
Algorithmica (2023) 85:406–443
https://doi.org/10.1007/s00453-022-01035-6

Round-Competitive Algorithms for Uncertainty Problems
with Parallel Queries

Thomas Erlebach1 ·Michael Hoffmann2 ·Murilo Santos de Lima3

Received: 18 May 2021 / Accepted: 28 August 2022 / Published online: 15 September 2022
© The Author(s) 2022

Abstract
In computing with explorable uncertainty, one considers problems where the values
of some input elements are uncertain, typically represented as intervals, but can be
obtained using queries. Previous work has considered query minimization in the set-
tingswhere queries are asked sequentially (adaptivemodel) or all at once (non-adaptive
model). We introduce a new model where k queries can be made in parallel in each
round, and the goal is to minimize the number of query rounds. Using competitive
analysis, we present upper and lower bounds on the number of query rounds required
by any algorithm in comparison with the optimal number of query rounds for the given
instance. Given a set of uncertain elements and a family of m subsets of that set, we
study the problems of sorting allm subsets and of determining the minimum value (or
the minimum element(s)) of each subset. We also study the selection problem, i.e., the
problem of determining the i-th smallest value and identifying all elements with that
value in a given set of uncertain elements. Our results include 2-round-competitive
algorithms for sorting and selection and an algorithm for the minimum value problem

The work by Murilo S. de Lima was done while employed at University of Leicester and supported by
EPSRC grant EP/S033483/1.

A preliminary version of this paper appeared in the proceedings of the 38th International Symposium on
Theoretical Aspects of Computer Science (STACS 2021), volume 187 of LIPICs, article 27, 2021. https://
doi.org/10.4230/LIPIcs.STACS.2021.27.

B Thomas Erlebach
thomas.erlebach@durham.ac.uk

Michael Hoffmann
mh55@le.ac.uk

Murilo Santos de Lima
mslima@ic.unicamp.br

1 Department of Computer Science, Durham University, Durham, UK

2 School of Informatics, University of Leicester, Leicester, UK

3 Munich, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-01035-6&domain=pdf
http://orcid.org/0000-0002-4470-5868
http://orcid.org/0000-0002-2297-811X
https://doi.org/10.4230/LIPIcs.STACS.2021.27
https://doi.org/10.4230/LIPIcs.STACS.2021.27


Algorithmica (2023) 85:406–443 407

that uses at most (2+ε) ·optk +O
( 1

ε
· lgm)

query rounds for every 0 < ε < 1, where
optk is the optimal number of query rounds.

Keywords Online algorithms · Competitive analysis · Explorable uncertainty ·
Parallel algorithms · Minimum problem · Selection problem · Sorting problem

Mathematics Subject Classification 68W40 · 68W10

1 Introduction

Motivated by real-world applications where only rough information about the input
data is initially available but precise information can be obtained at a cost, researchers
have considered a range of uncertainty problemswith queries [7, 13, 14, 16, 17, 20, 28].
This research area has also been referred to as queryable uncertainty [12] or explorable
uncertainty [18]. For example, in the input to a sorting problem, we may be given for
each input element, instead of its precise value, only an interval containing that value.
Querying an element reveals its precise value. The goal is to make as few queries as
possible until enough information has been obtained to solve the sorting problem, i.e.,
to determine a linear order of the input elements that is consistent with the linear order
of the precise values.Motivation for explorable uncertainty comes frommany different
areas (see [12] and the references given there for further examples): The uncertain input
elementsmay, e.g., be locations ofmobile nodes or approximate statistics derived from
a distributed database cache [31]. Exact information can be obtained at a cost, e.g., by
requesting GPS coordinates from a mobile node, by querying the master database or
by a distributed consensus algorithm.

The main model that has been studied in the explorable uncertainty setting is the
adaptive query model: The algorithm makes queries one by one, and the results of
previous queries can be taken into account when determining the next query. The
number of queries made by the algorithm is then compared with the best possible
number of queries for the given input (i.e., theminimumnumber of queries sufficient to
solve the problem) using competitive analysis [5].An algorithm isρ-query-competitive
(or simply ρ-competitive) if it makes at most ρ times as many queries as an optimal
query set. A very successful algorithm design paradigm in this area is based on the
concept of witness sets [7, 14]. A witness set is a set of input elements for which it
is guaranteed that every query set that solves the problem contains at least one query
in that set. If a problem admits witness sets of size at most ρ, one obtains a ρ-query-
competitive algorithm by repeatedly finding such a witness set and querying all its
elements.

Some work has also considered the non-adaptive query model (see, e.g., [16, 30,
31]),where all queries aremade simultaneously and the set of queriesmust be chosen in
such a way that they certainly reveal sufficient information to solve the problem. In the
non-adaptive query model, one is interested in complexity results and approximation
algorithms.

In settingswhere the execution of a query takes a non-negligible amount of time and
there are sufficient resources to execute a bounded number of queries simultaneously,

123



408 Algorithmica (2023) 85:406–443

the query process can be completed faster if queries are not executed one at a time, but
in rounds with k simultaneous queries. Such scenarios include e.g. IoT environments
(such as drones measuring geographic data), or teams of interviewers doing market
research. Apart from being well motivated from an application point of view, this
variation of the model is also theoretically interesting because it poses new challenges
in selecting a useful set of k queries to bemade simultaneously. Somewhat surprisingly,
however, this has not been studied yet. In this paper, we address this gap and analyze
for the first time a model where the algorithm can make up to k queries per round, for a
given value k. The query results from previous rounds can be taken into account when
determining the queries to be made in the next round. (In some sense, this model can
be interpreted as beingmidway between the adaptive and non-adaptive query models.)
Instead of minimizing the total number of queries, we are interested in minimizing
the number of query rounds, and we say that an algorithm is ρ-round-competitive if,
for any input, it requires at most ρ times as many rounds as the optimal query set.

A main challenge in the setting with k queries per round is that the witness set
paradigm alone is no longer sufficient for obtaining a good algorithm. For example,
if a problem admits witness sets with at most 2 elements, this immediately implies a
2-query-competitive algorithm for the adaptive model, but only a k-round-competitive
algorithm for themodel with k queries per round. (The algorithm is obtained by simply
querying one witness set in each round, and not making use of the other k−2 available
queries.) The issue is that, even if one can find a witness set of size at most ρ, the
identity of subsequent witness sets may depend on the outcome of the queries for the
first witness set, and hence we may not know how to compute a number of different
witness sets that can fill a query round if k � ρ.

Our Contribution Apart from introducing the model of explorable uncertainty with k
queries per round, we study several problems in this model:Minimum, Selection and
Sorting. For Minimum (or Sorting), we assume that the input can be a family S of
subsets of a given ground set I of uncertain elements, and that we want to determine
the value of the minimum of (or sort) all those subsets. For Selection, we are given
a set I of n uncertain elements and an index i ∈ {1, . . . , n}, and we want to determine
the i-th smallest value of the n precise values, and all the elements of I whose value is
equal to that value.We also study the variants ofMinimum and Selection inwhichwe
do not need to determine the minimum or i-th smallest value, but only an element (or
all elements) with that value; we call the corresponding variants MinimumElement
and ElementSelection.

Our main contribution lies in our results for theMinimum problem. We present an
algorithm that requires atmost (2+ε)·optk+O

( 1
ε

· lgm)
rounds, for every 0 < ε < 1,

where optk is the optimal number of rounds and m = |S|. (The execution of the algo-
rithm does not depend on ε, so the upper bound holds in particular for the best choice
of 0 < ε < 1 for given optk and m. If optk > logm, we can set ε = √

(logm)/optk to
get a bound of 2optk + O(

√
optk logm) rounds.) Interestingly, our algorithm follows

a non-obvious approach that is reminiscent of primal-dual algorithms, but no linear
programming formulation features in the analysis. We then modify this algorithm to

solveMinimumElement; the algorithm requires atmost (12+ε)·optk+O
(

1
ε2

· lgm
)

123



Algorithmica (2023) 85:406–443 409

rounds, for every 0 < ε < 1. (If optk > logm, we can set ε = ((logm)/optk)
1/3 to get

a bound of 12optk + O(opt2/3k (logm)1/3) rounds.) For the case that the sets in S are
disjoint, we obtain some improved bounds using a more straightforward algorithm.
We also give lower bounds that apply even to the case of disjoint sets, and show that
our upper bounds are close to best possible.

Note that the Minimum problem is equivalent to the problem of determining the
maximum element of each of the sets in S, e.g., by simply negating all the numbers
involved. A motivation for studying theMinimum problem thus arises from the mini-
mum spanning tree problemwith uncertain edgeweights [11, 14, 18, 28]: Determining
the maximum-weight edge of each cycle of a given graph allows one to determine a
minimum spanning tree. Therefore, there is a connection between the problem of
determining the maximum of each set in a family of possibly overlapping sets (which
could be the edge sets of the cycles of a given graph) and the minimum spanning tree
problem. The minimum spanning tree problem with uncertain edge weights has not
been studied yet for the model with k queries per round, and seems to be difficult for
that setting. In particular, it is not clear in advance for which cycles of the graph a
maximum-weight edge actually needs to be determined, and thismakes it very difficult
to determine a set of k queries that are useful to be asked in parallel. We hope that our
results for Minimum provide a first step towards addressing the minimum spanning
tree problem in the model of explorable uncertainty with k queries per round.

Another motivation for solving these problems for multiple possibly overlapping
sets comes from distributed database caches [31], where one wants to answer database
queries using cached local data and a minimum number of queries (or rounds of
queries) to the master database. Values in the local database cache may be uncertain,
and exact values can be obtained by communicating with the central master database.
Different database queries might ask for the record with minimum value in the field
with uncertain information among a set of database records satisfying certain criteria,
or for a list of such database records sorted by the field with uncertain information.
For example, the database might contain employee records, with only the salaries
being uncertain in the local database cache. Answering the queries “who is the female
employeewith the highest salary”, “who is the black employeewith the highest salary”,
and “who is the employee with the highest salary among all employees under the age
of 30” then translates into identifying the employee with maximum salary in each of
the three potentially overlapping sets (the set of female employees, the set of black
employees, and the set of employees under the age of 30). This corresponds to the
problem of identifying the minimum elements in potentially overlapping sets (via the
above-mentioned equivalence of the problem of identifying the maximum element
and the problem of identifying the minimum element). Another example would be a
database containing air pollution levels for cities, with the current air pollution level
being an uncertain field in the local database cache. Answering the queries “output a
list of cities in the North of England ordered by current air pollution level” and “output
a list of cities in theUKwith population above 500,000, ordered by current air pollution
level” then corresponds to the problem of sorting potentially overlapping sets (the set
of cities in the North of England, and the set of cities in the UK with population above
500,000). Answering such database queries with a minimum number of rounds of

123



410 Algorithmica (2023) 85:406–443

queries for exact values to the master database corresponds to theMinimumElement
and Sorting problems we consider in this paper.

For the Selection problem, we obtain a 2-round-competitive algorithm, and we
note that the same algorithm uses at most 2 ·optk +1 rounds if we want to solve Ele-
mentSelection. For Sorting,we show that there is a 2-round-competitive algorithm,
by adapting ideas from a recent algorithm for sorting in the standard adaptive model
[22], and that this is best possible.

We also discuss the relationship between our model and another model of parallel
queries proposed by Meißner [29], and we give general reductions between both
settings.

Literature Overview The seminal paper on minimizing the number of queries to solve
a problem on uncertainty intervals is by Kahan [24]. Given n elements in uncertainty
intervals, he presented optimal deterministic adaptive algorithms for finding the max-
imum, the median, the closest pair, and for sorting. Olston and Widom [31] proposed
a distributed database system which exploits uncertainty intervals to improve perfor-
mance. They gave non-adaptive algorithms for finding the maximum, the sum, the
average, and for counting problems. They also considered the case in which errors
are allowed within a given bound, so a trade-off between performance and accuracy
can be achieved. Khanna and Tan [25] extended this previous work by investigating
adaptive algorithms for the situation in which bounded errors are allowed. They also
considered the case in which query costs may be non-uniform, and presented results
for the selection, sum and average problems, and for compositions of such functions.
Feder et al. [17] studied the generalized median/selection problem, presenting optimal
adaptive and non-adaptive algorithms. They proved that those are the best possible
adaptive and non-adaptive algorithms, respectively, instead of evaluating them from
a competitive analysis perspective. They also investigated the price of obliviousness,
which is the ratio between the non-adaptive and adaptive strategies.

After this initial foundation, many classic discrete problems were studied in this
framework, including geometric problems [7, 9], shortest paths [16], network verifica-
tion [4], minimum spanning tree [11, 14, 18, 28], cheapest set and minimum matroid
base [13, 30], linear programming [27, 32], traveling salesman [34], knapsack [20],
and scheduling [2, 3, 10]. The concept of witness sets was proposed by Bruce et al.
[7], and identified as a pattern in many algorithms by Erlebach and Hoffmann [12].
Gupta et al. [21] extended this framework to the setting where a query may return a
refined interval, instead of the exact value of the element.

The problem of sorting uncertain data has received some attention recently.
Halldórsson and de Lima [22] presented better query-competitive algorithms, by using
randomization or assumptions on the underlying graph structure. Other related work
on sorting has considered sorting with noisy information [1, 6] or preprocessing the
uncertain intervals so that the actual numbers can be sorted efficiently once their
precise values are revealed [33].

The idea of performingmultiple queries in parallelwas also investigated byMeißner
[29].Hermodel is different, however. Each round/batch can query an unlimited number
of intervals, but at most a fixed number of rounds can be performed. The goal is to
minimize the total number of queries. Meißner gave results for selection, sorting and

123



Algorithmica (2023) 85:406–443 411

minimum spanning tree problems. We discuss this model in Sect. 6. A similar model
was also studied by Canonne and Gur for property testing [8].

Organization of the Paper We present some definitions and preliminary results in
Sect. 2. Sections 3, 4 and 5 are devoted to the sorting,minimumand selection problems,
respectively. In Sect. 6, we discuss the relationship between the model we study and
the model of Meißner for parallel queries [29]. We conclude in Sect. 7.

2 Preliminaries and Definitions

Throughout the paper, we write lg for log2. For the problems we consider, the input
consists of a set of n continuous uncertainty intervals I = {I1, . . . , In} on the real
line. The precise value of each data item is vi ∈ Ii , which can be learnt by performing
a query; formally, a query on Ii replaces this interval with {vi }. We wish to solve the
given problem by performing the minimum number of queries (or query rounds). We
say that a closed interval Ii = [�i , ui ] is trivial if �i = ui , in which case Ii = {vi }, so
trivial intervals never need to be queried. For some problems we require that intervals
are either open or trivial; we will discuss this in further detail when addressing each
problem. For a given realization v1, . . . , vn of the precise values, a set Q ⊆ I of
intervals is a feasible query set if querying Q is enough to solve the given problem
(i.e., to output a solution that can be proved correct based only on the given intervals
and the answers to the queries in Q), and an optimal query set is a feasible query set
of minimum size. Since the precise values are initially unknown to the algorithm and
can be defined adversarially, we have an online exploration problem [5]. We fix an
optimal query set OPT1, and we write opt1 := |OPT1|. An algorithm which performs
up to ρ · opt1 queries is said to be ρ-query-competitive. Throughout this paper, we
only consider deterministic algorithms.

In previous work on the adaptive model, it is assumed that queries are made sequen-
tially, and the algorithm can take the results of all previous queries into account when
deciding the next query. We consider a model where queries are made in rounds and
we can perform up to k queries in parallel in each round. The algorithm can take into
account the results from all queries made in previous rounds when deciding which
queries to make in the next round. The adaptive model with sequential queries is the
special case of our model with k = 1.We denote by optk the optimal number of rounds
to solve the given instance. Note that optk = �opt1/k� as OPT1 only depends on the
input intervals and their precise values and can be distributed into rounds of k queries
arbitrarily. For an algorithmALG we denote by ALG1 the number of queries it makes,
and by ALGk the number of rounds it uses. An algorithm which solves the problem
in up to ρ · optk rounds is said to be ρ-round-competitive. A query performed by an
algorithm that is not in OPT1 is called a wasted query, and we say that the algorithm
wastes that query; a query performed by an algorithm that is not wasted is useful.

Proposition 2.1 If an algorithm makes all queries in OPT1, wastes w queries in total
over all rounds excluding the final round, always makes k queries per round except
possibly in the final round, and stops as soon as the queries made so far suffice to solve
the problem, then its number of rounds will be

⌈
(opt1 + w)/k

⌉ ≤ optk + �w/k�.

123



412 Algorithmica (2023) 85:406–443

The problems we consider are Minimum, MinimumElement, Sorting, Selec-
tion and ElementSelection. For Minimum,MinimumElement and Sorting, we
assume that we are given a set I of n intervals and a family S of m subsets of I. For
Sorting, the task is to output, for each set S ∈ S, an ordering of the elements in
S that is consistent with the order of their precise values. For Minimum and Mini-
mumElement, the task is to output, for each S ∈ S, an element whose precise value
is the minimum of the precise values of all elements in S, and for Minimum we are
also required to output the value of that element.1 Regarding the family S, we can
distinguish the cases where S contains a single set, where all sets in S are pairwise dis-
joint, and the case where the sets in S may overlap, i.e., may have common elements.
For Selection and ElementSelection, we are given a set I of n intervals and an
index i ∈ {1, . . . , n}. For Selection, the task is to output the i-th smallest value v∗
(i.e., the value in position i in a sorted list of the precise values of the n intervals), as
well as the set of intervals whose precise value equals v∗; for ElementSelection,
we only need to output an element whose precise value is the i-th smallest. We also
discuss briefly a variant of Minimum in which we seek all elements whose precise
value is the minimum and a variant of Selection in which we only seek the value v∗.

For a better understanding of the problems, we give a simple example for Sorting
with k = 1. We have a single set with two intersecting intervals. There are four
different configurations of the realizations of the precise values, which are shown in
Fig. 1. In Fig. 1a, it is enough to query I1 to learn that v1 < v2; however, if an algorithm
first queries I2, it cannot decide the order, so it must query I1 as well. In Fig. 1b we
have a symmetric situation. In Fig. 1c, both intervals must be queried (i.e., the only
feasible query set is {I1, I2}), otherwise it is not possible to decide the order. Finally,
in Fig. 1d it is enough to query either I1 or I2; hence, both {I1} and {I2} are feasible
query sets. Since those realizations are initially identical to the algorithm, this example
shows that no deterministic algorithm can be better than 2-query-competitive, and this
example can be generalized by taking multiple copies of the given structure. The same
argumentation applies to MinimumElement. For Minimum, however, an optimum
solution can always be obtained by first querying I1 (and then I2 only if necessary):
Since we need the precise value of the minimum element, in Fig. 1b, d it is not enough
to just query I2.

3 Sorting

In this section we discuss the Sorting problem. We allow open, half-open, closed,
and trivial intervals in the input, i.e., Ii can be of the form [�i , ui ] with �i ≤ ui , or
(�i , ui ], [�i , ui ) or (�i , ui ) with �i < ui .

First, we consider the case where S consists of a single set S, which we can assume
to contain all n of the given intervals.Wewish to find a permutationπ : [n] → [n] such
that vi ≤ v j if π(i) < π( j), by performing the minimum number of queries possible.

1 Most of the literature in this area is devoted to problems in the form of MinimumElement. Returning
the precise minimum value, however, is also an important problem, as discussed in [28, Section 7] for the
minimum spanning tree problem.

123



Algorithmica (2023) 85:406–443 413

I1

I2

(a)
I1

I2

(b)
I1

I2

(c)

I1

I2

(d)

Fig. 1 Example of Sorting for two intervals and the possible realizations of the precise values. We have
that opt1 = 1 in a, b, d, and opt1 = 2 in c.

This problem was addressed for k = 1 in [22, 24, 29]; it admits 2-query-competitive
deterministic algorithms and has a deterministic lower bound of 2.

For Sorting, if two intervals Ii = [�i , ui ] and I j = [� j , u j ] are such that Ii ∩ I j =
{ui } = {� j }, then we can put them in a valid order without any further queries,
because clearly vi ≤ v j . Therefore, we say that two intervals Ii and I j intersect (or
are dependent) if either their intersection contains more than one point, or if Ii is
trivial and vi ∈ (� j , u j ) (or vice versa). This is equivalent to saying that Ii and I j
are dependent if and only if ui > � j and u j > �i . Two simple facts are important to
notice, which are proven in [22]:

– For any pair of intersecting intervals, at least one of them must be queried in order
to decide their relative order; i.e., any intersecting pair is a witness set.

– The dependency graph that represents this relation, with a vertex for each interval
and an edge between intersecting intervals, is an interval graph [26].

We adapt the 2-query-competitive algorithm for Sorting by Halldórsson and de
Lima [22] for k = 1 to the case of arbitrary k. Their algorithmfirst queries all non-trivial
intervals in a minimum vertex cover in the dependency graph. By the duality between
vertex covers and independent sets, the unqueried intervals form an independent set,
so no query is necessary to decide the order between them. However, the algorithm still
must query intervals in the independent set that intersect a trivial interval or the value
of a queried interval. To adapt the algorithm to the case of arbitrary k, we first compute
a minimum vertex cover and fill as many rounds as necessary with the given queries.
After the answers to the queries are returned, we use as many rounds as necessary to
query the intervals of the remaining independent set that contain a trivial point.

Theorem 3.1 The algorithm of Halldórsson and de Lima [22] yields a 2-round-
competitive algorithm for Sorting that runs in polynomial time.

Proof Any feasible query set is a vertex cover in the dependency graph, due to the
fact that at least one interval in each intersecting pair must be queried. Therefore a
minimum vertex cover is at most the size of an optimal query set, so the first phase
of the algorithm spends at most optk rounds. Since all intervals queried in the second
phase are in any solution, againwe spend atmost another optk rounds. As theminimum
vertex cover problem for interval graphs can be solved in polynomial time [19], the
overall algorithm is polynomial as well. ��

123



414 Algorithmica (2023) 85:406–443

The problem has a lower bound of 2 on the round-competitive factor. This can be
shown by having kc copies of a structure consisting of two dependent intervals, for
some c ≥ 1. OPT1 needs to query only one interval in each pair, while we can force
any deterministic algorithm to query both of them (cf. the configurations shown in
Fig. 1a, b). We have that optk = c while any deterministic algorithm will spend at
least 2c rounds.

We remark that the 2-query-competitive algorithm for Sorting with k = 1 due to
Meißner [29], when adapted to the setting with arbitrary k in the obvious way, only
gives a bound of 2 · optk + 1 rounds. Her algorithm first greedily computes a maximal
matching in the dependency graph and queries all non-trivial matched vertices, and
then all remaining intervals that contain a trivial point.

Nowwe study the case of solving a number of sorting problems on different subsets
of the same ground set of uncertain elements. In such a setting, it may be better to
perform queries that can be reused by different problems, even if the optimum solution
for one problem may not query that interval. We can reuse ideas from the algorithms
for single problems that rely on the dependency graph. We define a new dependency
relation (and dependency graph) in such a way that two intervals are dependent if
and only if they intersect and belong to a common set. Note that the resulting graph
may not be an interval graph, so some algorithms for single problems may not run in
polynomial time for this generalization.

If we perform one query at a time (k = 1), then there are 2-competitive algorithms.
One such is the algorithm byMeißner [29] described above; since amaximal matching
can be computed greedily in polynomial time for arbitrary graphs, this algorithm runs
in polynomial time for non-disjoint problems. If we canmake k ≥ 2 queries in parallel,
then this algorithm performs at most 2 ·optk +1 rounds, and the analysis is tight since
we may have an incomplete round in between the two phases of the algorithm. If we
relax the requirement that the algorithm runs in polynomial time, then we can obtain
an algorithm that needs at most 2 · optk rounds, by first querying non-trivial intervals
in a minimum vertex cover of the dependency graph (in as many rounds as necessary)
and then the intervals that contain a trivial interval or the value of a queried interval
(again, in as many rounds as necessary).

4 TheMinimum Problem

For theMinimum problem, we assume without loss of generality that the intervals are
sorted by non-decreasing left endpoints; intervals with the same left endpoint can be
ordered arbitrarily. The leftmost interval among a subset of I is the one that comes
earliest in this ordering. We also assume that all intervals are open or trivial; otherwise
the problem has a trivial lower bound of n on the query-competitive ratio [21].

First, consider the case S = {I}, i.e., we have a single set. It is easy to see that the
optimal query set consists of all intervals whose left endpoint is strictly smaller than
the precise value of the minimum: If Ii with precise value vi is a minimum element,
then all other intervals with left endpoint strictly smaller than vi must be queried
to rule out that their value is smaller than vi , and Ii must be queried (unless it is a
trivial interval) to determine the value of the minimum. The optimal set of queries is

123



Algorithmica (2023) 85:406–443 415

hence a prefix of the sorted list of uncertain intervals (sorted by non-decreasing left
endpoint).2 This shows that there is a 1-query-competitive algorithm when k = 1,
and a 1-round-competitive algorithm for arbitrary k: In each round we simply query
the next k uncertain intervals in the order of non-decreasing left endpoint, until the
problem is solved. For k = 1, the samemethod yields a 1-query-competitive algorithm
for the case with several sets: The algorithm can always query an interval with smallest
left endpoint for any of the sets that have not yet been solved.

In the remainder of this section, we consider the case of multiple sets and k > 1.
We first present a more general result for potentially overlapping sets (first for the
Minimum problem and then for theMinimumElement problem), then we give better
upper bounds for disjoint sets. At the end of the section, we also present lower bounds.

Let W (x) = x lg x ; the inverse W−1 of W will show up in our analysis. Note that
W−1(x) = �(x/ lg x) (see, e.g., [23, Theorem 2.7]).

Throughout this section,we assumew.l.o.g. that the optimummustmake at least one
query in each set (otherwise, we consider only sets that require some query). We also
assume that any algorithm always discards from each set all elements that are certainly
not the minimum of that set, i.e., all elements for which it is already clear based on
the available information that their value must be larger than the minimum value of
the set (this is where the right endpoints of intervals also need to be considered). We
adopt the following terminology. A set in S is solved if we can determine the value
of its minimum element. A set is active at the start of a round if the queries made in
previous rounds have not solved the set yet. An active set survives a round if it is still
active at the start of the next round. An active set that does not survive the current
round is said to be solved in the current round.

To illustrate these concepts, let us discuss a first simple strategy to build a query
set Q for a round. Let P be the set of intervals queried in previous rounds. For an
active set S, consider the non-trivial intervals in S\P ordered by non-decreasing left
endpoints. If the first i of those intervals have already been added to Q in the present
round but the (i + 1)-th interval has not yet been added to Q, we say that the Q-prefix
length of S is i . Note that, if the Q-prefix length of S is i , this says nothing about
whether the (i + j)-th interval for j ≥ 2 is in Q or not. The algorithm proceeds by
repeatedly adding to Q the leftmost non-trivial element not in Q∪P from an arbitrary
active set with minimum Q-prefix length. We call this the balanced algorithm, and
denote it by BAL. We give an example of its execution in Fig. 2, with m = 3 disjoint
sets and k = 5. The optimum solution queries the first three elements in S1 and S2,
and all four elements in S3. It can query these 10 elements in two rounds. Since the
algorithm picks an arbitrary active set with minimum Q-prefix length, it may give
preference to S1 and S2 over S3, thus wasting one query in S1 and one in S2 in round 2.
All sets are active at the beginning of round 2; S1 and S2 are solved in round 2, while S3
survives round 2. Since S1 and S2 are solved in round 2, they are no longer active in
round 3, so the algorithm no longer queries any of their elements.

2 All our algorithmic results for the Minimum problem extend to inputs with arbitrary closed, open and
half-open intervals if we require that the algorithm must also determine all elements whose value equals
the minimum. This is because for this problem variant the optimal set of queries for each set is a prefix, and
our algorithms only require this property.

123



416 Algorithmica (2023) 85:406–443

Fig. 2 Possible execution of BAL for m = 3 disjoint sets and k = 5. The three disjoint sets of intervals are
shown on the left. On the right, each interval is represented by a box, with the i-th box of a set corresponding
to the interval with i-th smallest left endpoint in that set. The optimum solution is a prefix of each set. The
solid boxes are useful queries, the two hatched boxes are wasted queries, and the white boxes are not queried
by the algorithm

4.1 TheMinimum Problemwith Arbitrary Sets

We are given a set I of n intervals and a family S of m possibly overlapping subsets
of I, and a number k ≥ 2 of queries that can be performed in each round.

Unfortunately, it is possible to construct an instance in which BAL uses as many
as k · optk rounds. Let c be a multiple of k. We have m = c · (k − 1) sets, which are
divided in c groups with k − 1 sets. For i = 1, . . . , c, the sets in groups i, . . . , c share
the i leftmost elements. Furthermore, each set has one extra element which is unique
to that set. The precise values are such that each set in the i-th group is solved after
querying the first i elements. We give an example in Fig. 3 with k = 3 and c = 3. If
we let BAL query the intervals in the order given by the indices, it is easy to see that
it queries c · k intervals, while the c intervals that are shared by more than one set are
enough to solve all sets. In particular, note that BAL does not take into consideration
that some elements are shared between different sets. The challenge is how to balance
queries between sets in a better way.

We give an algorithm that requires at most (2+ ε) · optk +O
( 1

ε
· lgm)

rounds, for
every 0 < ε < 1. (The execution of the algorithm does not depend on ε, so the upper
bound holds in particular for the best choice of 0 < ε < 1 for given optk and m.) It is
inspired by how some primal-dual algorithms work. The pseudocode for determining
the queries to be made in a round is shown in Algorithm 1. First, we try to include the
leftmost element of each set in the set of queries Q. If those are not enough to fill a
round, then we maintain a variable bi for each set Si , which can be interpreted as a
budget for each set. These variables bi are set to 0 at the beginning of the computation
of the query set of a round. The variables are increased simultaneously at the same rate,
until the sets that share a current leftmost unqueried element not in Q have enough
budget to buy it. More precisely, at a given point of the execution, for each element
e ∈ I\Q, let Fe contain the indices of the sets that have e as their leftmost unqueried

123



Algorithmica (2023) 85:406–443 417

Fig. 3 Bad instance for BAL with overlapping sets, with k = 3 and c = 3. BAL will query the following
rounds: {I1, I2, I3}, {I4, I5, I6}, {I7, I8, I9}. It is enough to query {I1, I4, I7}

element not in Q. We include e in Q when
∑

i∈Fe bi = 1, and then we set bi to zero
for all i ∈ Fe. (If several elements e satisfy

∑
i∈Fe bi = 1 at the same time, they

are processed in this way one by one in arbitrary order.) We repeat this process until
|Q| = k or there are no unqueried elements in I\Q.

When a query e is added to Q, we say that it is charged to the sets Si with i ∈ Fe.
The amount of charge for set Si is equal to the value of bi just before bi is reset to 0
after adding e to Q. We also say that the set Si pays this amount for e.

Definition 4.1 Let ε > 0. A round is ε-good if at least k/2 of the queries made by
Algorithm 1 are also in OPT1 (i.e., are useful queries), or if at least a/γ active sets
are solved in that round, where a is the number of active sets at the start of the round
and γ = (2(1 + ε) + √

2ε2 + 4ε + 4)/ε. A round that is not ε-good is called ε-bad.

123



418 Algorithmica (2023) 85:406–443

Algorithm 1: Computing a query round for possibly non-disjoint sets
Data: family S = {S1, . . . , Sm } of active subsets of the ground set I
Result: set Q ⊆ I of at most k queries to make

1 begin
2 Q ← set of leftmost unqueried elements of all sets in S;
3 if |Q| ≥ k then
4 Q ← arbitrary subset of Q with size k;
5 else
6 bi ← 0 for all Si ∈ S;
7 while |Q| < k and there are unqueried elements in I\Q do
8 foreach e ∈ I\Q do
9 Fe ← {i | e is the leftmost unqueried element from I\Q in Si };

10 increase all bi simultaneously at the same rate until there is an unqueried element
e ∈ I\Q that satisfies

∑
i∈Fe bi = 1;

11 Q ← Q ∪ {e};
12 bi ← 0 for all i ∈ Fe;

13 return Q;

Note that γ > 2 for any ε > 0. The choice of γ in Definition 4.1 is motivated as
follows: We will show in the proof of the following lemma that the round following
an ε-bad round must make at least (γ−2)(γ−1)−γ

γ (γ−2) · k useful queries. The value of
γ in Definition 4.1 has been chosen in such a way that this expression evaluates to
2k/(2+ε). As a consequence, the ε-bad round and the round following it make at least
k/(2+ε) useful queries on average. This will lead to the term (2+ε)optk in the overall
bound on the number of query rounds that we prove further down (Theorem 4.3).

Lemma 4.2 If a round is ε-bad, then Algorithm 1 will make at least 2k/(2+ ε) useful
queries in the following round.

Proof Let a denote the number of active sets at the start of an ε-bad round. Let s be
the number of sets that are solved in the current round; note that s < a/γ because
the current round is ε-bad. Let T be the total amount by which each value bi has
increased during the execution of Algorithm 1. If the simultaneous increase of all
bi is interpreted as time passing, then T corresponds to the point in time when the
computation of the set Q has been completed. For example, if some set Si did not pay
for any element during the whole execution, then T is equal to the value of bi at the
end of the execution of Algorithm 1.

Let Q be the set of queries that Algorithm 1 makes in the current round. We claim
that every wasted query in Q is charged only to sets that are solved in this round.
Consider a wasted query e that is in some set S j not solved in this round. At the time e
was selected, j cannot have been in Fe, which can be seen as follows: As e is a wasted
query and S j is not solved, there must be an interval in S j that comes before e (in the
ordering by non-decreasing left endpoints) and was not queried yet; hence, j cannot
have been in Fe. Therefore, we do not charge e to S j .

The total number of wasted queries is therefore bounded by T · s, as these queries
are paid for by the s sets solved in this round. As the number of wasted queries in an

123



Algorithmica (2023) 85:406–443 419

ε-bad round is larger than k/2, we therefore have T · s > k/2. As s < a/γ , we get
k/2 < Ta/γ , so T > (γ/2) · (k/a).

Call a surviving set Si rich if bi > k/a when the computation of Q is completed.
A surviving set that is not rich is called poor. Note that a poor set must have spent
at least an amount of (γ /2 − 1) · (k/a) > 0, as its total budget would be at least
T > (γ/2) · (k/a) if it had not paid for any queries. As the poor sets have paid for
fewer than k/2 elements in total (as there are fewer than k/2useful queries in the current
round), the number of poor sets is bounded by k/2

(γ /2−1)·(k/a)
= a/(γ −2). As there are

more than (1−1/γ ) ·a surviving sets and at most a/(γ −2) of them are poor, there are
at least (1−1/γ )·a−a/(γ −2) = ((γ −2)(γ −1)−γ )/(γ (γ −2))·a = 2a/(2+ε) > 0
surviving sets that are rich.

Let e be any element that is the leftmost unqueried element (at the end of the current
round) of a rich surviving set. If e was the leftmost unqueried element of more than
a/k rich surviving sets, those sets would have been able to pay for e (because their
total remaining budget would be greater than (k/a) · (a/k) = 1) before the end of
the execution of Algorithm 1, a contradiction to e not being included in Q. Hence,
the number of distinct leftmost unqueried elements of the at least 2a/(2 + ε) rich
surviving sets is at least (2a/(2 + ε))/(a/k) = 2k/(2 + ε). So the following round
will query at least 2k/(2 + ε) elements that are the leftmost unqueried element of an
active set, and all those are useful queries that are made in the next round. ��
Theorem 4.3 Let optk denote the optimal number of rounds and Ak the number of
rounds used if the queries are determinedusingAlgorithm1. Then, for every0 < ε < 1,
Ak ≤ (2 + ε) · optk + O

( 1
ε

· lgm)
.

Proof In every round, one of the following must hold:

– The algorithm makes at least k/2 useful queries.
– The algorithm solves at least a fraction of 1/γ of the active sets.
– If none of the above hold, the algorithm makes at least 2k/(2 + ε) useful queries
in the following round (by Lemma 4.2).

The number of rounds in which the algorithm solves at least a fraction of 1/γ of the

active sets is bounded by �logγ /(γ−1) m� = O
( 1

ε
· lgm)

, since 1/
(
lg γ

γ−1

)
< 5/ε for

0 < ε < 1. In every round where the algorithm does not solve at least a fraction of 1/γ
of the active sets, the algorithm makes at least k/(2+ ε) useful queries on average (if
in any such round it makes fewer than k/2 useful queries, it makes 2k/(2 + ε) useful
queries in the following round). The number of such rounds is therefore bounded by
(2 + ε) · optk . ��

We do not know if this analysis is tight, so it would be worth investigating this
question.

4.2 TheMinimum Element Problemwith Arbitrary Sets

We now consider the MinimumElement problem, in which we want to find the
minimum element of each set, but we do not need to output the corresponding value.

123



420 Algorithmica (2023) 85:406–443

We assume that, for every set Si ∈ S, any two elements f , g ∈ Si satisfy I f ∩ Ig �= ∅;
otherwise, the element with higher left endpoint is clearly not the minimum in Si , so
we can remove it from Si .

First let us consider the case where k = 1 and we have a single set. Here, querying
the intervals in the order of left endpoints until the problem is solved may use up to
opt1 + 1 queries [21]. The reason why we may not obtain an optimum solution is
that in some instances the optimal solution can identify the minimum element without
querying it. For example, if the set consists of the two intervals I1 = (1, 5) and
I2 = (3, 8) with values v1 = 4 and v2 = 7, then querying I2 is sufficient to determine
that I1 is the minimum element. Note that any interval that contains the minimum
value but is not the minimum element must be queried in any solution.

For multiple sets, the problem is also easy when k ≤ 2 because of the following
proposition, which is implicit in previous work (see, e.g., [14, 21, 24]).

Proposition 4.4 The leftmost unqueried interval of a set Si ∈ S and any other
unqueried interval in Si constitute a witness set [24].

Proof Let I1 = (�1, u1) be the leftmost unqueried element of Si , and let I2 be any other
unqueried interval in Si . Note that I2 overlaps I1 because we assume that all intervals
that do not overlap I1 have been removed from Si . Assume there is a solution that
queries neither I1 nor I2. Then it is impossible to determine whether I1 is theminimum
element (this happens if v1 is closer to �1 than the value of any other element of Si ) or
I1 is not the minimum element (this happens if v1 is larger than v2, which is possible
because I1 and I2 overlap). Thus, every solution must query at least one interval of
{I1, I2}. ��

Thus there is a 2-query-competitive algorithm, which can be turned into a 2-round-
competitive algorithm for k ≤ 2, and it is easy to see that this is the best possible.

If k > 2 and the sets in S are disjoint, then MinimumElement can be reduced to
the Minimum problem while losing a factor of 2 in the round-competitive ratio: We
waste at most one query in each set and, since every set is initially active, we make at
least one useful query in each set, and those are all distinct.

However, if the sets in S overlap, this reduction does not work. So let us study this
case in more detail. Before we proceed, let us observe the following: Call the prefix P
of Si the minimum solving prefix of Si if querying P solves Si while no shorter prefix
of Si , when queried, solves Si . We will show later that, in order to solve a set Si , we
must either (a) query all intervals except the minimum (this option exists only if all
intervals except the minimum have their precise values to the right of the interval of
the minimum element) or (b) query at least all intervals of the minimum solving prefix
of Si .

We give an algorithm forMinimumElement that requires at most (12+ε) ·optk +
O

(
1
ε2

· lgm
)
rounds for every 0 < ε < 1, which we describe next. The pseudocode

for the whole execution is shown in Algorithm 2. We assume that each set in S is
ordered by non-decreasing left endpoints.

We begin by selecting a set Q of elements that are known mandatory, i.e., elements
that are clearly part of any feasible query set. An element e is known mandatory if

123



Algorithmica (2023) 85:406–443 421

Algorithm 2: Algorithm for the MinimumElement problem
Data: Family S = {S1, . . . , Sm } of subsets of the ground set I
Result: ListQ of sets of elements queried in each round, ordered by round, each set of size at most k

1 begin
2 Q ← ();
3 let bie ← 0, for each e ∈ I and Si ∈ S;
4 while there is some active set in S do
5 B ← ∅;
6 Q ← known mandatory elements;
7 if |Q| ≥ k then
8 Q ← arbitrary subset of Q with size k;
9 else

10 M ← maximal matching in the star union graph;
11 if |Q| + 2 · |M | ≥ k then

12 M ← arbitrary subset of M with size
⌊
k−|Q|

2

⌋
;

13 Q ← Q ∪ ⋃
uv∈M {u, v};

14 if |Q| < k then
15 while |Q| < k and there are unqueried elements in I\Q do
16 foreach active set Si ∈ S do
17 Wi ← the first and second unqueried element (if any) from I\Q in Si ;

18 increase simultaneously at the same rate all bie where Si is active and e ∈ Wi , until
there is some unqueried element f ∈ I\Q with

∑m
j=1 b j f = 1;

19 let α be the amount by which those variables increased (same value for all);
20 foreach active set Si ∈ S do
21 if Wi �= ∅ then
22 B ← B ∪ {(Wi , i, α)}/* Remember the set Wi containing

the elements e of Si for which bie was increased
by α in this iteration */

23 ;

24 Q ← Q ∪ { f };
25 query Q, append Q to Q;
26 foreach (W , i, α) ∈ B do
27 if Si is solved, W has an unqueried element and W is not a witness set for Si then
28 foreach unqueried element e ∈ W do
29 bie ← bie − α;

30 return Q;

there is a set Si that is not solved, has e as its leftmost unqueried element, and e
contains another interval in Si or the value of a previously queried interval in Si [15].
If known mandatory elements are not enough to fill the round, then we build a star
union graph G, which has a vertex for each element in I and, for each set Si , an edge
between the leftmost unqueried interval of Si and every other unqueried interval in Si .
(Every such edge corresponds to a witness set by Proposition 4.4.) We then compute
a maximal matching in G[I\Q], i.e., we do not consider edges where an endpoint is
a known mandatory element.

123



422 Algorithmica (2023) 85:406–443

If this is still not enough to fill the round, then we proceed in a similar fashion to
the algorithm in the previous section, increasing the budget of each set until there is
enough shared budget to include an element in the query set. To simplify the argument,
here we have a budget variable bie for each element e ∈ I and each set Si ∈ S. The
difference is that now we increase a separate budget for the leftmost and the second
leftmost unqueried interval in each set: The idea is that we want to increase the budget
simultaneously for such pairs of elements that constitute a witness set. However, we
do not know for sure if all such pairs are witness sets, so we maintain a history B of
the budget increases; i.e., we add an entry (W , i, α) to B if, in the given iteration of
the loop in Lines 16–24, Si increased the budget of the elements in W by α. Another
difference is that we carry the unused budget in a given round to the following rounds;
we do not reset the budgets to zero once the round is complete.

After the elements selected in the given round are queried, we look at each entry
(W , i, α) ∈ B and subtract the budget α from unqueried elements in W if we realize
that W is not a witness set for Si . We will prove in Lemma 4.5 below that such a test
is possible; note that each set considered has size 1 or 2, and that sets of size 2 satisfy
the condition in the lemma due to the behavior of the algorithm.

Now let us proceed to the analysis of the algorithm. Fix an optimal solution OPT1.
We say that a query performed by the algorithm is useful if it is in OPT1; otherwise it
is wasted.

We show that, for each set Si , any query set that solves Si must either contain the
prefix of Si that consists of all intervals that contain the precise minimum value, or it
must contain all elements of Si except for a single one (which is not the last in Si ). In the
latter case, the element ei that need not be queried is the minimum of Si , and all other
intervals that contain the precise value of ei have to be queried by any solution (i.e.,
these intervals have to be queried in any solution that queries ei and in any solution
that does not query ei ). Either way, as alluded to earlier, each set has a minimum
solving prefix, such that the set is solved after querying this prefix. As OPT1 solves Si ,
either OPT1 ∩ Si is a superset of the minimum solving prefix, or every interval in the
minimum solving prefix except for the minimum is also in OPT1. Therefore, as stated
earlier, in order to solve Si , we must either (a) query all intervals except the minimum
(this option exists only if all intervals except the minimum have their precise values to
the right of the interval of the minimum element) or (b) query at least all intervals of
the minimum solving prefix of Si . This shows that any query set that solves Si must
contain (at least) all elements that are not the minimum element and that belong to
the minimum solving prefix. Therefore, the only queries in Si that can potentially be
wasted queries are the query of the minimum element and the queries of elements that
come after the minimum solving prefix.

Lemma 4.5 Consider a set Si ∈ S that is solved in a round r, and a subset W ⊆ Si
with |W | ∈ {1, 2} whose budget was increased by Si in round r, and suppose W
contains an unqueried element at the end of round r. Furthermore, if |W | = 2, then
suppose that all elements in Si with smaller left endpoint than the leftmost element of
W were queried in rounds 1, . . . , r . In both cases (|W | = 1 or |W | = 2), one can
determine in Line 27 of Algorithm 2 whether W is a witness set for Si .

123



Algorithmica (2023) 85:406–443 423

Proof If |W | = 1, then clearlyW is not a witness set, since we assumeW contains an
unqueried element and Si is solved.

Now assume |W | = 2 and write W = { f , g}, with f preceding g in the ordering
by left endpoints. We divide the proof into two cases. Let ei be the minimum element
of Si .

1. The set Si was solved by querying all elements except ei . Then clearly ei ∈ W .
Since W consists of the minimum element in Si and some other element of Si ,
then it is a witness set.

2. The set Si was solved by querying its minimum solving prefix, plus possibly
additional elements after that prefix. Note that it is possible to determine the
minimum solving prefix, even if not all elements of Si were queried. If both f
and g come after the minimum solving prefix, then W is not a witness set, since
we can solve Si without querying W . Otherwise, since W contains an unqueried
element, f must be in the minimum solving prefix, but g is not. If f �= ei , then
f is in every feasible query set, because every feasible query set either queries
all of Si\{ei } or the minimum solving prefix, so W is a witness set; otherwise, W
consists of ei plus another element of Si , so it is a witness set in this case, too.

Summing up, the answer for the witness set test in Line 27 is NO if |W | = 1 or
both elements come after the minimum solving prefix of Si , and YES otherwise. ��
Lemma 4.6 Consider a set Si and a round at the end of which Si remains unsolved.
At the beginning of every iteration of the loop in Lines 16–24, the first and second
unqueried elements from I\Q in Si (or the first element if there is only one such
element) constitute a witness set.

Proof If there is only one unqueried element from I\Q in Si , then this element must
be in any feasible query set, since Si survives the round but all other elements of Si
have been queried by the end of the round. So let us assume that there are at least two
unqueried elements from I\Q in S at the beginning of the iteration.

Let e1, . . . , e|Si | be the elements of Si in the order considered by the algorithm
(with non-decreasing left endpoints), and let et be the first element of Si that remains
unqueried by the end of the round.

Let f and g be the first and second element, respectively, from I\Q in Si at the
beginning of the iteration. As Si is not solved in the round and all elements before f
are queried by the end of the round, f must be a member of the minimum solving
prefix of Si . If f is not the minimum element of Si , then f is in every feasible query
set for Si , and hence { f , g} is a witness set. If f is the minimum element of Si , then
{ f , g} contains the minimum element of Si and another interval of Si that overlaps
the minimum element, so { f , g} is again a witness set. ��

When a query e is added to Q, we say that it is charged to the sets Si with bie > 0.
We also say that the set Si pays a charge of bie for e in the round in which e is queried.
Note that, for an element selected in Line 6, 8 or 13, it may be that not all of its cost is
charged to the sets; we then just say that the remaining cost (1−∑m

i=1 bie) is charged
to the whole algorithm.

123



424 Algorithmica (2023) 85:406–443

Suppose that the algorithm uses R rounds to solve the problem, and let b(0)
ie = 0 and

b(r)
ie be the value of bie at the end of round r , for r = 1, . . . , R; to simplify notation,

we write bie = b(R)
ie . For each element e and each set Si with e ∈ Si , we divide bie

into two parts, a bounded charge b−
ie and an unbounded charge b+

ie; the idea is that
bounded charges are associated with witness sets, while unbounded charges will be
used to prove a similar result to that of Lemma 4.2. If e is selected in Line 12 or is a
useful query (note that all elements selected in Lines 6 and 8 are useful), then we set
b−
ie = bie and b+

ie = 0 for every Si ∈ S with e ∈ Si ; in that case, if
∑m

i=1 bie < 1,
then we also say that the amount (1 − ∑m

i=1 bie) is bounded, even though we do not
charge it to any specific set. If e is a wasted query selected in Line 24, then let re be
the round in which e is queried and let ri be the round in which Si is solved. If re �= ri ,
then we also set b−

ie = bie and b+
ie = 0. If re = ri , then we set b−

ie = b(ri−1)
ie and

b+
ie = bie − b−

ie. Note that, if e is not the first or second unqueried element of Si at the

beginning of round ri , we have b
(ri−1)
ie = 0, so b−

ie = 0. This definition ensures that, if
a portion of the budget is carried between rounds, then it will only consist of bounded
charges.

Lemma 4.7 The total bounded charge is at most 3 · |OPT1|.
Proof Let U ⊆ I be the set of useful queries performed by the algorithm; note that
all elements selected in Lines 6 and 8 are in U . The total bounded charge of useful
queries is clearly at most |OPT1|, and so

∑m
i=1

∑
e∈U∩Si bie ≤ |OPT1|.

Moreover, by definition of the algorithm the total budget accumulated by any ele-
ment e ∈ I is at most 1, no matter whether the element is queried or not. Hence, we
also have

∑m
i=1

∑
e∈OPT1∩Si bie ≤ |OPT1|.

Each edge selected in Line 12 is a witness set (and thus contains at least one element
of OPT1), so the total bounded charge of wasted elements selected in Line 12 is at
most |OPT1|.

It remains to show that the total bounded charge spent on wasted queries in Line 24
is at most |OPT1|. Let V ⊆ I be the set of queries wasted in Line 24. We show that∑

e∈V∩Si b
−
ie ≤ ∑

e∈OPT1∩Si bie for every set Si ∈ I, from which we immediately
obtain that

∑m
i=1

∑
e∈V∩Si b

−
ie ≤ |OPT1|.

Let e ∈ V be a wasted query, re be the round in which e is queried and ri be
the round in which Si is solved. Due to Lemma 4.6, it holds that

∑
e∈V∩Si b

(ri−1)
ie ≤

∑
e∈OPT1∩Si b

(ri−1)
ie since, in a round that Si survives, every time the bounded charge

is increased for a wasted query, the same amount of budget is increased for a useful
query.

We then claim that
∑

e∈V∩Si

(
b−
ie − b(ri−1)

ie

)
≤ ∑

e∈OPT1∩Si

(
bie − b(ri−1)

ie

)
. If

re ≤ ri , then by definition b−
ie − b(ri−1)

ie = 0. If re > ri , then note that in Line 29 we
subtract the budget that was increased for pairs that are not witness sets; in conclusion,
every time the bounded charge of e is increased and is not subtracted at the end of
round ri , the same amount of budget is increased for a useful query. So the claim holds,
and thus

∑
e∈V∩Si b

−
ie ≤ ∑

e∈OPT1∩Si bie, as required. ��
Now let us limit the unbounded charge paid by the algorithm.

123



Algorithmica (2023) 85:406–443 425

Definition 4.8 Let ε > 0. A round of Algorithm 2 is ε-good if at least a total bounded
charge of k/4 is paid in that round, or if at least a/γ active sets are solved in that round,
where a is the number of active sets at the start of the round and γ = 13/3+ 20/ε. A
round that is not ε-good is called ε-bad.

For the remainder of this section, let β = 2 + ε/6 and δ = 1 − 1
γ

− 2
3γ−8 − 2

β
=

24ε2
5(ε+12)(13ε+60) < 24

65 .

Lemma 4.9 If a round r is ε-bad, then Algorithm 2 will pay a bounded charge of at
least k/β in round r + 1, or will make k useful queries in round r + 2, or will solve at
least a · δ sets in rounds r + 1 and r + 2, where a is the number of active sets at the
start of round r.

Proof The following round, i.e., round r + 1, starts with a set of known mandatory
elements (let us call it N ) and a maximal matching M . Each edge of M is between the
first element of a surviving set and another element of that surviving set. If |N | + 2 ·
|M | ≥ k/β, then the algorithm pays a bounded charge of at least k/β in round r + 1
and the first option of the lemma holds.

So let us assume that |N | + 2 · |M | < k/β. Let a denote the number of active sets
at the start of round r . Let s be the number of sets that are solved in round r ; note that
s < a/γ because round r is ε-bad.

Let Z be the number of iterations of the loop in Lines 16–24 in round r , and let
αz be the value of α in Line 19 at iteration z, for z = 1, . . . , Z . Let T = ∑Z

z=1 αz ; if
the simultaneous increase of the budget variables is interpreted as time passing, then
T corresponds to the point in time when the computation of the set Q in round r was
completed following the execution of Line 14. Note that any set increases its total
budget in round r by at most 2T (since we may increase the budget of two variables
simultaneously). For any set that is active at the beginning of round r and does not
have all its elements included in Q at the end of the round, the total increase in budget
is at least T .

Let Q be the set of queries that Algorithm 2 makes in round r . By definition, if
b+
ie > 0 with e ∈ Q, then Si is solved in this round. Moreover, remember that, by
definition, the budget that was carried from the previous round is always used on
bounded charges. The total unbounded charge is therefore bounded by 2T · s, as this
amount is paid for by the s sets solved in this round. As the total unbounded charge
in an ε-bad round is larger than 3k/4, we therefore have T · s > 3k/8. As s < a/γ ,
we get 3k/8 < Ta/γ , so T > (3γ /8) · (k/a).

Let J be the set of unqueried elements at the beginning of round r . Call a surviving
set Si rich if

∑
e∈J\Q bie > k/a when the computation of Q is completed. A surviving

set that is not rich is called poor. Note that a poor set must have spent at least an amount
of (3γ /8− 1) · (k/a) > 0, as its total unused budget at the end of the round would be
at least T > (3γ /8) · (k/a) if it had not bought any queries. As the poor sets have paid
for a total bounded charge of less than k/4 (as a charge of less than k/4 is bounded in
round r ), the number of poor sets is bounded by k/4

(3γ /8−1)·(k/a)
= 2

3γ−8 · a. As there
are more than (1 − 1

γ
) · a surviving sets and at most 2

3γ−8 · a of them are poor, there

are at least
(
1 − 1

γ
− 2

3γ−8

)
· a > 0 surviving sets that are rich.

123



426 Algorithmica (2023) 85:406–443

Let Si be a surviving rich set, and let f and g be the first and second elements from
J\Q in Si at the end of round r . Note that f and g are the only elements in Si ∩ (J\Q)

with bie > 0 at the end of the round. Also, since f comes before g in the order of left
endpoints, we have that bi f ≥ big . Therefore, bi f +big = ∑

e∈J\Q bie > k/a implies
bi f > k/(2a).

Let f be an element that is the first unqueried element of a rich surviving set at the
end of round r . If f was the first unqueried element of more than 2a/k rich surviving
sets, those sets would have been able to pay for f (because their total remaining
first-element budget would be greater than (k/(2a)) · (2a/k) = 1) before the end of
round r , a contradiction to f not being included in Q.

Since |N | + 2 · |M | < k/β, this means that at most k/β · 2a/k = 2a/β of the
surviving rich sets have their first element contained in N or in a matching edge in

M . Thus, there are at least
(
1 − 1

γ
− 2

3γ−8 − 2
β

)
· a = a · δ > 0 surviving rich sets

whose first element is not in a matching edge. The reason why no edge with that first
element can be added to M must be that all remaining elements of that set are already
contained in N or in an edge of M . This means that for each of these a ·δ sets, in round
r + 1 we query at least all elements except the first element. Hence, each of these sets
is either solved in round r + 1, or its first element becomes a known mandatory query
at the end of round r + 1; let k′ be the number of such elements. If round r + 2 makes
k useful queries, then the lemma holds; otherwise, all those k′ elements are queried in
round r + 2. This means that each of these a · δ surviving rich sets is solved in round
r + 1 or r + 2.

In summary, this shows that if round r is not ε-good, at least one of the following
three statements holds:

– Round r + 1 pays a bounded charge of at least k/β.
– Round r + 2 queries k useful elements.
– Rounds r + 1 and r + 2 together solve at least a · δ sets. ��

Theorem 4.10 Algorithm 2 uses at most (12 + ε) · optk + O
(

1
ε2

· lgm
)
rounds for

every 0 < ε < 1, where optk denotes the optimal number of rounds.

Proof For every round r , one of the following must hold:

(1) The algorithm pays at least a bounded charge of k/4 in round r .
(2) The algorithm solves at least a fraction of 1/γ of the active sets in round r .
(3) The algorithm pays at least a bounded charge of k/β in round r + 1.
(4) The algorithm makes k useful queries in round r + 2.
(5) In rounds r + 1 and r + 2, the algorithm solves a fraction of δ of the sets that are

active at the beginning of round r .

If condition (1) holds for a round r , then the bounded charge paid in that round is at
least k/4. If condition (3) holds for a round r , then the average bounded charge paid
in rounds r and r + 1 is at least k/(2β); note that k/(2β) ≤ k/4. If condition (4)
holds for a round r , then the average bounded charge paid in rounds r , r +1 and r +2
is at least k/3 ≥ k/(2β), because the k useful queries in round r + 2 are all paid
for by bounded charge. Therefore, the number of rounds in which condition (1), (3)

123



Algorithmica (2023) 85:406–443 427

or (4) holds (where we consider two consecutive rounds for condition (3) and three
consecutive rounds for condition (4)) is at most (2β/k) · 3 · |OPT1| ≤ (12+ ε) · optk
by Lemma 4.7.

Furthermore, the number of rounds in which condition (2) holds is bounded by

�logγ /(γ−1) m� = O
( 1

ε
· lgm)

, since 1/
(
lg γ

γ−1

)
< 20/ε for 0 < ε < 1. The

number of rounds in which condition (5) holds (where we always count three con-
secutive rounds starting with the round in which condition (5) holds) is bounded by

3 · �log1/(1−δ) m� = O
(

1
ε2

· lgm
)
, since 1/

(
lg 1

1−δ

)
< 200/ε2 for 0 < ε < 1. ��

4.3 TheMinimum Problemwith Disjoint Sets

We now consider the Minimum problem in the case where k ≥ 2 and the m sets in
the given family S are pairwise disjoint. For this case, it turns out that the balanced
algorithm achieves good upper bounds.

Theorem 4.11 BALk ≤ optk + O(lgmin{k,m}).
Proof First we prove the bound for m ≤ k. Index the sets in such a way that Si is the
i-th set that is solved by BAL, for 1 ≤ i ≤ m. Sets that are solved in the same round
are ordered by non-decreasing number of queries made in them in that round by BAL.
In the round when Si is solved, there are at leastm− (i −1) active sets, so the number

of wasted queries in Si is at most k
m−(i−1) . (BAL makes at most

⌈
k

m−(i−1)

⌉
queries

in Si , and at least one of these is not wasted.) The total number of wasted queries is
then at most

∑m
i=1

k
m−(i−1) = ∑m

i=1 k/i = k · H(m), where H(m) denotes the m-th
Harmonic number. By Proposition 2.1, BALk ≤ optk + O(lgm).

Ifm > k, observe that the algorithm does not waste any queries until the number of
active sets is at most k. From that point on, it wastes at most k ·H(k) queries following
the arguments in the previous paragraph, so the number of rounds is bounded by
optk + O(log k). ��

We now give a more refined analysis that provides a better bound for optk = 1, as
well as a better multiplicative bound than what would follow from Theorem 4.11.

Lemma 4.12 If optk = 1, then BALk ≤ O(lgm/ lg lgm).

Proof Consider an arbitrary instance of the problem with optk = 1. Let R + 1 be the
number of rounds needed by the algorithm. For each of the first R rounds, we consider
the fraction bi of active sets that are not solved in that round. More formally, for the
i-th round, for 1 ≤ i ≤ R, if ai denotes the number of active sets at the start of round i
and ai+1 the number of active sets at the end of round i , then we define bi = ai+1/ai .

Consider round i , 1 ≤ i ≤ R. A set that is active at the start of round i and is still
active at the start of the round i + 1 is called a surviving set. A set that is active at
the start of round i and gets solved by the queries made in round i is called a solved
set. For each surviving set, all queries made in that set in round i are useful. For each
solved set, at least one query made in that set is useful. We claim that this implies the
algorithm makes at least kbi useful queries in round i . To see this, observe that if the

123



428 Algorithmica (2023) 85:406–443

algorithm makes �k/ai� queries in a surviving set and �k/ai� queries in a solved set,
we can conceptually move one useful query from the solved set to the surviving set.
After this, the ai+1 surviving sets contain at least k/ai useful queries on average, and
hence ai+1 · k/ai = bi k useful queries in total.

As OPT1 must make all useful queries and makes at most k queries in total, we
have that

∑R
i=1 kbi ≤ opt1 ≤ k, so

∑R
i=1 bi ≤ 1. Furthermore, as there are m

active sets initially and there is still at least one active set after round R, we have
that

∏R
i=1 bi = aR+1/a1 ≥ 1/m. To get an upper bound on R, we need to determine

the largest possible value of R for which there exist values bi > 0 for 1 ≤ i ≤ R
satisfying

∑R
i=1 bi ≤ 1 and

∏R
i=1 bi ≥ 1/m. We gain nothing from choosing bi with∑R

i=1 bi < 1, so we can assume
∑R

i=1 bi = 1. In that case, the value of
∏R

i=1 bi is
maximized if we set all bi equal, namely bi = 1/R. Sowe need to determine the largest
value of R that satisfies

∏R
i=1 1/R ≥ 1/m, or equivalently RR ≤ m, or R lg R ≤ lgm.

This shows that R ≤ W−1(lgm) = O(lgm/ lg lgm). ��
Corollary 4.13 If optk = 1, then BALk ≤ O(lg k/ lg lg k).

Proof If k ≥ m, then the corollary follows from Lemma 4.12. If k < m, there can be
at most k active sets, because the optimum performs at most k queries since optk = 1.
Hence, we only need to consider these k sets and can apply Lemma 4.12 with m = k.

��
Now we wish to extend these bounds to arbitrary optk . It turns out that we can

reduce the analysis for an instance with arbitrary optk to the analysis for an instance
with optk = 1, assuming that BAL is implemented in a round-robin fashion. A formal
description of such an implementation is as follows: fix an arbitrary order of them sets
of the original problem instance as S1, S2, . . . , Sm , and consider it as a cyclic order
where the set after Sm is S1. In each round, BAL distributes the k queries to the active
sets as follows. Let i be the index of the set to which the last query was distributed in
the previous round (or let i = m if we are in the first round). Then initialize Q = ∅ and
repeat the following step k times. Let j be the first index after i such that S j is active
and has unqueried non-trivial elements that are not in Q; pick the leftmost unqueried
non-trivial element in S j\Q, insert it into Q, and set i = j . The resulting set Q is then
queried.

Lemma 4.14 Assume that BAL distributes queries to active sets in a round-robin
fashion. If BALk ≤ ρ for instances with optk = 1, with ρ independent of k, then BAL
is ρ-round-competitive for arbitrary instances.

Proof Let L = (I,S) be an instance with optk(L) = t . Note that opt1(L) ≤ tk.
Consider the instance L ′ which is identical to L except that the number of queries
per round is k′ = tk. Use BAL′ to refer to the solution computed by BAL for the
instance L ′ (and also to the algorithm BAL when it is executed on instance L ′). Note
that optk′(L ′) = 1 as opt1(L

′) = opt1(L)≤ tk and, therefore, a single round with
k′ = tk queries is sufficient for making all queries in the optimal query set.

By our assumption, BAL′
k′ ≤ ρ.We claim that this impliesBALk ≤ ρt . To establish

the claim, we compare the situation when BAL′ has executed x rounds on L ′ with the

123



Algorithmica (2023) 85:406–443 429

situation when BAL has executed xt rounds on L . We claim that the following two
invariants hold for every x :

(1) The number of remaining active sets of BAL is at most that of BAL′.
(2) BAL has made at least as many queries in each active set as BAL′.

For a proof of these invariants, note that BAL′ and BAL distribute queries to sets in
the same round-robin order, the only difference being that BAL performs a round of
queries whenever k queries have been distributed, while BAL′ only performs a round
of queries whenever kt queries have accumulated. Imagine the process by which both
algorithms pick queries as if it was executed in parallel, with both of the algorithms
choosing one query in each step. The only case where BAL and BAL′ can distribute
the next query to a different set is when BAL′ distributes the next query to a set Si
that is no longer active for BAL (or all of whose non-trivial unqueried elements have
already been added by BAL to the set of queries to be performed in the next round).
This can happen because BAL may have already made some of the queries that BAL′
has distributed to sets but not yet performed. If this happens, BAL will select for the
next query an element of a set that comes after Si in the cyclical order, so it will move
ahead of BAL′ (i.e., it chooses a query now that BAL′ will only choose in a later step).
Hence, at any step during this process, BAL either picks the same next query as BAL′
or is ahead of BAL′. This shows that if the invariants hold when BAL and BAL′ have
executed xt and x rounds, respectively, then they also hold after they have executed
(x + 1)t and x + 1 rounds, respectively. As the invariants clearly hold for x = 0, if
follows that they always hold, and hence BALk ≤ ρt . ��

Lemmas 4.12 and 4.14 imply the following.

Corollary 4.15 BAL is O(lgm/ lg lgm)-round-competitive.

Unfortunately, Corollary 4.13 cannot be combined with Lemma 4.14 directly to
show that BAL isO(lg k/ lg lg k)-round-competitive, because the proof of Lemma4.14
assumes that ρ is not a function of k. However, we can show the claim using different
arguments.

Lemma 4.16 BAL is O(lg k/ lg lg k)-round-competitive.

Proof If k ≥ m, the lemma follows from Corollary 4.15.
If k < m, let L be thegiven instance and let R0 be thenumber of rounds the algorithm

needs until the number of active sets falls below k+1 for the first time.As the algorithm
makes at most one query in each active set in the first R0 rounds, all queries made in
the first R0 rounds are useful. Let L ′ be the instance at the end of round R0. As L ′ has at
most k active sets, BAL is O(lg k/ lg lg k)-round-competitive on L ′ by Corollary 4.15,
and it needs at most O(lg k/ lg lg k) ·optk(L ′) = O(lg k/ lg lg k) · �opt1(L ′)/k� rounds
to solve L ′.

We have that opt1(L) = k ·R0+opt1(L
′), and hence optk(L) = R0+�opt1(L ′)/k�.

Thus,

BALk(L) ≤ R0 + O(lg k/ lg lg k) · �opt1(L ′)/k�

123



430 Algorithmica (2023) 85:406–443

≤ O(lg k/ lg lg k) · (R0 + �opt1(L ′)/k�)
= O(lg k/ lg lg k) · optk(L),

and the claim follows. ��
The following theorem then follows from Corollary 4.15 and Lemma 4.16.

Theorem 4.17 BAL is O(lgmin{k,m}/ lg lgmin{k,m})-round-competitive.
We note that, if we use BAL to solve the MinimumElement problem on disjoint

sets, then we only lose an extra factor of 2 in the round-competitive factor. This is
because we waste at most one extra query per set (the minimum element of that set)
and, since every set is initially active, each set contains at least a useful query. This is
still asymptotically optimal given the lower bounds in the next section.

4.4 Lower Bounds

In this section we present lower bounds for Minimum that hold even for the more
restricted case where the family S consists of disjoint sets.

Theorem 4.18 For arbitrarily large m and any deterministic algorithm ALG,
there exists an instance with m sets and k > m queries per round, such that
optk = 1, ALGk ≥ W−1(lgm) and ALGk = �(W−1(lg k)). Hence, there is no
o(lgmin{k,m}/ lg lgmin{k,m})-round-competitive deterministic algorithm.
Proof Fix an arbitrarily large positive integer M . Consider an instance withm = MM

sets, and let k = MM+1. Each set contains Mk elements, with the i-th element
having uncertainty interval (1 + iε, 100 + iε) for ε = 1/MM+2. The adversary
will pick for each set an index j and set the j-th element to be the minimum, by
letting it have value 1 + ( j + 0.5)ε, while the i-th element for i �= j is given value
100 + (i − 0.5)ε. The optimal query set for the set is thus its first j elements. We
assume that an algorithm queries the elements of each set in order of increasing lower
interval endpoints. (Otherwise, the lower bound only becomes larger.)

Consider the start of a round when a ≤ m sets are still active; initially a = m. The
adversary observes how the algorithm distributes its k queries among the active sets
and repeatedly adds the active set with largest number of queries (from the current
round) to a set L, until the total number of queries from the current round in sets of L
is at least (M−1)k/M . Let S ′ denote the remaining active sets. Note that |S ′| ≥ a/M .
For the sets inL, the adversary chooses the minimum in such a way that a single query
in the current round would have been sufficient to find it, while the sets in S ′ remain
active for the algorithm. The optimummust make the same queries to these active sets
that the algorithm made in the current round, and there at most k/M such queries. We
continue for M rounds. In the M-th round, the adversary picks the minimum in all
remaining sets in such way that a single query in that round would have been sufficient
to solve the set. The optimal set of queries then consists of the at most k/M queries
that the algorithm makes in surviving sets in each of the first M − 1 rounds, plus a
single query in each of them = MM sets to solve it. The optimal number of queries is

123



Algorithmica (2023) 85:406–443 431

then at most (M − 1)k/M + MM = (M − 1)k/M + k/M = k, and hence optk = 1.
On the other hand, we have ALGk = M .

We can now express this lower bound in terms of k or m as follows: As m = MM ,
we have lgm = M lgM and hence M = W−1(lgm). As k = MM+1, we have
lg k = (M + 1) lgM and hence M = �(W−1(lg k)). Thus, the theorem follows. ��
Theorem 4.19 Nodeterministic algorithmALG attainsALGk ≤ optk+o(lgmin{k,m})
for all k.

Proof Let k = m be an arbitrarily large integer. The intervals of the m sets are chosen
as in the proof of Theorem 4.18, for a sufficiently large value ofM . Let a be the number
of active sets at the start of a round; initially a = m. After each round, the adversary
considers the set S j in which the algorithm has made the largest number of queries,
which must be at least k/a. The adversary picks the minimum element in S j in such a
way that a single query in the current round would have been enough to solve it, and
keeps all other sets active. This continues form rounds. The number of wasted queries
is at least k/m + k/(m − 1) + · · · + k/2 + k − m = k · (H(m) − 1) = k · �(lg k).
As the algorithm must also make all queries in OPT1, the theorem follows from
Proposition 2.1. ��

We conclude that the balanced algorithm attains matching upper bounds for disjoint
sets. For non-disjoint sets, a small gap remains between our lower and upper bounds.

5 Selection

An instance of the Selection problem is given by a setI of n intervals and an integer i ,
1 ≤ i ≤ n. Throughout this section we denote the i-th smallest value in the set of n
precise values by v∗.

5.1 Finding theValue v∗

If we only want to find the value v∗, then we can adapt the analysis in [21] to obtain
an algorithm that performs at most opt1 + i − 1 queries, simply by querying the
intervals in the order of their left endpoints. This is the best possible and can easily
be parallelized in optk + ⌈ i−1

k

⌉
rounds. Note that we can assume i ≤ �n/2�, since

otherwise we can consider the i-th largest value problem, noting that the i-th smallest
value is the (n − i + 1)-th largest value. We also assume that every input interval is
either trivial or open, since otherwise (if arbitrary closed intervals are allowed) the
problem has a lower bound of n on the competitive ratio, using the same instance as
presented in [21] for theMinimumElement problem on a single set (included for the
sake of completeness in Appendix A).

Let � be the i-th smallest left endpoint, and let u be the i-th smallest right endpoint.
Note that any interval I j with u j < � or � j > u can be discarded (and the value of i
adjusted accordingly).

We analyze the algorithm that simply queries the k leftmost non-trivial intervals
until the problem is solved.

123



432 Algorithmica (2023) 85:406–443

Fig. 4 An illustration of sets M , X , L and R (after the queries in OPT1 have been executed) in the proof of
Theorem 5.1

Theorem 5.1 For instances of the i-th smallest value problemwhere all input intervals
are open or trivial, there is an algorithm that returns the i-th smallest value v∗ and
uses at most

⌈
opt1 + i − 1

k

⌉
≤ optk +

⌈
i − 1

k

⌉

rounds.

Proof Let I ′ be the set of non-trivial intervals in the input, ordered by non-decreasing
left endpoint. We show that the prefix Q of I ′ of size opt1 + i − 1 has the property
that, after querying Q, the instance is solved. Given the existence of such a set Q, it
is clear that the theorem follows.

Fix an optimum query set OPT1, and let v∗ be the i-th smallest value. After query-
ing OPT1, assume that there are m trivial intervals with value v∗. Note that m ≥ 1,
since it is necessary to determine the value v∗. Those m intervals are either queried
in OPT1 or already were trivial intervals in the input. We classify the intervals in I
into the following categories:

1. The set M (of size m) consisting of trivial intervals whose value is v∗ and of
non-trivial intervals that are in OPT1 and have value v∗;

2. The set X consisting of non-trivial intervals that contain v∗ and are not in OPT1;
3. The set L of intervals that are to the left of v∗ or that are in OPT1 and have a value

to the left of v∗;
4. The set R of intervals that are to the right of v∗ or that are in OPT1 and have a

value to the right of v∗.

We illustrate this classification in Fig. 4. Note that intervals in L and Rmay intersect
intervals in X , but cannot contain v∗. Let M∗ = M ∩ OPT1, L∗ = L ∩ OPT1 and
R∗ = R ∩OPT1. Note that X ∩OPT1 = ∅, and that every interval in M\M∗ is trivial
in the input.

We claim that the set Q = (L ∩ I ′) ∪ X ∪ M∗ ∪ R∗ is a prefix of I ′ in the given
ordering (note that (X ∪ M∗ ∪ R∗)\I ′ = ∅), that querying Q suffices to solve the
instance, and that |Q| ≤ opt1 + i − 1. Clearly, every interval in L ∪ X ∪ M∗ comes
before all the intervals in R\R∗ in the ordering considered. It also holds that every
interval in R∗ comes before all the intervals in R\R∗ in the ordering, since otherwise an
interval in R∗ not satisfying this condition could be removed fromOPT1. Furthermore,

123



Algorithmica (2023) 85:406–443 433

querying all intervals in Q is enough to solve the instance, because every interval in
R\R∗ is to the right of v∗, and the optimum solution can decide the problem without
querying them. Thus it suffices to bound the size of Q. Note then that |L|+|X | ≤ i−1
since, after querying OPT1, the i-th smallest interval is in M , and any interval in L∪X
has a left endpoint to the left of v∗. Therefore,

|Q| ≤ |L| + |X | + |M∗| + |R∗| ≤ i − 1 + |M∗| + |R∗| ≤ opt1 + i − 1,

which concludes the proof. ��

The upper bound of
⌈
opt1+i−1

k

⌉
is best possible, because we can construct a lower

bound of opt1 + i − 1 queries to solve the problem. It uses the same instance as
described in [21] for the problem of identifying an i-th smallest element (but not
necessarily finding its precise value). We include a description of the instance for the
sake of completeness. Consider 2i intervals, comprising i copies of (0, 5) and i copies
of {3}. For the first i−1 intervals (0, 5) queried by the algorithm, the adversary returns
a value of 1, so the algorithm also needs to query the final interval of the form (0, 5) to
decide the problem. Then the adversary sets the value of that interval to 4, and querying
only that interval would be sufficient for determining that 3 is the i-th smallest value.
Hence any deterministic algorithm makes at least i queries, while opt1 = 1.

5.2 Finding All Elements with Value v∗

Now we focus on the task of finding v∗ as well as identifying all intervals in I whose
precise value equals v∗. For this problem variant, closed intervals do not cause any
difficulties. For ease of presentation, we assume that all the intervals in I are closed.
The result can be generalized to arbitrary intervals without any significant new ideas,
but the proofs become longer and require more cases. A complete proof is included
in Appendix B.

Let us begin by observing that the optimal query set is easy to characterize.

Lemma 5.2 Every feasible query set contains all non-trivial intervals that contain v∗.
The optimal query set OPT1 contains all non-trivial intervals that contain v∗ and no
other intervals.

Proof If a non-trivial interval I j containing v∗ is not queried, one cannot determine
whether the precise value of I j is equal to v∗ or not. Thus, every feasible query set
contains all non-trivial intervals that contain v∗.

Furthermore, it is easy to see that the non-trivial intervals containing v∗ constitute
a feasible query set: Once these intervals are queried, one can determine for each
interval whether its precise value is smaller than v∗, equal to v∗, or larger than v∗. ��

Let � be the i-th smallest left endpoint, and let u be the i-th smallest right endpoint.
Then it is clear that v∗ must lie in the interval [�, u], which we call the target area.
The following lemma was essentially shown by Kahan [24]; we include a proof for
the sake of completeness.

123



434 Algorithmica (2023) 85:406–443

Lemma 5.3 [24] Assume that the current instance of Selection is not yet solved.
Then there is at least one non-trivial interval I j in I that contains the target area
[�, u], i.e., satisfies � j ≤ � and u j ≥ u.

Proof First, assume that the target area is trivial, i.e., � = u = v∗. If there is no non-
trivial interval in I that contains v∗, then the instance is already solved, a contradiction.

Now, assume that the target area is non-trivial. Assume that no interval in I contains
the target area. Then all intervals I j with � j ≤ � have u j < u. There are at least i
such intervals (because � is the i-th smallest left endpoint), and hence the i-th smallest
right endpoint must be strictly smaller than u, a contradiction to the definition of u. ��

For k = 1, there is therefore an online algorithm that makes opt1 queries: In each
round, it determines the target area of the current instance and queries a non-trivial
interval that contains the target area. (This algorithm was essentially proposed by
Kahan [24] for ElementSelection.) For larger k, the difficulty is how to select
additional intervals to query if there are fewer than k intervals that contain the target
area.

The intervals that intersect the target area can be classified into four categories:

(1) a non-trivial intervals [� j , u j ] with � j ≤ � and u j ≥ u; they contain the target
area;

(2) b intervals [� j , u j ] with � j > � and u j < u; they are strictly contained in the
target area and contain neither endpoint of the target area;

(3) c intervals [� j , u j ] with � j ≤ � and u j < u; they intersect the target area on the
left;

(4) d intervals [� j , u j ] with � j > � and u j ≥ u; they intersect the target area on the
right.

We propose the following algorithm for roundswith k queries: Each round is filledwith
as many non-trivial intervals as possible, using the following order: first all intervals of
category (1); then intervals of category (2); then picking intervals alternatingly from
categories (3) and (4), starting with category (3). If one of the two categories (3) and
(4) is exhausted, the rest of the k queries is chosen from the other category. Intervals of
categories (3) and (4) are picked in order of non-increasing length of overlap with the
target area, i.e., intervals of category (3) are chosen in non-increasing order of right
endpoint, and intervals of category (4) in non-decreasing order of left endpoint. When
a round is filled, it is queried, and the algorithm restarts, with a new target area and
the intervals redistributed into the categories.

Proposition 5.4 At the start of any round, a ≥ 1 and b ≤ a − 1.

Proof Lemma 5.3 shows a ≥ 1. If the target area is trivial, we have b = 0 and hence
b ≤ a − 1. From now on assume that the target area is non-trivial.

Let L be the set of intervals in I that lie to the left of the target area, i.e., intervals
I j with u j < �. Similarly, let R be the set of intervals that lie to the right of the target
area. Observe that a + b + c + d + |L| + |R| = n.

The intervals in L and the intervals of type (1) and (3) include all intervals with left
endpoint at most �. As � is the i-th smallest left endpoint, we have |L| + a + c ≥ i .

123



Algorithmica (2023) 85:406–443 435

Similarly, the intervals in R and the intervals of type (1) and (4) include all intervals
with right endpoint at least u. As u is the i-th smallest right endpoint, or equivalently
the (n − i + 1)-th largest right endpoint, we have |R| + a + d ≥ n − i + 1.

Adding the two inequalities derived in the previous two paragraphs, we get 2a +
c+ d + |L| + |R| ≥ n+ 1. Combined with a + b+ c+ d + |L| + |R| = n, this yields
b ≤ a − 1. ��
Lemma 5.5 If the current round of the algorithm is not the last one, then the following
holds: If the algorithm queries at least one interval of categories (3) or (4), then the
algorithm does not query all intervals of category (3) that contain v∗, or it does not
query all intervals of category (4) that contain v∗.

Proof Assume for a contradiction that the algorithm queries at least one interval of
categories (3) or (4), and that it queries all intervals of categories (3) and (4) that
contain v∗. Observe that the algorithm also queries all intervals in categories (1) and
(2), as otherwise it would not have started to query intervals of categories (3) and
(4). Thus, the algorithm has queried all intervals that contain v∗ and hence solved the
problem, a contradiction to the current round not being the last one. ��
Theorem 5.6 There is a 2-round-competitive algorithm for Selection.

Proof Consider any round of the algorithm that is not the last one. Let A, B, C
and D be the sets of intervals of categories (1), (2), (3) and (4) that are queried in
this round, respectively. Let A∗, B∗, C∗ and D∗ be the subsets of A, B, C and D
that are in OPT1, respectively. By Lemmas 5.2 and 5.3, |A| = |A∗| ≥ 1. Since the
algorithm prioritizes category (1), by Proposition 5.4 we have |B| ≤ |A|−1, and thus
|A ∪ B| ≤ 2 · |A| − 1 = 2 · |A∗| − 1 ≤ 2(|A∗| + |B∗|) − 1.

To bound the size of C ∪ D, first note that the order in which the algorithm selects
the elements of categories (3) and (4) ensures that, within each category, the intervals
that contain v∗ are selected first. By Lemma 5.5, there exists a category in which
the algorithm does not query all intervals that contain v∗ in the current round. If
that category is (3), we have |C | = |C∗| and, by the alternating choice of intervals
from (3) and (4) starting with (3), |D| ≤ |C | and hence |C ∪ D| ≤ 2 · |C∗| ≤
2(|C∗| + |D∗|). If that category is (4), we have |D| = |D∗| and |C | ≤ |D| + 1,
giving |C ∪ D| ≤ 2 · |D∗| + 1 ≤ 2(|C∗| + |D∗|) + 1. In both cases, we thus have
|C ∪ D| ≤ 2(|C∗| + |D∗|) + 1.

Combining the bounds obtained in the two previous paragraphs, we get |A ∪ B ∪
C ∪ D| ≤ 2(|A∗| + |B∗| + |C∗| + |D∗|). This shows that, among the queries made in
the round, at most half are wasted. The total number of wasted queries in all rounds
except the last one is hence boundedbyopt1. Since the algorithmfills each round except
possibly the last one and also queries all intervals in OPT1, the theorem follows by
Proposition 2.1. ��

We also have the following lower bound, which proves that our algorithm has the
best possible multiplicative factor. We remark that it uses instances with optk = 1,
and we do not know how to scale it to larger values of optk . In its present form, it does
not exclude the possibility of an algorithm using at most optk + 1 rounds.

123



436 Algorithmica (2023) 85:406–443

Lemma 5.7 There is a family of instances of Selection with k = i ≥ 2 with opt1 ≤ i
(and hence optk = 1) such that any algorithm that makes k queries in the first round
needs at least two rounds and performs at least opt1 + �(i − 1)/2� queries.
Proof Consider the instance with i − 1 copies of interval [0, 3] (called left-side inter-
vals), i −1 copies of interval [5, 8] (called right-side intervals), and one interval [2, 6]
(called middle interval). The precise values are always 1 for the left-side intervals,
and 7 for right-side intervals. The value of the middle interval depends on the behav-
ior of the algorithm, but in all cases it will be the i-th smallest element. If the algorithm
does not query the middle interval in the first round, then we set its value to 4, so we
have opt1 = 1 and the algorithm performs at least opt1 + i = (i + 1) · opt1 queries.
So assume that the algorithm queries the middle interval in the first round. If it queries
more left-side than right-side intervals, then we set the value of the middle interval
to 5.5, so all right-side intervals must be queried (and all queries of left-side intervals
are wasted); otherwise, we set the middle value to 2.5. In either case, we have opt1 = i
and the algorithm wastes at least �(i − 1)/2� queries. ��

5.3 Element Selection

If we do not need to output the value v∗, we can use the algorithms in the previous
sections, and we waste at most one extra query. Thus, if we want to find one element
whose value is v∗, the algorithm in Sect. 5.1 performs at most opt1 + i queries, which
is the best possible [21], and therefore we use at most optk + �i/k� rounds and this is
the best possible. If we want to find all elements whose value is v∗, then the algorithm
from Theorem 5.6 uses at most 2 · optk + 1 rounds, which can be proved as follows:
Let OPT′

1 be the optimal query set for Selection (finding v∗ and all elements with
value v∗) and let OPT1 be the optimal query set for ElementSelection (identifying
all elements whose value is v∗). If |OPT1| = |OPT′

1|, then it is immediate that the
algorithm of Theorem 5.6 uses at most 2 · optk rounds. The case |OPT1| �= |OPT′

1|
can only arise if there is a single element e with value v∗ and if the optimal solution
for identifying e does not query e. In this case, we can assume OPT1 = OPT′

1\{e}.
The proof of Theorem 5.6 shows the following: If the total number of queries made in
all rounds except the final one is z, then at least z/2 of those queries are in OPT′

1. If e
is not among these z queries, then at least z/2 of them are also in OPT1. This shows
z ≤ 2opt1, and thus the number of rounds used by the algorithm is at most �z/k�+1 ≤
�2opt1/k� + 1≤ 2optk + 1. If e is among the z queries, then at least z/2 − 1 of them
are in OPT1. Furthermore, the final round must also contain at least one query from
OPT1 (otherwise, OPT1 ∪{e} = OPT′

1 would have been queried and thus the problem
solved before the final round, a contradiction). Therefore, opt1 ≥ z/2. Again, we have
z ≤ 2opt1 and get that the number of rounds is at most �2opt1/k� + 1 ≤ 2optk + 1.

6 Relationship with the Parallel Model byMeißner

In [29, Section 4.5], Meißner describes a slightly different model for parallelization
of queries. There, one is given a maximum number r of batches that can be used, and

123



Algorithmica (2023) 85:406–443 437

there is no constraint on the number of queries that can be performed in a given batch.
The goal is to minimize the total number of queries performed, and the algorithm is
compared to an optimal query set. The number of uncertain elements in the input is
denoted by n. In this section, we discuss the relationship between this model and the
one we described in the previous sections.

Meißner argues that the sorting problem admits a 2-query-competitive algorithm for
r ≥ 2 batches. For the minimum problem with one set, she gives an algorithm which
is �n1/r�-query-competitive, with a matching lower bound. She also gives results for
the selection and the minimum spanning tree problems.

Theorem 6.1 If there is an α-query-competitive algorithm that uses at most r batches,
then there is an algorithm that uses at most α · optk + r − 1 rounds of k queries.
Conversely, if a problem has a lower bound of β · optk + t on the number of rounds
of k queries, then any algorithm using at most t + 1 batches has query-competitive
ratio at least β.

Proof Given an α-query-competitive algorithm A on r batches, we construct an algo-
rithm B for rounds of k queries in the following way. For each batch in A, algorithm B
simply performs all queries in as many rounds as necessary. In between batches, we
may have an incomplete round, but there are only r − 1 such rounds. ��

In view ofMeißner’s lower bound for theminimumproblemwith one setmentioned
above, the following result is close to being asymptotically optimal for that problem
(using α = 1).

Theorem 6.2 Assume that there is an α-round-competitive algorithm for rounds of k
queries, with α independent of k. Then there is, for every positive integer x, an algo-
rithm that uses at most r batches and has query-competitive ratio O(α · n�α�/(r−1)),
where r = �α�·x+1. In particular, for x ≥ lg n, the query-competitive factor isO(α).

Proof Given anα-round-competitive algorithm A for rounds of k queries, we construct
an algorithm B that uses at most r batches. We group them into sequences of �α�
batches. For the i-th sequence, for i = 1, . . . , x , algorithm B runs algorithm A for �α�
rounds with k = n(i−1)/x , until the problem is solved. If the problem is not solved
after �α� · x batches, then algorithm B queries all the remaining intervals in one final
batch.

To determine the query-competitive ratio, consider the number i of sequences of �α�
batches the algorithm executes. If the problem is solved during the i-th sequence, then
algorithm B performs at most �α� · (

∑i−1
j=0 n

j/x ) = �α� · �(n(i−1)/x ) queries. (If

the problem is solved during the final batch, it performs at most n ≤ �α� · nx/x
queries.) On the other hand, we claim that, if the problem is not solved after the
(i −1)-th sequence, then the optimum solution queries at least n(i−2)/x intervals. This
is because algorithm A is α-round-competitive, so whenever the algorithm executes
a sequence of �α� rounds for a certain value of k and does not solve the problem,
it follows that the optimum solution requires more than one round for this value
of k, and hence more than k queries. Thus, the query-competitive ratio is at most
�α� · �(n1/x ) = �(α · n�α�/(r−1)). ��

123



438 Algorithmica (2023) 85:406–443

Therefore, an algorithm that uses a constant number of batches implies an algorithm
with the same asymptotic round-competitive ratio for rounds of k queries. On the other
hand, some problems have worse query-competitive ratio if we require few batches,
even if we have round-competitive algorithms for rounds of k queries, but the ratio is
preserved by a constant if the number of batches is sufficiently large.

7 Final Remarks

We propose a model with parallel queries and the goal of minimizing the number of
query rounds when solving uncertainty problems. Our results show that, even though
the techniques developed for the sequential setting can be utilized in the new frame-
work, they are not enough, and some problems are harder (have a higher lower bound
on the competitive ratio).

One interesting problem one could attack is the following generalization of Selec-
tion: Given multiple sets S1, . . . , Sm ⊆ I and indices i1, . . . , im , identify the
i j -smallest precise value and all elements with that value in S j , for j = 1, . . . ,m. It
would be interesting to see if the techniques we developed forMinimumwith multiple
sets can be adapted to Selection with multiple sets.

It would be nice to close the gaps in the round-competitive ratio, to understand if
the analysis of Algorithm 1 is tight, and to study whether randomization can help to
obtain better upper bounds. One could also study other problems in the parallel model,
such as the minimum spanning tree problem.

Acknowledgements We would like to thank Markus Jablonka for helpful preliminary discussions.

Funding This research was supported by the Engineering and Physical Sciences Research Council
(EPSRC), grants EP/S033483/1 and EP/S033483/2.

Declarations

Competing interests The authors have no conflicts of interest to declare that are relevant to the content of
this article.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Lower Bound forMINIMUMELEMENT with Closed Intervals

For completeness,we include her the argument from [21] showing that no deterministic
algorithm can be better than n-query-competitive for theMinimumElement problem
with a single set of n elements if we allow closed intervals in the input. Consider

123

http://creativecommons.org/licenses/by/4.0/


Algorithmica (2023) 85:406–443 439

an instance consisting of n identical closed intervals I1 = I2 = · · · = In = [1, 3].
For a deterministic algorithm that queries the intervals one by one in some order, the
adversary returns a value of 2 for the first n − 1 queries and a value of 1 for the last
query. Let the interval of the last query be I�. The algorithm can identify I� with value
v� = 1 as a minimum element only after n queries, while the optimal solution only
needs to execute a single query on I� to prove that it is a minimum element.

This lower bound also shows that no deterministic algorithm can be better than
n
k -round-competitive for theMinimumElement problem with a single set of n closed
intervals if k queries per round are allowed.

B Selection with Arbitrary Intervals

In this section we prove that Theorem 5.6 also holds for arbitrary intervals.
An instance of the Selection problem is given by a set I of n intervals and an

integer i , 1 ≤ i ≤ n. The i-th smallest value in the set of n precise values is denoted
by v∗. The task is to find v∗ as well as identify all intervals in I whose precise value
equals v∗.

We allow arbitrary intervals as input: trivial intervals containing a single value,
open intervals, closed intervals, and intervals that are closed on one side and open on
the other.

Lemma 5.2 and its proof hold also for arbitrary intervals without any changes.
We call the left endpoint �i of an interval Ii an open left endpoint if the interval

does not contain �i and a closed left endpoint otherwise. The definitions of the terms
open right endpoint and closed right endpoint are analogous. When we order the left
endpoints of the intervals in non-decreasing order, equal left endpoints are ordered
as follows: closed left endpoints come before open left endpoints. When we order
the right endpoints of the intervals in non-decreasing order, equal right endpoints are
ordered as follows: open right endpoints come before closed right endpoints. Equal
left endpoints that are all open can be ordered arbitrarily, and the same holds for equal
left endpoints that are all closed, for equal right endpoints that are all open, and for
equal right endpoints that are all closed. Informally, the order of left endpoints orders
intervals in order of the “smallest” values they contain, and the order of right endpoints
orders intervals in order of the “largest” values they contain.We call the resulting order
of left endpoints �L and the resulting order of right endpoints �U . We say that a right
endpoint ui1 strictly precedes a right endpoint ui2 if either ui1 < ui2 or ui1 = ui2 and
ui1 is an open right endpoint and ui2 is a closed right endpoint.

Let I j1 be the interval with the i-th smallest left endpoint (i.e., the i-th left endpoint
in the order �L ), and let I j2 be the interval with the i-th smallest right endpoint (i.e,
the i-th right endpoint in the order �U ). Then it is clear that v∗ must lie in the interval
Ita, which we call the target area and define as follows:

– If � j1 is an open left endpoint of I j1 and u j2 is an open right endpoint of I j2 , then
Ita = (� j1 , u j2).

– If � j1 is an open left endpoint of I j1 and u j2 is a closed right endpoint of I j2 , then
Ita = (� j1 , u j2 ].

123



440 Algorithmica (2023) 85:406–443

– If � j1 is a closed left endpoint of I j1 and u j2 is an open right endpoint of I j2 , then
Ita = [� j1 , u j2).

– If � j1 is a closed left endpoint of I j1 and u j2 is a closed right endpoint of I j2 , then
Ita = [� j1 , u j2 ].
The following lemma was essentially shown by Kahan [24]; for the sake of com-

pleteness, we give a proof for arbitrary intervals.

Lemma B.1 (Kahan [24]; version of Lemma5.3 for arbitrary intervals)Assume that the
current instance of Selection is not yet solved. Then there is at least one non-trivial
interval I j in I that contains the target area Ita.

Proof First, assume that the target area is trivial, i.e., Ita = {v∗}. If there is no non-
trivial interval in I that contains v∗, then the instance is already solved, a contradiction.

Now, assume that the target area Ita is non-trivial. Assume that no interval in I
contains the target area. Then all intervals I j whose left endpoint is not after � j1 in the
order of left endpoints must have a right endpoint that strictly precedes u j2 . There are
at least i such intervals (because � j1 is the i-th smallest left endpoint), and hence the
i-th smallest right endpoint must strictly precede u j2 in the order of right endpoints, a
contradiction to the definition of u j2 . ��

The intervals that intersect the target area can be classified into four categories:

(1) a non-trivial intervals that contain the target area;
(2) b intervals that are strictly contained in the target area such that the target area

contains at least one point to the left of the interval and at least one point to the
right of the interval.

(3) c intervals that contain some part of Ita at the left end and do not contain some part
of Ita on the right end. Formally, an interval Ii with closed right endpoint ui is in
this category if ui ∈ Ita, Ii ∩ Ita = {v ∈ Ita | v ≤ ui } and {v ∈ Ita | v > ui } �= ∅.
Moreover, an interval Ii with open right endpoint ui is in this category if ui ∈ Ita
and Ii ∩ Ita = {v ∈ Ita | v < ui } �= ∅.

(4) d intervals that contain some part of Ita at the right end and do not contain some
part of Ita on the left end. Formally, an interval Ii with closed left endpoint �i is in
this category if �i ∈ Ita, Ii ∩ Ita = {v ∈ Ita | v ≥ �i } and {v ∈ Ita | v < �i } �= ∅.
Moreover, an interval Ii with open left endpoint �i is in this category if �i ∈ Ita
and Ii ∩ Ita = {v ∈ Ita | v > �i } �= ∅.
We propose the following algorithm for rounds with k queries. Each round is filled

with as many intervals as possible, using the following order: First all intervals of cat-
egory (1); then intervals of category (2); then picking intervals alternatingly from
categories (3) and (4), starting with category (3). If one of the two categories is
exhausted, the rest of the k queries is chosen from the other category. Intervals of
categories (3) and (4) are picked in order of non-increasing length of overlap with
the target area. More precisely, intervals of category (3) are chosen according to the
reverse of the order �U of their right endpoints, and intervals of category (4) are
chosen according to the order �L of their left endpoints. When a round is filled, it is
queried, and the algorithm restarts, calculating a new target area and redistributing the
intervals into the categories.

123



Algorithmica (2023) 85:406–443 441

Proposition B.2 (Version of Proposition 5.4 for arbitrary intervals) At the start of any
round, a ≥ 1 and b ≤ a − 1.

Proof Lemma B.1 shows a ≥ 1. If the target area is trivial, we have b = 0 and hence
b ≤ a − 1. From now on assume that the target area is non-trivial.

Let L be the set of intervals in I that lie to the left of Ita (and have empty intersection
with Ita). Similarly, let R be the set of intervals that lie to the right of Ita (and have
empty intersection with Ita). Observe that a + b + c + d + |L| + |R| = n.

The intervals in L and the intervals of type (1) and (3) include all intervals with left
endpoint not after � j1 in the order �L . As � j1 is the i-th left endpoint in that order, we
have |L| + a + c ≥ i .

Similarly, the intervals in R and the intervals of type (1) and (4) include all intervals
with right endpoint not before u j2 in the order �U . As u j2 is the i-th smallest right
endpoint in that order, or equivalently the (n − i + 1)-th largest right endpoint in that
order, we have |R| + a + d ≥ n − i + 1.

Adding the two inequalities derived in the previous two paragraphs, we get 2a +
c+ d + |L| + |R| ≥ n+ 1. Combined with a + b+ c+ d + |L| + |R| = n, this yields
b ≤ a − 1. ��

Lemma 5.5 and its proof hold for arbitrary intervals without any changes.

Theorem B.3 There is a 2-round-competitive algorithm for Selection even if arbi-
trary intervals are allowed as input.

Proof The proof is identical to the proof of Theorem 5.6, except that Lemma B.1 and
Proposition B.2 are used in place of Lemma 5.3 and Proposition 5.4, respectively. ��

References

1. Ajtai, M., Feldman, V., Hassidim, A., Nelson, J.: Sorting and selection with imprecise comparisons.
ACM Trans. Algorithms 12(2), 19:1-19:19 (2016). https://doi.org/10.1145/2701427

2. Albers, S., Eckl, A.: Explorable uncertainty in scheduling with non-uniform testing times. In: Kakla-
manis, C., Levin, A. (eds.) WAOA 2020: 18th International Workshop on Approximation and Online
Algorithms, Lecture Notes in Computer Science, vol. 12806, pp. 127–142. Springer (2020). https://
doi.org/10.1007/978-3-030-80879-2_9

3. Arantes, L., Bampis, E., Kononov, A.V., Letsios, M., Lucarelli, G., Sens, P.: Scheduling under uncer-
tainty: a query-based approach. In: IJCAI 2018: 27th International Joint Conference on Artificial
Intelligence, pp. 4646–4652 (2018). https://doi.org/10.24963/ijcai.2018/646

4. Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mihalák, M., Ram, L.S.: Network
discovery and verification. IEEE J. Sel. Areas Commun. 24(12), 2168–2181 (2006). https://doi.org/
10.1109/JSAC.2006.884015

5. Borodin,A., El-Yaniv, R.:OnlineComputation andCompetitiveAnalysis. CambridgeUniversity Press,
Cambridge (1998)

6. Braverman, M., Mossel, E.: Sorting from noisy information (2009). arXiv:0910.1191
7. Bruce, R., Hoffmann, M., Krizanc, D., Raman, R.: Efficient update strategies for geometric computing

with uncertainty. Theory Comput. Syst. 38(4), 411–423 (2005). https://doi.org/10.1007/s00224-004-
1180-4

8. Canonne, C.L., Gur, T.: An adaptivity hierarchy theorem for property testing. Comput. Complex. 27,
671–716 (2018). https://doi.org/10.1007/s00037-018-0168-4

9. Charalambous, G., Hoffmann, M.: Verification problem of maximal points under uncertainty. In:
Lecroq, T., Mouchard, L. (eds.) IWOCA 2013: 24th International Workshop on Combinatorial Algo-

123

https://doi.org/10.1145/2701427
https://doi.org/10.1007/978-3-030-80879-2_9
https://doi.org/10.1007/978-3-030-80879-2_9
https://doi.org/10.24963/ijcai.2018/646
https://doi.org/10.1109/JSAC.2006.884015
https://doi.org/10.1109/JSAC.2006.884015
http://arxiv.org/abs/0910.1191
https://doi.org/10.1007/s00224-004-1180-4
https://doi.org/10.1007/s00224-004-1180-4
https://doi.org/10.1007/s00037-018-0168-4


442 Algorithmica (2023) 85:406–443

rithms, Lecture Notes in Computer Science, vol. 8288, pp. 94–105. Springer, Berlin (2013). https://
doi.org/10.1007/978-3-642-45278-9_9

10. Dürr, C., Erlebach, T., Megow, N., Meißner, J.: An adversarial model for scheduling with testing.
Algorithmica (2020). https://doi.org/10.1007/s00453-020-00742-2

11. Erlebach, T., Hoffmann, M.: Minimum spanning tree verification under uncertainty. In: Kratsch, D.,
Todinca, I. (eds.) WG 2014: International Workshop on Graph-Theoretic Concepts in Computer Sci-
ence, Lecture Notes in Computer Science, vol. 8747, pp. 164–175. Springer, Berlin (2014). https://doi.
org/10.1007/978-3-319-12340-0_14

12. Erlebach, T., Hoffmann, M.: Query-competitive algorithms for computing with uncertainty. Bull.
EATCS 116, 22–39 (2015)

13. Erlebach, T., Hoffmann, M., Kammer, F.: Query-competitive algorithms for cheapest set problems
under uncertainty. Theoret. Comput. Sci. 613, 51–64 (2016). https://doi.org/10.1016/j.tcs.2015.11.
025

14. Erlebach, T., Hoffmann, M., Krizanc, D., Mihal’ák, M., Raman, R.: Computing minimum spanning
trees with uncertainty. In: Albers, S., Weil, P. (eds.) STACS’08: 25th International Symposium on
Theoretical Aspects of Computer Science, Leibniz International Proceedings in Informatics, vol. 1, pp.
277–288. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2008). https://doi.org/10.4230/LIPIcs.
STACS.2008.1358

15. Erlebach, T., Hoffmann, M., de Lima, M.S., Megow, N., Schlöter, J.: Untrusted predictions improve
trustable query policies (2020). arXiv:2011.07385

16. Feder, T., Motwani, R., O’Callaghan, L., Olston, C., Panigrahy, R.: Computing shortest paths with
uncertainty. J. Algorithms 62(1), 1–18 (2007). https://doi.org/10.1016/j.jalgor.2004.07.005

17. Feder, T., Motwani, R., Panigrahy, R., Olston, C., Widom, J.: Computing the median with uncertainty.
SIAM J. Comput. 32(2), 538–547 (2003). https://doi.org/10.1137/S0097539701395668

18. Focke, J., Megow, N., Meißner, J.: Minimum spanning tree under explorable uncertainty in theory and
experiments. In: Iliopoulos, C.S., Pissis, S.P., Puglisi, S.J., Raman, R. (eds.) SEA 2017: 16th Inter-
national Symposium on Experimental Algorithms, Leibniz International Proceedings in Informatics,
vol. 75, pp. 22:1–22:14. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2017). https://doi.org/10.
4230/LIPIcs.SEA.2017.22

19. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and
maximum independent set of a chordal graph. SIAM J. Comput. 1(2), 180–187 (1972). https://doi.org/
10.1137/0201013

20. Goerigk, M., Gupta, M., Ide, J., Schöbel, A., Sen, S.: The robust knapsack problem with queries.
Comput. Oper. Res. 55, 12–22 (2015). https://doi.org/10.1016/j.cor.2014.09.010

21. Gupta, M., Sabharwal, Y., Sen, S.: The update complexity of selection and related problems. Theory
Comput. Syst. 59(1), 112–132 (2016). https://doi.org/10.1007/s00224-015-9664-y

22. Halldórsson, M.M., de Lima, M.S.: Query-competitive sorting with uncertainty. In: Rossmanith,
P., Heggernes, P., Katoen, J.P. (eds.) MFCS 2019: 44th International Symposium on Mathematical
Foundations of Computer Science, Leibniz International Proceedings in Informatics, vol. 138, pp.
7:1–7:15. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.
MFCS.2019.7

23. Hoorfar, A., Hassani, M.: Inequalities on the LambertW function and hyperpower function. J. Inequal.
Pure Appl. Math. 9(2), 51:1-51:5 (2008)

24. Kahan, S.: A model for data in motion. In: STOC’91: 23rd Annual ACM Symposium on Theory of
Computing, pp. 265–277 (1991). https://doi.org/10.1145/103418.103449

25. Khanna, S., Tan, W.C.: On computing functions with uncertainty. In: PODS’01: 20th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pp. 171–182 (2001). https://doi.
org/10.1145/375551.375577

26. Lekkerkerker, C., Boland, J.: Representation of a finite graph by a set of intervals on the real line.
Fundamenta Mathematicae 51(1), 45–64 (1962)

27. Maehara, T., Yamaguchi, Y.: Stochastic packing integer programs with few queries. Math. Program.
182, 141–174 (2020). https://doi.org/10.1007/s10107-019-01388-x

28. Megow, N.,Meißner, J., Skutella,M.: Randomization helps computing aminimum spanning tree under
uncertainty. SIAM J. Comput. 46(4), 1217–1240 (2017). https://doi.org/10.1137/16M1088375

29. Meißner, J.: Uncertainty exploration: algorithms, competitive analysis, and computational experiments.
Ph.D. thesis, Technische Universität Berlin (2018). https://doi.org/10.14279/depositonce-7327

123

https://doi.org/10.1007/978-3-642-45278-9_9
https://doi.org/10.1007/978-3-642-45278-9_9
https://doi.org/10.1007/s00453-020-00742-2
https://doi.org/10.1007/978-3-319-12340-0_14
https://doi.org/10.1007/978-3-319-12340-0_14
https://doi.org/10.1016/j.tcs.2015.11.025
https://doi.org/10.1016/j.tcs.2015.11.025
https://doi.org/10.4230/LIPIcs.STACS.2008.1358
https://doi.org/10.4230/LIPIcs.STACS.2008.1358
http://arxiv.org/abs/2011.07385
https://doi.org/10.1016/j.jalgor.2004.07.005
https://doi.org/10.1137/S0097539701395668
https://doi.org/10.4230/LIPIcs.SEA.2017.22
https://doi.org/10.4230/LIPIcs.SEA.2017.22
https://doi.org/10.1137/0201013
https://doi.org/10.1137/0201013
https://doi.org/10.1016/j.cor.2014.09.010
https://doi.org/10.1007/s00224-015-9664-y
https://doi.org/10.4230/LIPIcs.MFCS.2019.7
https://doi.org/10.4230/LIPIcs.MFCS.2019.7
https://doi.org/10.1145/103418.103449
https://doi.org/10.1145/375551.375577
https://doi.org/10.1145/375551.375577
https://doi.org/10.1007/s10107-019-01388-x
https://doi.org/10.1137/16M1088375
https://doi.org/10.14279/depositonce-7327


Algorithmica (2023) 85:406–443 443

30. Merino,A.I., Soto, J.A.: Theminimumcost query problemonmatroidswith uncertainty areas. In:Baier,
C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) ICALP 2019: 46th International Colloquium
on Automata, Languages, and Programming, Leibniz International Proceedings in Informatics, vol.
132, pp. 83:1–83:14. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2019). https://doi.org/10.
4230/LIPIcs.ICALP.2019.83

31. Olston,C.,Widom, J.:Offering aprecision-performance tradeoff for aggregationqueries over replicated
data. In: VLDB 2000: 26th International Conference on Very Large Data Bases, pp. 144–155 (2000).
http://ilpubs.stanford.edu:8090/714/

32. Ryzhov, I.O., Powell, W.B.: Information collection for linear programs with uncertain objective coef-
ficients. SIAM J. Optim. 22(4), 1344–1368 (2012). https://doi.org/10.1137/12086279X

33. van der Hoog, I., Kostitsyna, I., Löffler, M., Speckmann, B.: Preprocessing ambiguous imprecise
points. In: Barequet, G., Wang, Y. (eds.) SoCG 2019: 35th International Symposium on Computa-
tional Geometry, Leibniz International Proceedings in Informatics, vol. 129, pp. 42:1–42:16. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.SoCG.2019.42

34. Welz, W.A.: Robot tour planning with high determination costs. Ph.D. thesis, Technische Universität
Berlin (2014). https://www.depositonce.tu-berlin.de/handle/11303/4597

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.4230/LIPIcs.ICALP.2019.83
https://doi.org/10.4230/LIPIcs.ICALP.2019.83
http://ilpubs.stanford.edu:8090/714/
https://doi.org/10.1137/12086279X
https://doi.org/10.4230/LIPIcs.SoCG.2019.42
https://www.depositonce.tu-berlin.de/handle/11303/4597

	Round-Competitive Algorithms for Uncertainty Problems with Parallel Queries
	Abstract
	1 Introduction
	2 Preliminaries and Definitions
	3 Sorting
	4 The Minimum Problem
	4.1 The Minimum Problem with Arbitrary Sets
	4.2 The Minimum Element Problem with Arbitrary Sets
	4.3 The Minimum Problem with Disjoint Sets
	4.4 Lower Bounds

	5 Selection
	5.1 Finding the Value v*
	5.2 Finding All Elements with Value v*
	5.3 Element Selection

	6 Relationship with the Parallel Model by Meißner
	7 Final Remarks
	Acknowledgements
	A Lower Bound for MinimumElement with Closed Intervals
	B Selection with Arbitrary Intervals
	References




