
Applied Mathematics and Computation 435 (2022) 127458 

Contents lists available at ScienceDirect 

Applied Mathematics and Computation 

journal homepage: www.elsevier.com/locate/amc 

The dynamical functional particle method for multi-term 

linear matrix equations 

Andrii Dmytryshyn 

a , Massimiliano Fasi b , ∗, Mårten Gulliksson 

a 

a School of Science and Technology, Örebro University, Örebro, 701 82, Sweden 
b Department of Computer Science, Durham University, Durham DH1 3LE, UK 

a r t i c l e i n f o 

Article history: 

Received 1 March 2021 

Revised 28 July 2022 

Accepted 30 July 2022 

Available online 14 August 2022 

2010 MSC: 

65F30 

15A24 

Keywords: 

Linear matrix equation 

Discrete functional particle method 

Lyapunov equation 

Sylvester equation 

Generalized Sylvester equation 

a b s t r a c t 

Recent years have seen a renewal of interest in multi-term linear matrix equations, as 

these have come to play a role in a number of important applications. Here, we consider 

the solution of such equations by means of the dynamical functional particle method, an 

iterative technique that relies on the numerical integration of a damped second order dy- 

namical system. We develop a new algorithm for the solution of a large class of these 

equations, a class that includes, among others, all linear matrix equations with Hermi- 

tian positive definite or negative definite coefficients. In numerical experiments, our MAT- 

LAB implementation outperforms existing methods for the solution of multi-term Sylvester 

equations. For the Sylvester equation AX + XB = C, in particular, it can be faster and more 

accurate than the built-in implementation of the Bartels–Stewart algorithm, when A and B 

are well conditioned and have very different size. 
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1. Introduction 

The matrix equation AX + XB = C, where A ∈ C 

m ×m , B ∈ C 

n ×n , and X, C ∈ C 

m ×n , is named after Joseph J. Sylvester, who

was the first to consider the homogeneous case [1] . Many similar equations appear in various branches of science and have

been extensively studied. Here, we are interested in numerical algorithms for the solution of the linear matrix equation 

� ∑ 

i =1 

A i X B i = C, A 1 , . . . , A � ∈ C 

m ×m , B 1 , . . . , B � ∈ C 

n ×n , X, C ∈ C 

m ×n , (1)

which is sometimes called the “generalized” Sylvester matrix equation [2] , [3] , although not all authors agree on this name.

In general, it is difficult to characterize the existence and uniqueness of solutions to (1) in terms of the coefficients A i 

and B i , but well-known results are available for special cases [4, Chap. 9, 10, and 11] . As suggested by Lancaster [5] , by using

the Kronecker product one can recast (1) as the mn × mn linear system 

M vec (X ) = vec (C) , M := 

� ∑ 

i =1 

(
B 

T 
i � A i 

)
, (2) 
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where · � · and vec denote the Kronecker product and the operator that stacks the columns of a matrix into a column 

vector, respectively. In the following, we denote by unvec m,n the operator that reshapes a vector of length mn into an m × n

matrix so that unvec m,n ( vec (X )) = X for X ∈ C 

m ×n . 

The linear system (2) has a unique solution if and only if det M � = 0 , that is, if the coefficient matrix M has full rank.

When det M = 0 , on the other hand, the matrix equation (1) has either infinitely many solutions, if M and the augmented

matrix [ M vec (C)] ∈ C 

mn ×(mn +1) have same rank, or no solution, if they do not. 

Some special cases of (1) are particularly important and have been extensively studied in the literature. The most obvious 

example is that of a linear system with multiple right-hand sides. Here we will discuss, in particular, the following: 

• the two-sided linear equation [6] 

AX B = C, (3) 

• the generalized inverse [6] 

AX A = A, (4) 

• the continuous-time Lyapunov equation [7] , [8] 

AX + X A 

∗ = C, (5) 

• the discrete-time Lyapunov equation [8] , [9] 

AX A 

∗ − X = C, (6) 

• the Sylvester equation [ 1 ], [10] 

AX + X B = C, (7) 

• the discrete-time Sylvester equation [ 9 ], [11] 

AX B + X = C, (8) 

• a number of other linear matrix equations—or systems thereof—for which the umbrella expression “generalized Sylvester 

equations” is sometimes used [12, App. A] . 

A couple of decades ago, the matrix equation (1) was considered to be mainly of theoretical interest [13, sect. 16.5] . In

recent years, however, it has come to play an important role in a variety of applications [9] such as, for example, the numer-

ical study of certain bilinear dynamical systems [7] , [14] , [15, sect. 2.2] , or uncertainty quantification in PDEs with random

inputs [16] , [17] , [18] . In many of these applications, the matrix coefficients show a special structure, and, in particular, are

often Hermitian and positive definite or semi-definite. 

Here we adapt the dynamical functional particle method [19] to the numerical solution of (1) . The algorithm we develop

requires the eigenvalues of the coefficient matrix M in (2) be real and have same sign. The class of equations that satisfy

this requirements includes, among others, all matrix equations of the form (4) with Hermitian positive or negative definite 

coefficients. The general technique we develop can be tailored to the special cases (3) –(8) so to reduce computational cost

and, therefore, execution time. 

In its most elementary form, the algorithm we propose involves only matrix multiplications, and a more refined variant 

requires also the solution of linear systems. This simplicity translates into ease of implementation: matrix multiplication 

and solution of linear systems are among the most basic matrix operations, and are therefore available in most libraries

for linear algebra. This makes the new approach particularly suitable for computational environments in which only a few 

linear algebra kernels are typically available. The technique developed by Bartels and Stewart for the solution of (5) and (7) ,

for example, requires the Schur factorization of the coefficients of the matrix equation [10] . This factorization is computed

by means of Francis’s double-shift QR algorithm [20] , also known as QR algorithm [21] , [22] , which is one of the most

complex algorithms in matrix computation [23, Chap. 7] and is often not available, for example, in massively parallel and in

multiprecision or mixed-precision computing environments [24] . The new algorithms can readily be implemented in such 

frameworks, as multiprecision libraries typically feature routines for computing matrix products and solving linear systems. 

Moreover, the iterative nature of the new methods allows for a finer control over the accuracy of the computed solution:

the user can choose to stop the iteration as soon as the target precision has been reached, which is not possible when using

the Bartels–Stewart algorithm. Ours is not the first iterative technique for solving matrix equations of the form (1) . Ding and

Chen have developed several gradient-based algorithms [25] for the solution of such equations, and these algorithms can be 

adapted to the case of coupled Sylvester equations [26] . The alternating-directional-implicit (ADI) iterations [27] can also be 

used to solve Sylvester equations. 
2 
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The next section summarizes the main features of the dynamical functional particle method, upon which our technique 

for the solution of (1) is built. In view of the equivalent formulation (2) , particular emphasis is given to the theoretical

aspects specific to the solution of linear systems. In Section 3 , we describe how the method can be adapted to the solution

of matrix equations of the form (1) and discuss how the algorithm can be tailored to the solution of (3) –(8) . In Section 4 ,

we compare our implementation of the new algorithms with the built-in MATLAB function sylvester and with an im- 

plementation of the gradient-based iterative algorithms of Ding and Chen [25] , [26] . We conclude the paper by drawing our

conclusions and outlining possible directions for future work. 

2. The dynamical functional particle method 

Edvardsson, Gulliksson, and Persson originally introduced the dynamical functional particle method as a technique for the 

solution of boundary value problems arising in quantum chemistry [19] , but the use of this technique has since been con-

sidered for a number of applications including, for example, constrained optimization and linear eigenvalue problems [28] , 

or linear least squares and ill-posed linear systems [29] . 

Our iterative method for the solution of (1) builds upon the corresponding method for the solution of linear systems 

of equations [30] , which we now briefly recall. Let G ∈ C 

n ×n be a matrix with positive real eigenvalues, let b ∈ C 

n , and

let x : R 

+ → C 

n , where R 

+ denotes the closed positive real axis, be a function of the dummy time variable t . The method

described in this section is equally applicable if G has only negative real eigenvalues, in which case it suffices to consider

the matrix −G . 

In order to solve the linear system 

G y = b, (9) 

consider the second order dynamical system 

ẍ (t) + μ ˙ x (t) = b − Gx (t) , μ > 0 , (10) 

which can equivalently be written as the first order system {
˙ x (t) = v (t) , 
˙ v (t) = −μv (t) + b − Gx (t) . 

(11) 

The system (11) can be integrated efficiently in time using the symplectic Euler algorithm [31, Chap. VI] . For Δt > 0 , we

obtain {
x k +1 = x k + Δt v k +1 , 

v k +1 = v k − Δt μ v k + Δt (b − Gx k ) , 
(12) 

which can be rewritten in matrix form as 

w k +1 = Bw k + c, B = 

[
I − Δt 2 G Δt (1 − Δt μ) I 
−Δt G (1 − Δt μ) I 

]
, c = 

[
Δt 2 b 
Δt b 

]
, (13) 

where w k = [ x k v k ] T . For the initial conditions, x (0) is initialized to a random vector and ˙ x (0) is set to 0 for simplicity. It is

easy to see that if (12) converges, then the vector ̃  y := x (t) tends to a solution to (9) as t → 0 . 

The convergence of the symplectic scheme (12) is governed by the damping coefficient μ > 0 , which appears in the

dissipation term, and by the discretization step Δt . In order to ensure fast convergence of the method, one must choose Δt

and μ so that ‖ B ‖ 2 is smaller than 1 and, in fact, as small as possible. The optimal choice of these two parameters, see [30] ,

is 

μ∗ = 

2 

√ 

λmin (G ) λmax (G ) √ 

λmin (G ) + 

√ 

λmax (G ) 
, Δt ∗ = 

2 √ 

λmin (G ) + 

√ 

λmax (G ) 
, (14) 

where λmin (G ) and λmax (G ) denote the smallest and largest eigenvalue of the matrix G , respectively. The parameters

in (14) are the solution to the optimization problem 

min 

Δt,μ
max 

1 ≤i ≤2 n 
| λi (B ) | , 

where λ1 (B ) ≥ λ2 (B ) ≥ · · · ≥ λ2 n (B ) are the eigenvalues of the matrix B in (13) . In [29, Cor. 1] , this method using optimal

parameters is shown to be stable and convergent for positive definite (and, therefore, negative definite) matrices. 

If we substitute the values in (14) into B in (13) and assume, without loss of generality, that b = 0 , then we can show

that 

‖ w k +1 ‖ 2 ≤ ‖ B ‖ 2 ‖ w k ‖ 2 ≤
√ 

κ2 ( G ) − 1 √ 

κ2 ( G ) + 1 

, (15) 
3 



A. Dmytryshyn, M. Fasi and M. Gulliksson Applied Mathematics and Computation 435 (2022) 127458 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where κ2 (G ) = ‖ G ‖ 2 ‖ G 

−1 ‖ 2 is the 2-norm condition number of G . We refer the interested reader to the proof of [29,

Cor. 1] for the details. We remark that, in the worst case, this technique has the same convergence rate as the conjugate

gradient method. 

We note that other approaches based on dynamical systems typically aim to minimize the potential 

V (t) = 

x (t) T Gx (t) 

2 

− x (t) T b, (16) 

and we refer the reader to [29] and references therein for the details. By using (11) , on the other hand, the dynamical

functional particle method instead aims to decrease the energy 

E(t) = 

x (t) T Gx (t) 

2 

− x (t) T b + 

v (t) T v (t) 

2 

, 

which complements the potential (16) with an additional kinetic term. Then by using symplectic methods, which are par- 

ticularly efficient for systems of the form (11) , we can outperform existing methods, as shown in Section 4 . 

3. Solving the multi-term linear equation 

The dynamical functional particle method for the solution of the matrix equation (1) can readily be formulated by using

the alternative expression (2) . For efficiency’s sake, the coefficient matrix M is never explicitly computed, and the matrix–

vector product Gx in (12) is performed implicitly, as we now explain. 

Let ˜ X 0 ∈ C 

mn be a vector with randomly generated entries, and let ̃  V 0 ∈ C 

mn be a vector of length mn with all entries set

to 0. We can apply the symplectic Euler scheme in (12) to (2) and write ⎧ ⎨ ⎩ 

˜ R k = vec (C) − M vec 
(˜ X k 

)
, ˜ V k +1 = ̃

 V k + Δt ·
(˜ R k − μ˜ V k 

)
, ˜ X k +1 = ̃

 X k + Δt · ˜ V k +1 , 

(17) 

where the matrix M is the sum of Kronecker products defined in (2) . The approximate solution to (1) at step k ′ will be

unvec m,n ( ̃  X k ′ ) . 
The iterative scheme (17) is not practical, as each step requires the evaluation of the matrix–vector product M vec (X ) .

As M is a matrix of order mn , this matrix computation requires 2 m 

2 n 2 + o(m 

2 n 2 ) floating-point operations (flops), and

can become unduly expensive even for moderate values of m and n . The computation of the residual R k , however, can

equivalently be written as 

˜ R k = vec 

(
C −

� ∑ 

i =1 

A i X k B i 

)
, (18) 

so that one step of the iteration requires only 2 � (m 

2 n + mn 2 ) + o 
(
� (m 

2 n + mn 2 ) 
)

flops. 

In view of this observation, we can rewrite (17) in the more natural form { 

R k = C − ∑ � 
i =1 A i X k B i , 

V k +1 = V k + Δt ·
(
R k − μV k 

)
, 

X k +1 = X k + Δt · V k +1 , 

(19) 

where X k , V k , R k ∈ C 

m ×n . 

In order to obtain the optimal damping and time step for this scheme, we still need an efficient way of estimating

λmax (M) and λmin (M) , which are real by assumption. This can be done efficiently by using methods such as the subspace

iteration or polynomial Krylov methods [32] . These iterative algorithms approximate an eigenvector corresponding to the 

dominant eigenvalue by performing, at each iteration, only matrix–vector products, which can be implemented implicitly 

without ever forming the matrix M. More refined techniques, such as the inverse iteration or methods based the extended 

Krylov subspace [33] , can be used when an efficient routine for solving linear systems having M as coefficient is available. 

To the best of our knowledge, no such routine exists when � > 2 , but the extreme eigenvalues of M can be computed

efficiently for some special cases. For the one-term and two-term linear equations in (3) –(8) we can use the following

well-know result. 

Proposition 3.1 ( [34] , Thm. 4.2.12 and Ex. 19, p. 251) . Let λ1 ,..., λm 

∈ C be the eigenvalues of A ∈ C 

m ×m and let ξ1 , . . . , ξn ∈ C

be the eigenvalues of B ∈ C 

n ×n . Then for i = 1 ,..., m and j = 1 ,..., n , the mn eigenvalues of A � B and A � I n + I m 

� B have the form

λi ξ j and λi + ξ j , respectively. 

By combining this result with the fact that a matrix and its transpose have the same characteristic polynomial and 

thus the same eigenvalues, we can obtain formulae for the extreme eigenvalues of M which only require knowledge of the 

extreme eigenvalues of the coefficient matrices appearing on the left-hand side of the matrix equation. We summarize the 

results for the cases of interest in Table 1 . 
4
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Table 1 

Spectrum of the Kronecker form of some special cases of (1) . 

Matrix equation Coefficient M λmin (M) λmax (M) 

AXB = C B T � A λmin (A ) λmin (B ) λmax (A ) λmax (B ) 

AXA = C A T � A λmin (A ) 2 λmax (A ) 2 

AX + XA ∗ = C I m � A + A � I m 2 λmin (A ) 2 λmax (A ) 

AXA ∗ − X = C A � A − I m � I m λmin (A ) 2 − 1 λmax (A ) 2 − 1 

AX + XB = C I m � A + B T � I m λmin (A ) + λmin (B ) λmax (A ) + λmax (B ) 

AXB + X = C B T � A + I m � I m λmin (A ) λmin (B ) + 1 λmax (A ) λmax (B ) + 1 

 

 

 

 

 

 

 

 

We note that the approximations 

λmin (M) ≈
� ∑ 

i =1 

λmin (B 

T 
i � A i ) , λmax (M) ≈

� ∑ 

i =1 

λmax (B 

T 
i � A i ) , (20) 

do not require the explicit computation of the matrix M. 

The method discussed in this section inherits the convergence and stability behavior of the algorithm for linear systems 

described in Section 2 . The following result is a direct consequence of [29, Cor. 1] . 

Theorem 3.1 (Convergence) . Let X 0 , V 0 ∈ C 

m ×n be a matrix with randomly generated entries and the zero matrix, respectively, let

X ∗ ∈ C 

m ×n be the matrix that satisfies (1) , and let M be the coefficient matrix of the linear system (2) . Then the scheme (19) with

μ = 

2 

√ 

λmin (M) λmax (M) √ 

λmin (M) + 

√ 

λmax (M) 
, Δt = 

2 √ 

λmin (M) + 

√ 

λmax (M) 
, 

is stable and 

lim 

n →∞ 

‖ 

X n +1 − X ∗‖ 2 

‖ 

X n − X ∗‖ 2 

= 

√ 

κ2 (M) − 1 √ 

κ2 (M) + 1 

=: η. (21) 

Therefore, the convergence of the dynamical functional particle method for the matrix equation (1) is linear, and the 

convergence rate η in (21) depends only on the conditioning of the matrix M in (2) : the convergence will be fastest when

κ2 (M) ≈ 1 , in which case η is proportional to κ2 (M) − 1 , and will slow down as κ2 (M) grows, since η → 1 as κ2 (M) → ∞ . 

4. Numerical experiments 

Now we compare the algorithm discussed in Section 3 with existing methods for the solution of the matrix equation

(1) and of special cases thereof. The results in this section were obtained by running the experiments in MATLAB 9.11.0

(R2021b) Update 1, on a machine equipped with 32 GiB of RAM and an AMD Ryzen 7 PRO 5850U running at 1.9 GHz. In

order to facilitate the reusability of our work and the replicability of our results [35] , the code used to produce the plots in

this section is available on GitHub. 1 We compared the following five implementations. 

• solve_gen_kron solves the linear system (2) by explicitly constructing the matrix M and then using the MATLAB 

backslash operator. 

• solve_gen_dfpm_opt solves (1) by using the dynamical functional particle method described in Section 3 with opti- 

mal damping and time step computed according to (14) for G = M . The quantities λmin (M) and λmax (M) are computed 

by constructing the matrix M explicitly, with the exception of the special cases in Table 1 . 

• solve_gen_dfpm_app solves (1) by using the dynamical functional particle method described in Section 3 with pa- 

rameters chosen according to (14) for G = M. The extreme eigenvalues of M are estimated as in (20) . 

• solve_gen_gbia solves (1) by using the gradient based iterative algorithms developed by Ding and Chen [25] , [26] . 

• sylvester solves the continuous-time Lyapunov equation (5) and the Sylvester equation (7) by means of the MATLAB 

function sylvester , which implements the algorithm of Bartels and Stewart [10] . 

For the iterative algorithms, we set the maximum number of iterations to 50,0 0 0 and keep iterating until the 1-norm

relative residual, defined for an equation of the form (1) as ∥∥∑ � 
i =1 A i X k B i − C 

∥∥
1 (∑ � 

i =1 ‖ 

A i ‖ 1 ‖ 

B i ‖ 1 

)‖ 

X k ‖ 1 + ‖ 

C ‖ 1 

, 
1 https://github.com/mfasi/dfpm- gen- sylvester 
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gets below 2 3 · u , where u = 2 −53 ≈ 1 . 11 × 10 −16 denotes the unit roundoff of binary64 arithmetic [36] , known as “double 

precision” arithmetic in previous revisions of the IEEE 754 standard [37] , [38] . The extreme eigenvalues of M are estimated

by means of the MATLAB function eigs . 
In our tests, the superscript notation A 

(η) ∈ R 

m ×m denotes the real non-symmetric matrix generated as 

A 

(η) = P D 

(η) P −1 , (22) 

where P ∈ R 

m ×m is such that κ2 (P ) = 2 and is generated using the randsvdfast function [39] , whereas D 

(η) is a diagonal

matrix with extreme eigenvalues 
√ 

η−1 and 

√ 

η and remaining diagonal elements uniformly distributed in 

[√ 

η−1 
, 
√ 

η
]
. This 

choice of P and D 

(η) ensures that κ2 

(
A 

(η) 
)

≤ 4 η, and in practice provides a matrix A 

(η) such that κ2 

(
A 

(η) 
)

≈ η. We stress

that the matrix A 

(η) is diagonalizable by construction; this fact is exploited only by the sylvester algorithm, but does 

not make a difference for any of the iterative algorithms we consider in these experiments. 

4.1. The Sylvester equation 

In this first experiment we consider the solution of the Sylvester equation 

A 

(η) X − X B 

(η) = C, (23) 

where A 

(η) ∈ R 

m ×m and B (η) ∈ R 

n ×n are as in (22) and C ∈ R 

m ×n is generated using a matrix X ∈ R 

m ×n with entries from the

Gaussian distribution. 

In Figure 1 we report the time required by sylvester and solve_gen_dfpm_opt to solve (23) and the forward error

of the solutions computed by the two algorithms. In the plots we consider two moderate values of η, namely 10 (top row)

and 100 (bottom row), and we fix n = 500 while allowing m to vary between 2 and 500. Especially for smaller values of m ,

this choice leads to equations with one coefficient much smaller than the other. In this setting, it would be appropriate to

consider the Schur–Hessenberg algorithm of Golub, Nash, and Van Loan [40] , which requires the computation of the Schur 

form of only one of the matrix coefficients. We did not include this method in our comparison since, as far as we are

aware, no LAPACK-style implementation of this algorithm exists, and a naive MATLAB implementation would not offer a fair 

comparison. 

For both values of η, solve_gen_dfpm_opt is more accurate than sylvester for all test matrices. The forward 

error of solve_gen_dfpm_opt is of the order of κ1 (M) u for η = 10 and about one order of magnitude smaller than the

accuracy reference for η = 100 . 

We now discuss the timings of the two algorithms. As solve_gen_dfpm_opt is an iterative algorithm, its execution 

time depends not only on the computational cost of a single iteration, but also on the total number of steps needed to

achieve convergence. 

As discussed above, the most expensive operation in solve_gen_dfpm_opt is the computation of the residual, thus 

each iteration asymptotically requires 2(m 

2 n + mn 2 ) flops. Therefore, we should expect the timings of this algorithm to grow

with the order of A 

(η) and B (η) , which is confirmed by the plots in the left column of Figure 1 . 

The total number of iterations required by solve_gen_dfpm_opt is proportional to the conditioning of the matrix M

in (2) , which in turn roughly depends on the parameter η. This is consistent with previous findings in the literature on the

dynamical functional particle method for linear systems with positive definite coefficients. In our experiments, the algorithm 

required between 52 and 63 iterations for the matrices in the top row and between 195 and 887 for those in the bottom

row. 

In our experimental setup, for η = 10 solve_gen_dfpm_opt is faster than sylvester when the order of A 

(η) is up to 

40% of that of B (η) , a percentage that reduces to about 10% when η = 100 . For larger values of η, solve_gen_dfpm_opt
is typically slower but still more accurate than sylvester . Similar results obtained for larger values of n suggest that

solve_gen_dfpm_opt is marginally—but consistently—more accurate than sylvester , but is faster than the latter only 

when the coefficients of the matrix equation (23) are well conditioned and differ considerably in size. 

4.2. The multi-term linear equation 

Now we consider the solution of the more general matrix equation 

5 ∑ 

i =1 

A 

(η) 
i 

X B 

(η) 
i 

= C. (24) 

In our experiments, the m × m matrices A 

(η) 
1 

,..., A 

(η) 
5 

are simultaneously diagonalizable, and so are the m × m matrices B 
(η) 
1 

,...,

B 
(η) 
5 

, although the eigenvectors of A 

(η) 
i 

and B 
(η) 
i 

are different, in general. This is to ensure that the matrix M in (2) has

positive real eigenvalues. As in the previous experiment, the matrix C ∈ R 

m ×m is computed by using a matrix X ∈ R 

m ×m 

with entries from the Gaussian distribution. 

In Figure 2 we compare solve_gen_kron , solve_gen_dfpm_opt , solve_gen_dfpm_app , and solve_gen_gbia 
for the solution of (24) as m varies. As we are mainly interested in well-conditioned matrices, we consider once again the

two cases η = 10 and η = 100 . 
6 
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Fig. 1. Left: execution time, in seconds, required by solve_gen_dfpm_opt and sylvester to solve the matrix equation in (23) for n = 500 . Right: 

relative forward error of the computed solution. 

 

 

 

 

Our results suggest that solve_gen_kron is the most accurate of the four algorithms, and is the only one that achieves

a forward error of the magnitude of κ1 (M) u . The two implementations based on the dynamical functional particle method

achieve a similar level of accuracy. Finally, solve_gen_gbia is always the least accurate of the algorithms we test and for

four of our test matrices it fails to satisfy the stopping criterion within 50,0 0 0 iterations. 

We now compare the four algorithms in terms of performance. For matrix equations of small size, solve_gen_kron 
is typically the most efficient algorithm, followed by solve_gen_dfpm_opt , solve_gen_dfpm_app , and finally 

solve_gen_gbia . For these small matrices, the approximation of the extreme eigenvalues of M in (2) is inexpensive, and 

the cost of the three iterative algorithms depends mostly on the number of iterations that are necessary to achieve conver-

gence. As solve_gen_dfpm_opt requires considerably fewer iterations than the other two methods, it is the fastest for 

m below 40. 
7
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Fig. 2. Left: execution time, in seconds, required by solve_gen_kron , solve_gen_dfpm_opt , solve_gen_dfpm_app and solve_gen_gbia to 

solve the matrix equation (24) with m = n between 1 and 100. Right: relative forward error of the computed solution. 

 

 

 

In our implementation, solve_gen_dfpm_opt cannot be faster than solve_gen_kron : estimating λmin (M) requires 

the solution of at least one—but typically several—linear systems with coefficient matrix M, thus the computation that 

solve_gen_kron performs is, in a sense, just a pre-processing step for solve_gen_dfpm_opt . In order for this method 

to be competitive, an alternative technique for estimating the smallest eigenvalue of M is necessary, but we do not investi-

gate this further here, since the most appropriate technique is likely to depend on the problem being solved and on a priori

knowledge of the properties of the coefficient matrices. 

As the size of the matrix coefficients of the equations grows, estimating the extreme eigenvalues of M becomes more 

expensive, and the lower number of iterations obtained with the optimal choice of parameters is not sufficient to offset the

time spent estimating λmin (M) . Therefore, for larger matrices the crude choice of parameters of solve_gen_dfpm_app 
pays off, leading to an execution time two order of magnitudes smaller for m as small as 100. 
8 



A. Dmytryshyn, M. Fasi and M. Gulliksson Applied Mathematics and Computation 435 (2022) 127458 

Table 2 

Forward error (Error) of solutions computed using solve_gen_dfpm_app ; and execution time in seconds (Time) and number of itera- 

tions (Steps) required to compute these solutions. The experiment considers matrix equations with square coefficients of order m between 

250 and 2,0 0 0. Two values of the parameter η are considered. 

η = 10 η = 100 

m Error Time Steps Error Time Steps 

250 8 . 98 × 10 −14 5 . 99 × 10 −1 150 1 . 28 × 10 −13 5 . 68 × 10 0 1,490 

500 1 . 55 × 10 −13 2 . 98 × 10 0 147 2 . 22 × 10 −13 2 . 86 × 10 1 1,460 

750 1 . 93 × 10 −13 8 . 53 × 10 0 146 3 . 10 × 10 −13 8 . 25 × 10 1 1,440 

1,000 2 . 82 × 10 −13 1 . 87 × 10 1 144 4 . 03 × 10 −13 1 . 80 × 10 2 1,430 

1,250 3 . 45 × 10 −13 3 . 58 × 10 1 143 4 . 79 × 10 −13 3 . 48 × 10 2 1,420 

1,500 3 . 97 × 10 −13 6 . 04 × 10 1 142 5 . 72 × 10 −13 5 . 97 × 10 2 1,410 

1,750 4 . 89 × 10 −13 9 . 68 × 10 1 141 6 . 61 × 10 −13 9 . 53 × 10 2 1,400 

2,000 4 . 84 × 10 −13 1 . 38 × 10 2 141 7 . 67 × 10 −13 1 . 41 × 10 3 1,400 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 reports the performance and accuracy of solve_gen_dfpm_app on matrix equations with square coefficients 

of size between 250 and 2,0 0 0. None of the other algorithms considered in Figure 2 can be used for comparison here, as

their large execution time makes them an impractical option for problems of this size. Overall, solve_gen_dfpm_app 
scales well with the size of the problem. The forward error grows with the order of the matrix coefficients, but the loss

of accuracy grows slower than m , which can be regarded as satisfactory. The number of iterations required to compute the

solution remains roughly constant, and in fact slightly decreases as the size of the problem grows. 

5. Conclusion 

We have developed a family of algorithms for the solution of a class of matrix equations of the form (1) , and we have

explained how these methods can be tailored to tackle some special cases of particular importance in applications. The 

new techniques build upon the dynamical functional particle method for the solution of linear systems and exploit the 

equivalence between the two formulations (1) and (2) . 

Numerical results show that our implementations are typically capable of outperforming existing methods for the so- 

lution of (1) in terms of both accuracy and execution speed. In order to show the potential of our new techniques, we

compared the algorithm for the Sylvester equation (7) with the built-in MATLAB function sylvester . We found that if the

matrix coefficients on the left-hand side are sufficiently well conditioned and have very different size, then our implemen- 

tation of the discrete functional particle method can be faster and more accurate than the built-in alternative. 

The new algorithms require that the eigenvalues of the coefficient matrix M in (2) be real and all have same sign. This

follows from an analogous restriction in the dynamical functional particle method for the solution of the linear system 

Gy = b: the method may not converge if the coefficient matrix G has at least a pair of conjugate eigenvalue with arbitrarily

small imaginary part. In the case of linear systems, if G is nonsingular then one can consider the equivalent linear system

G 

T Gz = G 

T b, since z satisfies Gz = b and the matrix G 

T G has only positive real eigenvalues. This comes at a price: on the

one hand, the cost of each step of the iteration nearly doubles, on the other, the conditioning of the linear system to be

solved grows considerably, since κ2 (G 

T G ) = κ2 (G ) 2 [41, sect. 8.1] . However, this is not necessarily a problem when G is well

conditioned, and a similar technique can be used in the algorithm discussed in Section 3 . 

As the dynamical functional particle method has been successfully applied to nonlinear optimization problems, it is 

natural to ask whether similar techniques for the solution of nonlinear matrix equations can be derived. This nontrivial 

problem will be the subject of future work. 
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