bot 58: 1151-1160

Wang F, Zang XS, Kabir MR, Liu KL, Liu ZS, Ni ZF, Yao YY, Hu ZR, Sun QX, Peng HR (2014) A wheat lipid transfer protein 3 could enhance the basal thermotolerance and oxidative stress resistance of Arabidopsis. Gene 550: 18-26.

Wang P, Zhang J, Sun L, Ma Y, Xu J, Liang S, Deng J, Tan J, Zhang Q, Tu L, Daniell H, Jin S, Zhang X (2018) High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system. Plant Biotechnol J 16: 137-150

Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, sffective and highthroughput gene silencing in plants. Plant $J$ 27:581-90

Xu C, Cao H, Xu E, Zhang S, Hu Y (2018) Genome-wide identification of Arabidopsis LBD29 target genes reveals the molecular events behind auxin-induced cell reprogramming during callus formation. Plant Cell Physiol 59: 744-755

Xu C, Cao H, Zhang Q, Wang H, Xin W, Xu E, Zhang S, Yu R, Yu D, Hu Y (2018) Control of auxin-induced callus formation by bZIP59-LBD complex in Arabidopsis regeneration. Nature Plants 4: 108-115

Xu J, Yang X, Li B, Chen L, Min L, Zhang X (2019) GhL1L1 affects cell fate specification by regulating GhPIN1-mediated auxin distribution. Plant Biotechnol J 17: 63-74

Xu K, Liu J, Fan M, Xin W, Hu Y, Xu C (2012) A genome-wide transcriptome profiling reveals the early molecular events during callus initiation in Arabidopsis multiple organs. Genomics 100: 116-124

Xu Y, Zheng X, Song Y, Zhu L, Yu L, Gan L, Zhou S, Liu H, Wen F, Zhu C (2018) NtLTP4, a lipid transfer protein that enhances salt and drought stressestolerance in Nicotiana tabacum. Sci Rep 8: 8873.

Yang X, Zhang X, Yuan D, Jin F, Zhang Y, Xu J (2012) Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC Plant Biology 12: 110

Yu J, Liu W, Liu J, Qin P, Xu L (2017) Auxin control of root organogenesis from callus in tissue culture. Front. Plant Sci 10: 3389.

Zdanio M, Boron AK, Balcerowicz D, Schoenaers S, Markakis MN, Mouille G, Pintelon I, Suslov D, Gonneau M, Hofte H, Vissenberg K (2020) The ProlineRich Family Protein EXTENSIN33 Is Required for Etiolated Arabidopsis thaliana Hypocotyl Growth. Plant Cell Physiol 61: 1191-1203

Zhang Z, Zhao H, Li W, Wu J, Zhou Z, Zhou F, Chen H, Lin Y (2019) Genomewide association study of callus induction variation to explore the callus formation mechanism of rice. J Integr Plant Biol 61: 1134-1150


Figure 1. Analysis of GhTCE1 expression and characterization of transgenic plants.
(A) Expression pattern of GhTCE1 in different tissues. SE-0d, -1d, -3d, -5d, -7d, or -14 d means the explants of hypocotyls were induced for 1 , 3,5 , 7 , or 14 days during ${ }_{\Phi}^{\circ}$ somatic embryogenesis (SE) [embryogenic callus (SE-EC), globular stage embryo (SE-GE), torpedo stage embryo (SE-TE), and cotyledon stage embryo (SE-CE)]. (B) Expression pattern of GhTCE1 soon after wounding. The expression of GhUB7 was used as internal control. (C) Immunoblot analysis of GhTCE1 transgenic lines. The first $\stackrel{\rightharpoonup}{\infty}$ lane represents the $\lambda$ DNA size marker. The DNA samples were digested with Hindll. (D) Relative expression of GhTCE1 in transgenic lines 7 d post SE induction. WT, wild type; Ri1 and Ri2, RNAi lines; OE1 and OE3, overexpression lines. Null, negative plants segregated from Ri1 in the $\mathrm{T}_{1}$ generation. The expression of GhUB7 was used as internal control. (E) Sequence analysis of GhTCE1(A/D) double mutants ko15 and ko18 at the target sites. The PAM motif is marked in red and GhTCE1A and GhTCE1D can be distinguished by the SNP C/T (marked in green) downstream of the PAM motif. The black dotted line represents deletion compared with WT. (F) Phenotypes of GhTCE1 transgenic plant lines grown on soil. Bars = 20 cm . Error bars in (A), (B) and (D) represent $\pm$ standard error of three biological replicates ( $\sim 20$ explants were used as one replicate). Significance tests compared each transgenic line with WT plants. ${ }^{*} P<0.05,{ }^{* *} P<0.01$, Supplemental Data Set 2.


Figure 2. Phenotypic analysis of GhTCE1 transgenic tissues.
(A) The phenotypes of callus 20 d post wounding from different transgenic lines and mutants. WT, wild type; Ri1 and Ri2, RNAi lines; OE1 and OE3, overexpression lines; Null, negative plants segregated from Ri1 in the $\mathrm{T}_{1}$ generation; ko15 and ko18, mutation lines. (B) Callus proliferation rate of different lines 20 d post wounding. Error bars represent $\pm$ standard error of six biological replicates ( $\sim 20$ explants each). (C) Micrographs of callus cells of different lines 20 d post wounding. Bars $=200 \mu \mathrm{~m}$. (D) Statistical analysis of callus cells length of different lines 20 d post wounding. Error bar represent $\pm$ standard error of six biological replicates ( $\sim 50$ cells each). (E) DCFH-DA staining of ROS in GhTCE1 transgenic plants and mutants. (F) $\mathrm{H}_{2} \mathrm{O}_{2}$ concentration in callus from GhTCE1 transgenic plants 20 d post wounding. Error bars represent $\pm$ standard errors of four biological replicates ( $\sim 20$ explants each). Significance tests compared each transgenic line with WT plants. ${ }^{*} \mathrm{P}<0.05$, ${ }^{* *} \mathrm{P}<0.01$, Supplemental Data Set 2.


Figure 3. Analysis of downstream targets of GhTCE1.
(A) Differential gene (DEG) analysis in GhTCE1 Ri and OE lines compared with WT. Screening for up or down regulated genes used a stringency of $P$ $\leq 0.05$ and a $\log _{2}$ fold change of $\geq 1$ or $\leq-1$ compared with WT. Hypocotyls at 7 d post wounding were used for RNA-seq analyses, with two biological replicates ( $\sim 50$ explants each) for each line. (B) Heat-map analysis of 29 DEGs from enriched pathways that were up-regulated or down-regulated in OE and Ri lines, respectively. (C) Heat-map analysis of the 29 DEGs from Figure $3 B$ using qRT-PCR, with three biological replicates for each line. (D) Schematic diagram of effector and reporter constructs. Orange rectangle, the effector; pink arrow, the reporter; blue rectangles, other vector components; blue arrows, 35 S promoters. The empty vector (EV) was used as a negative control. (E) Transactivation analysis between GhTCE1 and its candidate targets in cotton callus protoplasts using the LUC reporter system. Promoters from the candidate targets were fused to upstream of LUC in pGreenll 0800-LUC. $35 S_{\text {pro }}$ :REN in pGreenll 0800-LUC was used as internal control. GhTCE1 was fused downstream of the CaMV 35S promoter ( $35 S_{\text {pro }}$ ) in pGreenll $62-S K$. pGreenll 62-SK empty vector was used as a negative control and designated EV. Relative activation level represents the ratio of fluorescence intensity of LUC/REN with GhTCE1 to LUC/REN without GhTCE1. Error bars in (E) represent $\pm$ standard errors of three biological replicates ( 10 samples each). Significance tests compared the expression of Promoter:LUC $+35 S_{\text {pro }}: R E N+35 S_{p r o}$ :GhTCE1 with Promoter:LUC $+35 S_{\text {pro }}: R E N+E V, P<0.05\left(^{*}\right)$ or $P<0.01$ (**), Supplemental Data Set 2.



Figure 5. Phenotypic analysis of GhLTP2 and GhLTP3 RNAi transgenic tissues.
(A-B) Relative expression of GhLTP2 and GhLTP3 in WT and respective RNAi transgenic lines. Error bars represent $\pm$ standard error of three biological replicates as described in Figure 1A. (C) Phenotype of callus 20 d post wounding for different transgenic lines following mock treatment. Bar $=1 \mathrm{~cm}$. (D) Callus proliferation rate of different lines 20 d post wounding following mock treatment or treatment with 10 mM DMTU. Error bars represent $\pm$ standard error of six biological replicates as described in Figure 2B. (E) Micrographs of callus cells, under mock treatment. Bar $=100 \mu \mathrm{~m}$. (F) Statistic analysis of callus cell lengths of different lines 20 d post wounding under mock treatment and 10 mM DMTU. Error bars represent $\pm$ standard error of six biological replicates as described in Figure 2D. (G) DCFH-DA staining of ROS in WT, GhLTP2 and GhLTP3 transgenic callus cells. Bar $=100 \mu \mathrm{~m}$. (H) $\mathrm{H}_{2} \mathrm{O}_{2}$ concentration in callus from transgenic plants 20 d post SE induction. Error bars represent $\pm$ standard errors of three biological replicates as described in Figure 2 F . (I-K) Phenotype, micrograph and DCFH-DA staining of ROS in callus cells, 20 d post wounding from different transgenic lines under 10 mM DMTU treatment. Bar $=1 \mathrm{~cm}$ in I and $100 \mu \mathrm{~m}$ in J and K . Significance tests compared each transgenic line with WT plants. ${ }^{*} P<0.05,{ }^{* *} P<0.01$. Results of statistical analyses are presented in Supplemental Data Set 2.


Figure 6. GhTCEE1 enhances the activation activity of GhTCE1 by forming heterodimers.
(A) Sequences encoding the GhTCE1 C-terminus from aa residues 160 to 331 without transactivation activity were fused to sequences encoding a GAL4 BD domain and designated GhTCE1-BD. The prey AD was linked to callus CDNAs. Negative represents no growth, positive represents growth. SD-TL/TLHA represents synthetically defined medium dropouts Trp, Leu or Trp, Leu, His, Ade respectively. (B) BiFC assay between GhTCE1-nYFP and GhTCEE-cYFP in tobacco epidermal cells. Bars $=30 \mu \mathrm{~m}$. (C) LUC assays in tobacco leaves and cotton callus protoplasts. Promoters of GhLTP2 and GhLTP3 were respectively fused upstream of LUC. $35 S_{\text {pro }}$ :REN was used as an internal control. GhTCE1 and GhTCEE1 were fused downstream of. $35 S_{\text {pro }}$ in pGreenll $62-$ SK. The pGreenll 62 -SK empty vector was used as control named Null. For each tobacco leaf, four constructs were expressed: i) pGreenll 0800-LUC:GhLTP2 $2_{\text {pro }}+35 S_{\text {pro }}$ :REN+pGreenll $62-S K$ empty (Null/LTP2 $2_{\text {pro }}$ ): ii) pGreenll 0800-LUC:GhLTP2 $2_{\text {pro }}+35 S_{\text {pro }}$ :REN+pGEreenll 62-SK:GhTCE1 (GhTCE1/LTP2 $2_{\text {pro }}$ ); iii) pGreenll $0800-$ LUC:GhLTP2 $2_{\text {pro }}+35 S_{\text {pro }}$ :REN+pGreenll 62-SK:GhTCEE1 (GhTCEE1/LTP2 $2_{\text {pro }}$ ); and iv) pGreenll 0800-LUC:GhLTP2 pro $^{+} 35 S_{\text {pro }}$ :REN+pGreenII 62SK:GhTCE1+GhTCEE1 (GhTCE1+GhTCEE1/LTP2 $2_{\text {pro }}$ ) following Agrobacterium-mediated transfection. (D) Activation of LUC expression by GhTCE1/GhTCEE1 in cotton callus protoplasts. Relative activation level represents the ratio of fluorescence intensity of LUC/REN with GhTCE1 to LUC/REN without GhTCE1. Error bars represent $\pm$ standard errors of three biological replicates as described in Figure 3 E . Statistical significance is indicated by ${ }^{*} P<0.05,{ }^{* *} P<0.01$, Supplemental Data Set 2.


Figure 7. Model outlining the proposed relationship between mechanical wounding, GhTCE1 and GhTCEE1 (bHLH dimers), LTPs, ROS and cell fate determination.
We propose that following wounding and callus initiation, GhTCE1 and GhTCEE1 are simultaneously at the transcriptional level, and the proteins interact to activate the transcription of LTP genes GhLTP2 and GhLTP3. The LTP proteins repress ROS activity, possibly by acting as ROS scavengers, as suggested by previous LTP studies in relation to roles in abiotic stress tolerance. Repression of ROS leads to the maintenance of callus cell identity and growth, whereas an increased level of ROS activity is associated with reduced cell growth and cell differentiation. We propose that the TCE1/TCEE1 transcriptional module regulates cell fate determination through these effects on ROS-mediated cell growth and differentiation control.

