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Abstract

The purpose of this paper is to test empirically the value currently added by Deep Learning

(DL) approaches in time series forecasting by comparing the accuracy of some state-of-the-

art DL methods with that of popular Machine Learning (ML) and statistical ones. The

paper consists of three main parts. The first part summarizes the results of a past study

that compared statistical with ML methods using a subset of the M3 data, extending how-

ever its results to include DL models, developed using the GluonTS toolkit. The second

part widens the study by considering all M3 series and comparing the results obtained with

that of other studies that have used the same data for evaluating new forecasting methods.

We find that combinations of DL models perform better than most standard models, both

statistical and ML, especially for the case of monthly series and long-term forecasts. How-

ever, these improvements come at the cost of significantly increased computational time.

Finally, the third part describes the advantages and drawbacks of DL methods, discussing

the implications of our findings to the practice of forecasting. We conclude the paper by

discussing how the field of forecasting has evolved over time and proposing some directions

for future research.
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1. Introduction

Machine Learning (ML) has revolutionized image and speech recognition, as well as other

fields, such as self-driving vehicles, natural language processing, and medical applications

(Makridakis, 2017; Pak & Kim, 2017; Young et al., 2018; Faust et al., 2018). Naturally, ML

has also been considered for time series forecasting, a task that also relies on identifying

complex patterns (Makridakis et al., 2020a).

The main strength of ML methods, when compared to statistical ones, is that instead of

prescribing the underlying data generating process, e.g. in terms of trend and seasonality,

they allow for data relationships to be identified and estimated automatically, thus being

more generic (Barker, 2020; Januschowski et al., 2020). However, given that ML methods

make no or few assumptions about the data,1 their performance relies heavily on adequate

data availability (Markham & Rakes, 1998), especially when the series being predicted are

non-stationary, displaying seasonality and trend (Zhang et al., 1998; Barker, 2020; Spiliotis

et al., 2020b). To that end, for many years ML methods have been outperformed by simple,

yet robust statistical approaches (Chatfield, 1993; Adya & Collopy, 1998; Spiliotis et al.,

2019b). As data availability has stopped being a limiting factor and more effective algo-

rithms have become available and able to extract more information from the data, ML, and

more recently Deep Learning (DL) methods, have become promising alternatives to stan-

dard forecasting (Wang et al., 2019; Makridakis et al., 2020b). The literature is rich with

papers proposing new ML and DL forecasting methods, providing considerable forecasting

accuracy improvements, especially for energy (Chae et al., 2016; Robinson et al., 2017; Voy-

ant et al., 2017; Wang et al., 2019), stock market (Fischer & Krauss, 2018; Moghaddam

et al., 2016), and inventory demand (Dekker et al., 2004; Zotteri & Kalchschmidt, 2007)

related applications where both long series and explanatory variables are available to facili-

tate learning (Hamzaçebi et al., 2009; Deng, 2014). However, research studies in other areas

of business forecasting, which typically involve shorter, non-stationary data, are displaying

mixed results concerning their forecasting accuracy. Depending on the context of the fore-

casting task and the ML models involved, in some cases the use of ML can lead to accuracy

improvements (Salinas et al., 2020; Bandara et al., 2020) while in other cases the results

may be underwhelming (Crone et al., 2011; Makridakis et al., 2020c).

1Although some ML models may assume particular types of data distributions, they usually make no

assumptions in terms of time series patterns, including trend, seasonality, and data correlations, among

others.
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Given the lack of consensus whether ML methods are more accurate than standard,

statistical approaches, in March 2018, we published a study (Makridakis et al., 2018) in-

vestigating the relative performance of the ML and statistical methods. In this study, we

compared the post-sample accuracy of ten popular ML methods with those of eight statis-

tical ones, concluding that the accuracy of the former was inferior to the latter across both

accuracy measures used and for all the forecasting horizons considered. Moreover, the con-

clusions of this study were later supported by the results of the M4 competition (Makridakis

et al., 2020b) where it was found that the accuracy of ML methods was inferior to that of

the statistical ones in most of the cases. However, the winning method of the same compe-

tition was a “hybrid” forecasting approach that utilized both statistical and ML elements

(Smyl, 2020), using cross-learning (Semenoglou et al., 2021). Additionally, the second-best

M4 method was also based on a cross-learning approach, utilizing a ML algorithm for select-

ing the most appropriate weights for combining various statistical methods (Montero-Manso

et al., 2020).

The results of the various studies comparing the accuracy of ML and statistical methods

were later discussed by the M4 commentators (Januschowski et al., 2020; Barker, 2020; Fry &

Brundage, 2020) who pointed out that the recent advances in DL, including breakthroughs

in image recognition (Krizhevsky et al., 2012; Russakovsky et al., 2015), were not fully

exploited by the various studies in the field of forecasting. Moreover, emails received by the

authors and relevant posts published in Twitter have been arguing that the power of DL

methods has not been exploited to its full extent by time series forecasting studies. In our

defense, it should be noted that when our study was conducted, i.e. early 2017, DL time

series forecasting was still in its infancy, with no mature packages being publicly available to

allow such comparisons. Moreover, no one of the participants in the M4 competition utilized

a DL forecasting model, making therefore an assessment impossible. Today, the situation has

changed, with some impressive DL packages being publicly available to use, although still

difficult to apply, challenging to replicate, and computationally expensive to utilize (Salinas

et al., 2020; Oreshkin et al., 2019). Nevertheless, these packages allow the implementation of

powerful DL approaches to time series forecasting, enabling their comparison with standard

statistical and ML alternatives.

Drawing from the above, the aim of this study is to compare the accuracy of the statistical

and ML models considered in Makridakis et al. (2018) and other studies with that of new,

DL ones developed using the Gluon Time Series (GluonTS) toolkit (Salinas et al., 2020),

extending also the comparisons to include all 3,003 series of the M3 competition rather than

3



just the 1,045 monthly ones originally used in Makridakis et al. (2018). In this paper we

perform such comparisons and comment on the advantages and drawbacks of DL methods,

discussing also the implications of our findings and providing some guidelines about when

each forecasting approach should be utilized.

2. GluonTS: A toolkit for developing deep learning forecasting models

In order for a new forecasting method to be effectively used in “real-world” applications,

it needs to be properly studied, replicated, and improved. In the case of DL, the lack

of suitable, user-friendly packages and adequate computational resources for training and

testing DL models have significantly affected their adoption by the forecasting community.

However, as more DL packages became available, many of them offering “off-the-shelf”

algorithms for building DL models, their usage started increasing considerably.

At present, there is a number of packages available for developing DL models that can

be customised for time series forecasting. In order to select the most suitable package to

work with, we considered the following three major criteria:

• The experience needed for developing the DL models and the effort required for ex-

perimenting with their hyper-parameters.

• The amount of control the package offers to the user over the network and training

hyper-parameters.

• The functionalities and additional features offered by the package specifically related

to time series forecasting.

Evaluating the different options currently available under these criteria was the first

step towards making our choice. In regards to the first two points, we note that due to

the complexity of the DL models, most packages come with a trade-off between how easy

they are to use versus how flexible they are in tuning the model’s hyper-parameters. ML

frameworks such as Tensorflow (Abadi et al., 2016), developed by Google, and CNTK (Seide

& Agarwal, 2016), developed by Microsoft, provide all the necessary tools for building an

appropriate DL model. However, due to their flexibility, significant experience and time

is required by their users to properly tune the model. On the other hand, tools similar

to AutoKeras (Jin et al., 2019), developed by Data Lab at Texas A&M University, and

AutoML (Li & Li, 2018), developed by Google, provide a “black-box approach” for building

DL models. As a result, although they are easier to use, requiring less effort and expertise,
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they are more difficult to customize for particular time series forecasting tasks. The third

point is also critical as most DL packages come with pre-trained models and additional

functionalities that facilitate model construction, such as widely used classifiers, data sets to

experiment with, and ready-to-use loss functions. However, most existing packages do not

offer similar conveniences for time series forecasting, thus requiring from the user to make

additional effort or make compromises in terms of accuracy.

Drawing from the above, we decided to work with the GluonTS toolkit. GluonTS is a DL-

based probabilistic time series modeling package, developed by Amazon (Alexandrov et al.,

2019), which is distributed as a Python library with the aim to cover the lack of an easy-

to-use DL forecasting package. In respect to the aforementioned criteria, GluonTS offers

ready-to-use models which major hyper-parameters can be tuned by the user. Moreover,

GluonTS is dedicated to time series forecasting tasks, thus being more application-oriented

when compared to other alternatives, providing among others a variety of data pre-processing

techniques. Finally, GluonTS allows for a variety of time series forecasting models to be built,

thus enabling the users to experiment with multiple alternatives and choose the ones that

work best for their forecasting task.

2.1. GluonTS models

Due to time and computational constraints, in this study we consider four of the models

offered by GluonTS in an effort to explore some indicative yet representative DL forecasting

models. Below we describe the selected models, while, in the next subsection, we provide

information about how they were tuned, trained, and used.

• DeepAR: A DeepAR estimator, as proposed in Salinas et al. (2020). This forecasting

approach is based on training a multi-layer auto-regressive recurrent neural network

(RNN) with Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU) cells

over a large number of time series.

• Feed-Forward: A simple multi-layer perceptron (MLP) trained using the entire data

set. Despite the development of complex neuron types and neural network (NN)

architectures, simple, shallow MLP models are still widely used in forecasting since

they are easy to develop, relatively fast, and adequately accurate if properly tuned

(Semenoglou et al., 2021; Spiliotis et al., 2022). The Feed-Forward model provided

by GluonTS can be considered deep in principle as it consists of multiple, relatively

larger, and densely connected hidden layers.
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• Transformer: A transformer model similar to the one proposed by Vaswani et al.

(2017). This NN was initially developed for sequence modelling tasks, such as natural

language processing and machine translation. However, Transformer is also suitable

for time series forecasting since, without requiring significant changes to its design, it

can be tasked to model numeric sequences instead of symbolic ones. A set of atten-

tion mechanisms is used to allow the model to learn sequential dependencies that are

considered important for prediction.

• WaveNet: This model was originally introduced by van den Oord et al. (2016) as

a DL approach for generating audio waveforms for tasks such as speech generation,

text-to-speech conversion, and music composition. WaveNet is an auto-regressive NN

which consists of stacked dilated, casual, convolutional layers. Casual convolutions,

as opposed to normal convolutions, ensure that each predicted value does not depend

on values from a later time. GluonTS provides an adapted version of the WaveNet

model, suitable for time series forecasting.

2.2. Hyper-parameter selection

The successful application of ML models in general and DL models in particular, de-

pends heavily on properly tuning their network hyper-parameters and those referring to the

training process. That way, the models can be specialized to better capture the particular

characteristics of the series being forecast. Since GluonTS is dedicated to time series fore-

casting, the amount of optimization required by the user for these tasks is less compared to

other DL packages. Nevertheless, for each of the four models utilized, its hyper-parameters

were fine tuned to improve the model’s forecasting performance.

Regarding DeepAR, four network hyper-parameters were examined, namely the type of

recurrent cells used, cell type, the number of RNN layers, num layers, the number of RNN

cells for each layer, num cells, and the dropout rate used for regularization, dropout rate.

The cell type can be either an LSTM or a GRU one. In regards to num layers and num cells,

a list of values ranging from 1 to 9 was considered for the former and from 2 to 512 for the

latter. The search within these ranges was not exhaustive, with a set of indicative values

being selected instead to accelerate the whole process. The values tested for the dropout

rate were limited between 7% and 13%.

For the case of the Feed-Forward model, the network’s optimization was focused on

determining the number of hidden layers and their respective size, num hidden dimensions.

Networks consisting of up to 3 layers were examined, with layer sizes varying from 2 to 128
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nodes. No further optimization was applied, given that GluonTS does not expose the rest

of the model’s hyper-parameters.

On the other hand, GluonTS allows the user to significantly customize the Transformer

model. In this respect, we optimized the embedding dimension of the input, model dim, the

number of heads in the multi-head attention, num heads, the dimension scale of the inner

hidden layer of the transformer’s feed-forward network, inner ff dim scale, the sequence of

processing operations before the main transformer network, pre seq, the sequence of process-

ing operations in and after the main transformer network, post seq, the activation function of

the transformer network, act type, and the dropout rate used for regularization, dropout rate.

In regards to the values considered for these hyper-parameters, model dim ranged between

2 and 64, with num heads ranging between 2 and 16, being also subject to model dim. Four

distinct values of 2, 3, 4, and 5 were examined for inner ff dim scale. All the choices provided

(dropout, residual connections, and normalization) were tested for the case of the sequence

of processing operations before, in, and after the main transformer network. Finally, the

relu, sigmoid, tanh, softrelu, and softsign functions were considered as activation functions,

with the dropout rate being limited between 7% and 13%.

WaveNet also involves a variety of network hyper-parameters that can be optimized. We

focused on the embedding dimension, embedding dimension, the number of bins for quantiz-

ing the series, num bins, the number of residual channels in the WaveNet, n residue, the num-

ber of skip channels in the WaveNet, n skip, the number of dilation layers in the WaveNet,

dilation depth, the number of dilation stacks in the WaveNet, n stacks, and the activation

function for the output layer, act type. The values considered for embedding dimension

ranged from 2 to 64, with num bins ranging between 256 and 2048. n residue ranged from

22 to 26 and n skip from 4 to 128. In respect to the dilation, 1 to 3 dilation stacks were used

while the dilation depth ranged from 1 to 9. The relu, sigmoid, tanh, softrelu, and softsign

functions were tested as activation functions.

Regarding the training process, we optimized the number of epochs that the model

will train for, epochs, ranging between 64 and 2048, the number of batches at each epoch,

num batches per epoch, ranging between 32 and 1024, the number of samples in each batch,

batch size, ranging between 32 and 256, the number of epochs before reducing the learning

rate, patience, being 8, 16, 32 or 64, the initial learning rate, learning rate, ranging between

5−4 and 5−3, the factor by which to decrease the learning rate, learning rate decay factor,

ranging between 0.1 and 0.75, the minimum value the learning rate can take, minimum learning rate,

ranging between 5−6 and 10−5, and the L2 regularization coefficient, weight decay, bounded
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between 10−9 and 10−7.

The hyper-parameter search was performed using the Tree-of-Parzen-Estimators (TPE)

algorithm (Bergstra et al., 2011), as implemented in the HyperOpt library for Python

(Bergstra et al., 2015). The optimal values were determined using the last window of the

historical observations available for training as a validation set, equal in length to the fore-

casting horizon. A summary of the selected values for each DL method and data frequency

can be found in Appendix A.

2.3. Data pre-processing and external regressor variables

The DL models described above were the core element of the overall pipeline used for

producing the forecasts. However, other elements such as data pre-processing and external

regressor variables were also considered to complement these models.

Regarding data pre-processing, the Box-Cox power transformation was utilized (Box &

Jenkins, 1970) for stabilizing the variance of the series, as proposed by Makridakis et al.

(2018). The Box-Cox transformation was achieved using tools offered by the GluonTS toolkit

itself. The choice regarding whether data pre-processing should be applied or not was made

in a fashion similar to the hyper-parameter search.

Regarding the data used as input for training the models, apart from the historical

observations, we considered providing additional information related to (i) the starting dates

of the series, (ii) their domain (micro, macro, finance, industry, demographic, other), as well

as (iii) their unique index in the data set. Similarly to data pre-processing, the choice

regarding whether external regressor variables should be considered or not was made in a

fashion similar to the hyper-parameter search.

Note that the idea of using the domain of the series as additional information for improv-

ing forecasting accuracy was inspired from the winning submission of the M4 competition

(Smyl, 2020). On the other hand, the utilization of the series index was based on the sug-

gestions of the developers of GluonTS for data sets that contain a limited number of series

and no additional series-specific information, as it is the case with the M3 data set used in

this study. By using the index as an additional feature, models are better poised to identify

series-specific behaviors.

We highlight that the whole forecasting pipeline was treated as an unified entity, with

all hyper-parameters and elements referring to data pre-processing and external regressor

variables being optimized simultaneously. In this regard, for each model and data set exam-

ined, the values of all the data, network, and training parameters were determined within

the same hyper-parameter search.
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2.4. Training and forecasting

Having specified the optimal hyper-parameters of each DL model, training took place

using random seeds to initialize the trainable weights of the respective NNs. The models

were trained using all historical observations available. Note that GluonTS trains the models

using the entire time series data set as input. Thus, a “cross-learning” approach takes place,

with the model learning from multiple series instead of a single one.

The trained models were then used to produce forecasts. However, instead of relying

on a simple model, forecasts from multiple models were estimated and ensembled using the

median operator to enhance forecasting accuracy (Kourentzes et al., 2014). This process

resulted in four model-specific ensembles, i.e. one ensemble of 50 models of the same type

per case (from now on noted using the respective model type: DeepAR, Feed-Forward,

Transformer, WaveNet). Finally, we considered a larger ensemble of 200 DL models (simply

noted as Ensemble-DL) in which each of the four models contributed with 50 forecasts.

The forecasting accuracy of the individual DL model types, as well as their ensemble, were

calculated using these aggregated forecasts.

The overall pipeline considered for implementing the DL forecasting models of this

study is summarized in Figure 1. The source code for the implementation is available

at github.com/gjmulder/m3-gluonts-ensemble.

Figure 1: The pipeline considered for implementing the DL forecasting models of the present study. The

models are optimized in terms of network hyper-parameters, training hyper-parameters, pre-processing, and

external regressor variables simultaneously. The optimal parameters are then used for training multiple

models of each type, resulting into various ensembles.

9



3. Forecasting the 1,045 longest monthly series of the M3 competition

In 2010, Ahmed et al. (2010) published a study that empirically compared the forecasting

accuracy of eight ML forecasting methods, utilizing the 1,045 monthly series of the M3

competition (Makridakis & Hibon, 2000) containing more than 80 observations (training

sample). The authors concluded that there are significant differences between the methods

in terms of accuracy, with different pre-processing approaches having also different impact

on their performance. Note, however, that the study of Ahmed et al. (2010) utilized only

ML methods without comparing their accuracy to standard, statistical benchmarks.

To allow such comparisons, Makridakis et al. (2018) extended the study of Ahmed et al.

(2010) in four directions. First, eight statistical methods were introduced as benchmarks to

compare the accuracy of the ML methods considered. Second, two additional ML methods

(Simple Recurrent Neural Network and Long Short Term Memory Neural Network) that

had become popular during the last years were included in the study. Third, an additional

accuracy measure (Mean Absolute Scaled Error - MASE; Hyndman & Koehler, 2006) was

introduced in addition to the symmetric Mean Absolute Percentage Error (sMAPE) used

by Ahmed et al. (2010) to make sure that similar conclusions would apply with a different

evaluation measure (for more details, see Appendix B). Fourth, three different approaches

were utilized for obtaining multi-step-ahead forecasts, thus enabling the evaluation of the ML

methods considered for longer forecasting horizons and not just for one-step-ahead forecasts

as it was done by Ahmed et al. (2010).

The results of the study of Makridakis et al. (2018) were surprising, indicating that

the one-step-ahead forecasting accuracy of the best ML method (Bayesian Neural Network

- BNN) was lower than that of the worst statistical one, being superior only to that of

the Naive 2, a seasonally adjusted random-walk benchmark. Figure 2 presents the one-

step-ahead forecasting accuracy (average of 18 one-step-ahead forecasts) of all the methods

examined by Makridakis et al. (2018) in terms of sMAPE, highlighting the superiority of

the statistical forecasting approaches. Similar conclusions were drawn for the case of the

multi-step-ahead forecasts, where the best performing ML method managed to outperform

only the Naive 2 benchmark in terms of sMAPE and the Naive 2, the Simple, and the Holt

exponential smoothing (Gardner, 2006) in terms of MASE.

In this section we expand the comparisons performed in Makridakis et al. (2018) to

include DL methods using GluonTS, as described in Section 2. Note that in contrast to the

local ML models considered by Makridakis et al. (2018), trained in a series-by-series fashion,

the developed DL models are global, exploiting the benefits of cross-learning (Januschowski
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Figure 2: Forecasting accuracy (sMAPE) of the eight statistical and the ten ML forecasting methods exam-

ined by Makridakis et al. (2018). The results are reported for the 1,045 monthly series of the M3 competition

containing more than 80 observations and refer to the average one-step-ahead forecasting accuracy of the

methods, computed iteratively for the last 18 observations of the series.

et al., 2020). Therefore, the aforementioned comparisons are effectively expanded to include

global forecasting models as well.

In order to facilitate comparisons, instead of considering all the methods of Figure 2, we

present Table 1 that lists the multi-step-ahead forecasting accuracy of the Naive 2 method,

together with that of two popular statistical methods, i.e. ARIMA (Hyndman & Khandakar,

2008) and ETS (Hyndman et al., 2002), considered as standards for comparison, as well as

the best performing ML methods (Multi-Layer Perceptron - MLP, and BNN) of Makridakis

et al. (2018). In addition, we consider the simple combination (median) of the forecasts

produced by ARIMA and ETS, to be called Ensemble-S. This ensemble, which involves the

two most accurate statistical methods of Makridakis et al. (2018) and is similar to the sim-

ple statistical combination approach of Petropoulos & Svetunkov (2020), that has recently

reported excellent results in the M4 competition, will serve as our primary benchmark. Fi-

nally, we report the corresponding forecasting accuracy of the four GluonTS models, as well

as their ensemble (median), Ensemble-DL. The computational time (CT) of the methods,

i.e. the time (measured in minutes) required by the methods for training and predicting

all 1,045 series 2, as well as the relative computational complexity (RCC) of the methods,

2The time needed for determining the optimal hyper-parameter values for each DL method is not included

in the CT reported in Table 1. That is because it is largely affected by the experimental setup (e.g. in

terms of number of hyper-parameters being optimized and trials performed to determine the optimal set of
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i.e. the number of floating point operations required by the methods for predicting all 1,045

series when compared to the Naive 2, is also reported. Note that Table 1 is similar to Tables

8 and 9 provided in Makridakis et al. (2018), with the addition of Ensemble-S, the four DL

methods, and Ensemble-DL.

Table 1: The multi-step-ahead forecasting accuracy (sMAPE and MASE) of the top performing ML methods

of the study of Makridakis et al. (2018), two statistical standards for comparison, their ensemble, and various

DL models. The results are reported for the 1,045 monthly series of the M3 competition containing more

than 80 observations. The bold numbers highlight the best performing method per error measure and

forecasting horizon. Short, medium, and long-term forecasts stand for 1-6, 7-12, and 13-18 month-ahead

forecasts, respectively. The computational time (CT - measured in minutes) and the relative computational

complexity (RCC) of the methods is also reported.

Method Type Number sMAPE MASE CT RCC

of models Short Medium Long Average Short Medium Long Average

Naive 2 Benchmark 1 10.75 12.38 15.01 12.71 0.75 1.04 1.35 1.05 1 1

ARIMA Statistical 1 9.55 11.03 15.36 11.98 0.63 0.88 1.21 0.91 44 50

ETS Statistical 1 9.09 10.68 13.72 11.17 0.63 0.89 1.19 0.90 34 38

Ensemble-S Statistical 2 8.93 10.31 13.66 10.97 0.61 0.86 1.16 0.88 78 88

MLP ML 100 9.53 12.34 15.00 12.29 0.66 0.98 1.24 0.96 83 166

BNN ML 100 9.39 12.08 14.80 12.09 0.64 0.94 1.20 0.93 47 96

DeepAR DL 50 9.23 10.91 13.60 11.25 0.65 0.90 1.23 0.93 9,064 313,000

Feed-Forward DL 50 10.09 10.75 13.69 11.51 0.70 0.88 1.16 0.91 1,370 47,300

Transformer DL 50 9.21 11.09 13.80 11.36 0.67 0.94 1.25 0.96 1,374 47,500

WaveNet DL 50 10.41 10.66 13.45 11.51 0.80 0.92 1.19 0.97 8,872 306,000

Ensemble-DL DL 200 8.83 9.90 12.50 10.41 0.62 0.83 1.12 0.86 20,680 713,800

Improvement of Ensemble-DL over Ensemble-S 0.10 0.41 1.16 0.56 -0.01 0.03 0.04 0.02

% Improvement of Ensemble-DL over Ensemble-S 1.1% 4.0% 8.5% 5.1% -1.6% 3.5% 3.4% 2.3%

More specifically, Table 1 shows the sMAPE and MASE forecasting accuracy of the

methods considered across the complete forecasting horizon (average of 18 forecasts), being

also subdivided into the categories of short (1 to 6-step-ahead), medium (7 to 12-step-ahead),

and long-term (13 to 18-step-ahead) forecasts. As seen, ETS and ARIMA are still more

accurate on average than the ML methods and many of the individual DL methods according

to sMAPE, both across all the forecasting horizons considered and their global average.

Moreover, both Ensemble-S and Ensemble-DL are more accurate than the individual models

that contribute to their construction. However, when compared to Ensemble-S, Ensemble-

DL performs better in total. The same conclusions can be drawn according to MASE,

with the exception of the short-term forecasts where Ensemble-S provides the best results.

The forecasting accuracy of the DL ensemble is about 18% better than that of the Naive 2

hyper-parameters) and the experience of the developers, thus not being an inherent property of the specific

method. However, regarding the present study, the time spent for tuning the four DL methods was 3,193,

512, 507 and 3,077 hours for DeepAR, Feed-Forward, Transformer, and WaveNet, respectively.
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method and around 5% and 2% than the statistical ensemble in terms of sMAPE and MASE,

respectively. Note also that, in general, the improvements of Ensemble-DL over Ensemble-S

are greater for medium and long-term forecasts. These results highlight the potential of DL,

especially when multiple, diverse models are combined.

Combining has long been considered as an excellent alternative to single forecasting

models, being one of the key finding of all the M competitions (Makridakis et al., 2020b).

The most recent and indicative example is probably the study described in Petropoulos &

Svetunkov (2020), that utilized a combination (median) of four relatively simple statistical

methods for forecasting the M4 series, being ranked 6th for the point forecasts (with a

small difference compared to the second-best submission) and the respective 95% prediction

intervals. Accordingly, ensembling has also been proven a powerful solution for the case of

the ML methods, and particularly for NNs, with the median and the mode operators leading

typically to better results (Kourentzes et al., 2014). The reasoning is two-fold: First, NNs are

characterized by great variations when different initial parameter values are used, meaning

that aggregating the results of multiple NNs instead of using a single one, enhances the

robustness and the accuracy of the forecasts. Second, since each model is good at capturing

different time series characteristics, combining their predictions allows for complex patterns

to be effectively identified and then accurately extrapolated.

Note that similar results with those reported in Table 1 have been recently reported by

Oreshkin et al. (2019), who utilized ensembles of multiple DL models to achieve more accu-

rate forecasts than standard statistical methods in the M3 competition data. Interestingly,

although the DL ensembles considered by Oreshkin et al. (2019) reported excellent forecast-

ing performance, being significantly more accurate than the benchmarks, the individual DL

models used for constructing the ensembles were relatively inaccurate. This finding is in line

with our results, highlighting the value of combining various DL models, each considering

different techniques for analysing and extrapolating time series patterns.

However, by examining Table 1, there is an issue that has to be further explored: Why

do ARIMA, ETS and their ensemble, some relatively simple statistical methods, provide

similarly accurate or even more accurate short-term forecasts than the DL models and their

ensemble, but inferior results when medium or long-term forecasts are considered? In order

to better investigate this issue, Table 2 disaggregates the results of Table 1 for the case

of the sMAPE measure, reporting the forecasting accuracy of the statistical, ML, and DL

methods considered across various forecasting horizons separately.

As seen, there is a clear ascending trend in regards to the forecast error across all statisti-
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Table 2: The forecasting accuracy (sMAPE) of the top performing ML methods of the study of Makridakis

et al. (2018), two statistical standards for comparison, their ensemble, and various DL models for different

forecasting horizons. The results are reported for the 1,045 monthly series of the M3 competition con-

taining more than 80 observations. The bold numbers highlight the best performing method per forecasting

horizon. Short, medium, and long-term forecasts stand for 1-6, 7-12, and 13-18 month-ahead forecasts,

respectively.

Method 1 2 3 4 5 6 Avg. 8 12 Avg. 15 18 Avg.

Short Medium Long

Naive 2 10.65 9.10 11.55 11.86 10.55 10.78 10.75 12.41 12.38 12.38 15.77 16.56 15.01

ARIMA 8.02 8.82 9.80 10.62 10.09 9.94 9.55 10.64 11.63 11.03 15.94 16.46 15.36

ETS 8.24 7.44 9.30 10.16 9.63 9.80 9.09 10.06 10.92 10.68 13.87 15.63 13.72

Ensemble-S 7.91 7.83 9.28 9.96 9.16 9.45 8.93 9.80 10.73 10.31 14.01 15.07 13.66

MLP 7.98 8.62 9.47 9.81 10.75 10.56 9.53 11.52 13.23 12.34 14.49 17.20 15.00

BNN 7.92 8.37 9.46 9.67 10.54 10.39 9.39 11.28 13.03 12.08 14.33 16.82 14.80

DeepAR 8.05 8.12 9.76 9.78 9.87 9.78 9.23 10.91 10.91 10.91 13.73 15.16 13.60

Feed-Forward 10.35 9.37 10.41 11.30 9.26 9.86 10.09 9.89 11.91 10.75 13.62 14.08 13.69

Transformer 8.86 8.28 9.15 9.92 9.02 10.02 9.21 11.17 11.12 11.09 13.81 15.68 13.80

WaveNet 10.06 9.53 11.51 12.11 9.38 9.87 10.41 10.08 11.20 10.66 13.87 14.50 13.45

Ensemble-DL 8.55 8.00 9.41 9.76 8.43 8.87 8.83 9.63 10.06 9.90 12.68 13.81 12.50

Improvement of Ensemble-DL

over Ensemble-S -0.64 -0.17 -0.13 0.2 0.73 0.58 0.10 0.17 0.67 0.41 1.33 1.26 1.16

% Improvement of Ensemble-DL

over Ensemble-S -8.1% -2.2% -1.4% 2.0% 8.0% 6.1% 1.1% 1.7% 6.2% 4.0% 9.5% 8.4% 8.5%

cal, ML, and DL methods considered. Long-term forecasts tend to be less accurate than the

short-term ones, as expected. However, the forecasting accuracy at the earlier forecasting

horizons and the rate at which it deteriorates for longer ones is different for different types

of methods. This is demonstrated by the percentage improvements reported for each fore-

casting horizon for Ensemble-DL over Ensemble-S. Specifically, we find that Ensemble-DL

is 8.1% less accurate in the first forecasting horizon compared to Ensemble-S, but after the

fourth horizon it provides increasingly more accurate results, being 8.4% more accurate in

the last forecasting horizon. A similar pattern emerges for the ML methods examined, i.e.

MLP and BNN. In the first forecasting horizon they provide more accurate forecasts than

those of the four DL methods and their ensemble. However, in the later horizons, they

perform significantly worse.

In an attempt to explain the results of Table 2, we hypothesize that the differences re-

ported in the relative performance of the examined models are directly linked to the learning

objective that guides their optimization process. Specifically, our hypothesis is that when

models are optimized based on their one-step-ahead forecasting accuracy, their forecasts will

be relatively more accurate for short-term forecasts compared to models that are optimized

based on their multi-step-ahead forecasting accuracy, and vise versa. Effectively, the overall

accuracy of the former type of models will depend on the rate at which the one-step-ahead
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Figure 3: The relative forecasting accuracy (sMAPE) of the 18-step-ahead-optimized Holt method over the

one-step-ahead-optimized Holt method. The results are reported for the 1,045 monthly series of the M3

competition containing more than 80 observations and for each forecasting horizon separately. Points that

are below the red horizontal line indicate forecasting horizons where the 18-step-ahead variant provides more

accurate forecasts than the one-step-ahead one, and vice versa.

forecast errors accumulate recursively, while the overall accuracy of the latter type of mod-

els will be mostly driven by their ability to relate historical data with multiple forecasting

horizons simultaneously. Drawing from the above, this hypothesis provides a reasonable ex-

planation to our previous findings. Typically, statistical forecasting methods are optimized

in terms of parameters so that the one-step-ahead forecast error is minimized. This is exactly

the case for the statistical standards for comparison (ETS and ARIMA) considered in our

study, that are parameterized with the objective to minimize the in-sample mean squared

error of their forecasts. Similarly, the ML benchmarks of Makridakis et al. (2018) (MLP

and BNN) have been parameterized with the objective to produce accurate multi-step-ahead

forecasts in a recursive fashion. As a result, although these methods are highly accurate in

the first few forecasting horizons, their relative forecasting performance deteriorates fast, in

contrast to DL models that are optimized for multi-step-ahead forecasting and, therefore,

are specialized for this particular forecasting task.

To empirically test our hypothesis, we conducted a simple experiment where we used the

Holt exponential smoothing model (Gardner, 2006) to forecast the 1,045 monthly series of
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the M3 competition containing more than 80 observations, using two different approaches

for optimizing the parameters of the model, i.e., the smoothing parameters that determine

the level and trend components of the forecasts. In the first case, the parameters were opti-

mized based on the one-step-ahead forecast error, as traditionally done by most forecasting

software. In the second case, the model parameters were optimized based on the average

error of the 18-step-ahead forecasts. After producing the forecasts, the relative forecasting

accuracy of the first variant over the second was computed for each forecasting horizon, as

shown in Figure 3. It can be seen that there is a clear descending trend in the relative

accuracy of the two forecasting approaches. Although for short-term forecasts the first vari-

ant provides better results, these improvements are diminished for medium-term forecasts,

becoming negative for long-term ones.

Overall, the theoretical explanation and the empirical results provided above support

our initial hypothesis. Moreover, our findings are in line with those of past studies that

have evaluated various strategies for training multi-step-ahead ML models, including the

recursive, direct, and multi-input multi-output ones, among others (Ben Taieb et al., 2010,

2012). Therefore, we conclude that although statistical methods may provide more accurate

short-term forecasts than DL methods, the latter can effectively balance learning across

multiple forecasting horizons, sacrificing part of their short-term accuracy to ensure adequate

performance in the long-term. Will this conclusion apply to other data sets beyond the

1,045 longest monthly series of the M3 competition? Is this the norm or an exception? The

following section, where all 3,003 M3 data are considered to perform relative comparisons,

sheds more light on these questions.

4. Forecasting all 3,003 series of the M3 competition

In this section, we extend the accuracy comparisons performed in the previous one to all

3,003 series of the M3 competition that involve yearly, quarterly, and “other” series along

with the monthly ones. Moreover, we discuss the similarities and differences between the

results of the two data sets and explore further the question on whether statistical models are

more appropriate for short-term forecasting, with DL ones being more accurate for long-term

predictions.

Table 3 summarizes the average forecasting accuracy of GluonTS models in terms of

sMAPE for all 3,003 series of the M3 competition. Yearly data involve 645 series and 6-step-

ahead forecasts, quarterly data 756 series and 8-step-ahead forecasts, monthly data 1,428

series and 18-step-ahead forecasts, while “other” data 174 series and 8-step-ahead forecasts.
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The average forecasting accuracy of the methods is computed as the global average of the

37,014 forecasts required by the organizers of the competition (number of series multiplied

by the respective forecasting horizon). Moreover, a variety of forecasting methods originally

submitted in the M3 competition are included as benchmarks along with the two standards

for comparison, and some state-of-the-art statistical, ML, and DL methods that have been

recently tested using all the 3,003 M3 data. Note that the accuracy of the benchmarks

included in the original M3 study has been re-computed based on the error measure used

in this paper. In this regard, the results presented in Table 3 are slightly different to those

reported in Makridakis & Hibon (2000).

We expand the accuracy comparisons between DL and statistical forecasting approaches

to account for statistical models trained in a cross-learning fashion. Although, traditionally,

statistical models are fitted on the data of a single series and tasked with producing forecasts

for that same series (local models), assessing the accuracy of their global counterparts would

further improve the quality of the comparisons. Since most statistical models are not well-

suited for cross-learning, we consider a linear regression model trained in a cross-learning

fashion, to be called Global-LM, similar to that proposed by Montero-Manso & Hyndman

(2021). For the different subsets of series, the number of past observations used by Global-

LM to forecast the future ones is equal to the forecasting horizon, i.e. 6 for yearly series, 8

for quarterly series, 18 for monthly series, and 8 for “other” series. Global-LM is trained to

produce one-step-ahead forecasts and, therefore, multiple-step-ahead forecasts are computed

iteratively, i.e. by applying the recursive forecasting strategy (Ben Taieb et al., 2012).

Observe that Ensemble-DL continues to be the most accurate forecasting approach over-

all. This is true for all data frequencies, except of the yearly series where, by a small margin,

the DL ensemble is outperformed by LGT, a ML forecasting method (Smyl & Kuber, 2016).

From these findings, we can conclude that DL models are capable of providing accurate

results overall and for various types of data (Spiliotis et al., 2020b). The GluonTS ensem-

ble does not always outperform the individual DL models used for its construction, with

DeepAR doing better in the data labeled as “other”. This could indicate that, although the

ensembles of multiple DL models lead to more accurate results, depending on the particular

characteristics of the series, other models could be more appropriate in different situations

(Petropoulos et al., 2014) and various forecasting horizons.

We also observe that the improvements reported for the DL ensemble over the statistical

ensemble are greater for lower frequency data, i.e. yearly and quarterly series. In particular,

Ensemble-DL is 7.3% and and 7.5% more accurate than Ensemble-S for the yearly and
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Table 3: The multi-step-ahead forecasting accuracy (sMAPE) of popular statistical and ML models com-

pared with that of various DL ones. The results are reported for all the 3,003 series of the M3 competition,

both per data frequency and total.

Method Type Yearly Quarterly Monthly Other Average

645 756 1,428 174 3,003

Naive 2 Benchmark 17.88 9.95 16.89 6.30 15.46

M3 B–J automatic Statistical 17.73 10.26 14.80 5.06 13.99

competition Comb S-H-D Statistical 17.07 9.22 14.47 4.56 13.51

study (Makridakis & Hibon, 2000) ForecastPro Statistical 17.27 9.82 13.90 4.60 13.23

Theta Statistical 16.97 8.96 13.89 4.41 13.05

Standards ARIMA (Hyndman & Khandakar, 2008) Statistical 17.10 10.01 14.90 4.51 13.94

for ETS (Hyndman et al., 2002) Statistical 17.00 9.68 14.14 4.37 13.34

comparison Ensemble-S Statistical 16.49 9.50 13.83 4.37 13.04

Global-LM Statistical 16.72 17.52 17.57 4.78 16.99

DOTM (Fiorucci et al., 2016) Statistical 15.94 9.28 13.74 4.58 12.90

Other EXP (Spiliotis et al., 2019a) Statistical 16.39 8.98 13.43 5.46 12.71

M3 LGT (Smyl & Kuber, 2016) ML 15.23 n/a n/a 4.26 n/a

studies Bagged.BLD.MBB.ETS (Bergmeir et al., 2016) Statistical 17.89 10.13 13.64 n/a n/a

Bagged.Cluster.ET (Dantas & Cyrino Oliveira, 2018) Statistical 17.56 9.89 13.62 n/a n/a

N-BEATS (Oreshkin et al., 2019)

N-BEATS-G DL 16.20 8.92 13.19 4.19 12.47

N-BEATS-I DL 15.84 9.03 13.15 4.30 12.43

N-BEATS-I+G DL 15.93 8.84 13.11 4.24 12.37

GluonTS

DeepAR DL 15.42 9.00 13.64 4.13 12.71

Feed-Forward DL 16.55 9.15 14.36 4.53 13.37

Transformer DL 16.38 9.23 14.45 4.41 13.42

WaveNet DL 18.36 13.62 13.84 5.53 13.96

Ensemble-DL DL 15.29 8.79 13.07 4.32 12.27

Improvement of Ensemble-DL over Ensemble-S 1.20 0.71 0.76 0.05 0.77

% Improvement of Ensemble-DL over Ensemble-S 7.3% 7.5% 5.5% 1.1% 5.9%

quarterly data respectively, and 5.5% better for the monthly series. This finding is in line

with our “horses for courses” argument, suggesting that the improvements of DL methods

may vary depending on the particularities of the series being predicted.

Interestingly, the accuracy of the Ensemble-DL and the N-BEATS (Oreshkin et al.,

2019), another state-of-the-art DL forecasting approach, are very similar across all data

frequencies, with the former being a little more accurate in all frequencies except that of

“other” series. However, the differences between the two approaches are minimal, ranging

from 0.64 (yearly data) to -0.08 (“other” data), with GluonTS having on average a slight

advantage of 0.10 over N-BEATS. This finding could suggest that current DL approaches

have similar learning capacities, leading to comparable results when ensembles of multiple

DL models are considered.

Although the results of Table 3 suggest that Ensemble-DL is more accurate than Ensemble-

S across all data frequencies, one could argue that part of the improvements may be at-

tributed to the greater number of models Ensemble-DL (four models) uses over Ensemble-S

(two models). To shed some light in this direction we combine the forecasts of the individual

DL models in pairs and compute the accuracy of the resulting ensembles, as shown in Table

4. Overall, when all 3,003 series are taken into consideration, we observe that all pairwise

18



DL combinations produce 0.4% to 6.1% more accurate forecasts than Ensemble-S. The same

is true for the yearly and the monthly series where, with the exception of the “Feed-Forward

& Transformer” ensemble in the monthly series, all pairwise ensembles improve on average

accuracy by more than 4% over the Ensemble-S benchmark. Similar conclusions can be

drawn for the quarterly and “other” data, although in this case “Feed-Forward & WaveNet”

and “Transformer & WaveNet” do worse than Ensemble-S. Interestingly, ensembles that

involve DeepAR, i.e. the most accurate individual DL model, consistently outperform the

rest, while ensembles that involve WaveNet, i.e. the least accurate individual DL model,

sometimes deteriorate forecasting performance. This finding suggests that ensembles that

involve more skillful models are more likely to further improve forecasting performance.

Nevertheless, we find that the accuracy of Ensemble-DL is comparable to that of the best

pairwise ensemble, despite the fact it contains forecasts from less accurate DL models. Given

that identifying a priory the most accurate base models to be used in an ensemble can be

a challenging and time intensive process, it is encouraging to find that larger yet simple

ensembles can effectively improve overall accuracy.

Table 4: The multi-step-ahead forecasting accuracy (sMAPE) of various DL models compared with that of

their pairwise ensembles as well as Ensemble-DL (median of all four DL models) and Ensemble-S (median

of two statistical models). The results are reported for all the 3,003 series of the M3 competition, both

per data frequency and total.

Method Yearly Quarterly Monthly Other Average

645 756 1,428 174 3,003

Ensemble-DL 15.29 8.79 13.07 4.32 12.27

Ensemble-S 16.49 9.50 13.83 4.37 13.04

DeepAR & Feed-Forward 15.24 8.73 13.07 4.16 12.25

DeepAR & Transformer 15.06 8.60 13.44 4.10 12.47

DeepAR & WaveNet 15.69 9.18 13.09 4.32 12.39

Feed-Forward & Transformer 15.74 8.78 13.85 4.36 12.86

Feed-Forward & WaveNet 16.39 10.20 13.56 4.76 12.98

Transformer & WaveNet 16.34 10.11 13.62 4.66 12.99

An interesting case in the results of Table 3 that requires further discussion is that of

global statistical models. Global-LM ranks last among all methods considered by a large

margin when tasked with forecasting quarterly and monthly series. However, it is a much

more viable forecasting approach in the case of yearly and “other” series. This discrepancy
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can be attributed to the simplified assumptions that the linear regression model makes

and the challenges of the examined forecasting task. The existence of seasonal patterns

in quarterly and monthly time series along with the longer forecasting horizons make the

task of effectively fitting a linear model for these series more difficult compared to the case

of yearly data that are dominated by linear trends. Traditional, local statistical models

can focus their modeling capacity on the particular patterns of each series and, therefore,

outperform the single global one. Recall that, in contrast to Global-LM, some local models

can effectively account for multiplicative trend and seasonality if needed, thus being more

generic. On the other hand DL approaches offer significantly more potent models that are

able to effectively learn complex patterns from larger sets of series. As a result, Global-LM

performs worse than all other classes of models, while global DL models, and especially their

ensemble, provide the most accurate results overall.

Table 5 is similar to Table 3, but instead of examining the accuracy of the various fore-

casting methods across different data frequencies, the performance of the methods is reported

for different forecasting horizons, as done in Table 2 for the case of the 1,045 longest monthly

series of M3. For reasons of brevity, the results are summarized for all 3,003 time series of

M3, rather than for each data frequency separately. Moreover, the forecasting methods

included are those for which detailed forecasts were provided per forecasting horizon.

Table 5: The forecasting accuracy (sMAPE) of various statistical models compared with that of DL ones for

different forecasting horizons. The results are reported for all the 3,003 series of the M3 competition. The

bold numbers highlight the best performing method per forecasting horizon. Short, medium, and long-term

forecasts stand for 1-6, 7-12, and 13-18 period-ahead forecasts, respectively.

Method 1 2 3 4 5 6 Avg. 8 12 Avg. 15 18 Avg.

Short Medium Long

M3 Naive 2 10.45 11.33 13.63 15.06 15.06 15.76 13.55 14.51 15.99 15.58 19.32 20.70 19.58

competition B–J automatic 9.19 10.40 12.22 13.87 14.03 14.63 12.39 13.00 14.06 13.57 17.76 19.26 18.01

study Comb S-H-D 8.87 10.01 12.04 13.46 13.67 14.04 12.02 12.41 13.63 13.15 17.28 18.26 17.22

(Makridakis & Hibon, 2000) ForecastPro 8.61 9.57 11.44 13.01 13.43 14.26 11.72 12.67 13.31 13.06 16.43 18.29 16.73

Theta 8.40 9.57 11.31 12.53 13.19 13.92 11.49 11.98 13.23 12.92 16.36 18.36 16.67

Standards for ARIMA (Hyndman & Khandakar, 2008) 8.58 10.01 11.84 13.22 13.80 14.58 12.00 13.08 14.03 13.55 18.44 20.00 18.50

for ETS (Hyndman et al., 2002) 8.54 9.51 11.39 12.93 13.34 14.20 11.65 12.62 13.45 13.12 17.00 19.20 17.18

comparison Ensemble-S 8.35 9.49 11.27 12.68 12.94 13.85 11.43 12.35 13.05 12.75 16.74 18.31 16.80

Global-LM 10.42 11.57 13.54 15.88 16.71 18.05 14.36 19.28 17.39 17.40 21.44 23.54 22.03

GluonTS

DeepAR 8.04 9.54 11.23 12.02 12.59 13.26 11.11 12.28 13.31 12.77 15.83 17.26 15.99

Feed-Forward 9.44 10.25 11.82 13.05 12.86 14.25 11.95 12.07 14.34 12.98 16.68 17.39 16.82

Transformer 9.25 10.07 11.68 12.72 12.80 13.99 11.75 12.58 13.75 13.32 16.77 18.17 17.05

WaveNet 11.02 11.64 13.40 14.24 14.15 15.23 13.28 12.74 13.44 13.14 16.45 17.41 16.41

Ensemble-DL 8.35 9.35 11.09 11.95 11.99 12.95 10.95 11.41 12.52 12.03 15.24 16.42 15.36

Improvement of Ensemble-DL

over Ensemble-S 0.00 0.14 0.18 0.73 0.95 0.9 0.48 0.94 0.53 0.72 1.50 1.89 1.44

% Improvement of Ensemble-DL

over Ensemble-S 0.0% 1.5% 1.6% 5.8% 7.3% 6.5% 4.2% 7.6% 4.1% 5.6% 9.0% 10.3% 8.6%

Notice that, with the exception of DeepAR, the individual DL models are less accurate

than the best performing statistical one for short and medium horizons, with the differences

becoming smaller however as the forecasting horizon increases. In particular, Theta is

20



more accurate than the Feed-Forward, Transformer, and WaveNet models for short (by

3.9%, 2.2%, and 13.5%, respectively) and medium-term forecasts (by 2.1%, 4.2%, and 2.2%,

respectively). However, Theta outperforms only the Feed-Forward and Transformer model

for long-term forecasts (by 0.9% and 2.2%, respectively), being also less accurate than the

WaveNet model (by 1.6%). With the exception of the three shorter forecasting horizons,

Global-LM provides the least accurate forecasts compared to the rest of the forecasting

methods considered. Even when compared to the Naive 2 method, Global-LM is 6.0%,

11.7%, and 12.5% less accurate for short, medium, and long horizons, respectively.

The results of Table 5 reconfirm the power of combining. Both Ensemble-S and Ensemble-

DL provided more accurate results than those of their constituent methods, although DeepAR

is about 4% better for the case of the one-step-ahead forecasts. However, observe that in

contrast to Table 2, where the ensemble of the statistical methods outperformed the DL en-

semble for horizons 1, 2 and 3, Ensemble-DL is at least as accurate or superior to Ensemble-S

when the complete M3 data set is considered, across all horizons.

Both Table 3 and Table 5 indicate that DL methods can lead to greater accuracy im-

provements, compared to their statistical counterparts, when tasked with forecasting yearly

or quarterly series. This becomes evident not only by examining the per-frequency summary

results of Table 3, but also by comparing the per-horizon results of Table 5 to those of Table

2. In the case of Table 2, where only 1,045 monthly series are considered, the percentage

improvement of Ensemble-DL over Ensemble-S for the first 6 forecasting horizons ranges

from -8.1% to 6.1%, with statistical methods being clearly superior to DL for horizons 1,

2, and 3. In the case of Table 5, the results for the first 6 horizons summarize the errors

from yearly, quarterly, monthly, and “other” series (accounting for 21%, 25%, 48% and 6%

of the 3,003 forecasts respectively). As a result, due to the improved performance of DL

methods in forecasting lower frequency series, the corresponding percentage improvement,

across all 3,003 series, ranges from 0.0% to 6.5%, with DL methods outperforming statistical

standards for comparisons across all horizons.

Returning to the initial question on whether statistical models, optimized for one-step-

ahead forecasts, are more appropriate for short-term forecasting, the results reported in the

present section indicate that, when all 3,003 series are considered, although DL methods

perform better overall, their advantage is still limited in the early forecasting horizons and

increases for medium and long term forecasts. Thus, it is safe to conclude that the hypothesis

presented in Section 3 holds true for the expanded set of series.

However, even though it is apparent in both Table 2 and Table 5 that a clear pattern
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exists, regarding the improvement of Ensemble-DL over Ensemble-S, it is still unclear why

for the case of 1,045 monthly series the improvements range from -8.1% to 9.5%, while for the

case of all 3,003 series range from 0.0% to 10.3%. The answer to this question may lie in the

size of the forecasting horizon used when forecasting series of different frequencies, that is set

to 6 for yearly forecasts, 8 for quarterly and other forecasts, and 18 for monthly forecasts. DL

methods optimized for multi-step-ahead forecasts, despite their significant learning capacity,

are forced to split their “attention” in order to provide reasonable forecasts for the entire

horizon. Essentially, only a fraction of their strength is dedicated to any single point of the

horizon. Naturally, as the length of the horizon increases, the importance of each individual

forecast is reduced and the short-term forecasting performance of multi-step-ahead methods

will decrease, and vise versa. On the other hand, statistical methods optimized for one-

step-ahead forecasts dedicate their full potential on extrapolating the series one step into

the future, irrespective of the length of the horizon. As a result, the improved relative

performance of DL methods in the first forecasting horizons is to be expected when series

with shorter horizons are included, compared to when only series that require 18-step-ahead

forecasts are considered.

In order to investigate the differences reported between the DL methods over the stan-

dards for comparison, and especially Ensemble-S, we employ the multiple comparisons with

the best (MCB) test (Koning et al., 2005). The test computes the average ranks of the fore-

casting methods according to sMAPE across the complete data set of the M3 competition

and concludes whether or not these are statistically different. Figure 4 presents the results

of the analysis. If the intervals of two methods do not overlap, this indicates a statistically

different performance. Thus, methods that do not overlap with the gray interval of the figure

are considered significantly worse than the best, and vice versa.

According to MCB, we find that Ensemble-DL is significantly more accurate than the

rest of the forecasting methods considered in this study, including the DL models it consists

of. On a second level, Ensemble-S provides significantly more accurate forecasts than the

contributing ETS and ARIMA models. Overall, the power of ensembling is once again con-

firmed. Finally, despite the dominance of Ensemble-DL, only DeepAR, among all individual

DL methods, produces significantly more accurate forecasts than those of the top-performing

statistical methods.

Although the results of the MCB test clearly support the superiority of Ensemble-DL,

both over the individual DL models and the examined statistical ensemble, using a larger

sample of forecasts to conduct comparisons would have allowed for better generalization of
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Figure 4: Average ranks and 95% confidence intervals of the standards for comparison and the DL forecasting

methods, as well as the global linear model, over all the 3,003 series of the M3 competition: multiple

comparisons with the best (sMAPE used for ranking the methods) as proposed by Koning et al. (2005).

our findings. In this regard, we consider the rolling origin evaluation approach (Tashman,

2000) which is equivalent to cross-validation for time series data. According to this approach,

a period of historical data is first used for training the examined forecasting methods. Then,

the methods are used to produce forecasts for a given forecasting horizon and the accuracy

is measured based on the actual values of the series in the corresponding test period. Sub-

sequently, the forecast origin is shifted, the methods are re-trained using the new data that

have become available, and new forecasts are produced, contributing another evaluation.

This process is repeated till there are no data left for testing and the overall performance of

the methods is determined based on their average accuracy over the conducted evaluations.

In our case, and given that DL models are particularly computationally expensive to run for

multiple forecast origins, we applied the described evaluation scheme over the complete M3

data set for two consecutive origins using a shifting step that was equal to the forecasting

horizon so that the two test sets do not overlap.

Table 6 summarizes the results of the rolling origin evaluation for the statistical and the

DL ensemble, as well as of the individual models involved in these combinations. As seen,

the results are very similar to those reported in Table 3, both across all series and per data
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frequency, confirming our previous findings. The consistency of our results can be justified

by the high representativeness of the M3 data set. The M3 time series have different starting

points and lengths. As a result, the out-of-sample period used for evaluating the forecasts will

effectively differ among the series, meaning that the dominance of one forecasting method

over the others is unlikely to be attributed to a specific forecast origin, economic cycle, or

seasonal pattern that would favor its use.

Table 6: The multi-step-ahead forecasting accuracy (sMAPE) of the examined DL models compared with

that of the standards for comparison and their ensembles considering a rolling origin evaluation approach.

The results are reported for all the 3,003 series of the M3 competition, both per data frequency and total.

Method Yearly Quarterly Monthly Other Average

645 756 1,428 174 3,003

ARIMA 18.38 9.95 15.12 4.22 14.21

ETS 19.27 9.43 14.88 4.22 14.04

Ensemble-S 18.13 9.38 14.28 4.13 13.50

DeepAR 17.27 8.96 13.84 3.99 13.03

Feed-Forward 18.12 9.06 14.79 4.37 13.81

Transformer 18.02 9.18 14.74 4.17 13.78

WaveNet 20.47 13.48 13.98 5.17 14.24

Ensemble-DL 16.93 8.72 13.32 4.11 12.60

5. DL methods: Advantages and drawbacks

Selecting and optimizing the most accurate forecasting model has fundamentally changed

over the last 60 years. In his excellent paper “A brief history of forecasting competitions”,

Hyndman (2020) quotes the comments made by two discussants of the Makridakis & Hibon

(1979) study to illustrate the thinking of the time (1979). The first discussant commented

“The combined forecasting methods seem to me to be non-starters ... Is a combined method

not in danger of falling between two stools?”, while the second added “The authors’ sugges-

tion about combining different forecasts is an interesting one, but its validity would seem to

depend on the assumption that the model used in the Box-Jenkins approach is inadequate -

for otherwise, the Box-Jenkins forecast alone would be optimal”.

Hyndman continues his review with what can be described as the dominant approach

of that time that required identifying judgmentally the most appropriate model for each
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time series, suggesting that way a strong bias against automatic forecasting procedures, as

expressed by Jenkins: “The fact remains that model building is best done by the human brain

and is inevitably an iterative process”.

Gradually, combining the forecasts of more than one methods was accepted as a useful

alternative to using a single one (Claeskens et al., 2016) while automatic selection of the most

appropriate model became a common practice (Fildes & Petropoulos, 2015; Spiliotis et al.,

2020a). Yet, combining and automatic model selection are just two parts of how DL models

work nowadays. All four of the GluonTS and the two N-BEATS forecasting models have two

main things in common. First, the forecasts are produced without specifying an underlying

data generating process (e.g. in terms of trend and seasonality). The users do determine

the hyper-parameters of the models to facilitate training, but after specifying these values,

data relationships are found in an automatic way without making any assumptions about

the data patterns. The optimization of the NN weights, which are responsible for deriving

the final forecasts, is done starting with some initial values that are improved with each

additional iteration in order to arrive at an “optimal” model. Second, a large number of

such models are used in an ensemble to provide more robust and accurate performance.

Overall, state-of-the-art DL models can be effectively trained in order to become accurate

forecasting tools, and, when several models are combined, further accuracy improvements

are to be expected. On the other hand, the construction of accurate DL forecasting models

is more like an art, depending heavily on the skills, the experience, and the background of

the forecaster, meaning human brain and judgment are still relevant for building accurate

models (Barker, 2020). However, once the hyper-parameters have been set, forecasting using

DL becomes rather automated.

The results of this study highlight the potential of DL methods for time series forecasting

applications, indicating that sophisticated models are able to provide more accurate results

than their statistical and ML counterparts, especially when ensembles of multiple models

are used. However, even in the Big Data era, computation time is still important, especially

in settings where getting fast results is equally or even more important than getting accurate

forecasts (Nikolopoulos & Petropoulos, 2018). In certain applications, “pre-trained” models

can be employed without additional training and, as a result, the cost of using DL methods

can be reduced. However, in many cases, model training cannot be avoided and practitioners

are required to train new models or re-train old ones. The computational time reported

in this study includes the time required for both training the models and producing the

requested forecasts, with training time constituting the majority of it. Figure 5 visualizes the
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trade-off between optimal versus sub-optimal solutions in terms of forecasting performance

versus computational time for the case of the 1,045 longest monthly series of M3. As seen,

the additional cost that has to be paid for using a DL model in order to improve forecasting

accuracy to a small extent is extensive. In particular, it is shown that a drop of 10% in

terms of forecasting error could require an additional computational time of about 15 days,

which if not decreased, e.g., by using more and faster processors in parallel, is probably

prohibiting the utilization of advanced DL approaches for every day forecasting tasks that

require training new models (or re-training old ones). In this regard, it becomes evident that,

for practical reasons, if DL methods are to be widely adopted by business firms and other

organizations, their computational requirements must be reduced considerably. Otherwise,

traditional, statistical methods and standard ML ones of lower computational requirements

will continue to dominate the field of forecasting.

Figure 5: Forecasting performance (sMAPE) versus computational time (CT). The results are reported for

multi-step-ahead forecasts for the 1,045 monthly series of M3 containing more than 80 observations. An

ln(CT) of zero corresponds to about 1 minute of computational time, while an ln(CT) of 2, 4, 6, 8, and 10

correspond to about 7 minutes, 1 hour, 7 hours, 2 days, and 15 days, respectively.

In an attempt to reduce the overall computational cost of the examined DL approaches

and make them more efficient, we question the importance of considering numerous DL

models within the ensemble. Figure 6 shows the sMAPE of the multi-step-ahead forecasts

produced by various ensembles of GluonTS models (DeepAR, Feed-Forward, Transformer,

and WaveNet) for the case of the 1,045 longest monthly series of M3. Observe that, as the

number of the DL models used in the ensemble increases, the accuracy is improved, first at a

steep rate and then at a smaller pace. However, it seems that a number of about 75 models
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may be enough for producing results whose accuracy is similar to those reported for the 200

models with about one third of the computational cost. This suggests that the efficiency of

DL forecasting approaches can be significantly improved without a major impact on their

accuracy if their computationally-intensive processes are restricted to a reasonable number

of models. At the same time, as computer power is increasing and programming is becoming

more efficient, such costs could become less important in the future, thus allowing the wider

utilization of DL.
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Figure 6: Forecasting performance (sMAPE) of various ensembles of DL models. The results are reported

for multi-step-ahead forecasts for the 1,045 monthly series of M3 containing more than 80 observations. For

each ensemble, random combinations of the 50 DeepAR, Feed-Forward, Transformer, and WaveNet models

were considered.

In summary, we find out that DL models produce more accurate forecasts than statistical

and ML ones, especially for longer forecasting horizons. Ensembles of multiple models can

be utilized to further improve performance, although at much greater computational cost.

On the negative side, in most of the cases the overall forecasting procedure is a black-box,

with the models being estimated mechanically in an automatic way. In this regard, although

the forecasts derived by DL models could be superior to those of their statistical and ML

counterparts, there is no direct way for a forecasting user to understand how the forecasts

were made or how they would have been different if some factor would have changed.

As a final step in our analysis, we investigate how key time series features influence the

forecasting accuracy of statistical and DL ensembles. This is because the literature suggests

that different types of methods may be more appropriate for forecasting series of different
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characteristics (Petropoulos et al., 2014), meaning that DL approaches may perform better

on average than statistical ones due to their ability to better handle particular patterns of

data. To do so, similarly to Spiliotis et al. (2020b) we use a multiple linear regression (MLR)

model to correlate the sMAPE value achieved by each ensemble for each time series in the

M3 data set with the five intuitive time series features proposed by Kang et al. (2017), as

follows:

sMAPEi = aF1i + bF2i + cF3i + dF4i + eF5i ,

where sMAPEi is the error reported for the ith time series of the data set for Ensemble-S or

Ensemble-DL. F1i corresponds to the spectral entropy of series i, measuring its “forecastabil-

ity” (or randomness), F2i to its strength of trend, measuring long-term changes in its mean

level, F3i to its strength of seasonality, measuring the influence of the seasonal factors, F4i

to its first order autocorrelation, measuring the linear relationship between its observations,

and F5i to its optimal Box–Cox transformation parameter, measuring stability.

Before estimating the MLR models, both dependent (sMAPE) and independent (fea-

tures) variables are scaled within the range of [0,1] so that the results are scale independent

and easier to interpret. This allows us to detect features that explain the sMAPE variances

and approximate their negative or positive effects on the forecasting accuracy. By comparing

the coefficients of the individual MLR models we can then understand the strengths and

weaknesses of each forecasting approach better; smaller coefficients suggest better accuracy

and vice versa. The results are presented in Table 7. As can be seen, Ensemble-DL is gen-

erally more effective in handling noisy and trended series, in contrast to Ensemble-S that

provides more accurate forecasts for seasonal data, as well as for series that are stable or

linear. This finding is in line with the results of Table 3 where Ensemble-DL was found

to be more accurate for predicting yearly and quarterly data, typically dominated by the

trend component. Accordingly, the improvements of Ensemble-DL in the monthly series

are smaller since, although DL models are more robust to randomness, the corresponding

series are characterized by seasonality, a component which is modeled more effectively by

statistical methods (Smyl, 2020).

6. Conclusions

The forecasting spring started with the M4 competition when for the first time after close

to 40 years a number of sophisticated ML methods were found to produce more accurate fore-

casts than simple, statistical ones. Research around the use of ML algorithms in forecasting
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Table 7: Coefficients of the MLR models relating the sMAPE values generated by the statistical and DL

ensembles in the 3,003 series of the M3 competition with their features. The R2 values of the MLR models

are reported to quantify the interpretability of the results.

Method Forecastability Trend Seasonality Linearity Stability R2

Ensemble-S 0.212 -0.011 -0.025 0.005 -0.022 0.523

Ensemble-DL 0.195 -0.013 -0.018 0.009 -0.020 0.532

has increased significantly since. More recently, DL models have been introduced (Oreshkin

et al., 2019; Salinas et al., 2020) and captured the attention of academics and practitioners.

The results of the present study further motivate research that will hopefully translate the

recent advances of DL algorithms into greater forecasting accuracy improvements.

If we were asked to indicate the most substantial finding from the time series forecasting

competitions so far, it would definitely be the value of combining. Such value has been

confirmed in all M competitions, Kaggle competitions (Bojer & Meldgaard, 2021), as well

as in numerous other studies, highlighting the potential value of ML and DL ensembles,

among others. It is now practically certain that the old notion of an “optimal” model does

not hold and that combining more than a single model cancels the errors and improves

forecasting accuracy. An interesting variation of combining has been the development of

hybrid methods, like the one introduced by Smyl (2020) that blended statistical and ML

features to provide more accurate results while not increasing the computational costs sig-

nificantly. Another, interesting possibility is the approach used by the runner up of the M4

competition that instead of arbitrarily combining forecasting methods, it devised a way to

determine the optimal combination weights based on the features that the series displayed

(Montero-Manso et al., 2020). Theoretically, if some better way than using the median or

average of multiple forecasting models could be found, the accuracy improvements could be

substantial. Additionally, hybrid approaches and optimal weighting schemes could break, at

least partially, the black-box nature of the DL models by providing some ability to explain

how the forecasts are made. Developing interpretable DL architectures, would be another

promising alternative to break the black-box (Oreshkin et al., 2019).

In this study, the improvements reported for the DL ensemble over standard, statistical

and ML methods are ranging to around 6% for the case of the 3,003 time series of the

M3 competition. Although these results are indicative and should therefore be reconfirmed

for other, larger data sets, as well as for other types of DL models, they demonstrate that

the improvements achieved come at a considerable greater computational cost. GluonTS is

one of the first publicly available packages that supports the development and utilization of
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state-of-the-art DL models. Clearly, other packages should become available in the future

to enable forecasters to experiment with alternative DL tools, such as Google’s AutoML

that is being adapted to handle time series forecasting problems. Equally important, the

efficiency of the DL models should be further improved to make them computationally more

competitive to their statistical and ML counterparts.

It is evident that one of the major limitations of DL relates to the time required for

training them. Many practitioners and organisations do not have access to hardware that

would make the use of DL models practical for them. Although it is possible to reduce the

computational cost of forecasting with DL models by using pre-trained variants, such an

approach has its shortcomings, which cannot be ignored in certain cases. Models that are

trained in different sets of series than the ones they are tasked with predicting are likely to be

less effective in capturing the specific characteristics of the target set. In the case of training

models once in order to use them continuously in the future, models will become obsolete at

some point and will not be able to capture new dynamics in the data. Thus, we believe that

exploring the use of transfer-learning techniques, in the context of time series forecasting, is

critical and could greatly boost the adoption of DL by practitioners and companies.

Another potentially beneficial approach could be combining statistical or ML models with

DL ones depending on the time horizon of forecasting. As this study has found, statistical

models are better suited for short-term forecasts, while DL ones are better in capturing the

long-term characteristics of the data. Similarly, different models could be used based on the

particular characteristics of the series, their frequency, and length. For instance, our results

suggest that some ML models, like LGT (Smyl & Kuber, 2016), are still more accurate than

DL ones for predicting yearly data, in contrast to quarterly and monthly series where the

latter are superior. Thus, it could be the case that long, high-frequency (e.g. hourly and

daily) series that display non-linear, complicated patterns could be better forecast using DL

approaches. We believe that as the usage of DL increases and more experience is gained,

additional findings will be discovered to further improve overall forecasting accuracy.

Finally, we should note that, although considerable work has been made towards improv-

ing point forecast accuracy, not much has been done to estimate correctly the uncertainty

around these forecasts. This is also the case for the present study which focused on point

estimated and did not investigate the performance of DL models in probabilistic settings.

Thus, future research should focus on the investigation of the potential of DL approaches for

correctly estimating probabilistic forecasts, offering some breakthroughs in the field of esti-

mating uncertainty and continuing the forecasting spring. The most recent M competition,
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M5, which required the prediction of nine different quantiles to estimate the distributions of

the hierarchical unit sales of Walmart, provides empirical evidence in that direction (Makri-

dakis et al., 2020d).
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Appendix A. Hyper-parameter values used for the DL models

This appendix presents the optimal hyper-parameter values that were used to build

the DL models of this study. The values were determined for each data frequency (yearly,

quarterly, monthly, and “other” series) separately. All values were determined automatically

using the Tree-of-Parzen-Estimators (TPE) algorithm on a validation set, as described in

Section 2. In that same section, a brief explanation of the hyper-parameters considered is

also provided.
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Table A.8: The network and the training hyper-parameter values of the DeepAR model used in this study.

The optimal values were determined for each data frequency separately.

Hyper-parameter Yearly Quarterly Monthly Other

Network hyper-parameters

cell type LSTM LSTM LSTM LSTM

num layers 4 4 3 2

num cells 512 256 512 512

dropout rate 0.012 0.015 0.071 0.018

external regressor variables False False True True

Training hyper-parameters

epochs 128 512 128 256

num batches per epoch 128 256 256 128

batch size 128 64 32 128

patience 8 32 8 8

learning rate 0.0025 0.0035 0.0025 0.0037

learning rate decay factor 0.23 0.57 0.17 0.16

minimum learning rate 1.7e−5 2.5e−5 3.2e−5 5.7e−6

weight decay 2.4e−8 5.2e−8 1.5e−8 7.4e−9

Box-Cox transformation False False False False
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Table A.9: The network and the training hyper-parameter values for the simple Feed-Forward model used

in this study. The optimal values were determined for each data frequency separately.

Hyper-parameter Yearly Quarterly Monthly Other

Network hyper-parameters

num hidden dimensions [64, 32, 16] [128, 64, 32] [64, 32, 16] [64, 32]

Training hyper-parameters

epochs 512 512 1024 256

num batches per epoch 256 256 128 64

batch size 64 64 128 64

patience 16 16 16 8

learning rate 0.0022 0.0019 0.0012 0.002

learning rate decay factor 0.57 0.74 0.62 0.19

minimum learning rate 1.0e−5 9.7e−6 5.5e−5 9.9e−5

weight decay 1.0e−9 1.1e−9 5.3e−8 1.0e−8

Box-Cox transformation False False False False

Appendix B. Accuracy measures used

The accuracy of the forecasting methods considered in this study is compared using

the symmetric mean absolute percentage error (sMAPE) (Makridakis, 1993) and the mean

absolute scaled error (MASE) (Hyndman & Koehler, 2006). Both accuracy measures are

used in the original study of Makridakis et al. (2018), as well as, in several other published

studies utilizing the M3 competition’s data set. As a result, in order to be able to draw

comparisons between the forecasting performance of the DL methods presented in this article

and that of methods included in other studies, the same accuracy measures had to be used.

The two accuracy measures are defined as follows:

sMAPE =
2

h

n+h∑
t=n+1

|yt − ft|
|yt|+ |ft|

∗ 100%, (B.1)

MASE =
1
h

∑n+h
t=n+1 |yt − ft|

1
n−m

∑n
t=m+1 |yt − yt−m| ,

(B.2)

where ft is the forecast of the method at point t, yt the corresponding actual value of the

series, h the forecasting horizon, n the number historical observations, and m the frequency
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Table A.10: The network and the training hyper-parameter values for the Transformer model used in this

study. The optimal values were determined for each data frequency separately. For the sequence of processing

operations, the “r” stands for residual connections, “n” for normalization, and “d” for dropout.

Hyper-parameter Yearly Quarterly Monthly Other

Network hyper-parameters

model dim 8 64 32 64

num heads 8 8 4 2

inner ff dim scale 2 4 2 2

pre seq dn d dn n

post seq ndr nr ndr r

act type softrelu softsign relu softrelu

dropout rate 0.019 0.012 0.117 0.018

external regressor variables True True True True

Training hyper-parameters

epochs 256 256 1024 128

num batches per epoch 128 256 32 256

batch size 64 32 32 128

patience 16 32 64 8

learning rate 0.0021 0.0031 0.0012 0.0019

learning rate decay factor 0.19 0.38 0.47 0.65

minimum learning rate 8.2e−5 1.1e−5 7.1e−6 5.5e−6

weight decay 1.3e−9 1.7e−9 6.6e−9 1.4e−8

Box-Cox transformation False False False False
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Table A.11: The network and the training hyper-parameter values for the WaveNet model used in this study.

The optimal values were determined for each data frequency separately.

Hyper-parameter Yearly Quarterly Monthly Other

Network hyper-parameters

embedding dimension 16 64 16 16

num bins 512 2048 512 2048

n residue 26 26 25 22

n skip 128 32 64 16

dilation depth 2 2 3 2

n stacks 1 2 2 2

act type softsign relu sigmoid relu

Training hyper-parameters

epochs 512 256 512 512

num batches per epoch 32 64 256 256

batch size 128 128 256 32

patience 8 16 16 16

learning rate 0.0018 0.0005 0.0008 0.0009

learning rate decay factor 0.68 0.66 0.21 0.13

minimum learning rate 9.3e−5 6.5e−5 1.0e−5 5.4e−6

weight decay 6.6e−8 1.5e−8 1.6e−8 1.2e−9

Box-Cox transformation False False False False
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of the series, i.e. 12 for monthly data. For more details about the measures, see Makridakis

et al. (2020b).
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