of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 515, 2733-2746 (2022)
Advance Access publication 2022 July 22

https://doi.org/10.1093/mnras/stac1951

Modelling the galaxy—halo connection with machine learning

Ana Maria Delgado,'* Digvijay Wadekar,>* Boryana Hadzhiyska “’,'! Sownak Bose “,'* Lars Hernquist!

and Shirley Ho*>¢7

LCenter for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA

2Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003, USA
3School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA

4Institute for Computational Cosmology, Department of Physics, Durham University, Durham DHI 3LE, UK

3 Center for Computational Astrophysics, Flatiron Institute, 162 5th Ave, New York, NY 10010, USA

S Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA

"Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15217, USA

Accepted 2022 July 5. Received 2022 July 1; in original form 2021 November 4

ABSTRACT

To extract information from the clustering of galaxies on non-linear scales, we need to model the connection between galaxies
and haloes accurately and in a flexible manner. Standard halo occupation distribution (HOD) models make the assumption
that the galaxy occupation in a halo is a function of only its mass, however, in reality; the occupation can depend on various
other parameters including halo concentration, assembly history, environment, and spin. Using the IllustrisTNG hydrodynamical
simulation as our target, we show that machine learning tools can be used to capture this high-dimensional dependence and
provide more accurate galaxy occupation models. Specifically, we use a random forest regressor to identify which secondary
halo parameters best model the galaxy—halo connection and symbolic regression to augment the standard HOD model with
simple equations capturing the dependence on those parameters, namely the local environmental overdensity and shear, at the
location of a halo. This not only provides insights into the galaxy formation relationship but also, more importantly, improves the
clustering statistics of the modelled galaxies significantly. Our approach demonstrates that machine learning tools can help us
better understand and model the galaxy—halo connection, and are therefore useful for galaxy formation and cosmology studies

from upcoming galaxy surveys.
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1 INTRODUCTION

As we aspire to solve some of astronomy’s toughest challenges,
such as constraining cosmological parameters, measuring neutrino
masses or determining the nature of dark energy, the community has
planned galaxy surveys of unparalleled depth [e.g. Euclid (Tutusaus
et al. 2020) and DESI (Collaboration et al. 2016)]. These surveys
will provide us with far more accurate and precise measurements of
the large-scale distribution of matter and will primarily use galaxy
clustering statistics to study galaxy formation and cosmology. We
therefore want to make sure that our statistical models and systematic
uncertainties are robust enough to handle the precision needed to
achieve an accuracy of order 1 per cent.

An important step in fully realizing the statistical power of future
surveys is to achieve a precise understanding of the galaxy—halo
connection. One such example is the standard halo occupation
distribution (HOD) model (Peacock & Smith 2000; Scoccimarro
2000; Seljak 2000; Berlind & Weinberg 2002), which predicts the
number of galaxies that reside within a dark matter halo, and in its
simplest form depends only on halo mass. We can use the number
of galaxies per halo given by the HOD model as weights assigned
to haloes for statistics in order to predict the clustering of galaxies.
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However, the clustering of haloes does not trace the distribution of
matter exactly but is instead ‘biased’ relative to it in a manner that
depends on properties of the halo beyond simply its mass (so-called
halo assembly bias). Furthermore, the galaxy occupancy per halo has
also been found to depend on more than just halo mass (Norberg et al.
2001; Zehavi et al. 2002). Thus, in order to recover the true clustering
bias of galaxies (as predicted, say, by hydrodynamical simulations)
relative to the underlying matter distribution, we need to also assign
galaxy occupation based on secondary halo parameters other than
halo mass.

Several studies have tried to incorporate secondary halo pa-
rameters into an HOD framework to account for the effects of
assembly bias. Halo concentration, for example, has been a popular
secondary parameter (Croton, Gao & White 2007; Paranjape et al.
2015; Wechsler & Tinker 2018; Vakili & Hahn 2019; Kobayashi
et al. 2020), although numerous recent studies have shown that the
environment of the haloes plays a significant role in determining
the galaxy distribution (Abbas & Sheth 2007; Pujol & Gaztafiaga
2014; McEwen & Weinberg 2018; Hadzhiyska et al. 2020a,c, 2021;
Xu, Zehavi & Contreras 2020; Yuan et al. 2020; Salcedo et al.
2020b,c). There also have been multiple prescriptions for including
the halo environment in the HOD model (McEwen & Weinberg 2018;
Hadzhiyska et al. 2020b; Salcedo et al. 2020a, b, c¢; Xu et al. 2020;
Yuan et al. 2020).
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High-resolution hydrodynamical simulations such as IllustrisSTNG
(TNG; Springel 2010; Nelson et al. 2018) give us a plausible
prediction of what the galaxy—halo connection should be and can
therefore be used as a testing ground for theory. By identifying
observables that will best allow us to model galaxy assembly bias we
may improve upon our current models and test their statistical power
against hydrodynamical simulations.

We have two primary goals in this work:

(i) Determine which secondary halo properties, in addition to
halo mass, best model the galaxy—halo connection. Because there
is no first-principles explanation as to which properties to use, we
model the number of galaxies using machine learning (ML) by
approximating the function

Ngzllaxics = f(Mhaloa {ihzllo}) s (1)

where My, is the total mass of the halo and {inyo} is the set of
various secondary halo properties: the overdensity and anisotropy
of its environment at various scales, its concentration, spin, velocity
dispersion, and so on. The high dimensionality of the input space
makes this a complex and challenging problem. Correlations between
different input parameters (i.e. the concentration of a halo is related to
its assembly history and its environment) further add to the difficulty.

(i1) Augment the standard HOD model with simple equations that
incorporate the effects of the secondary halo properties. As central
and satellite galaxies can have a different dependence on halo
properties, we train over models separately for centrals and satellites
throughout this paper. It is worth noting that our approach is similar
to Wadekar et al. (2020) who used ML to model the neutral hydrogen
content of the halo as a function of halo mass and secondary
properties.

The layout of the paper is as follows. In Section 2, we describe the
simulations, our benchmark model, how we used ML algorithms
to obtain augmented models, the summary statistics used and a
description of the secondary halo properties considered in this work.
In Section 3, we present our results. Section 4 provides discussion
on how our work compares to previous studies and describes the
limitations of our methods. In Section 5, we summarize our findings
and conclude.

2 METHODS

2.1 IustrisTNG simulation

The Next Generation Illustris, IllustrisTNG (hereafter, TNG) (Mari-
nacci et al. 2018; Naiman et al. 2018; Nelson et al. 2018, 2019a,b;
Pillepich et al. 2018; Springel et al. 2018; Pillepich et al. 2019)
are cosmological, hydrodynamical simulations run with the AREPO
code (Springel 2010; Weinberger, Springel & Pakmor 2020), which
utilizes a hybrid tree/particle-mesh scheme to solve for gravitational
interactions of dark matter particles and an unstructured, moving
mesh to solve the equations of hydrodynamics. Compared to the
galaxy formation model of its predecessor, [llustris (Genel et al.
2014; Vogelsberger et al. 2014a,b), the model in TNG has updated
implementations of active galactic nucleus feedback (Weinberger
etal. 2017) and galactic winds (Pillepich et al. 2018) and incorporates
magnetic fields (Pakmor, Marinacci & Springel 2014). The TNG
suite consists of three simulation volumes: TNG50, TNG100, and
TNG300 each run at three different resolutions. In this work, we
use the TNG300-1 simulation, a periodic box of length Ly, =
205h~! Mpc ~ 300 Mpc, containing 2 x 2500 resolution ele-
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ments with a mass resolution of 7.6 x 10°4~'M, for baryons and
4.0 x 10’h~'"M,, for dark matter.

The initial conditions of the TNG suite were generated at z = 127
and assume Planck parameters (Planck Collaboration XIII 2016).
Each hydrodynamical simulation (henceforth referred to as FP for
‘“full-physics’) also has a counterpart generated from the same initial
conditions but evolved with dark matter only (N-body, DMO).

Haloes in TNG are identified using the ‘friends-of-friends’ (FOF)
algorithm that forms groups by connecting together dark matter
particles separated by at most 20 per cent of the mean interparticle
separation. Subhaloes are identified using the SUBFIND algorithm,
which requires that each subhalo contain at least 20 dark matter
particles that are gravitationally bound. A galaxy is defined as the
constituent baryonic particles (those which make up stars, gas and
black holes) associated with the subhalo.

For this work, we take advantage of the initial-conditions matched
between FP and DMO simulations to create bijective matches of
haloes between the two runs, as outlined in Hadzhiyska et al. (2020c).
This allows us to mimic the standard implementation of the HOD
for the DMO run by populating its haloes with galaxy occupation
numbers per halo mass bin derived from the FP run. Specifically, we
use the TNG300-1 DMO simulation populated with its bijectively
matched haloes (henceforth TNG300-matched or TNG300).

2.2 Benchmark model: HOD

The standard HOD model posits that the number of galaxies residing
in a halo depends solely on the mass of that halo. We construct
the HOD using TNG300 populated with bijectively matched haloes
as described in Section 2.1. In order to emulate the kinds of
galaxy samples that will be detected by surveys like DESI, we
consider luminous red galaxies (LRG-like), which are stellar-mass
selected, and emission-line galaxies (ELG-like), which are based on
colour cuts and chosen as described in Hadzhiyska et al. (2020b).
However, we note that it has been shown that clustering in ELGs
is not sensitive to secondary halo parameters. For this reason, we
dedicate our discussion primarily to the LRG-like sample and show
corresponding results from the ELG-like sample in Appendix C. A
more comprehensive study of ELGs will be the subject of a future
investigation.

Our LRG-like galaxies are defined as subhaloes with at least 10*
gravitationally bound star particles corresponding to a stellar mass
of M, =& 5 x 101°[h_1M®] and we calculate the HOD for haloes
with dark matter mass greater than 10''2~'Mg, corresponding to a
number density ngy &~ 1.4 x 1072[h* Mpc™] for both z = 0 and
z = 0.8 samples.

We then fit a five-parameter HOD model, splitting the mean
occupation per halo mass into contributions from centrals, Nce,, and
satellites, Ny, as described in Zheng et al. (2005):

1 log M, — log Miin
NHOD(pg) =~ [1 n erf(w)} (2a)
2 Ologm
M, _Mcu “
NEO(My) = (hT) : (2b)
1

Here, M;, = Man© is the total mass enclosed by a sphere with
mean density 200 times the background density of the universe,
M in 1s the characteristic minimum mass of haloes that host central
galaxies, 0'jog is the width of this transition, M, is the characteristic
cut-off scale for hosting satellites, M, is a normalization factor, and
« is the power-law slope. The best-fitting parameters for {log My,
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Figure 1. The mean galaxy occupation of TNG300 as a function of the halo
mass. The solid lines are the true occupations of TNG300, the dashed lines
are the predicted occupations by the RF using halo mass as a training feature,
and the dotted lines are the predicted occupations using the standard HOD
mass only model. As a consistency check, we see that the RF is able to predict
the mean galaxy occupation fairly accurately.

Ologi» 108 Moy, log My, a } are {12.64,0.26,12.65,13.65,1.03} for z =
0.0 and {12.48, 0.26, 12.54, 13.30, 0.95} for z = 0.8.

It is important to note that the HOD parameters have not been
tuned to match the summary statistics like the power spectrum (as
is typically done in the case of galaxy survey data analysis), rather
the standard HOD is fitted to the halo occupation of the TNG300
data according to halo mass. Our goal here is to test the standard
HOD model and improve its accuracy by augmenting with secondary
parameters.

Fig. 1 shows the HODs (for centrals, satellites, and combined)
constructed using TNG300. We note that this figure is only for
30 percent of the TNG300 volume, corresponding to the test-set
for our ML techniques (see Section 2.3).

2.3 ML models

A supervised ML algorithm trains a model by providing it a subset
of input variables (henceforth called ‘features’) and output variables
(henceforth called ‘target’). The algorithm uses this subset as a
training set to learn the relation between the features and the targets.
The trained model is then used to predict the targets for a different
subset (test set) of features.

In this work, we use two ML algorithms to achieve the aforemen-
tioned goals. We use the random forest regressor (RF) to identify
secondary halo properties that affect the galaxy—halo connection
and we use symbolic regression to augment the standard HOD
model with simple equations that incorporate the secondary halo
parameters identified by the random forest. Both of these algorithms
are described below.

2.3.1 Random Forest

We use the random forest algorithm from the publicly available
package SCIKIT-LEARN (Pedregosa et al. 2011). A random RF is a
collection of decision trees; each tree is in itself a regression model
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and is trained on a different random subset of the training data
(Breiman 2001). The output from an RF is the mean of the predictions
from the individual trees (a single decision tree is prone to overfitting
and therefore the ensemble mean of the different trees is used). RFs
have been used for applications to various cosmological problems
(Lucie-Smith et al. 2018; Nadler et al. 2018; Cohn & Battaglia 2020;
Moster et al. 2020; Mucesh et al. 2021).

This method has a few key advantages over other ML models: (1)
little hyper-parameter tuning is required, (2) it is computationally
efficient, and (3) its ensemble characteristic lessens overfitting.

We designate 30 percent of the TNG300 volume as the test set
and use the remaining 70 per cent of the volume as the training set,
which is used to train the RF to predict Ng,s. Because there are no
first principles as to which secondary halo properties best describe
the galaxy—halo connection, we begin by training a mass only model,
and in each subsequent model we implement an additional secondary
halo property (halo properties described in Section 2.5). Essentially,
the RF will approximate equation (1).

We test the predictive power of our models on the clustering of the
haloes by computing the correlation function weighted by the Ny
predictions of the RF. We compare the different models to TNG300
and apply the properties from the best-performing model for use with
symbolic regression, described below.

2.3.2 Symbolic regression

Symbolic regression (SR) is a novel ML technique that approximates
the relation between an input and an output through analytic
mathematical formulae (Schmidt & Lipson 2009; Wu & Tegmark
2018; Cranmer et al. 2019, 2020; Kim et al. 2019; Liu & Tegmark
2020; Udrescu & Tegmark 2020; Villaescusa-Navarro et al. 2020).
The advantage of using SR over other ML regression models like
RF or deep neural networks is that it provides analytic expressions
that can be readily generalized and that facilitate understanding the
underlying physics. Furthermore, SR is shown to outperform other
ML models when the size of data set is small (Wilstrup & Kasak
2021). In our case, we first use RF to get an indication of which
parameters in the set of {i;, } in equation (1) have the largest influence
on Ngal- We then compress the {i,} set to include only the most
important parameters. Finally, as discussed in Section 3.2, we use
SR on the compressed set to obtain an explicit functional form to
approximate f from equation (1).

In this study, we use the symbolic regressor based on genetic
programming (an algorithm that searches equation space for a best
fit) implemented in the publicly available PYSR package' (Cranmer
2020; Cranmer et al. 2020).

2.4 Summary statistics for clustering

The goals of this work are (1) to determine which secondary halo
properties, in addition to halo mass, best model the galaxy—halo
connection and (2) augment the standard HOD model with simple
equations that incorporate the effects of secondary halo properties.

As the goal of this study is to compare the predictive power of these
augmented models on the clustering, we use the two-point correlation
function in real- and Fourier-space as our summary statistics to
determine the best model.

Uhttps://github.com/MilesCranmer/PySR
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Figure 2. Dependence of Ngye[jites ON secondary halo properties: local shear (left), local environmental overdensity (centre), and concentration (right) for
haloes in the mass bin M}, € [0.5 — 1] x 10" A~1 M. We see that satellites preferentially occupy anisotropic and denser environments. The top panels show
the relative fraction corresponding to the number of haloes in each halo property bin on the x-axis.

2.4.1 Correlation function

We test the predictive power of our models on the clustering of the
haloes by computing the two-point correlation function weighted by
Ngas. For volumes with periodic boundary conditions, we use the
natural estimator:
ty = 220 _
(r)
where DD is the number of halo pairs found at a separation radius, r,
and RR are the number of random points found at the same separation.
We note that for our work utilizing the RF, our training and testing
volumes do not have periodic boundary conditions and we use the
Landy-Szalay (Landy & Szalay 1993) estimator as follows:

_ (Nuana\* DD(r) Ny DR(r)
0= (Ndm) RR()  Noga RRG) T @

where Nyna = 15 Ny, random points and DR(r) is the number of
data-random pairs at separation r.

1, 3

2.4.2 Power spectrum

The power spectrum P(k) is the Fourier transform of the correlation
function &(r). We use the publicly available Pylians3 libraries? for
calculating power spectra, wherein we first interpolate the galaxies
on to a grid using cloud-in-cell (CIC) method and then use FFTs
to find Fourier modes. We also subtract shot noise from the power
spectrum using

> (N
pSN - el y ®)
[Zi Ngal]

where Néal is the galaxy occupation of the ith halo and Vi is the
volume of the simulation box. As a complement to the results from
&(r), we will later show in Fig. 9 the P(k) results for scales larger
than those compared in the plots for &(r).

2.5 Secondary halo properties
TNG provides a model for the galaxy—halo connection. The standard

HOD model, as stated above, is dependent solely on halo mass. How-
ever, work such as that by Hadzhiyska et al. (2020c) show that there

Zhttps://github.com/franciscovillaescusa/Pylians3
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is ~15 percent discrepancy in the two-point correlation function
between standard HOD theory and TNG. One of the objectives of
this work is to determine which secondary halo properties reduce the
discrepancy. In this section, we outline the various secondary halo
properties considered in this study:

(1) Local environment is the large-scale environment in which a
halo is embedded. For each halo in the DMO simulation, we define
the environment as f,,, = pr/p, where pg is the mass density in a
sphere of radius R and p is the mass density in the entire simulation
volume. We furthermore use a tophat definition of environment with
a smoothing radius at 5 Mpc from the centre of the halo.

The central panels of Figs 2 and 3 examine the effect of environment
on the number of satellite and central galaxies, respectively. We
see that both satellites and centrals preferentially occupy overdense
regions. This may be due to overdense regions experiencing an
increased number of mergers (Bose et al. 2019; Hadzhiyska et al.
2020c).

An alternate definition of local environment explored in this work,
and discussed in Appendix A, is that of the annulus environment. This
definition is similar to that defined above, but limited to the density
inside an annulus of Ryym to a radius of 5 Mpc h! surrounding the
halo, where R,op, is the radius of a sphere whose density is 200 times
the mean density of the Universe.

(i1) Environmental shear. To quantify the anisotropy, we first
calculate a dimensionless version of the tidal tensor as Tj; =
02¢r/0x;0x;, where ¢ is the dimensionless smoothed potential field
calculated using Poisson’s equation: V2¢r = 8g. pr is calculated by
first interpolating the density field on to a grid and then smoothing
it in Fourier space by a top-hat filter with radius R. Note that for
calculating §g or ¢, we have not assumed spherical symmetry;
we instead used the three-dimensional particle distribution in the
simulation snapshot. It is convenient to calculate the tidal tensor
using the inverse Fourier transform as Tj;(x) = IFT{s R(k)(k,vkj)/kz}
(Paranjape, Hahn & Sheth 2018).

We calculate the tidal shear g% using® (Heavens & Peacock 1988;
Catelan & Theuns 1996)

1

qr = 5[ =27 + (s — A7 + (s — 2)°] (6)

N

31t is worth noting that perturbation theory-based models use a closely related
variable s> = 2¢%/3 for studying the non-local bias (e.g. Baldauf et al. 2012;
Chan, Scoccimarro & Sheth 2012).
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Figure 3. Same as Fig. 2 but for centrals and for a bin corresponding to low halo masses (near the cut-off of mass required to host a central galaxy):
Mj, € [2 —2.1] x 10'2 A~ M. Overall, centrals in low-mass haloes also occupy anisotropic and denser environments.

where A; are the eigenvalues of Tj. Note that any spherically
symmetric contribution to g% is automatically cancelled, so g2 is
sensitive to the anisotropy of the field. We first calculate g% at multiple
R (e.g. 0.5 h~!'Mpc, 1 h~! Mpc,...). We then interpolate over these
values in order to calculate the shear at Ry, for consideration in
this study.

The dependence of the number of satellites of a halo with its
secondary properties is shown in Fig. 2. We find Ngy¢ has a strong
dependence on the tidal shear (see also Fig. D1 for the dependence
of Ngat on the radius at which the shear is calculated).

It is worth noting that some studies using SAMs have found an
effect of the halo environment on satellites is weak (e.g. McEwen &
Weinberg 2018), while some others find a strong effect (e.g. Xu et al.
2020, 2021).

For the non-linear dark matter field (i.e. at small scales), ¢ 3 is strongly
correlated with 8 as inferred from Lagrangian perturbation theory
(see Paranjape et al. 2018). This is also seen in Fig. 4.

(iii) Concentration characterizes the density distribution of the
halo. We use concentration calculated by fitting the NFW (Navarro,
Frenk & White 1996, 1997) profile to the halo using the phase space,
temporal halo finder, ROCKSTAR (Behroozi, Wechsler & Wu 2013).

(iv) Spin is a measure of the angular momentum acquired by the
halo. We adopt the following definition of dimensionless spin, X, as
in Bullock et al. (2001)

_ J, vir

\/inir Rvir Vvir '
where J; is the angular momentum inside a sphere of radius Ry;; of
mass M,;; and with halo circular velocity Viir = ~/2Myi/ Ryir.

(V) Vmax 1s the maximum rotational velocity of a halo.

(vi) Velocity dispersion provides the one-dimensional dispersion

of dark matter particle velocities associated with the central galaxy
of the halo.

()

Fig. 4 displays the correlations of several halo properties including
those discussed above. Examining these correlations aids in choosing
properties for use with ML. Halo properties that are only weakly
correlated, or not correlated, allow for better interpretation of the RF
results, as we see in the next section.

3 RESULTS

We present an analysis of the summary statistics computed with
predicted Ng,, by ML algorithms as described in the methods
section above.

3.1 Random forest results

As stated in Section 2.4, one of the goals of this work is to determine
which secondary halo properties, in addition to halo mass, best model
the galaxy—halo connection and reduce the discrepancy between the
standard, mass-only HOD, and TNG. Because there are no first
principles as to which secondary halo properties best achieve this
goal, we utilize the RF to aid in determining these properties. We
present the RF results in this subsection, emphasizing that these are
using the RF test set, which makes up only 30 per cent of the TNG300
volume.

The RF was able to recover the mass only HODs of TNG300,
as seen in Fig. 1, as well as build HOD models incorporating the
secondary properties discussed in Section 2.5. Fig. 5 shows that the
performance of the RF in predicting the number of galaxies for each
halo in the test set is very similar to that of the standard HOD model.
Fig. 6 shows the results of our various models constructed with the
RF compared to TNG300. We see the ~12 per cent discrepancy at
z = 0.0 between the mass only model (green dashed line) and
TNG300 (orange solid line). The other dashed colour lines show
how we can improve upon our model by incorporating secondary
halo parameters. The solid black line shows that using environment
and shear in our model most closely matches TNG300, reducing the
discrepancy by ~9 per cent.

We note that for this study we are only focusing on the two-halo
term. All of our satellite galaxies are therefore placed at the halo
centre. The effect this has on the correlation function can be seen
in the top panel of Fig. 6 for distances less than ~1 Mpc h™!; the
correlations in the regime of the one-halo term (multiplied by 7> to
emphasize effects at different scales) is ~0. The bottom panel of the
figure displays the ratios of the correlation functions of our various
models against that of TNG300. The steep dip we see between 1 and
2 Mpc h™! is the effect of transitioning from the regime of the one-
halo term to the two-halo term. Here, the ratio of the two quantities is
very noisy as both the numerator and the denominator are close to 0.

Fig. 7 is the same as the bottom panel in Fig. 6 but specifically
examines the difference between using environmental overdensity
and concentration as features for the RF. Previous works have
suggested that these two halo properties are influential in the galaxy—
halo connection (Artale et al. 2018; Zehavi et al. 2018; Bose et al.
2019). We find that the RF does not estimate any statistically
significant improvement to the mass only model by incorporating
concentration; however, there is improvement by incorporating
environment. Furthermore, we examine three different definitions of
environment (Gaussian smoothed, annular, and tophat), and while
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Figure 4. The correlations of several halo properties considered for use as features with which to train the RF. The four matrices show the correlations between
each of these parameters for haloes in different mass ranges. The top left matrix corresponds to the mass range of haloes considered in this work. The colour bar
shows the strength of the correlation between any two parameters, where 1.0 is a perfect positive correlation. As we see in this diagram, the three parameters we
consider in our final analysis (mass, environment, and shear) have very little correlation with one another, allowing us to use these as independent parameters.

the RF results suggest that a Gaussian smoothed definition of
environment best-matched TNG300, we were unable to converge
on a reproducible result with symbolic regression for this definition
of environment (discussed further in Section 3.2). We therefore use a
tophat definition of environment which gave the second best results,
as indicated by the solid black line.

Fig. 8 shows the RF results using the best model, incorporating
environment and shear in addition to halo mass, for LRG-like
galaxies at two different redshifts. For consistency, the standard,
mass only model is shown in a green dashed line, our model is
in a solid black line and a perfect agreement between the RF and
TNG300 is the solid orange line. The top panels show results at z =
0 and the bottom panels at z = 0.8. The RF is able to estimate
the contribution of the secondary halo parameters to Ny, which
improves clustering of the mass only model at distances greater
than 1.5 Mpc h=! by ~9 percent at z = 0.0 and ~7 percent at
z =08.

3.2 Symbolic regression results

The second goal of this work is to augment the standard, mass only
HOD with simple equations incorporating secondary halo properties.
We chose to implement environmental overdensity and shear, as per
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the results of the RF, and used symbolic regression (SR) to obtain
the augmented equations. We present the analysis of our SR results
in this subsection, noting that we utilized the full volume of TNG300
for this final part of the study.

Before we input the various environmental parameters into the
symbolic regressor, we re-scale the parameters by using logarithms to
shorten the range over which these parameters vary: ¢’ = log, (1 +
GEs00m) @nd 8. = log (1 + 85) and find
Nea(My) = NG (My) % (q' = A), (82)

sat

Ncen(Mh) = NHOD(Mh) X [1 + B(‘Sénv - Séj) (1 - NHOD)} : (Sb)

cen cen

A and B are constants that are fitted simultaneously with the other
HOD parameters. The value of the constant A is fixed such that the
total number of satellites in the sample is roughly unchanged. The
value of B is similarly fixed, as well as to keep the minimum and
maximum number of centrals 0 and 1, respectively. The results are
shown in Fig. 9. The slight discrepancy in the power spectrum at
low-k could be due to finite volume of the TNG box which leads to
very few low-k modes being sampled.

In order to estimate the error bars for the summary statistics, we
sample multiple realizations of the galaxy occupation. We use the
mean galaxy occupation given by the HOD model and assume the
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Figure 5. The predictive power of the Random forest (RF) (blue points)
and the standard HOD model (orange points) as compared to TNG300. The
x-axis shows the number of galaxies for haloes in the TNG300 subbox used
for testing the RFE. The y-axis shows the predicted number of galaxies for the
same subset. The solid red line indicates where the data points would lie in
the case of a perfect prediction. We see that the RF performs similarly to the
standard HOD.

centrals follow a Bernoulli distribution and the satellites follow a
Poisson distribution. We only show the error bars for the standard
HOD case as the errors for the symbolic regression case are similar.
Note that there is no error contribution from cosmic variance because
all the cases are evolved from the same initial conditions.

It is important to note that the expressions in equation (8a) are
not unique. We have also found expressions that fit the TNG data
better; however, their form is relatively much more complex and
are therefore prone to over-fitting. We show the results for these
alternative expressions in Appendix A. Furthermore, there is a large
degeneracy between the environmental and shear parameters.

3.2.1 AICc comparison

To compare the performance of various models, we calculate the
Akaike information criterion corrected for small sample size (AICc).
The AICc is an estimator of prediction error and penalizes a model
for increased complexity. In other words, the AICc will give a lower
score to a ‘better’ model.

Because we are using the two-point correlation function as a
measure for the predictive power of our models, we perform the
AlCc on the correlation function weighted by the predicted counts
of our HOD models, not on the HOD models themselves. We note
that we calculated the AICc using clustering at the reliable spatial
range indicated by the grey-shaded region in Fig. 9, approximately
(2.0-20.0) Mpc.

The AICc is given by

@xpx(p+1)

AICc =2p —2log £+ , )
n—p-1)
where .Zis the likelihood,
1 (yi — ¥)?
|7 - AL
P= 1} nexp{ = } (10)
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Figure 6. Random forest (RF) results. Using RF predictions of Ngus as
weights to calculate the correlation function, we compare models incorpo-
rating different secondary halo properties (in colour dashed lines) against
TNG300 (solid orange line). Top: The correlation functions of the various
models multiplied by r2. Bottom: To increase clarity of results from the top
panel, we show the ratio of correlation functions of the models to that of
TNG300. Perfect agreement would fall along the solid orange line. We focus
on a spatial range corresponding to the two-halo term, and note that the steep
dip between (1-2) A~! Mpc is due to the transition between the one-halo
and two-halo terms. A reliable range for clustering is further limited due to a
sample size of 30 per cent of the volume. We therefore highlight the reliable
scales in the light grey shaded region. We are able to recover the standard,
mass only, theory shown in the green dashed line, which shows a discrepancy
from TNG300 comparable to what has been reported by the literature. We
see that a model (black solid line) incorporating environment (eny calculated
with a smoothing scale of 5 Mpc) and shear (q2 calculated at Rrpom) as
secondary halo properties produces results closer to TNG300.

p is the number of parameters, n is the sample size, y; are the
clustering values given by TNG, §; are our model predicted values,
and o is the standard deviation of TNG jackknife errors.

Table 1 shows the AICc scores for our various models. We see
that there is a preference for the three halo-parameter model, which
incorporates environment and shear. This is a significant preference
over the standard, mass only HOD, but only a small preference over
the two halo-parameter model incorporating environment. Consid-
ering redshift dependence, all secondary-halo property models are
preferred over the mass only HOD at z = 0.0; however at z = 0.8,
there is very little improvement when using the two halo-property
model incorporating shear (seen in the bottom panels of Fig. 9) and
thus is the least preferred model by the AICc.
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Figure 7. Random forest (RF) results. Similar to Fig. 6 but here we
compare different definitions of environment, concentration and the standard
mass only model. Concentration results in little improvement compared
to the standard mass only model. While a Gaussian smoothed definition
of environment (red dashed line) produced results closest to TNG300, we
were unable to obtain useful results from the symbolic regression algorithm
(discussed in the text). We therefore use a top hat definition of environment
(black solid line) for this work.

4 DISCUSSION

We have presented an investigation of the galaxy-halo connection,
whereby we used ML in conjunction with the 300 Mpc box of TNG
(Nelson et al. 2018) to explore the HOD. In this section, we make
comparisons to previous studies and discuss the limitations of our
methods.

4.1 Comparison to previous studies

We now compare to other works that use ML to model galaxy
properties in dark matter haloes.

A recent paper by Xu et al. (2021) (henceforth Xu2021) also
models the galaxy occupation, in their case by using a semi-analytic
model (SAM) to train a RF to predict Neepgrals and Nyyeeniites SEparately
and populate an N-body simulation (Millennium). The box size they
use is larger than ours (500 ~~! Mpc instead of 205 h~! Mpc), which
allows for more statistics and also comparison of correlation function
to larger scales than in this work. They are able to recover the
clustering of the SAM and galaxy assembly bias to a high precision by
incorporating internal properties and formation history information.
We attribute most of the qualitative differences in our RF results, as
compared to Xu2021, to the nature of the method in which we map
galaxies on to our N-Body simulation (TNG300); namely that we
use its matched hydrodynamical simulation. While both SAMs and
hydro-sims have been tuned to match observations, comparisons
of the two methods in the literature have shown that there are
discrepancies between them despite reasonable agreement on galaxy
formation (Guo et al. 2016; Mitchell et al. 2018). Additionally,
there are differences in the way we implement some of our halo
properties, for example, our local environment and environmental
shear as described in Section 2.5. Fig. Bl compares our fiducial
model to ones with the same secondary halo properties calculated
at a range of smoothing scales. Environmental shear is found to be
critical term in TNG300, we therefore further look at the efficacy of a
shear model augmented with a sample of secondary properties shown
to be effective in Xu2021 in Fig. B2. In both instances, we see that
there is a reasonable agreement between our fiducial model and other
models for TNG300 at the reliable scales. We plan to revisit this work
with a larger volume hydrodynamical simulation, with which we will
obtain less noise and be able to do a more accurate measurement of
clustering from our RF results. Lastly, that we do not use formation
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Figure 8. Results from the random forest (RF). We compare the best resulting model as predicted by the RF, which incorporates mass, environment and shear,
shown in the black solid line and a mass only model shown in the green dashed line. We show the clustering for these models at two different redshifts (z = 0
and z = 0.8). Left: Correlation function. The three-parameter model more closely matches TNG300 at z = 0.0. Right: Power spectrum. We see similar results
as the correlation function.

MNRAS 515, 2733-2746 (2022)


art/stac1951_f7.eps
art/stac1951_f8.eps

Galaxy—halo connection with ML~ 2741

LRG like | z=0.0

1.14

0.7

LRG like | z=0.8
1.14

P(k) TNG

P(k) model

1.1F LRG like ‘ z=10.0
1.0
09F
0.8F
Slo
< 0.7r
Z.
2 : |
=l i
|
1.0F
0.9F <
—— TNG300 — matched
—— +Equ. (8a) + Equ. (8b)
081 ...... +Equ. (8b)
"""" +Equ. (8a)
0.7F === HOD | My,
10° 10!

r [h~"Mpc]

0.05 01 03 0.6
k (h Mpc™)

Figure 9. The resulting correlation function (left) and power spectrum (right) using galaxy counts predicted from the augmented HOD equations as compared
to TNG (orange line). The dashed green line shows the results using the mass only HOD as in equations (2) and (3). The solid blue line shows results with
augmented HODSat, equation (8a), and mass only HODCent, equation (2). The solid black line shows results utilizing augmented equations for both HODSat
and HODCent. Equation (8a) refers to the augmented HODSat equation with a multiplicative term that incorporates environmental shear, q,, and equation (8b)
refers to that of HODCent with a multiplicative term incorporating the environmental overdensity, s". Both of these multiplicative terms were obtained using
symbolic regression. We see that the HOD model incorporating both environment and shear provides a substantial improvement over the mass only HOD. The

grey-shaded region shows the scales at which our clustering results are reliable.

Table 1. The AIC scores corrected for small sample size (AICc) for the
correlation function weighted by our models as compared to the correlation
function of TNG300. All models have, at minimum, the 5 parameters of the
standard HOD as in equation 2. A 6 parameter model has also included either
secondary property qzrzoom or 8¢y, While the 7 parameter model includes
both secondary properties as parameters in addition to the standard 5.

AICc Scores

MODEL used No. SCORE SCORE
to weight &(r) PARAMETERS z =00 z =0.8
HOD: 5 20.0 144
Mhaio

+Equation 8a: 6 9.0 13.4
Mhaio, q2

+Equation 8b 6 —0.1 —-94
Mhaio, Seny

+equation 8a + 8b 7 =72 -12.2

2
Mhalo, G~ Senv

history as a training feature in our work is another difference worth
mentioning. A previous study by Hadzhiyska et al. (2020c) showed
that formation history is a weak assembly bias candidate in TNG300,
we therefore omitted formation history as a parameter.
Furthermore, works such as Agarwal, Davé & Bassett (2018) use
ML to populate baryonic galaxies inside dark matter haloes. This
work also uses halo properties from cosmological hydrodynamical
simulations as training features, such as mass, environment and
spin, but differs in that it additionally incorporates properties such
as growth history into their training features. Their ML algorithms

were able to predict the mean baryonic properties, such as stellar
mass, star formation rate, metallicity and neutral and molecular
hydrogen masses, while we focus on accurately predicting the
clustering of galaxies.

Most notably, the main difference between our work and the
aforementioned works is that our goal is to extend what traditional
ML algorithms can do, and augment the HOD model itself with
equations describing the occupation dependence on secondary halo
parameters (for which we used symbolic regression). Our method is
similar to that of Wadekar et al. (2020), but we focus on modelling
galaxies while they focus on modelling the neutral hydrogen content
of the halo.

It is also worth mentioning other approaches to augment the mass-
only HOD model. McEwen & Weinberg (2018), Xu et al. (2020) add
an additional dependence of secondary halo properties to the HOD
equations in equation (2) (e.g. Mmin, M) with the halo environment,
and their results are comparable to ours.

4.2 Limitations/future work

We used SR to obtain simple equations that incorporated secondary
halo parameters based on data from the TNG simulation. Whether
or not our equations work with different subgrid physics than used
in TNG, however, needs to be tested. There were more complex
equations produced by the SR algorithm than the terms we present in
our equations; however, we decided on using equations with a simple
form that were reproducible in multiple trials of the SR training.
In this way, we avoid using models that were prone to overfitting.
Furthermore, the RF ability to handle high-dimensional arrays is
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greater than that of SR; the dimensionality of the input space of SR
needs to be relatively small. While we provided the SR algorithm
with inputs of ~5 parameters, the simple, reproducible equations we
obtained only depended on a single halo parameter. The RF. on the
other hand, could be trained with all of the properties discussed in
Section 2.5 simultaneously.

We note that we have ignored satellite profiles (i.e. the one halo
term) in the clustering by placing all satellites at the centre of the halo.
Our method of weighting the correlation function by the predicted
number of galaxies from the HOD model is therefore not ideal for
the clustering of the satellite galaxies. Hence, we only show scales
at the two-halo term, which is relevant for the large scale clustering
to be done by upcoming surveys. However, the one-halo term will
also be relevant for upcoming redshift surveys, where redshift space
distortion effects are sensitive to the phase space distribution of
satellites inside the halo. We therefore emphasize the importance of
expanding upon this work to include the one-halo term for future
study.

Lastly, we note that our volume size is also a limitation in this
study. We see in the left-hand panel of Fig. 9 that with our current
volume (300 Mpc on a side) we can robustly obtain clustering out to
~30 Mpc. Because future surveys will be able to measure clustering
out to more than 100 Mpc, we hope to improve upon our results with
future simulations which are planned at the Gpc? volume. We also
hope that at these larger scales the complexity of the equations will
diminish and we will obtain more generalized forms of the augmented
HOD terms.

5 CONCLUSIONS

The standard HOD model, which predicts the number of galaxies
that reside in a halo, is dependent only on halo mass. However,
previous studies, such as those by Croton et al. (2007), Bose et al.
(2019), Hadzhiyska et al. (2020c), and Xu et al. (2020), have shown
that there is a discrepancy between the occupation predicted by the
standard, mass-only HOD model and that predicted by simulations
such as IllustrisTNG (TNG). In this paper, we have presented an
investigation of the galaxy—halo connection, whereby we used ML
in conjunction with the 300 Mpc box of TNG (Nelson et al. 2018)
to explore the HOD. We do this for LRG-like luminous red galaxies,
which are selected by stellar-mass, at redshift z = 0.0 and z = 0.8.

We used halo catalogues created by first matching haloes between
the dark matter only and corresponding full physics TNG boxes,
then populating the dark matter only box with well-resolved galaxies
(TNG300), as described in Hadzhiyska et al. (2020c). Our objectives
in this study were to (1) use a random RF to identify secondary
halo properties that best reduce the discrepancy between the stan-
dard, mass only HOD model and TNG300 and (2) use symbolic
regression (SR) to augment the standard HOD model with simple
equations that incorporate the secondary halo properties. Some of
the secondary halo properties considered in this study include the
local environmental, environmental shear, spin and more as defined
in Section 2.5. Our ML learning algorithms predicted the number of
galaxies (Ngq) for a given model, which we used as weights assigned
to the TNG300py haloes to predict the clustering in the full physics
box. We used the predicted clustering as the baseline statistic with
which to assess the quality of each augmented HOD model. Our
findings are summarized below:

(i) As a consistency check, the RF is able to predict the mean
number of centrals and satellites. We are thus able to recover the
HODs for TNG300 as seen in Fig. 1.
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(ii) Fig. 2 shows that satellite galaxies in high-mass haloes
preferentially occupy anisotropic and denser environments.

(iii) Fig. 3 shows that central galaxies in low-mass haloes also
preferentially occupy anisotropic and denser environments.

(iv) Fig. 4 reveals that the three parameters considered in our
final analysis (mass, environment, and shear) do not have a strong
correlation with one another, and were therefore favourable for use
as independent parameters.

(v) The RF revealed that incorporating environmental overdensity
and shear as training features, in addition to halo mass, resulted in
improved prediction of Ny than did using halo mass alone, resulting
in an improvement of ~10 per cent in the clustering (Fig. 8).

(vi) Symbolic regression (SR) is useful to build flexible HOD
models that are motivated by hydrodynamical simulations (our main
results are in equations 8a and 8b).

(vii) Incorporating environmental overdensity and shear into the
HOD equations results in 10 per cent improvement in the weighted
correlation function and power spectrum compared to TNG300 at
redshifts z = 0.0 and z = 0.8 (Fig. 9).

(viii) The AICc favours a model incorporating three halo prop-
erties to a mass only model at both z = 0.0 (AAICc = 27.2) and
z = 0.8 (AAICc = 26.6).

For future study, it would be interesting to test the dependence
of our results on astrophysical feedback parameters. One possibility
could be to use the CAMELS suite of simulations (Villaescusa-
Navarro et al. 2020) which contain 2000 4+ hydrodynamical sim-
ulations run for different astrophysical feedback and cosmology
parameters. Another possibility could be to use SAMs, which are
computationally inexpensive galaxy formation models (Somerville
et al. 2008).
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APPENDIX A: ALTERNATE SYMBOLIC
REGRESSION EXPRESSIONS

In Section 4.2, we discuss that the equations obtained using SR
are dependent on the definition of the halo parameter, i.e. we would
obtain slightly different forms of an augmented N.¢y expression for a
top hat definition of local environment than for an annular definition
of local environment. Furthermore, the PYSR package outputs a
selection of expressions ranked by complexity and loss score. In
this appendix, we present some of those alternate SR expressions in
equations (A1) and (A2) of this appendix:
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Figure Al. Difference in HODcent alternate equations obtained by symbolic
regression (magenta and purple). Our fiducial augmented HOD equation with
two different definitions of environmental overdensity (grey dotted and black
solid lines).
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Table A1l. same as Table 1 but for the alternate models.

AlCc scores for alternate models

MODEL used No. SCORE SCORE
to weight &(r) PARAMS z=00 z=08
HOD 5 20.0 14.4
M, halo
+Alternate equation A2(add) 7 —5.04 -17.55
Annulus Env
+Alternate equation A2(mult) 7 —34 -6.2
Annulus Env
+equation 8a + 8b 7 —-22 —11.7
Annulus Env
+equation 8a + 8b 7 -7.2 — 122
Tophat Env (fiducial)
New = NGPP(My) x (g7 /c),
1
Noaw = NP (M) x —expl(g' + €3), (A1)
2
Neent = NEP (M) x (1 4 ¢8' — c5),
Neen = Neg (M) + (68" — c7), (A2)

where ¢; are constants whose value can be tuned to the particular
sample being analysed.

Fig. A1 compares results of our fiducial augmented HOD model
(black solid line) to models incorporating either an alternate form of
Neene OF alternate definition of the local environment. Those shown in
the magenta and purple dotted lines are alternate expressions obtained
for an annulus environment. The grey dotted line is our fiducial
augmented HOD but with annulus environment as input. We see that
these alternate forms are generally consistent with our fiducial model,
each bringing the clustering to closer agreement with TNG300 by
~5 percent —10 percent. This is reinforced in Table Al, which
shows the AICc scores for these alternate models are comparable to
our fiducial model.

APPENDIX B: SENSITIVITY TO PARAMETER
DEFINITION

Fig. B1 shows the RF results for models with same halo parameters
as our fiducial model, but with the secondary parameters calculated
at various scales. We calculate local environment, §.,,, at three
different smoothing scales (1.3, 2.6, 5.0) Mpc, and we calculate
environmental shear, ¢°, at a radius of 1.3 Mpc in addition to that
calculated at rpp,. We compare the different models in dashed,
coloured lines to our fiducial model shown in a black, solid line.
We note several other models have reasonable agreement with
our fiducial model. We will leave this for further investigation in
a near future study, where we will be able to obtain clustering
statistics at a wider spatial range using larger volume hydrodynamical
simulations.

Fig. B2 explores the efficacy of shear models (shear is found
to be a critical term in TNG300) augmented with a sample of
secondary parameters found effective in Xu et al. (2021), namely
Vmax and velocity dispersion. Our fiducial model is shown as a black
solid line. Also included is a version of our fiducial model with
a Gaussian smoothed (GS) definition of local environment. Dotted
lines represent models in which the RF was trained on central galaxies
and satellite galaxies separately. Dashed lines and the fiducial model
show results for the RF trained on centrals and satellites together. We
performed a x2 test on these models and found our fiducial model
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captures clustering closer to TNG300 at the reliable scales (shaded
region) with a score of 0.075, with the next best model, with a score of
0.105, being that of qz, vdisp, My, Where centrals and satellites are
jointly trained. We emphasize, however, that these are noisy results
and a larger volume which would result in more data points would
be beneficial for accurate measurement.
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Figure B1. RF results for a variety of models, exploring environment and
shear calculated at different scales. Our fiducial model is shown in a black,
solid line and is comparable to other models.
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Figure B2. RF results comparing our fiducial model to other shear models
augmented with some secondary parameters found effective in Xu et al.
(2021). Here, shear, qz, is calculated at rp0,, and we include two definitions
of local environment, our fiducial, §eny is a tophat definition as described
in Section 2.5, and Seqy (GS) is a Gaussian smoothed definition. Dotted
lines represent models, where the RF was trained on central galaxies
separately from satellite galaxies. Using TNG300 as ground truth, a simple
%2 measurement finds that a model in which the RF is trained with centrals
and satellites together using g2 and S¢qy as secondary halo parameters (solid
black line) provides the closest clustering results to our target at the reliable
scales (grey shaded region).

220z Jaquisldag GO uo Jesn weylnq 1o AusiaAiun Aq G088%99/SE/2/2/S LS/3101e/SBIuW/Wod dno"olWwapeoe//:sdny WoJlj papeojumo(


art/stac1951_fB1.eps
art/stac1951_fB2.eps

Subbox TNG300 — matched

., .
I —— TNG centrals+satellites
101 L === RF centrals-+satellites ELG hke
F —— TNG centrals
[ === RF centrals
[ —— TNG satellites
| === RF satellites
. 100F T 1
g :
Z
107 E 3
10—2 1 1 [HAY 1
10" 10" 10 10"

Mhalo [h_lM(D]

Figure C1. The mean emission line galaxy (ELG) occupation of TNG300
as a function of the halo mass. Similar to Fig. 1, we see that the random forest
was also able to recover the mean occupation of ELG.
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Figure C2. Same as Fig. 8 but for emission-line galaxies (ELG). We see that
there is little difference between a mass only model and one incorporating
secondary halo parameters.

APPENDIX C: RESULTS FROM THE
EMISSION-LINE GALAXY SAMPLE

In this appendix, we present the random forest (RF) results using
the emission-line galaxy sample (ELG-like) which are selected by

Galaxy—halo connection with ML~ 2745
colour cuts and star formation rates as described in Hadzhiyska et al.
(2020b).

It is important to note that the HOD looks different for ELGs,
shown in Fig. C1, compared to LRGs, shown in Fig. 1. We also see
in Fig. C1 that the RF was able to recover the galaxy occupations for
the ELG-like sample. However, Fig. C2 reveals that incorporating
secondary halo parameters has little effect on the clustering for ELGs,
consistent with previous studies (Hadzhiyska et al. 2020b); there is a
significantly smaller discrepancy (~3 per cent) from the mass-only
model from ELGs as extracted from TNG300. The measurements of
the correlation function are also quite noisy because of the small
number of available ELGs. We again state the importance of a
more comprehensive study of ELGs in future works with better
statistics.

APPENDIX D: SUPPLEMENTARY OCCUPATION
STATISTICS

D1 Additional dependence of Ny, on secondary parameter

Fig. D1 compliments Fig. 2 by showing the dependence of the
number of satellites on the radius at which the shear is calculated.

D2 Modelling the HOD scatter

We take advantage of the RF results to try and model the HOD scatter.
We estimate the scatter as the standard deviation of the mean number
of galaxies per mass bin, and compare o (Ngrg)/o (N1nG), Where Nrp
are the number of galaxies per mass bin predicted by the random
forest, Ntng are the number of galaxies per mass bin according to
TNG300 and o is the standard deviation defined as

N aloes .
J I (Ni—true B Ni—predlcted)z'

v (D)
Nhaloes Z gal gal

ONgal =

Fig. D2 conveys that mass (green dashed line) is a poor predictor
of the HOD scatter, as the RF was only able to capture ~15 per cent
of the scatter using mass alone as a feature. While we did not obtain
useful results by incorporating secondary halo properties, there were
some minor improvements. There seems to be an interesting transi-
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Figure D1. Same as the left-hand panel of Fig. 2 but showing the dependence
on the radius at which the shear is calculated.
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Figure D2. The HOD scatter predicted by the RF as compared to TNG300.
The mass-only model (green-dashed line) is only able to capture ~15 per cent
of the scatter. By incorporating secondary halo parameters, environmental
overdensity and shear (solid black line), the RF was able to capture
~30 per cent of the scatter for haloes with mass > 10341 M.
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tionat ~10"3h~'M,. We see that at lower masses, models that include
Vimax (described in Section 2.5) captured about 5 per cent more of the
scatter than mass alone, while all other models only perform as well as
the mass-only model. However at masses >10'*42~'Mg models that
include shear performed better, with our preferred model, including
environmental overdensity and shear (black solid line), capturing
~30 per cent of the scatter.
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