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A B S T R A C T 

To extract information from the clustering of galaxies on non-linear scales, we need to model the connection between galaxies 
and haloes accurately and in a flexible manner. Standard halo occupation distribution (HOD) models make the assumption 

that the galaxy occupation in a halo is a function of only its mass, ho we ver, in reality; the occupation can depend on various 
other parameters including halo concentration, assembly history, environment, and spin. Using the IllustrisTNG hydrodynamical 
simulation as our target, we show that machine learning tools can be used to capture this high-dimensional dependence and 

provide more accurate galaxy occupation models. Specifically, we use a random forest regressor to identify which secondary 

halo parameters best model the galaxy–halo connection and symbolic regression to augment the standard HOD model with 

simple equations capturing the dependence on those parameters, namely the local environmental o v erdensity and shear, at the 
location of a halo. This not only provides insights into the galaxy formation relationship but also, more importantly, impro v es the 
clustering statistics of the modelled galaxies significantly. Our approach demonstrates that machine learning tools can help us 
better understand and model the galaxy–halo connection, and are therefore useful for galaxy formation and cosmology studies 
from upcoming galaxy surv e ys. 

Key words: methods: numerical – galaxies: haloes – large-scale structure of Universe – cosmology: theory. 
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 I N T RO D U C T I O N  

s we aspire to solve some of astronomy’s toughest challenges, 
uch as constraining cosmological parameters, measuring neutrino 
asses or determining the nature of dark energy, the community has 

lanned galaxy surv e ys of unparalleled depth [e.g. Euclid (Tutusaus
t al. 2020 ) and DESI (Collaboration et al. 2016 )]. These surv e ys
ill provide us with far more accurate and precise measurements of

he large-scale distribution of matter and will primarily use galaxy 
lustering statistics to study galaxy formation and cosmology. We 
herefore want to make sure that our statistical models and systematic 
ncertainties are robust enough to handle the precision needed to 
chieve an accuracy of order 1 per cent. 

An important step in fully realizing the statistical power of future 
urv e ys is to achieve a precise understanding of the galaxy–halo
onnection. One such example is the standard halo occupation 
istribution (HOD) model (Peacock & Smith 2000 ; Scoccimarro 
000 ; Seljak 2000 ; Berlind & Weinberg 2002 ), which predicts the
umber of galaxies that reside within a dark matter halo, and in its
implest form depends only on halo mass. We can use the number
f galaxies per halo given by the HOD model as weights assigned
o haloes for statistics in order to predict the clustering of galaxies.
 E-mail: ana maria.delgado@cfa.harvard.edu 
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o we ver, the clustering of haloes does not trace the distribution of
atter exactly but is instead ‘biased’ relative to it in a manner that

epends on properties of the halo beyond simply its mass (so-called
alo assembly bias). Furthermore, the galaxy occupancy per halo has 
lso been found to depend on more than just halo mass (Norberg et al.
001 ; Zehavi et al. 2002 ). Thus, in order to reco v er the true clustering
ias of galaxies (as predicted, say, by hydrodynamical simulations) 
elative to the underlying matter distribution, we need to also assign
alaxy occupation based on secondary halo parameters other than 
alo mass. 
Sev eral studies hav e tried to incorporate secondary halo pa-

ameters into an HOD framework to account for the effects of
ssembly bias. Halo concentration, for example, has been a popular 
econdary parameter (Croton, Gao & White 2007 ; Paranjape et al.
015 ; Wechsler & Tinker 2018 ; Vakili & Hahn 2019 ; Kobayashi
t al. 2020 ), although numerous recent studies have shown that the
nvironment of the haloes plays a significant role in determining 
he galaxy distribution (Abbas & Sheth 2007 ; Pujol & Gazta ̃ naga
014 ; McEwen & Weinberg 2018 ; Hadzhiyska et al. 2020a , c , 2021 ;
u, Zehavi & Contreras 2020 ; Yuan et al. 2020 ; Salcedo et al.
020b , c ). There also have been multiple prescriptions for including
he halo environment in the HOD model (McEwen & Weinberg 2018 ;
adzhiyska et al. 2020b ; Salcedo et al. 2020a , b , c ; Xu et al. 2020 ;
uan et al. 2020 ). 
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High-resolution hydrodynamical simulations such as IllustrisTNG
TNG; Springel 2010 ; Nelson et al. 2018 ) give us a plausible
rediction of what the galaxy–halo connection should be and can
herefore be used as a testing ground for theory. By identifying
bservables that will best allow us to model galaxy assembly bias we
ay impro v e upon our current models and test their statistical power

g ainst h ydrodynamical simulations. 
We have two primary goals in this work: 

(i) Determine which secondary halo properties, in addition to
alo mass, best model the galaxy–halo connection. Because there
s no first-principles explanation as to which properties to use, we
odel the number of galaxies using machine learning (ML) by

pproximating the function 

 galaxies = f ( M halo , { i halo } ) , (1) 

here M halo is the total mass of the halo and { i halo } is the set of
arious secondary halo properties: the o v erdensity and anisotropy
f its environment at various scales, its concentration, spin, velocity
ispersion, and so on. The high dimensionality of the input space
akes this a complex and challenging problem. Correlations between

ifferent input parameters (i.e. the concentration of a halo is related to
ts assembly history and its environment) further add to the difficulty.

(ii) Augment the standard HOD model with simple equations that
ncorporate the effects of the secondary halo properties. As central
nd satellite galaxies can have a different dependence on halo
roperties, we train o v er models separately for centrals and satellites
hroughout this paper. It is worth noting that our approach is similar
o Wadekar et al. ( 2020 ) who used ML to model the neutral hydrogen
ontent of the halo as a function of halo mass and secondary
roperties. 

The layout of the paper is as follows. In Section 2 , we describe the
imulations, our benchmark model, how we used ML algorithms
o obtain augmented models, the summary statistics used and a
escription of the secondary halo properties considered in this work.
n Section 3 , we present our results. Section 4 provides discussion
n how our work compares to previous studies and describes the
imitations of our methods. In Section 5 , we summarize our findings
nd conclude. 

 M E T H O D S  

.1 IllustrisTNG simulation 

he Next Generation Illustris , IllustrisTNG (hereafter, TNG) (Mari-
acci et al. 2018 ; Naiman et al. 2018 ; Nelson et al. 2018 , 2019a , b ;
illepich et al. 2018 ; Springel et al. 2018 ; Pillepich et al. 2019 )
re cosmological, hydrodynamical simulations run with the AREPO

ode (Springel 2010 ; Weinberger, Springel & Pakmor 2020 ), which
tilizes a hybrid tree/particle-mesh scheme to solve for gravitational
nteractions of dark matter particles and an unstructured, moving

esh to solve the equations of hydrodynamics. Compared to the
alaxy formation model of its predecessor, Illustris (Genel et al.
014 ; Vogelsberger et al. 2014a , b ), the model in TNG has updated
mplementations of active galactic nucleus feedback (Weinberger
t al. 2017 ) and galactic winds (Pillepich et al. 2018 ) and incorporates
agnetic fields (Pakmor, Marinacci & Springel 2014 ). The TNG

uite consists of three simulation volumes: TNG50, TNG100, and
NG300 each run at three different resolutions. In this work, we
se the TNG300-1 simulation, a periodic box of length L box =
05 h −1 Mpc ≈ 300 Mpc, containing 2 × 2500 3 resolution ele-
NRAS 515, 2733–2746 (2022) 
ents with a mass resolution of 7.6 × 10 6 h −1 M � for baryons and
.0 × 10 7 h −1 M � for dark matter. 
The initial conditions of the TNG suite were generated at z = 127

nd assume Planck parameters (Planck Collaboration XIII 2016 ).
ach hydrodynamical simulation (henceforth referred to as FP for

full-physics’) also has a counterpart generated from the same initial
onditions but evolved with dark matter only ( N -body, DMO). 

Haloes in TNG are identified using the ‘friends-of-friends’ (FOF)
lgorithm that forms groups by connecting together dark matter
articles separated by at most 20 per cent of the mean interparticle
eparation. Subhaloes are identified using the SUBFIND algorithm,
hich requires that each subhalo contain at least 20 dark matter
articles that are gravitationally bound. A galaxy is defined as the
onstituent baryonic particles (those which make up stars, gas and
lack holes) associated with the subhalo. 

For this work, we take advantage of the initial-conditions matched
etween FP and DMO simulations to create bijective matches of
aloes between the two runs, as outlined in Hadzhiyska et al. ( 2020c ).
his allows us to mimic the standard implementation of the HOD

or the DMO run by populating its haloes with galaxy occupation
umbers per halo mass bin derived from the FP run. Specifically, we
se the TNG300-1 DMO simulation populated with its bijectively
atched haloes (henceforth TNG300-matched or TNG300). 

.2 Benchmark model: HOD 

he standard HOD model posits that the number of galaxies residing
n a halo depends solely on the mass of that halo. We construct
he HOD using TNG300 populated with bijectively matched haloes
s described in Section 2.1 . In order to emulate the kinds of
alaxy samples that will be detected by surv e ys like DESI, we
onsider luminous red galaxies (LRG-like), which are stellar-mass
elected, and emission-line galaxies (ELG-like), which are based on
olour cuts and chosen as described in Hadzhiyska et al. ( 2020b ).
o we ver, we note that it has been shown that clustering in ELGs

s not sensitive to secondary halo parameters. For this reason, we
edicate our discussion primarily to the LRG-like sample and show
orresponding results from the ELG-like sample in Appendix C . A
ore comprehensive study of ELGs will be the subject of a future

nvestigation. 
Our LRG-like galaxies are defined as subhaloes with at least 10 4 

ravitationally bound star particles corresponding to a stellar mass
f M ∗ ≈ 5 × 10 10 [ h −1 M �] and we calculate the HOD for haloes
ith dark matter mass greater than 10 11 h −1 M �, corresponding to a
umber density n gal ≈ 1.4 × 10 −3 [ h 3 Mpc −3 ] for both z = 0 and
 = 0.8 samples. 

We then fit a five-parameter HOD model, splitting the mean
ccupation per halo mass into contributions from centrals, N cen , and
atellites, N sat as described in Zheng et al. ( 2005 ): 

 

HOD 
cen ( M h ) ≡ 1 

2 

[
1 + erf 

(
log M h − log M min 

σlog M 

)]
(2a) 

 

HOD 
sat ( M h ) ≡

(
M h − M cut 

M 1 

)α

. (2b) 

Here, M h = M 

DMO 
200m 

is the total mass enclosed by a sphere with
ean density 200 times the background density of the universe,
 min is the characteristic minimum mass of haloes that host central

alaxies, σ log M 

is the width of this transition, M cut is the characteristic
ut-off scale for hosting satellites, M 1 is a normalization factor, and
is the power-law slope. The best-fitting parameters for { log M min ,
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Figure 1. The mean galaxy occupation of TNG300 as a function of the halo 
mass. The solid lines are the true occupations of TNG300, the dashed lines 
are the predicted occupations by the RF using halo mass as a training feature, 
and the dotted lines are the predicted occupations using the standard HOD 

mass only model. As a consistency check, we see that the RF is able to predict 
the mean galaxy occupation fairly accurately. 
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log M 

, log M cut , log M 1 , α} are { 12.64,0.26,12.65,13.65,1.03 } for z =
.0 and { 12.48, 0.26, 12.54, 13.30, 0.95 } for z = 0.8. 
It is important to note that the HOD parameters have not been

uned to match the summary statistics like the power spectrum (as
s typically done in the case of galaxy surv e y data analysis), rather
he standard HOD is fitted to the halo occupation of the TNG300
ata according to halo mass. Our goal here is to test the standard
OD model and impro v e its accuracy by augmenting with secondary
arameters. 
Fig. 1 shows the HODs (for centrals, satellites, and combined) 

onstructed using TNG300. We note that this figure is only for
0 per cent of the TNG300 volume, corresponding to the test-set
or our ML techniques (see Section 2.3 ). 

.3 ML models 

 supervised ML algorithm trains a model by providing it a subset
f input variables (henceforth called ‘features’) and output variables 
henceforth called ‘target’). The algorithm uses this subset as a 
raining set to learn the relation between the features and the targets.
he trained model is then used to predict the targets for a different
ubset (test set) of features. 

In this work, we use two ML algorithms to achieve the aforemen-
ioned goals. We use the random forest regressor (RF) to identify 
econdary halo properties that affect the galaxy–halo connection 
nd we use symbolic regression to augment the standard HOD 

odel with simple equations that incorporate the secondary halo 
arameters identified by the random forest. Both of these algorithms 
re described below. 

.3.1 Random Forest 

e use the random forest algorithm from the publicly available 
ackage SCIKIT-LEARN (Pedregosa et al. 2011 ). A random RF is a
ollection of decision trees; each tree is in itself a regression model
nd is trained on a different random subset of the training data
Breiman 2001 ). The output from an RF is the mean of the predictions
rom the individual trees (a single decision tree is prone to o v erfitting
nd therefore the ensemble mean of the different trees is used). RFs
ave been used for applications to various cosmological problems 
Lucie-Smith et al. 2018 ; Nadler et al. 2018 ; Cohn & Battaglia 2020 ;

oster et al. 2020 ; Mucesh et al. 2021 ). 
This method has a few key advantages o v er other ML models: (1)

ittle hyper-parameter tuning is required, (2) it is computationally 
fficient, and (3) its ensemble characteristic lessens o v erfitting. 

We designate 30 per cent of the TNG300 volume as the test set
nd use the remaining 70 per cent of the volume as the training set,
hich is used to train the RF to predict N gals . Because there are no
rst principles as to which secondary halo properties best describe 

he galaxy–halo connection, we begin by training a mass only model,
nd in each subsequent model we implement an additional secondary 
alo property (halo properties described in Section 2.5 ). Essentially, 
he RF will approximate equation ( 1 ). 

We test the predictive power of our models on the clustering of the
aloes by computing the correlation function weighted by the N gals 

redictions of the RF. We compare the different models to TNG300
nd apply the properties from the best-performing model for use with
ymbolic regression, described below. 

.3.2 Symbolic r egr ession 

ymbolic regression (SR) is a no v el ML technique that approximates
he relation between an input and an output through analytic 
athematical formulae (Schmidt & Lipson 2009 ; Wu & Tegmark 

018 ; Cranmer et al. 2019 , 2020 ; Kim et al. 2019 ; Liu & Tegmark
020 ; Udrescu & Tegmark 2020 ; Villaescusa-Navarro et al. 2020 ).
he advantage of using SR o v er other ML regression models like
F or deep neural networks is that it provides analytic expressions

hat can be readily generalized and that facilitate understanding the 
nderlying physics. Furthermore, SR is shown to outperform other 
L models when the size of data set is small (Wilstrup & Kasak

021 ). In our case, we first use RF to get an indication of which
arameters in the set of { i h } in equation ( 1 ) have the largest influence
n N gal . We then compress the { i h } set to include only the most
mportant parameters. Finally, as discussed in Section 3.2 , we use
R on the compressed set to obtain an explicit functional form to
pproximate f from equation ( 1 ). 

In this study, we use the symbolic regressor based on genetic
rogramming (an algorithm that searches equation space for a best 
t) implemented in the publicly available PYSR package 1 (Cranmer 
020 ; Cranmer et al. 2020 ). 

.4 Summary statistics for clustering 

he goals of this work are (1) to determine which secondary halo
roperties, in addition to halo mass, best model the galaxy–halo 
onnection and (2) augment the standard HOD model with simple 
quations that incorporate the effects of secondary halo properties. 

As the goal of this study is to compare the predictive power of these
ugmented models on the clustering, we use the two-point correlation 
unction in real- and Fourier-space as our summary statistics to 
MNRAS 515, 2733–2746 (2022) 
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M

Figure 2. Dependence of N satellites on secondary halo properties: local shear (left), local environmental o v erdensity (centre), and concentration (right) for 
haloes in the mass bin M h ∈ [0 . 5 − 1] × 10 14 h −1 M �. We see that satellites preferentially occupy anisotropic and denser environments. The top panels show 

the relative fraction corresponding to the number of haloes in each halo property bin on the x -axis. 
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.4.1 Correlation function 

e test the predictive power of our models on the clustering of the
aloes by computing the two-point correlation function weighted by
 gals . For volumes with periodic boundary conditions, we use the
atural estimator: 

( r ) = 

DD ( r ) 

RR ( r ) 
− 1 , (3) 

here DD is the number of halo pairs found at a separation radius, r ,
nd RR are the number of random points found at the same separation.

We note that for our work utilizing the RF, our training and testing
olumes do not have periodic boundary conditions and we use the
andy–Szalay (Landy & Szalay 1993 ) estimator as follows: 

( r) = 

(
N rand 

N data 

)2 DD ( r) 

RR ( r) 
− 2 

N rand 

N data 

DR ( r) 

RR ( r) 
+ 1 , (4) 

here N rand = 15 N data random points and DR ( r ) is the number of
ata-random pairs at separation r . 

.4.2 Power spectrum 

he power spectrum P ( k ) is the Fourier transform of the correlation
unction ξ ( r ). We use the publicly available Pylians3 libraries 2 for
alculating power spectra, wherein we first interpolate the galaxies
n to a grid using cloud-in-cell (CIC) method and then use FFTs
o find Fourier modes. We also subtract shot noise from the power
pectrum using 

 

SN = 

∑ 

i 

(
N 

i 

gal 
)2 

[∑ 

i N 

i 

gal 
]2 V box , (5) 

here N 

i 
gal is the galaxy occupation of the i th halo and V box is the

olume of the simulation box. As a complement to the results from
( r ), we will later show in Fig. 9 the P ( k ) results for scales larger

han those compared in the plots for ξ ( r ). 

.5 Secondary halo properties 

NG provides a model for the galaxy–halo connection. The standard
OD model, as stated abo v e, is dependent solely on halo mass. How-

ver, work such as that by Hadzhiyska et al. ( 2020c ) show that there
NRAS 515, 2733–2746 (2022) 

 https:// github.com/franciscovillaescusa/ Pylians3 

3

v
C

s ∼15 per cent discrepancy in the two-point correlation function
etween standard HOD theory and TNG. One of the objectives of
his work is to determine which secondary halo properties reduce the
iscrepancy. In this section, we outline the various secondary halo
roperties considered in this study: 

(i) Local environment is the large-scale environment in which a
alo is embedded. For each halo in the DMO simulation, we define
he environment as f env ≡ ρR / ρ, where ρR is the mass density in a
phere of radius R and ρ is the mass density in the entire simulation
olume. We furthermore use a tophat definition of environment with
 smoothing radius at 5 Mpc from the centre of the halo. 
he central panels of Figs 2 and 3 examine the effect of environment
n the number of satellite and central galaxies, respectively. We
ee that both satellites and centrals preferentially occupy o v erdense
egions. This may be due to o v erdense re gions e xperiencing an
ncreased number of mergers (Bose et al. 2019 ; Hadzhiyska et al.
020c ). 
n alternate definition of local environment explored in this work,

nd discussed in Appendix A , is that of the annulus environment. This
efinition is similar to that defined abo v e, but limited to the density
nside an annulus of R 200m 

to a radius of 5 Mpc h −1 surrounding the
alo, where R 200m 

is the radius of a sphere whose density is 200 times
he mean density of the Universe. 

(ii) Environmental shear . To quantify the anisotropy, we first
alculate a dimensionless version of the tidal tensor as T ij ≡
 

2 φR / ∂ x i ∂ x j , where φR is the dimensionless smoothed potential field
alculated using Poisson’s equation: ∇ 

2 φR = δR . ρR is calculated by
rst interpolating the density field on to a grid and then smoothing

t in Fourier space by a top-hat filter with radius R . Note that for
alculating δR or φR , we have not assumed spherical symmetry;
e instead used the three-dimensional particle distribution in the

imulation snapshot. It is convenient to calculate the tidal tensor
sing the inverse Fourier transform as T ij ( x ) = IFT { δR ( k )( k i k j )/ k 2 }
Paranjape, Hahn & Sheth 2018 ). 

e calculate the tidal shear q 2 R using 3 (Heavens & Peacock 1988 ;
atelan & Theuns 1996 ) 

 

2 
R ≡

1 [
( λ2 − λ1 ) 

2 + ( λ3 − λ1 ) 
2 + ( λ3 − λ2 ) 

2 
]
, (6) 
 It is worth noting that perturbation theory-based models use a closely related 
ariable s 2 ≡ 2 q 2 /3 for studying the non-local bias (e.g. Baldauf et al. 2012 ; 
han, Scoccimarro & Sheth 2012 ). 

art/stac1951_f2.eps
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Figure 3. Same as Fig. 2 but for centrals and for a bin corresponding to low halo masses (near the cut-off of mass required to host a central galaxy): 
M h ∈ [2 − 2 . 1] × 10 12 h −1 M �. Overall, centrals in low-mass haloes also occupy anisotropic and denser environments. 
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here λi are the eigenvalues of T ij . Note that any spherically 
ymmetric contribution to q 2 R is automatically cancelled, so q 2 R is 
ensitive to the anisotropy of the field. We first calculate q 2 R at multiple
 (e.g. 0.5 h 

−1 Mpc , 1 h 

−1 Mpc ,...). We then interpolate o v er these
alues in order to calculate the shear at R 200m 

for consideration in
his study. 
he dependence of the number of satellites of a halo with its
econdary properties is shown in Fig. 2 . We find N sat has a strong
ependence on the tidal shear (see also Fig. D1 for the dependence
f N sat on the radius at which the shear is calculated). 
t is worth noting that some studies using SAMs have found an
ffect of the halo environment on satellites is weak (e.g. McEwen &
einberg 2018 ), while some others find a strong effect (e.g. Xu et al.

020 , 2021 ). 
or the non-linear dark matter field (i.e. at small scales), q 2 R is strongly
orrelated with δR as inferred from Lagrangian perturbation theory 
see Paranjape et al. 2018 ). This is also seen in Fig. 4 . 

(iii) Concentration characterizes the density distribution of the 
alo. We use concentration calculated by fitting the NFW (Navarro, 
renk & White 1996 , 1997 ) profile to the halo using the phase space,

emporal halo finder , R OCKSTAR (Behroozi, Wechsler & Wu 2013 ).
(iv) Spin is a measure of the angular momentum acquired by the 

alo. We adopt the following definition of dimensionless spin, λ, as
n Bullock et al. ( 2001 ) 

= 

J vir √ 

2 M vir R vir V vir 

, (7) 

here J vir is the angular momentum inside a sphere of radius R vir of
ass M vir and with halo circular velocity V vir = 

√ 

2 M vir /R vir . 
(v) V max is the maximum rotational velocity of a halo. 
(vi) Velocity dispersion provides the one-dimensional dispersion 

f dark matter particle velocities associated with the central galaxy 
f the halo. 

Fig. 4 displays the correlations of several halo properties including 
hose discussed abo v e. Examining these correlations aids in choosing 
roperties for use with ML. Halo properties that are only weakly 
orrelated, or not correlated, allow for better interpretation of the RF
esults, as we see in the next section. 

 RESULTS  

e present an analysis of the summary statistics computed with 
redicted N gals by ML algorithms as described in the methods 
ection abo v e. 
.1 Random forest results 

s stated in Section 2.4 , one of the goals of this work is to determine
hich secondary halo properties, in addition to halo mass, best model

he galaxy–halo connection and reduce the discrepancy between the 
tandard, mass-only HOD, and TNG. Because there are no first 
rinciples as to which secondary halo properties best achieve this 
oal, we utilize the RF to aid in determining these properties. We
resent the RF results in this subsection, emphasizing that these are
sing the RF test set, which makes up only 30 per cent of the TNG300
olume. 

The RF was able to reco v er the mass only HODs of TNG300,
s seen in Fig. 1 , as well as build HOD models incorporating the
econdary properties discussed in Section 2.5 . Fig. 5 shows that the
erformance of the RF in predicting the number of galaxies for each
alo in the test set is very similar to that of the standard HOD model.
ig. 6 shows the results of our various models constructed with the
F compared to TNG300. We see the ∼12 per cent discrepancy at
 = 0.0 between the mass only model (green dashed line) and
NG300 (orange solid line). The other dashed colour lines show 

ow we can impro v e upon our model by incorporating secondary
alo parameters. The solid black line shows that using environment 
nd shear in our model most closely matches TNG300, reducing the
iscrepancy by ∼9 per cent. 
We note that for this study we are only focusing on the two-halo

erm. All of our satellite galaxies are therefore placed at the halo
entre. The effect this has on the correlation function can be seen
n the top panel of Fig. 6 for distances less than ∼1 Mpc h −1 ; the
orrelations in the regime of the one-halo term (multiplied by r 2 to
mphasize effects at different scales) is ∼0. The bottom panel of the
gure displays the ratios of the correlation functions of our various
odels against that of TNG300. The steep dip we see between 1 and
 Mpc h −1 is the effect of transitioning from the regime of the one-
alo term to the two-halo term. Here, the ratio of the two quantities is
ery noisy as both the numerator and the denominator are close to 0.

Fig. 7 is the same as the bottom panel in Fig. 6 but specifically
xamines the difference between using environmental o v erdensity 
nd concentration as features for the RF. Previous works have 
uggested that these two halo properties are influential in the galaxy–
alo connection (Artale et al. 2018 ; Zehavi et al. 2018 ; Bose et al.
019 ). We find that the RF does not estimate any statistically
ignificant impro v ement to the mass only model by incorporating
oncentration; ho we ver, there is improvement by incorporating 
nvironment. Furthermore, we examine three different definitions of 
nvironment (Gaussian smoothed, annular, and tophat), and while 
MNRAS 515, 2733–2746 (2022) 
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Figure 4. The correlations of several halo properties considered for use as features with which to train the RF. The four matrices show the correlations between 
each of these parameters for haloes in different mass ranges. The top left matrix corresponds to the mass range of haloes considered in this work. The colour bar 
shows the strength of the correlation between any two parameters, where 1.0 is a perfect positive correlation. As we see in this diagram, the three parameters we 
consider in our final analysis (mass, environment, and shear) have very little correlation with one another, allowing us to use these as independent parameters. 
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he RF results suggest that a Gaussian smoothed definition of
nvironment best-matched TNG300, we were unable to converge
n a reproducible result with symbolic regression for this definition
f environment (discussed further in Section 3.2 ). We therefore use a
ophat definition of environment which gave the second best results,
s indicated by the solid black line. 

Fig. 8 shows the RF results using the best model, incorporating
nvironment and shear in addition to halo mass, for LRG-like
alaxies at two different redshifts. For consistency, the standard,
ass only model is shown in a green dashed line, our model is

n a solid black line and a perfect agreement between the RF and
NG300 is the solid orange line. The top panels show results at z =
 and the bottom panels at z = 0.8. The RF is able to estimate
he contribution of the secondary halo parameters to N gals , which
mpro v es clustering of the mass only model at distances greater
han 1.5 Mpc h −1 by ∼9 per cent at z = 0.0 and ∼7 per cent at
 = 0.8. 

.2 Symbolic r egr ession r esults 

he second goal of this work is to augment the standard, mass only
OD with simple equations incorporating secondary halo properties.
e chose to implement environmental o v erdensity and shear, as per
NRAS 515, 2733–2746 (2022) 
he results of the RF, and used symbolic regression (SR) to obtain
he augmented equations. We present the analysis of our SR results
n this subsection, noting that we utilized the full volume of TNG300
or this final part of the study. 

Before we input the various environmental parameters into the
ymbolic regressor, we re-scale the parameters by using logarithms to
horten the range o v er which these parameters vary: q ′ ≡ log 10 (1 +
 

2 
R200m 

) and δ′ 
env ≡ log 10 (1 + δ5 ) and find 

 sat ( M h ) = N 

HOD 
sat ( M h ) × ( q ′ − A ) , (8a) 

 cen ( M h ) = N 

HOD 
cen ( M h ) ×

[
1 + B 

(
δ′ 

env − δ′ 
env 

)(
1 − N 

HOD 
cen 

)]
. (8b) 

A and B are constants that are fitted simultaneously with the other
OD parameters. The value of the constant A is fixed such that the

otal number of satellites in the sample is roughly unchanged. The
alue of B is similarly fixed, as well as to keep the minimum and
aximum number of centrals 0 and 1, respectively. The results are

hown in Fig. 9 . The slight discrepancy in the power spectrum at
ow- k could be due to finite volume of the TNG box which leads to
ery few low- k modes being sampled. 

In order to estimate the error bars for the summary statistics, we
ample multiple realizations of the galaxy occupation. We use the
ean galaxy occupation given by the HOD model and assume the
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Galaxy–halo connection with ML 2739 

Figure 5. The predictive power of the Random forest (RF) (blue points) 
and the standard HOD model (orange points) as compared to TNG300. The 
x -axis shows the number of galaxies for haloes in the TNG300 subbox used 
for testing the RF. The y -axis shows the predicted number of galaxies for the 
same subset. The solid red line indicates where the data points would lie in 
the case of a perfect prediction. We see that the RF performs similarly to the 
standard HOD. 

c
P
H  

N
a

 

n  

b  

a  

a  

d

3

T
A
T  

f  

s

m  

A
o  

t
r
(

A

w

L

Figure 6. Random forest (RF) results. Using RF predictions of N gals as 
weights to calculate the correlation function, we compare models incorpo- 
rating different secondary halo properties (in colour dashed lines) against 
TNG300 (solid orange line). Top: The correlation functions of the various 
models multiplied by r 2 . Bottom: To increase clarity of results from the top 
panel, we show the ratio of correlation functions of the models to that of 
TNG300. Perfect agreement w ould f all along the solid orange line. We focus 
on a spatial range corresponding to the two-halo term, and note that the steep 
dip between (1–2) h −1 Mpc is due to the transition between the one-halo 
and two-halo terms. A reliable range for clustering is further limited due to a 
sample size of 30 per cent of the volume. We therefore highlight the reliable 
scales in the light grey shaded region. We are able to reco v er the standard, 
mass only, theory shown in the green dashed line, which shows a discrepancy 
from TNG300 comparable to what has been reported by the literature. We 
see that a model (black solid line) incorporating environment ( δenv calculated 
with a smoothing scale of 5 Mpc) and shear ( q 2 calculated at R 200m 

) as 
secondary halo properties produces results closer to TNG300. 
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entrals follow a Bernoulli distribution and the satellites follow a 
oisson distribution. We only show the error bars for the standard 
OD case as the errors for the symbolic regression case are similar.
ote that there is no error contribution from cosmic variance because 

ll the cases are evolved from the same initial conditions. 
It is important to note that the expressions in equation ( 8a ) are

ot unique. We have also found expressions that fit the TNG data
etter; ho we ver, their form is relatively much more complex and
re therefore prone to o v er-fitting. We show the results for these
lternativ e e xpressions in Appendix A . Furthermore, there is a large
e generac y between the environmental and shear parameters. 

.2.1 AICc comparison 

o compare the performance of various models, we calculate the 
kaike information criterion corrected for small sample size (AICc). 
he AICc is an estimator of prediction error and penalizes a model

or increased complexity. In other words, the AICc will give a lower
core to a ‘better’ model. 

Because we are using the two-point correlation function as a 
easure for the predicti ve po wer of our models, we perform the
ICc on the correlation function weighted by the predicted counts 
f our HOD models, not on the HOD models themselves. We note
hat we calculated the AICc using clustering at the reliable spatial 
ange indicated by the grey-shaded region in Fig. 9 , approximately 
2.0–20.0) Mpc. 

The AICc is given by 

ICc = 2 p − 2 log L + 

(2 × p × ( p + 1)) 

( n − p − 1) 
, (9) 

here L is the likelihood, 

 = 

n ∏ 

i= 1 

1 

n 
exp 

{ ( y i − ˆ y i ) 2 

σ 2 

} 

. (10) 
 is the number of parameters, n is the sample size, y i are the
lustering v alues gi ven by TNG, ˆ y i are our model predicted v alues,
nd σ is the standard deviation of TNG jackknife errors. 

Table 1 shows the AICc scores for our various models. We see
hat there is a preference for the three halo-parameter model, which
ncorporates environment and shear. This is a significant preference 
 v er the standard, mass only HOD, but only a small preference o v er
he two halo-parameter model incorporating environment. Consid- 
ring redshift dependence, all secondary-halo property models are 
referred o v er the mass only HOD at z = 0.0; ho we ver at z = 0.8,
here is very little improvement when using the two halo-property 
odel incorporating shear (seen in the bottom panels of Fig. 9 ) and

hus is the least preferred model by the AICc. 
MNRAS 515, 2733–2746 (2022) 
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Figure 7. Random forest (RF) results. Similar to Fig. 6 but here we 
compare different definitions of environment, concentration and the standard 
mass only model. Concentration results in little impro v ement compared 
to the standard mass only model. While a Gaussian smoothed definition 
of environment (red dashed line) produced results closest to TNG300, we 
were unable to obtain useful results from the symbolic regression algorithm 

(discussed in the text). We therefore use a top hat definition of environment 
(black solid line) for this work. 
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 DISCUSSION  

e have presented an investigation of the galaxy–halo connection,
hereby we used ML in conjunction with the 300 Mpc box of TNG

Nelson et al. 2018 ) to explore the HOD. In this section, we make
omparisons to previous studies and discuss the limitations of our
NRAS 515, 2733–2746 (2022) 

ethods. 

igure 8. Results from the random forest (RF). We compare the best resulting mo
hown in the black solid line and a mass only model shown in the green dashed lin
nd z = 0.8). Left: Correlation function. The three-parameter model more closely m
s the correlation function. 
.1 Comparison to previous studies 

e now compare to other works that use ML to model galaxy
roperties in dark matter haloes. 
A recent paper by Xu et al. ( 2021 ) (henceforth Xu2021) also
odels the galaxy occupation, in their case by using a semi-analytic
odel (SAM) to train a RF to predict N centrals and N satellites separately

nd populate an N -body simulation (Millennium). The box size they
se is larger than ours (500 h 

−1 Mpc instead of 205 h 

−1 Mpc ), which
llows for more statistics and also comparison of correlation function
o larger scales than in this work. They are able to recover the
lustering of the SAM and galaxy assembly bias to a high precision by
ncorporating internal properties and formation history information.

e attribute most of the qualitati ve dif ferences in our RF results, as
ompared to Xu2021, to the nature of the method in which we map
alaxies on to our N -Body simulation (TNG300); namely that we
se its matched hydrodynamical simulation. While both SAMs and
ydro-sims have been tuned to match observations, comparisons
f the two methods in the literature have shown that there are
iscrepancies between them despite reasonable agreement on galaxy
ormation (Guo et al. 2016 ; Mitchell et al. 2018 ). Additionally,
here are differences in the way we implement some of our halo
roperties, for example, our local en vironment and en vironmental
hear as described in Section 2.5 . Fig. B1 compares our fiducial
odel to ones with the same secondary halo properties calculated

t a range of smoothing scales. Environmental shear is found to be
ritical term in TNG300, we therefore further look at the efficacy of a
hear model augmented with a sample of secondary properties shown
o be ef fecti ve in Xu2021 in Fig. B2 . In both instances, we see that
here is a reasonable agreement between our fiducial model and other

odels for TNG300 at the reliable scales. We plan to revisit this work
ith a larger volume hydrodynamical simulation, with which we will
btain less noise and be able to do a more accurate measurement of
lustering from our RF results. Lastly, that we do not use formation
del as predicted by the RF, which incorporates mass, environment and shear, 
e. We show the clustering for these models at two different redshifts ( z = 0 
atches TNG300 at z = 0.0. Right: Power spectrum. We see similar results 
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Figure 9. The resulting correlation function (left) and power spectrum (right) using galaxy counts predicted from the augmented HOD equations as compared 
to TNG (orange line). The dashed green line shows the results using the mass only HOD as in equations (2) and ( 3 ). The solid blue line shows results with 
augmented HODSat, equation ( 8a ), and mass only HODCent, equation (2). The solid black line shows results utilizing augmented equations for both HODSat 
and HODCent. Equation ( 8a ) refers to the augmented HODSat equation with a multiplicative term that incorporates environmental shear, q 

′ 
, and equation ( 8b ) 

refers to that of HODCent with a multiplicative term incorporating the environmental overdensity, δ
′ 
. Both of these multiplicative terms were obtained using 

symbolic regression. We see that the HOD model incorporating both environment and shear provides a substantial impro v ement o v er the mass only HOD. The 
gre y-shaded re gion shows the scales at which our clustering results are reliable. 

Table 1. The AIC scores corrected for small sample size (AICc) for the 
correlation function weighted by our models as compared to the correlation 
function of TNG300. All models have, at minimum, the 5 parameters of the 
standard HOD as in equation 2. A 6 parameter model has also included either 
secondary property q 2 r 200 m or δenv , while the 7 parameter model includes 
both secondary properties as parameters in addition to the standard 5. 

AICc Scores 
MODEL used No. SCORE SCORE 

to weight ξ ( r ) PARAMETERS z = 0.0 z = 0.8 

HOD: 5 20 .0 14 .4 
M halo 

+ Equation 8a: 6 9 .0 13 .4 
M halo , q 2 

+ Equation 8b 6 − 0 .1 − 9 .4 
M halo , δenv 

+ equation 8a + 8b 7 −7.2 −12.2 
M halo , q 2 , δenv 
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istory as a training feature in our work is another difference worth
entioning. A previous study by Hadzhiyska et al. ( 2020c ) showed

hat formation history is a weak assembly bias candidate in TNG300, 
e therefore omitted formation history as a parameter. 
Furthermore, works such as Agarwal, Dav ́e & Bassett ( 2018 ) use
L to populate baryonic galaxies inside dark matter haloes. This 
ork also uses halo properties from cosmological hydrodynamical 

imulations as training features, such as mass, environment and 
pin, but differs in that it additionally incorporates properties such 
s growth history into their training features. Their ML algorithms 
ere able to predict the mean baryonic properties, such as stellar
ass, star formation rate, metallicity and neutral and molecular 

ydrogen masses, while we focus on accurately predicting the 
lustering of galaxies. 

Most notably, the main difference between our work and the 
forementioned works is that our goal is to extend what traditional
L algorithms can do, and augment the HOD model itself with

quations describing the occupation dependence on secondary halo 
arameters (for which we used symbolic regression). Our method is 
imilar to that of Wadekar et al. ( 2020 ), but we focus on modelling
alaxies while they focus on modelling the neutral hydrogen content 
f the halo. 
It is also worth mentioning other approaches to augment the mass-

nly HOD model. McEwen & Weinberg ( 2018 ), Xu et al. ( 2020 ) add
n additional dependence of secondary halo properties to the HOD 

quations in equation (2) (e.g. M min , M 1 ) with the halo environment,
nd their results are comparable to ours. 

.2 Limitations/future work 

e used SR to obtain simple equations that incorporated secondary 
alo parameters based on data from the TNG simulation. Whether 
r not our equations work with different subgrid physics than used
n TNG, ho we ver, needs to be tested. There were more complex
quations produced by the SR algorithm than the terms we present in
ur equations; ho we ver, we decided on using equations with a simple
orm that were reproducible in multiple trials of the SR training.
n this way, we a v oid using models that were prone to o v erfitting.
urthermore, the RF ability to handle high-dimensional arrays is 
MNRAS 515, 2733–2746 (2022) 
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reater than that of SR; the dimensionality of the input space of SR
eeds to be relatively small. While we provided the SR algorithm
ith inputs of ∼5 parameters, the simple, reproducible equations we
btained only depended on a single halo parameter. The RF. on the
ther hand, could be trained with all of the properties discussed in
ection 2.5 simultaneously. 
We note that we have ignored satellite profiles (i.e. the one halo

erm) in the clustering by placing all satellites at the centre of the halo.
ur method of weighting the correlation function by the predicted
umber of galaxies from the HOD model is therefore not ideal for
he clustering of the satellite galaxies. Hence, we only show scales
t the two-halo term, which is rele v ant for the large scale clustering
o be done by upcoming surv e ys. Ho we ver, the one-halo term will
lso be rele v ant for upcoming redshift surv e ys, where redshift space
istortion effects are sensitive to the phase space distribution of
atellites inside the halo. We therefore emphasize the importance of
xpanding upon this work to include the one-halo term for future 
tudy. 

Lastly, we note that our volume size is also a limitation in this
tudy. We see in the left-hand panel of Fig. 9 that with our current
olume (300 Mpc on a side) we can robustly obtain clustering out to
30 Mpc. Because future surv e ys will be able to measure clustering

ut to more than 100 Mpc, we hope to impro v e upon our results with
uture simulations which are planned at the Gpc 3 volume. We also
ope that at these larger scales the complexity of the equations will
iminish and we will obtain more generalized forms of the augmented
OD terms. 

 C O N C L U S I O N S  

he standard HOD model, which predicts the number of galaxies
hat reside in a halo, is dependent only on halo mass. Ho we ver,
revious studies, such as those by Croton et al. ( 2007 ), Bose et al.
 2019 ), Hadzhiyska et al. ( 2020c ), and Xu et al. ( 2020 ), have shown
hat there is a discrepancy between the occupation predicted by the
tandard, mass-only HOD model and that predicted by simulations
uch as IllustrisTNG (TNG). In this paper, we have presented an
nvestigation of the galaxy–halo connection, whereby we used ML
n conjunction with the 300 Mpc box of TNG (Nelson et al. 2018 )
o explore the HOD. We do this for LRG-like luminous red galaxies,
hich are selected by stellar-mass, at redshift z = 0.0 and z = 0.8. 
We used halo catalogues created by first matching haloes between

he dark matter only and corresponding full physics TNG boxes,
hen populating the dark matter only box with well-resolved galaxies
TNG300), as described in Hadzhiyska et al. ( 2020c ). Our objectives
n this study were to (1) use a random RF to identify secondary
alo properties that best reduce the discrepancy between the stan-
ard, mass only HOD model and TNG300 and (2) use symbolic
egression (SR) to augment the standard HOD model with simple
quations that incorporate the secondary halo properties. Some of
he secondary halo properties considered in this study include the
ocal en vironmental, en vironmental shear , spin and more as defined
n Section 2.5 . Our ML learning algorithms predicted the number of
alaxies ( N gals ) for a given model, which we used as weights assigned
o the TNG300 DM 

haloes to predict the clustering in the full physics
ox. We used the predicted clustering as the baseline statistic with
hich to assess the quality of each augmented HOD model. Our
ndings are summarized below: 

(i) As a consistency check, the RF is able to predict the mean
umber of centrals and satellites. We are thus able to reco v er the
ODs for TNG300 as seen in Fig. 1 . 
NRAS 515, 2733–2746 (2022) 
(ii) Fig. 2 shows that satellite galaxies in high-mass haloes
referentially occupy anisotropic and denser environments. 
(iii) Fig. 3 shows that central galaxies in low-mass haloes also

referentially occupy anisotropic and denser environments. 
(iv) Fig. 4 reveals that the three parameters considered in our

nal analysis (mass, environment, and shear) do not have a strong
orrelation with one another, and were therefore fa v ourable for use
s independent parameters. 

(v) The RF revealed that incorporating environmental overdensity
nd shear as training features, in addition to halo mass, resulted in
mpro v ed prediction of N gals than did using halo mass alone, resulting
n an impro v ement of ∼10 per cent in the clustering (Fig. 8 ). 

(vi) Symbolic regression (SR) is useful to build flexible HOD
odels that are moti v ated by hydrodynamical simulations (our main

esults are in equations 8a and 8b ). 
(vii) Incorporating environmental o v erdensity and shear into the

OD equations results in 10 per cent impro v ement in the weighted
orrelation function and power spectrum compared to TNG300 at
edshifts z = 0.0 and z = 0.8 (Fig. 9 ). 

(viii) The AICc fa v ours a model incorporating three halo prop-
rties to a mass only model at both z = 0.0 ( � AICc = 27.2) and
 = 0.8 ( � AICc = 26.6). 

For future study, it would be interesting to test the dependence
f our results on astrophysical feedback parameters. One possibility
ould be to use the CAMELS suite of simulations (Villaescusa-
avarro et al. 2020 ) which contain 2000 + hydrodynamical sim-
lations run for different astrophysical feedback and cosmology
arameters. Another possibility could be to use SAMs, which are
omputationally ine xpensiv e galaxy formation models (Somerville
t al. 2008 ). 
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In Section 4.2 , we discuss that the equations obtained using SR
re dependent on the definition of the halo parameter, i.e. we would
btain slightly different forms of an augmented N cent expression for a
op hat definition of local environment than for an annular definition
f local environment. Furthermore, the PYSR package outputs a 
election of expressions ranked by complexity and loss score. In 
his appendix, we present some of those alternate SR expressions in
quations ( A1 ) and ( A2 ) of this appendix: 
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M

Table A1. same as Table 1 but for the alternate models. 

AICc scores for alternate models 
MODEL used No. SCORE SCORE 

to weight ξ ( r ) PARAMS z = 0.0 z = 0.8 

HOD 5 20 .0 14 .4 
M halo 

+ Alternate equation A2(add) 7 − 5 .04 -17 .55 
Annulus Env 
+ Alternate equation A2(mult) 7 − 3 .4 -6 .2 
Annulus Env 
+ equation 8a + 8b 7 − 2 .2 − 11 .7 
Annulus Env 
+ equation 8a + 8b 7 − 7 .2 − 12 .2 
Tophat Env (fiducial) 
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Figure B1. RF results for a variety of models, exploring environment and 
shear calculated at different scales. Our fiducial model is shown in a black, 
solid line and is comparable to other models. 

Figure B2. RF results comparing our fiducial model to other shear models 
augmented with some secondary parameters found ef fecti ve in Xu et al. 
( 2021 ). Here, shear, q 2 , is calculated at r 200 m and we include two definitions 
of local environment, our fiducial, δenv is a tophat definition as described 
in Section 2.5 , and δenv (GS) is a Gaussian smoothed definition. Dotted 
lines represent models, where the RF was trained on central galaxies 
separately from satellite galaxies. Using TNG300 as ground truth, a simple 
χ2 measurement finds that a model in which the RF is trained with centrals 
and satellites together using q 2 and δenv as secondary halo parameters (solid 
black line) provides the closest clustering results to our target at the reliable 
scales (grey shaded region). 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/515/2/2733/6648805 by U
niversity of D

urham
 user on 05 Septem

ber 2022
 sat = N 

HOD 
sat ( M h ) × ( q ′ 2 /c 1 ) , 

 sat = N 

HOD 
sat ( M h ) × 1 

c 2 
exp ( q ′ + c 3 ) , (A1) 

 cent = N 

HOD 
cent ( M h ) × (1 + c 4 δ

′ − c 5 ) , 

 cent = N 

HOD 
cent ( M h ) + ( c 6 δ

′ − c 7 ) , (A2) 

here c i are constants whose value can be tuned to the particular
ample being analysed. 

Fig. A1 compares results of our fiducial augmented HOD model
black solid line) to models incorporating either an alternate form of
 cent or alternate definition of the local environment. Those shown in

he magenta and purple dotted lines are alternate expressions obtained
or an annulus environment. The grey dotted line is our fiducial
ugmented HOD but with annulus environment as input. We see that
hese alternate forms are generally consistent with our fiducial model,
ach bringing the clustering to closer agreement with TNG300 by
5 per cent −10 per cent. This is reinforced in Table A1 , which

hows the AICc scores for these alternate models are comparable to
ur fiducial model. 

PPENDIX  B:  SENSITIVITY  TO  PARAMET ER  

E FINITION  

ig. B1 shows the RF results for models with same halo parameters
s our fiducial model, but with the secondary parameters calculated
t various scales. We calculate local environment, δenv , at three
ifferent smoothing scales (1.3, 2.6, 5.0) Mpc, and we calculate
n vironmental shear , q 2 , at a radius of 1.3 Mpc in addition to that
alculated at r 200m 

. We compare the different models in dashed,
oloured lines to our fiducial model shown in a black, solid line.
e note several other models have reasonable agreement with

ur fiducial model. We will leave this for further investigation in
 near future study, where we will be able to obtain clustering
tatistics at a wider spatial range using larger volume hydrodynamical
imulations. 

Fig. B2 explores the efficacy of shear models (shear is found
o be a critical term in TNG300) augmented with a sample of
econdary parameters found ef fecti ve in Xu et al. ( 2021 ), namely
 max and velocity dispersion. Our fiducial model is shown as a black
olid line. Also included is a version of our fiducial model with
 Gaussian smoothed (GS) definition of local environment. Dotted
ines represent models in which the RF was trained on central galaxies
nd satellite galaxies separately. Dashed lines and the fiducial model
how results for the RF trained on centrals and satellites together. We
erformed a χ2 test on these models and found our fiducial model
NRAS 515, 2733–2746 (2022) 
aptures clustering closer to TNG300 at the reliable scales (shaded
egion) with a score of 0.075, with the next best model, with a score of
.105, being that of q 2 , vdisp, M halo where centrals and satellites are
ointly trained. We emphasize, ho we ver, that these are noisy results
nd a larger volume which would result in more data points would
e beneficial for accurate measurement. 
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Figure C1. The mean emission line galaxy (ELG) occupation of TNG300 
as a function of the halo mass. Similar to Fig. 1 , we see that the random forest 
was also able to reco v er the mean occupation of ELG. 

Figure C2. Same as Fig. 8 but for emission-line galaxies (ELG). We see that 
there is little difference between a mass only model and one incorporating 
secondary halo parameters. 
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Figure D1. Same as the left-hand panel of Fig. 2 but showing the dependence 
on the radius at which the shear is calculated. 
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PPENDIX  C :  RESULTS  F RO M  T H E  

MISSION-LINE  G A L A X Y  SAMPLE  

n this appendix, we present the random forest (RF) results using
he emission-line galaxy sample (ELG-like) which are selected by 
olour cuts and star formation rates as described in Hadzhiyska et al.
 2020b ). 

It is important to note that the HOD looks different for ELGs,
hown in Fig. C1 , compared to LRGs, shown in Fig. 1 . We also see
n Fig. C1 that the RF was able to reco v er the galaxy occupations for
he ELG-like sample. Ho we ver, Fig. C2 re veals that incorporating
econdary halo parameters has little effect on the clustering for ELGs,
onsistent with previous studies (Hadzhiyska et al. 2020b ); there is a
ignificantly smaller discrepancy ( ∼3 per cent) from the mass-only 
odel from ELGs as extracted from TNG300. The measurements of 

he correlation function are also quite noisy because of the small
umber of available ELGs. We again state the importance of a
ore comprehensive study of ELGs in future works with better 

tatistics. 

PPENDI X  D :  SUPPLEMENTA RY  O C C U PAT I O N  

TATISTICS  

1 Additional dependence of N sat on secondary parameter 

ig. D1 compliments Fig. 2 by showing the dependence of the
umber of satellites on the radius at which the shear is calculated. 

2 Modelling the HOD scatter 

e take advantage of the RF results to try and model the HOD scatter.
e estimate the scatter as the standard deviation of the mean number

f galaxies per mass bin, and compare σ 〈 N RF 〉 / σ 〈 N TNG 〉 , where N RF 

re the number of galaxies per mass bin predicted by the random
orest, N TNG are the number of galaxies per mass bin according to
NG300 and σ is the standard deviation defined as 

Ngal ≡
√ √ √ √ 

1 

N haloes 

N haloes ∑ 

i 

(
N 

i−true 
gal − N 

i−predicted 
gal 

)2 
. (D1) 

Fig. D2 conv e ys that mass (green dashed line) is a poor predictor
f the HOD scatter, as the RF was only able to capture ∼15 per cent
f the scatter using mass alone as a feature. While we did not obtain
seful results by incorporating secondary halo properties, there were 
ome minor impro v ements. There seems to be an interesting transi-
MNRAS 515, 2733–2746 (2022) 
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Figure D2. The HOD scatter predicted by the RF as compared to TNG300. 
The mass-only model (green-dashed line) is only able to capture ∼15 per cent 
of the scatter. By incorporating secondary halo parameters, environmental 
o v erdensity and shear (solid black line), the RF was able to capture 
∼30 per cent of the scatter for haloes with mass > 10 13 h −1 M �. 

t 13 −1 
 

V  

s  

t  

i  

e  

∼

T

ion at ∼10 h M �. We see that at lower masses, models that include
 max (described in Section 2.5 ) captured about 5 per cent more of the
catter than mass alone, while all other models only perform as well as
he mass-only model. Ho we ver at masses > 10 13 h −1 M � models that
nclude shear performed better, with our preferred model, including
nvironmental o v erdensity and shear (black solid line), capturing
30 per cent of the scatter. 
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