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Summary
Cotton fibre is a unicellular seed trichome, and lint fibre initials per seed as a factor

determines fibre yield. However, the mechanisms controlling fibre initiation from ovule

epidermis are not understood well enough. Here, with single-cell RNA sequencing (scRNA-

seq), a total of 14 535 cells were identified from cotton ovule outer integument of

Xu142_LF line at four developmental stages (1.5, 1, 0.5 days before anthesis and the day

of anthesis). Three major cell types, fibre, non-fibre epidermis and outer pigment layer were

identified and then verified by RNA in situ hybridization. A comparative analysis on scRNA-

seq data between Xu142 and its fibreless mutant Xu142 fl further confirmed fibre cluster

definition. The developmental trajectory of fibre cell was reconstructed, and fibre cell was

identified differentiated at 1 day before anthesis. Gene regulatory networks at four stages

revealed the spatiotemporal pattern of core transcription factors, and MYB25-like and

HOX3 were demonstrated played key roles as commanders in fibre differentiation and tip-

biased diffuse growth respectively. A model for early development of a single fibre cell was

proposed here, which sheds light on further deciphering mechanism of plant trichome and

the improvement of cotton fibre yield.

Introduction

Cotton is an important cash crop worldwide, and supplies the

largest proportion of natural fibre to textile industry. Cotton fibres

are unicellular, and initiate from ovule epidermis, making it a

good model for studying mechanisms of cell fate determination.

There are two types of cotton fibre according to mature fibre

length: lint and fuzz. The initiation of lint (long) fibre proceeds

from the day post-anthesis (0 DPA) to 3 DPA, with the initiation of

fuzz (short) fibre typically commencing afterwards. The number

of lint fibre initials per seed as a factor determines fibre yield,

while lint initiation is typically from 25% of all epidermal cells

(Stewart, 1975). Therefore, exploring the mechanisms and

analysing key factors and networks that regulate lint fibre cell

fate, can provide a theoretical basis for the genetic improvement

of fibre yield, so as to help improve the economic benefits of

cotton planting.

Numerous studies have investigated the mechanisms of fibre

development by means of expression profiling. Since early 21st

century, 14 highly expressed cDNAs were identified in cotton

fibre using cDNA arrays (Li et al., 2002), after that several

expression profiles have been performed on various stages of

fibre development (Gou et al., 2007; Shi et al., 2006), between

different cotton species (Tu et al., 2007), during domestication

(Hovav et al., 2008; Rapp et al., 2010), between normal cotton

and fibre-related mutants (Wu et al., 2006). A few transcription

factor (TF) genes, such as R2R3-type MYB TFs GhMYB109 (Pu

et al., 2008), GhMYB25 (Machado et al., 2009), GhMYB25-like

(Walford et al., 2011; Wan et al., 2016), and HD-ZIP family TFs

GhHD-1 (Walford et al., 2012), GhHOX3 (Shan et al., 2014)

have been verified positively regulating lint fibre initiation. A

model has been proposed in which no lint fibre will initiate if the

combined expression levels ofMYB25-like_At andMYB25-like_Dt

are below a critical threshold level at 0 DPA (Zhu et al., 2018). In

addition, suppression of sucrose synthase activity by at least 70%

in the ovule epidermis (Ruan et al., 2003), or of a vacuolar

invertase gene GhVIN1 (Wang et al., 2014), led to a fibreless

phenotype. Furthermore, naked seeds were produced when

ovules were cultured with adding no indoleacetic acid (IAA) (Zeng

et al., 2019) or excess IAA transport inhibitor (Zhang

et al., 2011; Zhang et al., 2017) or with high concentration of

zeatin (ZT), a kind of cytokinin (Zeng et al., 2019). Recently, some

review papers have summarized that fibre initiation was affected

by complex cross-talk among MYB MIXTA-like TFs, sugar signals

and plant hormones (Huang et al., 2021; Tian and Zhang, 2021;

Wang et al., 2021a). Despite these studies, when did the

members in the complex start work, whether they take action

only in fibre cells or also in adjacent cells during the continuous

fibre initiation process, were partly ambiguous and needs more

details.

Now, single-cell RNA sequencing (scRNA-seq) has been devel-

oped and brings unprecedented opportunities to the field of plant

research (Denyer and Timmermans, 2022; Mo and Jiao, 2022;

Ryu et al., 2021; Seyfferth et al., 2021; Shaw et al., 2021). The

first effective high-throughput scRNA-seq in plants exploited

single-cell transcriptome sequencing of Arabidopsis root tissue
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protoplasts (Ryu et al., 2019). Subsequently, a series of develop-

mental processes in Arabidopsis had been explored at single cell

resolution, such as the development of root tips (Denyer

et al., 2019; Jean-Baptiste et al., 2019; Shahan et al., 2022;

Wendrich et al., 2020; Zhang et al., 2019), lateral root (Gala

et al., 2021), vegetative shoot apex (Zhang et al., 2021b), stom-

atal cell lineage (Liu et al., 2020), developing leaf (Kim

et al., 2021; Liu et al., 2022a; Lopez-Anido et al., 2021; Tenorio

Berrio et al., 2022) and vein pattern in the cotyledons (Liu

et al., 2022b). At the same time, scRNA-seq has also been widely

used in other plants, including rice (Liu et al., 2021b; Wang

et al., 2021b; Zhang et al., 2021a; Zong et al., 2022), corn (Li

et al., 2022; Ortiz-Ramirez et al., 2021; Satterlee et al., 2020;

Sun et al., 2022; Xu et al., 2021), peanut (Liu et al., 2021a), tea

plant (Wang et al., 2022), tomato (Omary et al., 2022) and

poplar (Chen et al., 2021; Li et al., 2021; Xie et al., 2022). These

studies provide new insights into heterogeneity of gene expres-

sion between different cell types, and molecular trajectory of cell

differentiation during development.

To further decipher the detailed gene regulatory network in

fibre initiation, we performed scRNA-seq on cotton ovules. The

developmental trajectory starting from early differentiated fibre

cell was reconstructed. All the results can interactively be mined

on the web, which is freely available at http://cotton.hzau.edu.cn/

CLC/. The single cell resolution transcriptomes provide a valuable

resource, and give us a deep understanding on the elaborate

cotton fibre initiation process.

Results

Fibre cells begin to protrude at 0.5 days before anthesis

The phenotype of cotton Xu142_LF line (seed index 10–12 g, lint

index 6–7 g and lint percentage 35%–38%) has been described

in our previous work (Hu et al., 2018). A more detailed

morphological observations on Xu142_LF ovules were performed

at �1.5, �1, �0.5 and 0 DPA respectively (Figure 1). By SEM, no

fibre cell protrusion detected on ovule epidermis at �1.5 DPA

(Figure 1a) and �1 DPA (Figure 1b), while at �0.5 DPA can be

detected (Figure 1c), and protrusions number increased at 0 DPA

(Figure 1d,e).

To further investigate the dynamic process of fibre initiation,

samples were taken every 4 h (h) before and after fibre cell

protrusion (from �1 to 0 DPA, Figure S1). No epidermal cell

protruded at 08 : 00, 12 : 00 and 16 : 00 of�1DPA. At 20 : 00, fibre

cells began to protrude. At 24 : 00, the number of fibre initials

increased. At 4 : 00 of 0 DPA, fibre initials grew larger, similar in size

to those at 8 : 00 of 0DPA (Figure S1). From20 : 00 (�0.5 DPA), the

number of fibre initials shows an increasing trend (Figure 1f).

Ovule epidermis at those four stages were also observed by

TEM. Consistent with SEM observations, epidermal cells did not

protrude at �1.5 and �1 DPA (Figure 1g,h), but began to

protrude at �0.5 DPA (Figure 1i) and continued to expand at 0

DPA (Figure 1j). Considering lint fibre cell start protruding at �0.5

DPA, their fate is likely to be determined as early as �1 DPA, or

�1.5 DPA, or possibly earlier.

Fibre cell cluster is identified from cotton ovule outer
integument by scRNA-seq

To explore the molecular mechanism determining fibre cell fate,

we performed scRNA-seq on Xu142_LF ovules. Ovule samples

collected at �1.5, �1, �0.5 and 0 DPA were used for

protoplast isolating (Figure S2a,b). About 20 000 protoplasts

were initially loaded onto the 109 Genomics platform. After

separation, RNA from individual protoplasts were extracted for

library construction followed by high-throughput sequencing

(Figure S2c). As shown in longitudinal section of ovules after

enzymolysis, only cells from ovule outer integument were

released (Figure S2d–g).
In Xu142_LF 0 DPA sample (LF_0d), a total of 3679 cells with

50 753 genes were detected (Table S1). After a strict gene/cell

filtering process (Appendix S1), LF_0d sample obtained 35 169

gene transcripts with high reliability across 1703 cells. This

filtration was performed on other samples one by one, then high-

quality gene-cell matrices were obtained. Overall, 738–2045
filtered cells per sample were obtained (Table S1).

To examine the robustness of the scRNA-seq results, LF_0d

scRNA-seq data were compared with 0 DPA ovule outer

integument bulk RNA-seq data (Hu et al., 2018). The correlation

coefficient (R) was 0.63 with P < 2.2e-16, showing a very

significant correlation between them (Figure S3a). There were

3974 protoplasting-induced differentially expressed genes (DEGs)

identified, with 2233 DEGs up-regulated and 1741 down-

regulated (Table S2). GO analysis suggested that the up-

regulated genes were involved in ‘response to stress and

stimulus’ and ‘regulation of cell death’, among others (Fig-

ure S3b); the down-regulated genes were mainly involved in

‘primary metabolic process’ and ‘biosynthetic process’ (Fig-

ure S3c). Next, UMAP and t-SNE algorithm were used to visualize

and explore LF_0d dataset after linear dimensional reduction.

Unsupervised analyses grouped 1703 cells into nine clusters

(Figure 2a,b). Similarly, nine clusters were also observed after

3974 DEGs in response to protoplasting were removed (Fig-

ure S3d), and clustered cells were almost kept in the same cell

types as before (Figure S3e). This suggested that cell wall

enzymolysis had only a minor effect on cell clustering, the same

as reported in rice root (Liu et al., 2021b).

For cell cluster definition, accumulation of reported fibre gene

transcripts in single-cell populations were analysed (Figure 2c,

Figure S4a). The fibre genes included MYB25-like (Walford

et al., 2011; Wan et al., 2016), MYB25 (Machado et al., 2009),

MML4 (Wu et al., 2018), MML9 (Bedon et al., 2014), HD1

(Walford et al., 2012) and HOX3 (Shan et al., 2014). All these

genes tended to be highly or preferentially expressed in cluster 5

(Figure 2c, Figure S4b), indicated that cluster 5 may be fibre cell.

To further enable cell type assignment to particular clusters, a

series of enriched genes for each cluster were identified

(Figure 2d, Figure S4c, Table S3). With RNA in situ hybridization

of the representative genes, all cell clusters from cotton ovule

outer integument can be defined into three major types: fibre cell,

non-fibre epidermis and outer pigment layer (Figures 2e and 3).

For example, DUF (Ghir_D07G016770, gene function unknown)

was preferentially expressed in fibre cells, Erg6

(Ghir_A04G010380, a methyltransferase encoding gene) in

non-fibre epidermis and HbdA (Ghir_D01G005520, 3-

hydroxyacyl-CoA dehydrogenase) in outer pigment layer (Fig-

ure 3, Figure S5).

Fibre cell definition is further proved by scRNA-seq of
Xu142 fl fibreless mutant

Single-cell transcriptomes were generated from 0 DPA ovule

protoplasts of wild type cultivar Xu142 and its fibreless mutant

Xu142 fl. Clustering these two samples together generated five
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clusters (Figure 4a, Table S3), which were assigned to three

major cell types using in situ hybridization-verified genes: fibre

(cluster 4), non-fibre epidermis (cluster 0, 2 and 3), outer

pigment layer (cluster 1, Figure 4a, Figure S6a). When com-

paring the clustering results between Xu142 and Xu142 fl, the

fibre cell cluster (cluster 4) was found to exist only in Xu142,

not in Xu142 fl (Figure 4b, Table S4). The expression distribu-

tion of three fibre marker genes (MYB25, MML9 and

HOX3) also showed expressing in Xu142, not in Xu142 fl

(Figure S6b). These again proved that the fibre cell definition

was reliable.

‘Ribosome’ pathway is enriched in 0 DPA fibre cells

To compare the fibre cluster enriched genes between LF_0d and

Xu142_0d, a clustering analysis on Xu142_0d sample was

performed. The 738 high-quality cells from Xu142_0d clustered

into 6 clusters. Cluster 2 was identified as fibre cell with

expression pattern analysis of fibre markers (MYB25 and MML9,

Figure S6c,d), and 984 genes were identified enriched in fibres

(Table S3). When comparing these 984 genes with the 517 genes

enriched in LF_0d fibres (Table S3), it was found that 474 genes

overlapped, which means a similarity of gene expression between

them (Figure S6e).

To explore the pathways that are active in fibre cells, KEGG

enrichment analysis was performed on the 517 genes enriched

in LF_0d fibres. These genes were involved in 38 different

signalling pathways (Table S5). Among them, 312 genes were

involved in the most significant pathway ‘Ribosome’ (Table S5),

which indicated that a major activity in 0 DPA fibres was

‘peptide biosynthetic process’. It was consistent with the

Figure 1 The phenotype of ovule epidermis of Xu142_LF line during fibre initiation. (a–d) Xu142_LF ovule epidermis observed by scanning electron

microscopy (SEM) at �1.5, �1, �0.5 and 0 DPA respectively. (e) Statistics of fibre initials number on ovule epidermis per unit area (100 9 100 lm2) from

(a–d). (f) Statistics of fibre initials number on ovule epidermis per unit area (100 9 100 lm2) from Figure S1. The blue solid triangles and hollow triangles

marked stages in (e) and (f) mean the same developmental stage respectively. (g–j) Ovule epidermal cells observed by transmission electron microscope

(TEM) at �1.5, �1, �0.5 and 0 DPA respectively. Red arrows in (i) and (j) point to fibre cells. Bars: 100 lm (a-d); 10 lm (g–j).
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characteristics of expanding fibre initial cells, that is, more

abundant transcripts involved in protein synthesis to meet the

high demand for new cell wall and membrane components

(Wu et al., 2007). The remaining genes were enriched in

several pathways such as ‘Fatty acid’, ‘Flavonoid’, ‘Oxidative

phosphorylation’, ‘Sucrose’ and ‘Phagosome’ (Figure 4c,

Table S5). Besides, some TFs were identified from the 517

genes, including MML9, MYB25, HD1, PDF2, HOX3, HDA3 and

VFP5 (Figure 4c). These TFs should play positive roles in 0 DPA

fibre development, as some of them have been experimentally

verified (Machado et al., 2009; Shan et al., 2014; Walford

et al., 2012).

Figure 2 Cluster annotation of single-cell transcriptomes from cotton ovule outer integument. (a) UMAP visualization of putative clusters from 1703 cells

in cotton ovule outer integument of LF_0d sample. Each dot denotes a single cell. Colours denote corresponding cell clusters. Resolution was 0.8. (b) t-SNE

projection plot showing major clusters of the 1703 individual cell transcriptomes of LF_0d sample. (c) UMAP projection plots showing transcript

accumulation for known fibre markers in individual cells. Colour intensity indicates the relative transcript level for the indicated gene in each cell. (d)

Expression pattern of top four genes enriched in each cluster of LF_0d. Dot diameter, proportion of cluster cells expressing a given gene; colour, average

expression across cells in that cluster. (e) Schematic diagram of longitudinal section of 0 DPA cotton ovule showing spatial distribution of cell clusters in

ovule outer integument. The left part is a magnified view of the shaded part on the right. F, fibre; Epi, epidermis; OPL, outer pigment layer; OI, outer

integument layer; II, inner integument layer; N, nucellus.
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Fibre cell was differentiated at �1 DPA

In order to clarify the dynamic changes of gene expression

accompanying fibre cell initiation, the single-cell transcriptomes in

Xu142_LF across four stages (�1.5, �1, �0.5 and 0 DPA) were

combined. After unsupervised clustering, totally 5137 cells were

clustered into six clusters (Figure 5a), and genes enriched in each

cluster were identified (Table S3). Based on the well-defined cell

types in LF_0d and cell barcode mapping (Table S6), the

combined sample can be defined as fibre (cluster 5), epidermis

(cluster 1, 3) and outer pigment layer (cluster 0, 2 and 4;

Figure 5a). The expression pattern of fibre marker genes (MYB25,

MML9 and HD1) further verified that cluster 5 was fibre cell

cluster (Figure S7a).

When displaying the clustering result separately at four stages

(Figure S7b–e), no fibre cell was identified at �1.5 DPA

(Figure S7b), while the next three stages contained fibre cluster

(Figure S7c–e). The expression pattern of MYB25 and MML9 also

showed that they did not express at �1.5 DPA, but expressed at

next three stages (Figure S7f,g). According to previous pheno-

typic observation, �0.5 DPA was the time point showing visible

fibre initials (Figure 1i). Here, the transcriptome data suggested

that fibre cells were differentiated at �1 DPA (Figure S7c),

although they were morphologically undistinguishable to its

neighbouring cells at this stage (Figure 1h). Since then, the

number of fibre cell (cluster 5) increases stepwise along devel-

opment (Figure 5b).

Figure 3 RNA in situ hybridization of cell-type representative marker genes. (a) UMAP projection plots showing transcript accumulation for DUF

(Ghir_D07G016770, function unknown), a novel fibre marker gene from cluster 5. (b) RNA in situ hybridization of DUF with the sense probe as a negative

control. (c) Expression of non-fibre epidermis novel marker gene Erg6 (Ghir_A04G010380, a methyltransferase encoding gene) in cluster 2 and 3. (d) RNA

in situ hybridization of epidermis marker (Erg6) with the sense probe as a negative control. (e) UMAP projection plots showing transcript accumulation for

outer pigment layer novel marker gene HbdA (Ghir_D01G005520, 3-hydroxyacyl-CoA dehydrogenase family protein) in cluster 0, 1, 4, 6, 7 and 8. (f) RNA

in situ hybridization of HbdA with the sense probe as a negative control. The hybridization signals of these marker genes in whole cotton ovules were

shown in Figure S5. Sections (10 lm) from Xu142_LF 0 DPA ovules were used for in situ hybridization. OI, outer integument; II, inner integument. Red

arrows indicate fibre cells, and red arrowheads indicate non-fibre epidermal cells. Yellow arrows indicate outer pigment layer. Scale bars, 50 lm.
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Next, the developmental trajectory of fibre cells was explored.

In total, 226 fibre cells (16 cells from LF_-1d, 30 cells from LF_-

0.5d and 180 cells from LF_0d, Figure 5b) were selected for re-

clustering. There were five sub-clusters identified (Figure 5c).

When displaying the re-clustering result separately (Figure S7h), it

was found that �1 DPA fibre cells were mainly located to sub-

cluster 5.2. Then, pseudotime analysis on these fibre cells built a

developmental trajectory (Figure 5d). The starting of the trajec-

tory was specified at the left branch, as sub-cluster 5.2 cells (early

fibre cells) were located on this branch. There was a node in the

trajectory, with branching into two directions (Figure 5d). The

MYB-MIXTA-like TFs, such as MYB25-like, MML4 and MYB25,

were prominently highly expressed at the beginning branch

(Figure 5e), in agreement with their key roles in fibre cell

differentiation (Machado et al., 2009; Walford et al., 2011; Wu

et al., 2018). The homeodomain leucine zipper transcription

factor, HD1 (Walford et al., 2012), was expressed almost at all

the branches (Figure 5e), suggesting that HD1 gene has a

broader temporal pattern during fibre initiation, distinct from

MYB-MIXTA-like TFs.

It is known that once early fibre cell differentiated, they will

undergo a process of diffuse growth then transformed into tip-

biased diffuse growth (Qin and Zhu, 2011; Yu et al., 2019). To

further define the cell types on branch 1 and branch 2, a total of

167 genes were firstly identified as most significantly related to

branching (qval < 0.001, Table S7). A heat map containing these

167 genes was produced and they were sorted into five modules

(Figure 5f). Among them, 59 genes in gene module 1 (M1) are

predominantly expressed in branch 1 cells. GO results show that

they are mainly enriched in ‘regulation of ethylene-activated

signalling pathway’, ‘sucrose alpha-glucosidase activity’, ‘cuticle

hydrocarbon biosynthetic process’ and so on (Figure 5f,

Table S8). These GO terms were reported mainly enriched in

fibre elongation (Shi et al., 2006). In details, multiple genes

Figure 4 Clarifying of fibre cell cluster and its enriched pathways. (a) UMAP visualization of putative clusters in cotton ovule outer integument of Xu142

versus Xu142 fl sample. Each dot denotes a single cell. Colours denote corresponding cell clusters. Resolution was 0.2. (b) UMAP visualization of putative

clusters which shown separately according to Xu142 and Xu142 fl. (c) Schematic diagram showing the main pathways and regulatory factors active in 0

DPA fibre cells. The red protrusions on the ovule epidermis represent protruded fibre cells.
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involved in ethylene signalling, such as ethylene responsive

element binding factor (ERF4, ERF9 and ERF11), and 1-

aminocyclopropane-1-carboxylic acid (ACC) synthase gene

(ACS6) (Shi et al., 2006) were all prominently expressed in

branch 1 cells (Figure 5g, Table S7). There are 79 genes in M5,

which are predominantly expressed in branch 2 cells. They are

mainly enriched in ‘ribosome’, ‘translation’, ‘lipid transport’ and

‘ATP transmembrane transporter activity’ (Figure 5f, Table S8),

these GO terms were reported highly enriched in diffuse growing

fibre cells (Wu et al., 2007). The genes encoding large and small

ribosomal subunit protein (RPL24, RPS5B, RPL3A and RPS6B) and

lipid transfer protein (LTP1) (Wu et al., 2006) were highly

enriched in branch 2 (Figure 5g, Table S7). Moreover, an E6

protein encoding gene (Ghir_D05G016260), which plays a role in

diffuse growing fibre cell (Ji et al., 2003), was identified and

verified by in situ hybridization (Figure 5g,h).

As described above, fibre initiation can be subdivided into

several processes. Precursor fibre cell have not differentiated at

�1.5 DPA (Figure S7b), and then differentiated into fibre cell at

�1 DPA (Figure S7c and Figure 5b) and start protruding by

diffuse growth at �0.5 DPA (Figure 1i), then transformed into

tip-biased diffuse growth from 0 DPA (Figure 1j).

The highly interconnected gene regulatory networks
coordinate fibre cell initiation

The results above have shown that these four stages (�1.5, �1,

�0.5 and 0 DPA) represented distinct processes of fibre initiation.

To explore gene regulatory networks in each process, clustering

analysis were performed on four samples individually (Figure S8a).

By analysing transcript accumulation of fibre marker gene MML4

and the in situ hybridization-verified genes (DUF, Erg6 and HbdA,

Figure S8b), the clusters in each sample can be defined into fibre,

epidermis and outer pigment layer (Figure S8a). Then, genes

enriched in each cluster were identified (Table S9), and WGCNA

was performed on four samples respectively. Several distinct gene

modules (labelled by different colours) were identified as shown in

the dendrogram (Figure S9, Table S10). The modules containing

genes enriched in fibre cells (�1,�0.5 and 0 DPA) or cells that may

differentiate into fibre (�1.5 DPA) were selected for co-expression

network construction (Figures S9 and S10, Table S11).

Among these four networks, some core components shared

between adjacent stages, while some were specific at one stage.

For example, the PROTODERMAL FACTOR1 (PDF1) gene, whose

silencing caused retardation of fibre initiation (Deng et al., 2012),

was identified as a core network component both at �1.5, �0.5

and 0 DPA (Figure S10). Two genes coding lipid transfer protein

(LTP3 and LTP6), which can transport metabolites around the cell

for their membrane biosynthesis (Wu et al., 2006; Wu

et al., 2007), were the core components at both �1.5 and �1

DPA network. At �0.5 DPA network, AMP-dependent synthetase

and ligase (LACS1), ABC-2 type transporter (ABCG13), Ribosomal

protein (RPS29A) and a transcription factor MYB25 were located

in the core (Figure S10). At 0 DPA, the core network components

including some function unknown genes, such as Ghir_D08

G021100, HUTL, Era and others.

Filtering the network down by TFs, four new TF regulatory

networks were obtained (Figure 6). The core network compo-

nents in latter three stages (�1, �0.5 and 0 DPA) were MYB25-

like, HD1 and HOX3 respectively. These three genes are superstars

in fibre cell development (Cao et al., 2020; Shan et al., 2014;

Walford et al., 2011, 2012; Wan et al., 2016), but the detailed

temporal pattern of how they work in individual fibre cell has not

yet been answered. After comparative analysis, MYB25-like_At

(Ghir_A12G017450) and MYB25-like_Dt (Ghir_D12G017660)

were only identified at �1 and �0.5 DPA network (Figure 6), as

both of them have been reported associated with lint fibre

development (Zhu et al., 2018). While HD1 gene, who expressed

predominantly in epidermal tissues during early fibre development

(Walford et al., 2012), was identified in all these four stages.

Meanwhile, the expression pattern of PROTODERMAL FACTOR 2

(PDF2) gene (Abe et al., 2003) was consistent with HD1 (Fig-

ure 6). Another HD-ZIP TF HOX3, its silencing greatly reduces fibre

length whereas overexpression leads to longer fibre (Shan

et al., 2014), was only identified at 0 DPA network (Figure 6).

And also, a R2R3 MYB TF MYB109, who plays a role in fibre

elongation (Pu et al., 2008), showed the same pattern as HOX3.

As core network components, MIXTA-like MYB genes MYB25

and MML9 were only identified at �0.5 and 0 DPA networks

(Figure 6). MYB25 played a role in regulating specialized

outgrowth of fibre cell (Machado et al., 2009). MML9 was

reported preferentially expressed during fibre initiation (Zhang

et al., 2015). At �1.5 DPA, the core gene WRKY44

(Ghir_A04G008530), also named TTG2, was reported in Ara-

bidopsis involved in a regulatory module for regulation of seed

coat mucilage synthesis (Xu et al., 2022).

MYB25-like determines fibre differentiation at �1 DPA
and HOX3 determines fibre tip-biased diffuse growth at
0 DPA

MYB25-like defunction was previously reported to be the

determinant of cotton fibreless mutant (Walford et al., 2011;

Wan et al., 2016). Histochemical localization of MYB25-like-GUS

expression was localized in the epidermal layer of 0 DPA ovules

(Walford et al., 2011). Here, compared to sense probe hybrid

result, MYB25-like expressed in ovule outer integument layer,

including outer pigment layer and epidermis, and more highly in

Figure 5 Developmental trajectory of fibre cells. (a) UMAP visualization of putative clusters of the combined sample. The scRNA-seq data of �1.5, �1,

�0.5 and 0 DPA samples were combined for clustering. Each dot denotes a single cell. Colours denote corresponding cell clusters. Resolution was 0.2. (b)

Cell number of each type identified from the combined sample, which shown at �1.5, �1, �0.5 and 0 DPA respectively. (c) Re-clustering of all fibre cells

identified in the combined sample. (d) A pseudotime trajectory showing fibre cells development. The developmental branch locations of 5 sub-clusters.

Different colours represent the cells from each sub-cluster. (e) Expression patterns of fibre marker genes (MYB25-like, MML4, MYB25 and HD1). The

colours represent expression levels of these genes in individual cells. (f) Heat map displays the 167 branch-dependent genes with qval <0.001. Each row

represents one gene. These genes were clustered into 5 modules with distinct expression patterns. Different colours represent the gene expression level.

The representative genes of each module are shown in the middle panel. The gene ontology (GO) terms for each module are shown on the right panel. (g)

Representative marker genes (ERF4, CINV2, ACS6 and BZIP53) expressed in branch 1 (upper panel), and expression of representative marker genes (RPL24,

RPS5B, LTP1 and E6) in branch 2 (lower panel). The colour bar indicates relative expression levels. (h) RNA in situ hybridization of E6 gene

(Ghir_D05G016260) in LF_0d ovules with the sense probe as a negative control. OI, outer integument; II, inner integument. Red arrows indicate fibre cells,

and red arrowheads indicate non-fibre epidermal cells. Scale bars, 50 lm.
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fibre cells (Figure 7a). Two independent lines with different

editing types resulting both MYB25-like_At and MYB25-like_Dt

knocked out were obtained (Figure S11a) and they showed

totally fibreless phenotype (Figure S11b). Distinct from

GhMYB25-like RNA interference suppression lines, which still

has few lint fibres attached on mature seeds (Walford

et al., 2011), the seeds of our CRISPR mutant lines were totally

glabrous. When observing 0 DPA ovules with SEM, no fibre initials

was found in both MYB25-like_CR lines as compared to WT

(Jin668, the transgenic receptor material, Figure 7b,c).

Cotton PDF2 was a member of HD-ZIP class IV homeodomain

protein family, which shares the highest homology with AtPDF2

in Arabidopsis. AtPDF2 and its paralogue ATML1 are functionally

interchangeable and act on Arabidopsis shoot epidermal cell

differentiation (Abe et al., 2003; Rombola-Caldentey

et al., 2014). Cotton PDF2 was validated highly expressed in

ovule epidermis and fibre cells by in situ hybridization assays

(Figure 7d). Two types of PDF2 CRISPR mutant lines (PDF2_CR,

both PDF2 homologues from At and Dt subgenomes knocked

out) were created (Figure S12a) and their fibre initials were

significantly decreased on 0 DPA ovules as compared to WT

(Figure 7e,f). However, the mature fibre phenotype and fibre

quality of PDF2_CR lines were nearly the same as WT, except for a

decrease in fuzz fibre density (Figure S12b-c).

Figure 6 Transcription factors (TFs) regulatory network predicts key regulators in the four distinctive developmental processes during fibre initiation. A

total of 15, 15, 16 and 9 TFs were identified related to fibre cell development at �1.5, �1, �0.5 and 0 DPA respectively. Each circle represents a gene, and

triangle represents transcription factor. Node size is equivalent to the number of predicted connections. Node colour represents the weight abundance of

predicted connections. Lines indicate edge weight (>0.01) for each pair of genes. Edge width represents the strength of the predicted connection.
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Cotton HOX3 was highly expressed in 0 DPA fibre cells

validated by in situ hybridization assays (Figure 7g). HOX3

transcript level was sharply decreased in homozygous transgene

co-suppression lines, and resulting in retarded fibre elongation

(Shan et al., 2014). Here, through CRISPR-Cas9 based gene

editing technology, the HOX3 CRISPR mutant line (HOX3_CR,

Figure 7 Function verification of cotton MYB25-like, PDF2 and HOX3 genes. (a) MYB25-like RNA in situ hybridization in LF_0d ovules. The sense probe

was used as the negative control. OI, outer integument; II, inner integument. Red arrows indicate fibre cells, and red arrowheads indicate non-fibre

epidermal cells. Yellow arrows indicate outer pigment layer. Scale bars, 50 lm. (b) Fibre initials morphology between WT (Jin668, the transgenic receptor

material) and two types ofMYB25-like CRISPR mutant (MYB25-like _CR, bothMYB25-like homologues from At and Dt subgenomes knocked out) plants at

0 DPA. The upper panel shows the whole ovule, the lower panel is a magnified view of the ovule middle region. Scale bars, 500 lm (upper panel) and

50 lm (lower panel). (c) Statistics analysis of initial fibre densities (numbers per 0.01 mm2) on 0 DPA ovules between WT and MYB25-like_CR plants. (d)

RNA in situ hybridization of PDF2 in LF_0d ovules with the sense probe as a negative control. OI, II, red arrows and red arrowheads have the same meaning

as described in (a). Scale bars, 50 lm. (e) Fibre initials morphology in two types of PDF2_CR (both PDF2 homologues from At and Dt subgenomes knocked

out) lines and WT plants at 0 DPA. The lower panel is a magnified view of the middle region of whole ovule (upper panel). Scale bars, 200 lm (upper panel)

and 50 lm (lower panel). (f) Statistics analysis of initial fibre densities (numbers per 0.01 mm2) on 0 DPA ovules between WT and PDF2_CR plants. All

asterisks indicate significant differences when compared with the WT plants (T-test, ** P < 0.01). (g) RNA in situ hybridization of HOX3 in LF_0d ovules

with the sense probe as a negative control. OI, II, red arrows and red arrowheads have the same meaning as described in (a). Scale bars, 50 lm. (h) Fibre

initials morphology in WT and HOX3_CR (both HOX3 homologues from At and Dt subgenomes knocked out) line at 0 DPA and 1 DPA respectively. The

lower panel is a magnified view of the middle region of whole ovule (upper panel). Scale bars, 200 lm (upper) and 50 lm (lower).
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both HOX3 homologues from At and Dt subgenomes knocked

out) was obtained (Figure S13a). Compared to WT, the pheno-

type of HOX3_CR line was seemingly naked seeds (Figure S13b),

different from the HOX3 transgene co-suppression lines which

attached with very short fibres (Shan et al., 2014). When

observed with SEM, normal fibre initials can be seen on 0 DPA

ovules both in WT and HOX3_CR line (Figure 7h). At 1 DPA, fibre

initials normally elongated on WT ovules but not on HOX3_CR

line (Figure 7h).

Above all, the specific function of MYB25-like and HOX3 were

more clearly clarified using CRISPR gene editing technology.

MYB25-like determines fibre differentiation, so defunctionaliza-

tion of MYB25-like produces no fibre initials; HOX3 determines

fibre tip-biased diffuse growth, so cotton plants with HOX3

defunctionalization can perform normal fibre differentiation and

diffuse growth, but cannot transform into tip-biased diffuse

growth. Besides, PDF2 play a role in fibre initiation, while it is not

as critical as MYB25-like and HOX3.

Discussion

The challenges of scRNA-seq in non-model crops

scRNA-seq has flourished in plants (Ryu et al., 2021), but

challenges remain, especially for non-model crops. The biggest

obstacle is definition for each cell type. In model plants

Arabidopsis and poplars, a large number of known markers had

been reported, which was enough to define almost all the cell

types (Chen et al., 2021; Zhang et al., 2019). While in rice, corn

and cotton (in this study), cell type definition still relies on RNA

in situ hybridization (Liu et al., 2021b; Satterlee et al., 2020;

Wang et al., 2021b; Xu et al., 2021), which is still a technolog-

ically dependent and time-consuming challenge. Spatial tran-

scriptome technology overcame this disadvantage and has been

successfully applied in Arabidopsis leaves, which showed the

bona fide single-cell spatial transcriptome profiles (Xia

et al., 2022). However, this technology still has many technical

barriers in plant, for example, tissue optimization, due to the

existence of cell wall.

The mutants are very effective to verify cell type definition.

After scRNA-seq on root tips of rhd6 (lack root hair) and gl2 (lack

non-hair cells) mutant, the cluster of root hair cells and non-hair

cells were respectively reduced compared to wild type (Ryu

et al., 2019). The similar trend was observed in Arabidopsis root

tips before and after heat stress treatment. For example, root hair

cluster cell number was decreased in heat shock sample (Jean-

Baptiste et al., 2019). Here, we sequenced cotton Xu142 fl

fibreless mutant ovules, and no fibre cell cluster was identified in

Xu142 fl (Figure 4b). This not only proves the reliability of scRNA-

seq in cotton ovules but also confirms the accuracy of our cell

type definition.

Fibre cell initiation successively experiences
differentiation, diffuse growth and tip-biased diffuse
growth

The study on fibre initiation started from last century (Ste-

wart, 1975). The morning of anthesis (0 DPA) was always

selected as a representative stage for fibre initiation (Haigler

et al., 2012; Lee et al., 2007). And a lot of SEM observation and

comparative transcriptome profiling was performed on 0 DPA

ovules (Hu et al., 2018; Qin et al., 2019; Walford et al., 2012;

Zhang et al., 2011). In this study, fibre initials can be observed on

Xu142_LF line ovule epidermis at �0.5 DPA (Figure 1, Figure S1).

Further, Xu142_LF fibre cell was identified differentiated at �1

DPA (Figure 5b). Therefore, with Xu142_LF line growing at

Wuhan city, its �1 DPA samples should be collected for fibre

differentiation study and �0.5 DPA samples for fibre diffuse

growth study.

scRNA-seq has been widely used in plants (Ryu et al., 2021;

Seyfferth et al., 2021; Shaw et al., 2021), but reported studies

were limited to one specific developmental stage, such as primary

root tips of 5 days after germination in Arabidopsis (Ryu

et al., 2019), root tips of 5 days rice seedlings (Zhang

et al., 2021a), leaf blades of 7 days seedlings in peanut (Liu

et al., 2021a), 5–10 mm developing ears of corn (Xu

et al., 2021) and stem below the third internode of 4-month-

old poplar (Chen et al., 2021). Here, our sampling strategy

included four developmental stages during fibre initiation. In

single sample, cell heterogeneity can be identified (Figure 2). In

multiple samples, the elaborate developmental dynamics of fibre

cell differentiation, diffuse growth and tip-biased diffuse growth

could be recognized (Figure 5).

Integrating fibre cell developmental trajectory, TF regulatory

networks, and core network components functional validation, a

model was proposed for fibre initiation focusing on a single cell

(Figure 8a). A fibre cell successively experiences the process of

differentiation, diffuse growth and tip-biased diffuse growth,

with different key regulators involved in each process. HD1 and

PDF2 expressed at all four stages (Figure 6 and Figure 8a). They

play roles in ovule epidermis before fibre differentiation, and also

in fibre cell after then. MYB25-like was identified preferentially

expressed at �1 DPA (Figure 5e and Figure 6), promoting fibre

cell differentiation. After fibre cell differentiated, MYB25 and

MML9 start to express and gradually increased (Figure S7f,g),

accompanying with fibre cell diffuse growth (Figure 8a). MYB25

was likely regulated by MYB25-like (Walford et al., 2011) then

play a role in promoting fibre diffuse growth. At 0 DPA, a new

core network component HOX3 appeared (Figure 6) and pro-

moted fibre tip-biased diffuse growth (Figure 8a).

On whole ovule, fibre initiation firstly occurred on chalazal end

and progressed gradually towards micropylar end (Figures 7 and

8b), according to earlier morphological observations (Ste-

wart, 1975). Once fibre cell differentiated at �1 DPA, the

continuous development leads to multiple processes occurring

simultaneously on ovule epidermis (Figure 8b). As shown in re-

clustering result (Figure S7h), �1 DPA cells located only at the

start of trajectory. At �0.5 DPA, cell distribution expanded

(Figure S7h), means these cells including both early fibre cell and

diffuse growing cells (Figure 8b). The 0 DPA cells were located at

all the five sub-clusters (Figure S7h), including cells in differen-

tiation, diffuse growth and tip-biased diffuse growth (Figure 8b).

With scRNA-seq, gene expression pattern in cells at different

developmental stages can be more finely characterized, which is

an important reason why this study can subdivide fibre initiation

into three processes and identify the regulatory network of each

process.

MYB25-like and HOX3 play most important roles as
commanders in fibre differentiation and fibre tip-biased
diffuse growth

Through cotton transgenic verification, PDF2 gene mutation

only decreased fibre initials at 0 DPA (Figure 7e). In Arabidop-

sis, single mutant of AtPDF2 or its paralogue ATML1 display

normal shoot development, while double mutant results in

severe defects in shoot epidermal cell differentiation (Abe
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et al., 2003; Rombola-Caldentey et al., 2014). In cotton, PDF2

homologues GhHOX1 (Wang et al., 2004) and GhHD1 (Wal-

ford et al., 2012) had been cloned and verified promoting fibre

development. PDF2 might also functionally interchangeable to

GhHOX1 or GhHD1, or both of them. So, double mutants on

PDF2 and its paralogue might display obvious phenotype in

cotton.

There is no report to clarify the spatiotemporal pattern of

MYB25-like gene at single cell resolution. Here, expression

pattern on fibre developmental trajectory showed that MYB25-

like was preferentially expressed in early fibre cells (Figure 5e).

With qRT-PCR measurements, MYB25-like showed higher expres-

sion in �1 to 3 DPA ovules (Walford et al., 2011), in can be

inferred that the expression of MYB25-like mainly contributed by

the newly differentiated fibre cells. On one hand, MYB25-like

gene starts to be highly expressed at �1 DPA (Walford

et al., 2011), which is consistent with our result (Figure 6). On

the other hand, its high expression lasts until 3 DPA, a stage when

fuzz fibre begins to differentiate, which indicated that MYB25-

like is also participated in fuzz initiation.

Hormone response and sugar signal genes were reported

involved in fibre initiation (Huang et al., 2021; Tian and

Zhang, 2021; Wang et al., 2021a). Interestingly, MYB25-like

was down-regulated in fibre-deficient mutants of hormone- or

sugar-signalling genes. For example, MYB25-like activity was

suppressed in GhJAZ2 overexpressing lines (Hu et al., 2016); the

transcripts of MYB25-like was dramatically reduced in GhVIN1-

RNAi lines (Wang et al., 2014) and down-regulated in GhPIN1a-

RNAi ovules (Zhang et al., 2017);MYB25-like was severely down-

regulated in ovules cultured with excess ZT (trans-zeatin, a kind of

cytokinin) (Zeng et al., 2019). These suggested that hormone and

sugar signalling may act on the upstream of MYB25-like and

through this gene to exert their effects on fibre development. At

least among currently known fibreless mutants (such as Xu142 fl,

GhVIN1-RNAi lines and GhPIN1a-RNAi lines) (Walford

et al., 2011; Wang et al., 2014; Zhang et al., 2017), MYB25-

Figure 8 The proposed model for fibre initiation focusing on a single cell. (a) On cotton ovule epidermis, a precursor fibre cell successively experienced the

process of differentiation, diffuse growth and tip-biased diffuse growth during its initiation (above), as represented by four stages (�1.5, �1, �0.5 and 0

DPA). Different hub transcription factors that regulating each process are shown (below). (b) On the whole ovule, lint fibre differentiation firstly occurred on

chalazal end at �1 DPA (marked by light sky blue). The differentiation progress gradually towards micropylar end. At �0.5 DPA, fibre initials could be seen

at chalazal end (marked by cyan) due to its diffuse growth. At the same time, fibre differentiation has occurred in the middle of the ovule (light sky blue). At

0 DPA, the previously protruded fibre initials transformed into tip-biased diffuse growth (dark blue), and the previously differentiated fibres began to

protrude (cyan) due to diffuse growth. At the same time, fibre differentiation occurred at ovule micropylar end (light sky blue). To sum up, there were no

fibre cell differentiated at �1.5 DPA; fibre differentiation occurred on chalazal end at �1 DPA; both fibre diffuse growth and differentiation occurred at

�0.5 DPA; at 0 DPA, fibre tip-biased diffuse growth, diffuse growth and differentiation occurred simultaneously.
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like gene was the direct commander controlling fibre cell

differentiation.

HOX3 gene highly expressed at 0 DPA (Figure 6) and mainly in

fibre cells (Figures 2c and 7g). Fibre cell can normally differentiate

and diffuse grow but cannot transform into tip-biased diffuse

growth in HOX3_CR line (Figure 7h). Therefore, HOX3 seems to

act as a commander controlling fibre cell development transfor-

mation. As shown in Figure 8a, two commanders (MYB25-like

and HOX3) positively regulating early fibre development are

functioning like a ‘relay race’ model. The RNA-seq, chromatin

immunoprecipitation sequencing (ChIP-seq) with these cotton

mutants and identification of TF regulatory multiple complexes

have been ongoing in our lab, the molecular mechanism hidden

below ‘relay race’ model will be revealed in the near future.

Core regulators controlling the differentiation and tip-
biased diffuse growth of Arabidopsis trichomes and
cotton fibres may be conserved

In Arabidopsis, mutant of two genes, GL1 (R2R3-type MYB

transcription factor GLABRA1) and GL2 (homeobox transcription

factor GLABRA2), produced no leaf trichomes (Hulskamp

et al., 1994; Szymanski et al., 1998), but they were functioning

in different ways. For gl2 leaves some large cells bigger than

normal epidermal cells appeared and their nuclei were also in the

same size as wild-type trichomes, which means trichome cells can

differentiate and enlarge, but no local outgrowth (Hulskamp

et al., 1994). However, all the epidermal cells of gl1 leaves were

uniform in size and shape, and no specialized cells was found,

which suggested that GL1 is required for trichome cell differen-

tiation (Hulskamp et al., 1994). In this aspect, MYB25-like gene

functions similarly to GL1, and HOX3 to GL2. Because they were

in same gene family respectively, but also the similar ways they

acting on fibre cell or trichomes. In addition, other signals

affecting trichome development such as phytohormones (Qi

et al., 2011; Qi et al., 2014; Zhou et al., 2013), miRNAs (Xue

et al., 2014; Yu et al., 2010), R3 MYBs (Gan et al., 2011; Vadde

et al., 2019; Wang et al., 2007; Zhao et al., 2008) or histone

demethylase (Hung et al., 2020), were always acting on the

upstream of GL1. This also showed a similar pattern as cotton

MYB25-like. Therefore, the core regulators controlling differen-

tiation and tip-biased diffuse growth of Arabidopsis leaf tri-

chomes and cotton fibres appear to be conserved. This also

provides some inspiration for exploring other types of epidermal

tissue, such as tomato trichomes, kapok fibre, tea trichomes, and

okra seed coat mucilage.

Conclusion

In summary, with the help of scRNA-seq technology and

reasonable multi-stage sampling strategy, fibre cell differentia-

tion, diffuse growth and tip-biased diffuse growth process during

fibre initiation were more finely delineated. Through gene

regulatory network analysis and CRISPR-Cas9-based gene func-

tion verification, the MYB25-like gene was newly defined as a

commander acting at �1 DPA on fibre cell differentiation. In

addition, HOX3 was proved to be another commander controlling

fibre development transformation into tip-biased diffuse growth.

It is the first report by applying scRNA-seq technology in cotton

fibre cell, and our result provides a more refined and detailed

stage definition of fibre initiation. The valuable resource provided

here will help to further explore the mechanism of fibre

development, plant trichomes differentiation and single cell fate

determination.

Materials and methods

Plant growth and sample collection

The cotton Lint-Fuzz (Xu142_LF) line, derived from recombinant

inbred lines of Xu142 9 Xu142 fl (Hu et al., 2018), was planted

in the experimental field at Huazhong Agriculture University,

Wuhan, China. Cotton plants were grown under conventional

field management. Samples were collected when cotton plants

began flowering. �1 DPA flower buds, 0 DPA flowers were

collected in the morning (8 : 00 a.m.), and �1.5 DPA and �0.5

DPA buds were collected in the evening (8 : 00 p.m.).

Scanning electron microscopy (SEM) and transmission
electron microscopy (TEM)

Cotton bolls of Xu142_LF were collected at �1.5 DPA and every 4

h from �1 DPA to 0 DPA (i.e. 8 : 00, 12 : 00, 16 : 00, 20 : 00, 24 :

00 at �1 DPA and 4 : 00, 8 : 00 at 0 DPA). Ovules were fixed for

further SEM observation. The detailed processes were performed

as reported (Hu et al., 2018).

Ovules at �1.5, �1, �0.5 and 0 DPA were collected and

fixed with 2.5% glutaraldehyde, followed by fixing with 1%

OsO4, acetone gradient dehydration, resin infiltration and

embedment. Sections of 90 nm were cut, counterstained, then

visualized using a TEM (New Bio-TEM H-7500, HITACHI, Japan),

according to the methods reported (Liu et al., 2015; Min

et al., 2013).

Tissue digestion and scRNA-seq library preparation

Ovules collected from Xu142_LF at �1.5, �1, �0.5 and 0 DPA,

and from 0 DPA of Xu142 and Xu142 fl were respectively placed

into a 30-mm-diameter Petri dish containing 3 mL enzyme

solution (1.5% [w/v] cellulose [‘ONOZUKA’ R-10, Yakult], 1%

[w/v] hemicellulose [Sigma-Aldrich], 0.75% [w/v] Macerozyme [R-

10, Solarbio], 0.4 M Mannitol, 20 mM MES [pH 5.7], 20 mM KCl,

10 mM CaCl2, 0.1% [w/v] bovine serum albumin (BSA)). Four

cotton balls were harvested and all ovules in these balls were

collected together as one sample. Petri dishes were placed in a

vacuum drying oven and kept at 0.1 atmospheric pressure for

5 min to promote the removal of gases in the ovule to facilitate

the full submersion of the ovule in the enzyme solution. The dish

was rotated at 60 rpm for 4 h at 25°C.
The enzyme solution was filtered with a 40 lm cell strainer, 19

PBS solution containing 0.04% BSA was added to the filtrate,

gently inverted and mixed, centrifuged at 100 rcf for 2 min, and

the supernatant was carefully discarded. Filtering, rinsing, and

centrifuging steps was repeated twice to obtain a single cell

suspension. The cell suspension was kept on ice to prevent cell

death. Protoplast concentration was determined using a haemo-

cytometer, and the ideal concentration is 700–1200 cells/ll.
Protoplasts were stained with 0.4% trypan blue solution for

detecting viability.

A commercially available droplet-based system from 109

Genomics Inc. (Zheng et al., 2017) was used to isolate proto-

plasts. The protoplast suspension was loaded into Chromium

microfluidic chips with 30 v2 chemistry. RNA from the barcoded

cells was subsequently reverse-transcribed, then sequencing

libraries were constructed and sequenced on NovaSeq (Illumina)

platform using Hiseq PE150 strategy.
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Processing of scRNA-seq data

The detailed calculation methods and parameter settings involved

in this process are described in Appendix S1. In brief, the raw

data in FASTQ format were first processed to obtain clean reads.

Gossypium hirsutum TM-1 genome (Wang et al., 2019) was used

as reference genome. Only reads that were uniquely mapped

were used for UMI counting. The Seurat package (v. 4.0.1)

implemented in R (v. 4.0.0) was used for gene-cell matrices

analysis, including doublets, no-load cells and dead cells filtration.

Principal Components Analysis (PCA), Uniform Manifold Approx-

imation and Projection (UMAP) and t-Stochastic Neighbour

Embedding (t-SNE) analyses were performed for visualizing data

in 2-d space. Cluster-enriched genes were identified with Seurat

function ‘FindAllMarkers’. The subset of related clusters was

extracted and processed for pseudo-time analysis. The weighted

gene co-expression network analysis (WGCNA) was performed in

R software (v. 4.0.0) following the official process. The gene

regulatory network displaying, personalized Gene Ontology (GO)

and pathway enrichment analysis were performed using Omic-

Share tools, a free online platform for data analysis (www.

omicshare.com/tools).

Analysis of RNA-seq data

Bulk RNA-seq data of Xu142_LF 0 DPA ovule outer integument

from our previous study (Hu et al., 2018) was used here. Clean

reads were newly mapped to the updated TM-1 reference

genome (Wang et al., 2019) using Hisat2 (v2.1.0) software (Kim

et al., 2015). The mapping reads were sorted to filter those reads

representing PCR duplicates. Sequencing reads with mapping

quality of <25 were filtered using SAMTOOLS (v.0.1.19; Li

et al., 2009), the remaining were used to calculate gene expres-

sion levels using STRINGTIE software (v.1.3.4) with default

settings (Pertea et al., 2015).

RNA in situ hybridization

In situ hybridization was carried out as described in cotton

research previously (Zhang et al., 2017). Briefly, 0 DPA ovaries of

Xu142_LF were collected and embedded in paraffin. 10 lm
paraffin sections were de-paraffinized, rehydrated and incubated

overnight with the Dig-labelled RNA probe (Roche). Sections

were then incubated with alkaline phosphatase-conjugated

anti-digoxigenin (anti-Dig-AP, Roche) and the signal was detected

by nitro-blue tetrazolium/5-bromo-4-chloro-3-inodyl-phosphate

(NBT/BCIP) colour substrate solution (Roche). Sections incubated

with sense RNA probe were used as negative control. Images

were captured using fully motorized upright microscope (Leica

DM6B) in bright-field mode. Primers are listed in Table S12.

Vector construction and plant transformation

CRISPR technology was employed to create the GhMYB25-like-

CR (Ghir_A12G017450/Ghir_D12G017660), GhHOX3-CR (Ghir_

A12G028530/Ghir_D12G028680) and GhPDF2-CR (Ghir_A10G

001030/Ghir_D10G001810) mutants in cotton. For targeting

MYB25-like genes, two sgRNAs (CTCCATGTAGCGACAAGGTG;

CGCCCTTCTTGGAAACAGGT) were designed for targeting

MYB25-like. The primers listed in the Table S12 were used to

amplify tRNA and gRNA from the template pGTR vector. Two

different fragments containing tRNA-sgRNA1 and gRNA-tRNA-

sgRNA2 were integrated together by an overlapping extension

PCR. Finally, the PCR products were purified and inserted the Bsa

I-digested pRGEB32-GhU6.9 vector using ClonExpress II One Step

Cloning Kit (Vazyme) (Wang et al., 2018). For targeting GhHOX3

(ACCGGTACAACCTGTTCATA) and GhPDF2 (CAACTGTGTCTC

CTTACTTA) genes, single sgRNA was used in the GhHOX3-CR

and GhPDF2-CR vector. The positive vectors were transformed

into Agrobacterium tumefaciens strain EHA105 for cotton

transformation. JIN668 was the transgenic receptor (Li

et al., 2019).

On-target analysis of gene-edited plants

T0 positive transgenic plants were screened by PCR analysis using

Cas9 forward and reverse primers (Table S12). For identification

of mutated alleles in T1 transgenic lines, high-throughput (Hi-

Tom) sequencing was adopted (Liu et al., 2019). First, the

targeted regions were amplified by PCR using site-specific

primers. Second, barcode primers were used to add barcodes

to the first-round PCR products. After the second-round PCR

amplification, the products of all samples were mixed in equal

amounts and purified to perform next-generation sequencing

(NGS). Finally, NGS data was analysed by Hi-Tom platform (http://

hi-tom.net/hi-tom/).
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