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Anomaly detection through employing machine learning techniques has emerged as

a novel powerful tool in the search for new physics beyond the Standard Model.

Historically similar to the development of jet observables, theoretical consistency has not

always assumed a central role in the fast development of algorithms and neural network

architectures. In this work, we construct an infrared and collinear safe autoencoder

based on graph neural networks by employing energy-weighted message passing.

We demonstrate that whilst this approach has theoretically favorable properties, it also

exhibits formidable sensitivity to non-QCD structures.
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1. INTRODUCTION

New physics searches at the high-energy frontier of the Large Hadron Collider (LHC) have so far
not resulted in any significant deviation of experimental results from the Standard Model (SM)
expectation. However, with a growing dataset of these high energy measurements, the pressure
mounts for theoretically motivated scenarios of beyond the SM (BSM) physics which have been
devised to tackle known shortcomings of the SM. So what are the ways out of this juxtaposition
of experimental agreement with the SM and its failure to describe established physics at small and
large distances?

On the one hand, there is an increasing emphasis on theoretically as-model-independent-as-
possible approaches based on effective field theory (EFT) (Weinberg, 1979). EFT navigates QFT
correlations away from the SM prediction in any possible direction given the SM symmetry and
particle content, thus avoiding UV model biases. Alas, such an approach poses its own challenges:
looking for deviations from the SM expectation along these lines involvesmany ad-hoc interactions.
Concretemodels will typically only source a subset of relevant interactions, e.g., (Englert et al., 2019;
Das Bakshi et al., 2021; Bakshi et al., 2022). There has been great progress to facilitate matching
calculations (Carmona et al., 2021), however, depending on the new physics scenario, this can create
a significant overhead that must be included in the parameter fitting procedure itself (Freitas et al.,
2016; Englert et al., 2020).

On the other hand, we can look for phenomenological deviations from specific SM signatures
directly in collider results without any new physics bias. Under the assumption that collider data
can bemodeled sufficiently adequately, we can employ the SM expectation to identify regions where
measurements do not follow the SM expectation. This anomaly detection has emerged as a powerful
tool to look for any hidden signature of new physics in the data. Recently, a range of state-of-the-art
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methods for anomaly detection (Collins et al., 2018, 2021;
Aaboud et al., 2019; Blance et al., 2019; De Simone and Jacques,
2019; Blance and Spannowsky, 2020; Cheng et al., 2020; Hajer
et al., 2020; Nachman, 2020; Nachman and Shih, 2020; Araz and
Spannowsky, 2021; Atkinson et al., 2021b; Hallin et al., 2021;
Canelli et al., 2022) using deep learning have been designed.

Theoretical consistency when confronting collider data with
theoretical expectations is pivotal. The formulation of infrared
and collinear (IRC)-safe observables is necessary to guarantee
the comparability of experimental measurements and theoretical
predictions to all orders in perturbation theory employing the
Kinoshita-Lee-Nauenberg (KLN) theorem (Kinoshita, 1962; Lee
and Nauenberg, 1964) and collinear factorization (Collins et al.,
1989) of parton distributions. Any sensitivity enhancement
observed by algorithms that inadvertently employ IRC-unsafe
information will be critically assessed in subsequent studies, with
a potentially meaningless theoretical outcome. This is a tedious
task all too familiar from the use of IRC-unsafe jet clustering
algorithms (e.g., iterative cone algorithms) by the CDF and D0
experiments (Kilgore and Giele, 1997), which was later only
partially addressed with the midpoint algorithm during Tevatron
Run II, until fully IRC-safe algorithms (Catani et al., 1993;
Cacciari et al., 2008) were established as the only theoretically
meaningful community consensus.

It seems prudent to avoidmistakes of the past: in this paper, we
devise an IRC-safe Graph Neural Network (GNN) autoencoder
algorithm, employing an Energy-Weighted Message-Passing
Network (EMPN) (Konar et al., 2022) for unsupervised anomaly
detection. While the IRC-safe loss function is the primary
observable of our autoencoder, we also study the latent space
(graph) representation structure as a motivating tool for new
physics discrimination (Atkinson et al., 2021b; Dillon et al., 2021)
and highlight the relations to known andmore “traditional” IRC-
safe observables. This paper is organized as follows: in Section 2,
we outline our EMPN approach and detail our IRC-safe graph
construction before we introduce the IRC-safe autoencoder
architecture and simulation framework in Section 3. Section 4 is
devoted to the discussion of the sensitivity performance of the
autoencoder; we also highlight the correlation of sensitivity with
more traditional jet-based observables. We conclude in Section 5.

2. A BRIEF OUTLINE OF
ENERGY-WEIGHTED MESSAGE PASSING
ALGORITHM

This section presents a brief overview of the IRC safe Energy-
weighted Message passing algorithm (Konar et al., 2022). It
generalizes Energy Flow Networks (Komiske et al., 2019; Dolan
and Ore, 2021), an IRC safe feature extraction on point clouds,
by learning relational information between two elements (nodes)
by constructing a graph out of the point cloud. This procedure
is similar to message-passing networks like the Dynamic Graph
Convolutional Neural Network (DGCNN) (Wang et al., 2019)
that extract local features beyond the global feature extraction via
point-cloud-based architectures such as deep-sets (Zaheer et al.,

2017) and PointNet (Charles et al., 2017; Qi et al., 2017). The
algorithm consists of two necessary ingredients:

• An IRC safe prescription for constructing graphs which
guarantees that the graph is invariant under soft and collinear
splittings;

• An energy-weighted summed aggregation of messages (and
node features after the final message-passing layer) taking the
directional (unit vectors or angles) inputs p̂i and p̂j of the nodes
connected by an edge (j, i) at the initial layer.

In the following, we discuss these two elements separately.

2.1. IRC Safe Graph Construction
The inductive biases that a message-passing algorithm imposes
on its input data are highly dependent on the graph structure.
For instance, the neighborhood sets (the set of particles a node
is connected with) determine the local connectivity of the nodes.
Thus, the graph construction algorithm from a point cloud gives
a strong indication that a graph neural network is the best avenue
to pursue. The IRC safety of a message-passing algorithm also
depends on the graph construction, and we highlight such an IRC
safe graph construction algorithm in this section.

Let S = {p1, p2, p3, ....., pN} be the set of four-vectors of the
particles within a jet, while S ′ = {p1, p2, ...., pN+1} is the same
set in the presence of an additional splitting. The collinear limit
is when the emitted particles r and s with the angular separation
1rs tending to zero, while the soft limit refers to the case when
one of the particle’s energy tends to zero. These four-vectors can
be written as

pi = (zi, p̂i) , with zi =
piT

∑

j∈S p
j
T

and p̂ = (η,φ) , (1)

for hadron colliders, with the separation in the η − φ plane

between two particles i and j, defined as 1Rij =
√

1η2ij + 1φ2
ij

denoting the quantity analogous to 1ij. Since we will be taking
directed edges, the neighborhood set of a node i will be the set
of all nodes with incoming connections to i. For all particles
i in S or S ′, a graph construction algorithm will construct
neighborhood sets N [i] and N ′[i], respectively. We will use a
“closed” neighborhood with i ∈ N [i] instead of an “open”
neighborhood i /∈ N (i), since the second choice will always be
IRC unsafe when the node i splits. To illustrate this, we show
the radius graph with R0 in the (η,φ) plane in Figure 1, where
the node q undergoes a splitting. The black arrows highlight the
connections of the radius graph. Figure 1 also demonstrates a
nearest neighborhood connection as an example of an IRC unsafe
graph construction.

To formalize the graph construction algorithm in terms of
the four-vectors of the particles, we define a decision function
D(pi, pj) and a threshold function T(pi, pj), such that any particle
j with four-vector pj will be assigned to the neighborhood of
particle i with four-vector pi if D(pi, pj) is less-than or equal-to
T(pi, pj). This can be summarized as

D(pi, pj) ≤ T(pi, pj) H⇒ j ∈ N [i] . (2)
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FIGURE 1 | Representation of radius graph with R0 in the (η,φ) plane undergoing a QCD splitting. The black arrows correspond to the connections of a radius graph,

while the red arrows highlight the 3-nearest neighbors connections. One can see that the radius neighborhoods have the same total energy, which is not the case for

those obtained by the nearest neighbors method, leading to an IRC-unsafe construction.

Since we are interested in the soft and collinear limits,
constructing an IRC safe graph requires putting conditions on
these functions in the respective kinematical configurations.

The required condition on these functions for a “parent”
splitting q → r + s when the “daughters” r, s become collinear is

D(pi, pr + ps) ≤ T(pi, pr + ps) ⇔ D(pi, pr) ≤ T(pi, pr) ∧

D(pi, ps) ≤ T(pi, ps) ,

D(pr + ps, pi) ≤ T(pr + ps, pi) ⇔ D(pr , pi) ≤ T(pr , pi) ∧

D(ps, pi) ≤ T(ps, pi) ,

(3)

where the second condition arises since the nodes q, r or s can
also be the node whose neighborhood is being determined. The
only requirement in the IR limit for a daughter particle is that
all the particles in the set N [i] are also present in N ′[i], with the
only potential addition of a soft particle. This is guaranteed by
the form of Equation (2), since both functions depend only on
the four-vector of the two nodes of interest1. The conditions (c.f.
Equation 3) are satisfied in the collinear limit 1rs → 0 if

D = D(p̂i, p̂j) , T = T(p̂i, p̂j) , (4)

employing the definitions Equation (1). Therefore, graphs
formed by connecting particles within a constant radius R0 in
the η − φ plane are IRC safe when the decision and threshold
functions take the form

D = 1Rij , T = R0 . (5)

Note that these choices of D,T yield closed neighborhoods
without additional requirements. We will use these graphs in the
remainder of this paper; the neighborhood of a particle of such a
radius graph is shown in Figure 1.

1This is not the case for popular graph construction algorithms like k-nearest

neighbors, for which the decision and threshold has a complicated dependence

on the distance of the primary node iwith every other particle in the graph, and on

the number of elements in the neighborhood set.

2.2. Energy-Weighted Message Passing
We detail the IRC safe message passing operation in this section.
Before doing so, we summarize the general definition of message
passing operation in the following steps. The first step, the
message-passing stage, involves calculating the messages for all
edges present in the graph. The message function, parameterized
as a multilayer perceptron shared for all edges, takes the node
features of the two nodes connected by an edge and evaluates
the message. Since the message function does not need to be
symmetric for the two node features, a direction convention is
necessary for the second phase. In our convention, the message
originates from all nodes in the neighborhood N [i] and flows
toward the particle i. The second step, the node-readout stage,
updates the node features of each node in the graph as a
permutation-invariant function of all incoming messages.

IRC safety of the updated node features after a message-
passing operation is crucially dependent on the nature of the
node readout. A readout based on the maximum or minimum
value of the node features depends on a single node feature
in the neighborhood, and a soft or collinear splitting of this
particular node would render the updated node feature IRC-
unsafe. This is ultimately related to identifying a specific node in
the neighborhood as special2, which impedes KLN cancellations.
A mean readout, on the other hand, explicitly depends on the
cardinality of the neighborhood sets N [i] which is not a well-
defined QCD quantity either since there can be an arbitrary but
finite amount of resolvable emissions in the enhanced collinear
or soft regions of phase space. Thus we use a summed readout,
which will inclusively take all the particles in the neighborhood
into account and will not explicitly depend on their size.

An IRC safe graph construction algorithm ensures two things:
the equality of the sum of energy (transverse energy in the case
of hadron colliders) of all particles in either neighborhood sets

2This is also the reason for using closed neighborhoods N [i], as an open

neighborhoodN (i), would give a special status to the node i.
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and the presence of both collinear daughters in N ′[i] if the
parent is present in N [i]. Defining a scope-dependent energy
weight-factors analogous to zi as

ω
(K)
j =

p
j
T

∑

k∈K pkT
,

with K denoting the set of particles in the particular readout
operation, any message passing of the form

h
(l+1)
i =

∑

i∈N [i]

ω
(N [i])
j 8̂(l)(h

(l)
i , h

(l)
j ) , (6)

with h
(0)
i = p̂i and h

(l)
i denoting the updated node-features after

l message-passing operations satisfies IRC safety; in the infrared
limit, it is straightforward to see that any soft particle with zr →

0 H⇒ ω
(N [i])
r → 0 for any node i. The splitting q → r + s for

IRC-safe graphs therefore yields

ω(N [i])
q = ω(N [i])

r + ω(N [i])
s . (7)

In the collinear limit with p̂q = p̂r = p̂s we have 8̂(0)(p̂i, p̂q) =

8̂(0)(p̂i, p̂r) = 8̂(0)(p̂i, p̂s). Combining this with Equation (7), we
obtain (for l = 0)

ω(N [i])
q 8̂(0)(p̂i, p̂q) = ω(N [i])

r 8̂(0)(p̂i, p̂r)+ ω(N [i])
s 8̂(0)(p̂i, p̂s) .

When evaluating Equation (6) for the neighborhood of a node
i, the terms on the RHS and LHS of this expression are the
only ones which will not be common between N [i] and N ′[i],
due to the IRC safe graph construction. The same expression is
followed when i = q on the left, and i = r or i = s on the
right, since {r, s} ⊂ N ′[s] and {r, s} ⊂ N ′[r], with all three
neighborhoods (including N [q]) containing the same particles
except for q, r, and s. Therefore, from Equation (6), we have

h
(1)
q = h

(1)
r = h

(1)
s for collinear splittings. On the other hand,

for a soft daughter, say r, we have h
(1)
q = h

(1)
s , but h

(1)
r 6= h

(1)
q ,

with h
(1)
r not necessarily zero. The presence of the node features

of the daughter particles, even in the soft or collinear limit,
impedes an IRC safe examination of the full jet graph unless
observables are specifically designed to be insensitive to their
presence in the IRC limit. The procedures to take care of these
additional nodes are explained in the following sections, which
are different for supervised and unsupervised methods. Since the
above derivation used the collinearity of q, r, and s, for IRC safe
neighborhoods, for the same neighborhoods and any successive
application of an energy-weighted message passing of the form

Equation (6), we have h
(l)
q = h

(l)
r = h

(l)
s for any l.

3. IRC-SAFE GRAPH AUTOENCODER

In a supervised machine learning scenario, the IRC-safe graph
readout acting on the node features of the final message-passing
operation gives an IRC-safe graph representation, and one loses
the graph’s structure. The graph representation, a fixed-length

vector obtained after applying a permutation invariant function
on the node features for any variable-length graph, feeds into the
downstream network. Therefore, training a classifier on the loss
function defined with the downstream network’s output proceeds
without any complications from the presence of additional soft or
collinear nodes. On the other hand, a graph autoencoder similar
to the one proposed in Atkinson et al. (2021a) preserves the graph
structure until the output. Therefore, the autoencoder’s output
graph will have additional nodes in the soft and collinear limits
in the case of extra emissions. Since the observable of interest for
anomaly detection with an autoencoder is the loss function, we
need to ensure its IRC safety. In this section, we first devise an
IRC safe loss function and give details of the network architecture
and training.

3.1. An IRC-Safe Loss Function
The definition of the loss function involves input which changes
with a soft or collinear splitting. Therefore, the loss which is
normally used as an observable in anomaly detection, needs
to be IRC-safe. A simple IRC-safe loss function for a jet with
constituent set G is of the form

LG =
∑

i∈G

zi d(p̂i, ˆ̄pi) . (8)

The barred quantities are the output of the network, while the
unbarred quantities are the inputs to the network. The function

d(p̂i, ˆ̄pi) ≥ d0 denotes a well-behaved metric (one-to-one)
between the input and the output space, with d(p̂i, p̂i) = d0. We
now show that this is indeed an IRC safe choice:

Any soft particle s, will not contribute to the sum since zs → 0,
and hence it is IR safe. For the splitting q → r + s we have

LS = ...+ zq d(p̂q, ˆ̄pq)+ ...

LS ′ = ...+ zr d(p̂r , ˆ̄pr)+ zs d(p̂s, ˆ̄ps)+ ... .

Since, by construction, a GNN’s node output after L total

message-passing operations h
(L)
i = ˆ̄pi, is a function of the input

four-vectors {p1, p2, p3, ....pN}, in general, they can have a very
complicated dependence on all the input node features. However,
due to the IRC safety of the EMPN, we have

LS ′ − LS = zr d(p̂r , ˆ̄pr)+ zs d(p̂s, ˆ̄ps)− zq d(p̂q, ˆ̄pq) . (9)

In the collinear limit with p̂q = p̂r = p̂s H⇒ ˆ̄pq = ˆ̄pr = ˆ̄ps, we
therefore have (since zq = zr + zs),

zq d(p̂q, ˆ̄pq) = zr d(p̂r , ˆ̄pr)+ zs d(p̂s, ˆ̄ps) H⇒ LS ′ − LS = 0 ,
(10)

i.e., collinear safety. In the following analysis of the EMPN
autoencoder we will use mean-squared error between the input

and output node features for d(p̂i, ˆ̄pi).

3.2. Jet Graph Definition
To demonstrate the performance of the described algorithm,
we use the publicly available top-tagging dataset of Butter et al.
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(2018) and Kasieczka et al. (2019). The dataset contains a
training, validation and testing set of 600k, 200k, and 200k QCD
jets, respectively. The training and validation are done only with
the background QCD samples since the total cross-section of
their production would be orders of magnitude higher than most
probable signals. Although the dataset has the same number of
top jets for each of the three analysis stages, we use the 200k top
jets of the test dataset as a benchmark signal scenario. These jets
are simulated using Pythia8 (Sjostrand et al., 2008; Sjöstrand
et al., 2015) and passed through Delphes3 (de Favereau et al.,
2014) for the detector simulations using the default ATLAS
parameter card. Jets are clustered from particle flow (Eflow)
constituents with a distance parameter 1R = 0.8 using the anti-
kt algorithm (Cacciari et al., 2008). The transverse momentum of
the jets is in the range pT ∈ [550, 650] GeV.

Using the constituents of these jets, we construct the radius
graphs which serve as the input to the IRC safe graph network.
To construct the jet radius graph, we first calculate the inter-
particle distance 1Rij in the (η,φ) plane. Next, we define a set
of all the particles i as the neighborhood set N [i] such that
1Rij ≤ R0, where R0 is an external tunable parameter. Each node
is associated with three node features

h0i = (1ηi,1φi,1Ri) , (11)

where 1ηi, 1φi, 1Ri are calculated with respect to the jet
axis. For the network analysis, we choose R0 = 0.3. Since the
dependence of the classification power on R0 for the supervised
case was found to be mild (Konar et al., 2022), with the AUC
values changing in the third decimal value for different values
of R0 between 0.1 and 0.5, we restrict ourselves to a single
value in the intermediate range. The final node vectors contain
information about the L-hop neighborhood with an effective
radius of R0 × L. On the other hand, the primary region of
activity for the one-prong QCD jets used to train the network
lies in a relatively small central region of the total jet of radius
1R = 0.8. Therefore, the features learnt by the autoencoder
would be weakly dependent on R0, once the effective radius
covers a significant portion of the central region.

3.3. Network Architecture and Training
Now that we have described the construction of the jet graphs,
we discuss the details of the network architecture and training in
this section. Follow from Figure 2 where we sketch a schematic
diagram of an IRC safe graph-autoencoder. The encoder consists
of three edge convolution operations with output dimensions
of 128, 64 and 2, which is the dimension of the latent
representation. Since we take three-dimensional node features,
we restrict ourselves to a 2-dimensional latent space (g1, g2)
to induce an information bottleneck3. The decoder also has
three edge convolution operations, with the first two dimensions

3The effective number of inputs to a message function could be twice the number

of input features–one each for the two nodes connected by an edge. However, a

concrete understanding of the universal approximation properties of graph neural

networks (Brüel Gabrielsson, 2020) is yet to be achieved, making it difficult to

precisely determine the actual input dimensions when looking at the complete

graph neural network.

mirroring the encoder network dimensions (excluding the latent
dimension). Finally, the last edge convolution operation maps
the 128-dimensional node vectors at the penultimate message
passing the layer to a three-dimensional space to reconstruct the
input node features.

We take 8̂(l) at each message-passing layer to be a multilayer
perceptron (MLP). For an edge convolution operation, we have

for two node features h
(l)
i and h

(l)
i connected by an edge in

Equation (6),

8̂(l)(h
(l)
i , h

(l)
j ) = 8̂(l)

(

h
(l)
i ⊕ [h

(l)
j − h

(l)
i ]
)

.

Therefore the input vector to the MLP has twice the node-

feature’s dimensions, since the direct sum h
(l)
i ⊕ (h

(l)
j −

h
(l)
i ), is a concatenation of the two vector quantities of

equal dimensions. The dimension of the MLP’s output is
the same as the output dimension of the message passing
operations and has a linear activation. We fix the MLP to
have two hidden layers with ReLU activation and the same
number of nodes as the output dimension. The network
is implemented using the Pytorch-Geometric (Fey and
Lenssen, 2019) package. Note that we have not performed
any hyperparameter scan as part of this present, proof-of-
concept study. We train the network for fifty epochs with a
learning rate of 0.001 using the Adam (Kingma and Ba, 2014)
optimiser. The training and validation losses are compared
after each epoch to ensure that there is no overfitting or a
premature termination of training. The epoch with minimum
validation loss is used to infer the anomaly detection on the
test dataset.

4. ANOMALY DETECTION PERFORMANCE
AND RESULTS

We now discuss the performance of the designed IRC safe loss
function in detecting anomalous jets when the network is trained
only on the QCD background. We choose boosted top jets
from the aforementioned public dataset as our benchmark. In
Figure 3 (left), we show the distribution of the loss function
for the QCD and top jets (our inputs are the node features
given in Equation 11). As can be seen, the distributions of the
loss function values for the QCD and top jets are significantly
different, highlighting the capability of the architecture to
detect anomalous jets in an IRC-safe way. The Receiver-
Operator-Characteristic (ROC) curve and the Area Under the
Curve (AUC) of 0.902 shown in Figure 3 (right) confirm
the good separation shown in the loss distribution, rivaling
convolutional autoencoders (Heimel et al., 2019; Roy and Vijay,
2019; Farina et al., 2020; Finke et al., 2021) which also have
AUCs close to such values [up to 0.93 (Heimel et al., 2019)
and 0.91 (Finke et al., 2021)] on the same dataset. Although
we did not perform a hyperparameter scan for this study,
we observed a decrease in performance for a one-dimensional
latent space.

Top jets possess a different and hard kinematical structure
that is typically not present in QCD jets. The ability to look
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FIGURE 2 | A schematic diagram of an IRC safe graph-autoencoder.

FIGURE 3 | The distribution of the loss function of an IRC safe graph autoencoder trained only with QCD jets with graph radius R0 = 0.3.

into the soft and collinear splittings from the QCD shower
evolution in an IRC safe way enables the network to access such
information and the hard radiation pattern in a theoretically
meaningful way. Modifications of the soft and collinear radiation
patterns that are seeded by novel hard scales (see, e.g., Englert
et al., 2011; Soper and Spannowsky, 2011, 2014; Gerwick et al.,
2012a,b; Prestel and Spannowsky, 2019 for a more traditional
jet-based approach to this) are therefore consistently included in
the anomaly detection performance. Therefore, when such non-
QCD structures are present, the anomaly detection performance
is considerably improved.

In light of these results, it is worthwhile to compare our
autoencoder results to phenomenological aspects of QCD in
jet substructure analyses. From the point of view of soft and
collinear features, Energy Correlation Functions (ECF) (Larkoski
et al., 2013) are particularly relevant for such a comparison as
we will motivate below. Furthermore, given that our autoencoder

condenses the QCD information into the latent space in an
IRC-safe way, it is interesting to see how it correlates with ECF
observables. To this end, we define

g =
∑

a∈G

za ha , (12)

where ha are the latent node features. Similar to the graph readout
in a classification scenario (Konar et al., 2022), this is an IRC
safe representation of the jet. The distribution of the individual
components of the two-dimensional graph representation are
shown in Figure 4. The good performance of the autoencoder
is reflected in the good separation in the latent space. The two
latent space directions are, however, completely anti-correlated;
see Figure 5 (they are also highly correlated with the loss). Thus,
restricting ourselves to any of these three variables would be
sufficient for the anomaly detection problem studied in this work.
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FIGURE 4 | The distribution of each dimension of the two-dimensional latent spaces obtained after an IRC safe graph readout given in Equation (12).

FIGURE 5 | The correlation of IRC safe loss (cf. Equation 8) and latent dimension (obtained with Equation 12) is shown with the Energy Correlation Functions (13).

One can see a very high correlation of the ECFs with the variables obtained from the network, hinting at a close connection between them.

The loss wouldmost likely be a better choice when one focuses on
anomaly detection capabilities since it condenses the information
of the two-dimensional latent space into a single quantity. On
the other hand, any latent feature would be more suitable for

applications demanding lower execution times, since in this case
only the encoder needs to be evaluated during inference.

Moving on to the relation of the learned information with
ECFs, we first define the ECFs as
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ECF(N,β) =
∑

i1<i2<....iN−1<iN∈J

(

N
∏

a=1

zia

)





N−1
∏

b=1

N
∏

c=b+1

1R
β
ibic



 .

(13)
Focussing specifically on the case N = 2, we obtain

ECF(2,β) =
∑

j<i∈IJ

zi zj 1R
β
ij =

|J|
∑

i=1

zi

|J|
∑

j=i+1

zj 1R
β
ij , (14)

where IJ is the index set of the constituent set J, and zi =

piT/(
∑

k∈IJ
pkT). We can rewrite the expression as

ECF(2,β) =

|J|
∑

i=1

zi Hi , Hi =

|J|
∑

j=i+1

zj 1R
β
ij . (15)

Therefore, the quantity Hi can be regarded as a scalar

node feature obtained from the message function 1R
β
ij =

1R
β
ij (p̂i, p̂j), with a weighted (by zj) summed readout, while

the sum over i to get the ECF is similar to a graph
readout operation on all the nodes (or constituents) of the
jet. Although the graph structure in the current case is
the 2-combinatorial graph, such an analogy suggests that
the features extracted by the EMPN are closely connected
to ECFs.

This expectation is analyzed in more detail in Figure 5, where
we show the correlation of different order ECFs with each
dimension gi of the latent graph readout and the loss function.
There is a strong correlation between the 2-point ECFs and the
network outputs, which decreases when considering the 4-point
ECFs. This difference illustrates the close relation of the message
passing architecture to the 2-point ECFs. The latent dimensions
show a higher correlation for β = 1 than β = 2, while the
opposite holds for the loss function. This may be due to the ReLU
activation, which is essentially a linear function for all positive
arguments, while the loss function’s higher correlation to the
quadratic ECFs may be due to the usage of the mean-squared

error as d(p̂i, ˆ̄pi).

5. CONCLUSIONS

Infrared and collinear safety is not a luxury but an essential
requirement to guarantee the theoretical consistency of particle
physics collider data interpretations. The emerging and
fast-developing area of anomaly detection should therefore
incorporate IRC safety when analyzing data at the LHC
where QCD activity plays a dominant role. New heavy physics
significantly deviates fromQCDphenomenology, predominantly
characterized by soft and collinear emissions. Reflecting the QCD
expectation adequately helps isolate anomalies further; the ability
to meaningfully interpolate into the soft and collinear regime

is crucial for extending the reach of such techniques to lower
scales. Despite this, IRC safety has not played an essential role in
the implementation of anomaly detection. In this paper, we have
placed IRC safety at the heart of anomaly detection for the first
time by constructing a graph neural network autoencoder that

employs Energy-Weighted Message-Passing, which gives rise to
an IRC-safe architecture (Konar et al., 2022).

Graph neural networks are well-adapted approaches for
isolating tell-tale correlations of final states (Atkinson et al.,
2021a; Dreyer and Qu, 2021) and we find that our algorithm
shows a high anomaly detection capability whilst having
theoretically appealing properties. We have demonstrated this
by injecting top jets as an anomaly and finding excellent
discriminating sensitivity. While this partly results from the
direct presence of a novel hard scale in the jet’s substructure,
additional sensitivity is accessed from a different soft and
collinear shower pattern that accompanies the hard scale. To
highlight this relation to well-studied observables in QCD
phenomenology, we have shown a strong relation of the
information encoded in our autoencoder’s latent space with
energy correlation functions. This motivates extending anomaly
detection analyses using our framework to new physics scenarios
of lighter BSM degrees of freedom, which we leave for
future work.
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