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Early prediction is clinically considered one of the essential parts of cerebral palsy (CP) treatment. We propose
to implement a low-cost and interpretable classification system for supporting CP prediction based on General
Movement Assessment (GMA). We design a Pytorch-based attention-informed graph convolutional network to
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1. Introduction

Due to the abnormal development or damage to parts of the brain,
cerebral palsy (CP) appears in the early stages of the patient’s childhood
and permanently affects the patient’s quality of life. There are about
2 — 3 CP patients in 1000 children in the UK [1], which is similar to
other developed countries. Although CP cannot be completely cured
at present, early prediction of CP and intervention are considered as a
paramount part of the treatment.

Current clinical early prediction of CP is investigated by General
Movement Assessment (GMA) [2]. GMA can be done in person by GM
assessors to assess an infant, or it can be done via watching an RGB

video that has recorded the general movements of the infant. However,
the GMA training is time- and resource-consuming, making it challeng-
ing to cope with the high demand for CP prediction. To tackle this
problem, we propose automating this process by analysing the general
movements of infants from RGB videos. This allows the early prediction
to cover even the lower-risk population. Motivated by the encouraging
results reported in recent research based on skeletal data [3-10], the
2D joint locations of the infant are extracted from RGB videos as the
input of the system for CP prediction. The computational intelligence
of our system is implemented with a graph convolution network, a kind
of deep artificial neural network that models relational data very well,
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Fig. 1. The architectures of proposed CP classification system.

making it suitable for skeleton data. Our graph convolution operation
encodes the input of human joint movement as frequency features in
the graph structure. In addition, we employed the attention mechanism
to enhance the learning performance with better interpretability. As a
result, the implemented system can model the graph structure of the
human pose features and amplify the influence of the most important
parts of the data that are considered by the neural network.

We implement our system in PyTorch due to the availability of
compatible open-source resources and its good coverage of the re-
quired deep learning functionalities. Firstly, we adapt OpenPose [11],
a pose estimation software, to extract the human skeletal pose features
from only the consumer-level RGB videos. Then, we implement the
Fast Fourier Transform (FFT) algorithm with a tailor-made binning
operation to analyse the human joint movement frequencies from the
pose features. With the frequency operations, we can reduce the noise
in the data and filter the high-frequency movement features that are
less relevant for the CP classification [9,12,13]. We implement our CP
classification GCN network based on the backbone (ST-GCN) frame-
work from Shi et al. [14], because it shows promising classification
performance and is widely identified as the benchmark in human pose-
based studies. We validate our system in two datasets, showcasing
that our system achieves state-of-the-art performance. The theoretical
background of the system has been published in [13]. In this paper, we
explain the software implementation details and discuss the impact of
our software.

2. System description

As shown in Fig. 1, our proposed CP classification system first ex-
tracts infants’ pose features (i.e., joint positions) by the pose estimation
algorithm OpenPose [11], due to its robust performance. The latest
version of OpenPose (1.7.0) comes with the pre-trained model, such
that one can use the network effectively without training. Then, we
implement a frequency-binning module to convert the pose features
into the Fast Fourier Transform (FFT) coefficients for learning CP in the
frequency domain. Both pose features or frequency features are fed into
our designed PyTorch-based attention-informed graph convolutional
network (CP-AGCN) for classifying normal and abnormal CP labels.

Algorithm 1 Attention GCN for CP classification
Inputs: H: the set of joint features (dim: B x N); A: the adjacency
matrix of the graph distance between joints (dim: N X N); An one-hot
classification label embedding.

Output: A 0/1 classification result.

LA=A+1,D;= 2 Ay

2: if s < S then:

3: Take the graph convolution operation by Eq. (2), where W is

updated by Eq. (3) and (4).

4: S < s +1.

: Encode the output to a 0/1 classification result by concatenation.

[}

In particular, the frequency-binning module adapts Bluestein’s
FFT algorithm [15] for feature conversion. We tailor-made a binning

method to filter high-frequency components, which mainly consist of
data noise and high-frequency movement features:
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where f, (f, = 1) is the width of the nth bin, and ¢ is a parameter that
control the bin width.

The design in Eq. (1) enables the classification network to focus
on learning the low-to-mid band movement frequency features. To
retain the low-to-mid frequency human movement information, this
function takes the round for widths less than three units. This function
can distinguish the middle frequency and high-frequency bands based
on the exponential growth of ¢ and the ceiling function. Since we
have not included any learnable parameter in this module, such a low
computational cost module is adaptable for both machine learning-
based or deep neural network (DNN) based classification systems with
24-60 FPS input videos.

For CP classification, the algorithm flow is shown in Algorithm
1. We employ the GCN [16] as the benchmark model to learn the
joint dependencies from the skeleton graph. The graph convolutional
propagation is demonstrated by:

HOWD = 5 (f)—% Af)—%H(l)WU)) (2)

where A = A+1, is the adjacency matrix. D; = ¥, A,;. I, is an identity
matrix with L dimensions. W) is the learnable weight matrix of layer
1. o(-) is the ReLU nonlinear activation function.

By using the architecture backbone from [14], we apply the human
skeleton graph G = (V, E) for interpreting the importance ranking of
joint’s features CP classification. In this graph, {V = vy,|b = 1,...,B;
i =1,...,N} is the set of joint features, where v, is the bth bin of
ith joint. The edge set E consists of: (1) the intra-skeleton connection,
{vpi0p;1G, ) € K}, where K is the amount of the natural connections of
skeleton joints. (2) the inter-feature edges which connect the bins of a
joint from low to high, {v,vp41)}-

We propose to use attention-informed mechanism to learn the
weight of features. We aggregate the network input features {h, ;,h,;,
...,hp;} with attentions «,; by:

B

Vi = Z @y by, 3
b=1

and the attention weight a,; is calculated by:

T
o, = exp (o’,, (Waszb,t)) . 2, = tanh (thb,,-) )

T Zpexp (o (W)
where ¢/ is an designable activation function s/ = w)z,, and w, and
W, are learnable parameters.

The introduced system above is programmed under the PyTorch
framework with packages including numpy 1.20.3, torch 1.8.1 and
torchvision 0.3.0. We conduct comprehensive experiments on a syn-
thetic dataset (MINI-RGBD) [17] with annotation provided by [5] and
RVI-38 dataset [9], the result shows our system achieves state-of-the-art
performance on both datasets [13].

Regarding computational costs, although we have applied the at-
tention mechanism, our low-cost system can achieve a training speed
of around 4 frames/second with an NVIDIA GeForce RTX 3080, with




H. Zhang, E.S.L. Ho and H.P.H. Shum

only 0.3 frames/second drop compared with our variant without the
attention module. It means the total system training time on a 12 video
sequences (1000 frames each) dataset is only about 50 min, including
OpenPose pose estimation. This is considered to be very efficient in
deep learning algorithms. During run-time, it only needs about 45 s
for the CP classification of a 33.3 s 30FPS video with an Intel Core i7
CPU (i.e., no GPU needed). It shows that our system is employable for
interactive-time prediction in a daily hospital environment with normal
computer equipment setting, and is a feasible solution to support CP
early prediction.

3. Impact overview

Our proposed system is expected to provide lower-risk patients with
low-cost, non-intrusive CP abnormal movement classification results
as a warning sign, with its accuracy supported by two datasets [13].
This provides a way for supporting the early prediction of CP in
the clinical resource-limited areas, and relieving the labour stress of
expert-based GMA [2]. In addition, our system can provide clinicians
with information about the importance-ranking of joints’ movement or
frequency features in CP classification by the attention weights.

Apart from the early prediction of CP, we expect this system can
be extended for a number of human motor disorders. For example,
Parkinson’s disease patients usually have motor dysfunction symptoms
like tremors, unpaired gait patterns and limb stiffness [18]. The move-
ment frequency of patients is highly likely to be different from that of
healthy people, particularly due to tremors, and the use of frequency
features may inform deep learning based Parkinson’s disease diagnostic
systems [19].

This easy-to-use system also benefits researchers in different fields
like body motion and hand gesture analysis since it provides an alter-
native way for learning these features in the frequency domain. Recent
work has shown that hand tremor can be modelled and reduced by deep
learning as a denoising process [20], but the use of frequency is still
yet to be considered. Similarly, frequency information is likely to be
useful for sports motion analysis and visualisation [21]. In addition, the
users can extend our system for multi-class classification tasks by minor
modifications on the final fully connected layer. Existing work already
shows that frequency information is useful for action recognition [22]
and gesture recognition [23]. Our frequency binning idea and its uses
on a graph neural network may inform such applications.

4. Conclusion and future improvements

In this work, we implement a Pytorch-based attention-informed
graph convolutional network to classify cerebral palsy infants. We
propose a frequency binning module for CP joint position features to in-
crease to improve the classification performance, which is adaptable for
other deep learning or traditional machine learning based classification
models. Besides, we design an attention module to both improve the
classification performance and interpret the joint features’ importance
ranking. Our system is validated on two datasets in [13] and achieves
interactive speed on a consumer-grade computer.

In future versions, we consider integrating our system into an
embedded system, such as the pixel processor array that integrates
convolutional neural network operations [24], for autonomous disease
monitoring and real-time decision-making. In addition, the perfor-
mance of our system relies on the accuracy of the pose estimation
process. Future versions will focus on improving the pose estimation
part by adapting more advanced systems such as [25]. Finally, we
wish to improve hardware compatibility by generalising the system
with different cameras (e.g., unfocused camera, blurry camera). This
can be implemented with a hardware abstraction layer that deals with
device-specific procedures [26], which connects to a unified prediction
algorithm.
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