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Abstract

Free vibration characteristics of thin perforated shells of revolution vary depending not only on the dimensionless thickness
of the shell but also on the perforation structure. For any given configuration there exists a critical value of the dimensionless
thickness below which homogenisation fails. The failure occurs when the modes do not have corresponding counterparts in the
non-perforated reference shell. Within the admissible range of thicknesses the uniform effective material parameters are derived
with a minimisation process. During the process every observed mode is matched with a corresponding reference one using
a problem-specific characterisation. The performance of the derived effective material parameters and hence the minimisation
process is demonstrated with an extensive set of numerical experiments. Limitations of the proposed approach are reflected in
relation to idealised trommel screen configurations.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

MSC: 65C20; 65N12; 65N25; 65N30
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1. Introduction

Thin structures remain one of the most challenging and fascinating classes of common engineering constructions.
In this paper we study free vibration of thin perforated shells of revolution, their asymptotics as the thickness tends
to zero, and opportunities for homogenisation of the material parameters. There are many important applications
especially for perforated cylinders, in particular, rotary dryers and material separation screens are devices that are
expensive to manufacture and are subject to large static, dynamic, and contact loads.

Perforations add geometric complexity and hence degrees of freedom to numerical solution methods such as the
finite element method (FEM). The homogenisation process attempts to find so-called effective material parameters
that account for the effects of the perforations so that the simulations can be run on non-perforated, that is, reference
structures.

Although thin structures are three-dimensional, it is standard practice to reduce the computational costs even
before perforations by deriving equivalent two-dimensional models where the thickness becomes a parameter. For
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Fig. 1. (a) t = 1/100, 16 × 16-perforation grid with 25% hole coverage: Transverse deflection profile of the lowest mode. (b) t = 1/100,
reference domain: Transverse deflection profile of the lowest mode.

analysis of the solutions it is advantageous to consider dimensionless thickness t = d/L , where d is the actual
thickness and L is some characteristic length scale, for instance, the diameter of the domain. For our discussion
we can use t and d interchangeably. In particular, shells have multiple boundary and internal layers, each with its
own characteristic length scale. These local length scales can be expressed in terms of t , that is, they are parameter-
dependent. Another important length scale is related to the perforation patterns, the cell size ϵ. Every perforated
shell is assumed to have a fixed (constant) hole coverage percentage and a g × g -grid of circular holes, with
ϵ ∼ L/g.

Straightforward approaches to homogenisation of material parameters, in other words, derivation of the effective
material parameters, fail if the solutions have dominant local parameter-dependent features [1]. For modal analysis
the interaction of the perforation pattern and the dimensionless thickness is the key. For shells of revolution the
modes have integer valued wave numbers in the angular direction. When the characteristic length scales of the
modes are smaller or equal than those of the perforation patterns, the modes will remain periodic, of course,
but with non-trivial linear combinations of different wave numbers [2]. Given a perforation pattern, there exists
a critical thickness tc at which the structure of the modes changes and thus, a single homogenisation process cannot
be valid over all thicknesses. This observation does not contradict the existing work on homogenisation but rather
complements it — any asymptotic process simultaneously controlling both the perforation pattern and the thickness
has to keep the latter above the corresponding critical value in order the maintain the inherent structure of the
modes.

1.1. Novelty of this work

The eigenmodes of shells of revolution are parameter-dependent and the order in which they appear changes
as the parameter changes. This is referred to as the mixing of modes. Therefore, one cannot assume that the first
five modes, say, of the reference or non-perforated shell have the same characteristics as those of the perforated
one, even if the dimensionless thickness is the same. In this context the homogenisation has to be considered in
terms of subspaces rather than ordered parts of the spectrum. In Fig. 1 two examples, one perforated and another
non-perforated, are shown. The angular wave number is different even though the shells have otherwise exactly the
same characteristics.

The effective material parameters are derived through a minimisation process which relies on matching the
observed modes on the perforated structures with the reference solutions. If this matching can be carried out, finding
the effective material parameters reduces to a straightforward scaling problem. This means that the mode in Fig. 1(b)
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would not be directly affected by the mode of Fig. 1(a) unless the matching was between subspaces that happened
to include them.

Interestingly, it is possible to detect exactly when the proposed scheme starts losing stability. At the critical
thickness tc two modes that belong to the same cluster in the reference problem may start drifting apart in the
spectrum due to interaction of the perforation pattern and the dimensionless thickness. In other words, two modes
with the same fingerprints have different eigenvalues. This cluster separation can exceed the initial spectral gap,
that is, another cluster can exist in spectrum in between the modes of the original cluster. This phenomenon was
observed in [2] but analysis of asymptotics presented here is new.

1.2. Brief review of literature

We refer to Martikka et al. [3] and Kalamkarov et al. [4] for many example applications for perforated cylinders.
Terminology on perforations used in this paper is largely based on Forskitt [5] and Burgemeister [6].

Our original interest was piqued by a series of papers on an experimental nuclear reactor design [7–10].
Homogenisation of perforated structures has been studied by many authors both from theoretical and computational
point-of-view. First, one can apply existing, general homogenisation methods to shell problems. Examples of this
approach are, for instance, Kalamkarov et al. [4], which is an application of the multi-scale asymptotic homogeni-
sation method [11], and Griso et al. [12], where homogenisation is derived by simultaneous homogenisation and
dimension reduction within the framework of the periodic unfolding method [13]. Since thin shell models are
dimensionally reduced from the corresponding elasticity ones, derivation of asymptotic limit models can be done in
many different, yet mathematically rigorous, ways. Hornung et al. [14] start from the elasticity equations (possibly
nonlinear) and derive homogenisation again by simultaneous homogenisation and dimension reduction.

There exists a substantial body of literature on related problems where the material used in the construction
has some structure of its own, for instance, composites with varying properties in the thickness direction, see [15–
17]. Similarly, various ribbed materials have been considered [18]. In a more abstract setting heterogeneity was
considered by Sanchez-Palencia, see for instance [19]. Our discussion and numerical experiments are concerned with
the dimensionally reduced models and therefore the results presented here are not directly applicable to materials
with interesting properties in the thickness direction.

1.3. Structure of the discussion

First a high-level description of the proposed homogenisation workflow is given in Section 2. The shell
eigenproblem is covered in detail in Section 3. The general geometry of shells of revolution is discussed, and the
simplification leading to the mathematical shell model is motivated. The actual numerical methods are described in
Section 4. Terminology and concepts related to perforations is briefly introduced in Section 5. The cluster structure of
the shell eigenmodes and the associated parameter-dependent dynamics are discussed in Section 6. The all important
mode identification is also discussed in that section. The minimisation process for finding the correct scaling, that
is, homogenisation, is outlined in Section 7. Numerical examples and the case study of two trommel screens are
followed by conclusions. In the appendix the Naghdi shell model is covered.

2. Homogenisation workflow

In this section a high-level description of the proposed homogenisation workflow is given. The central parameters
defining the families of cylinders are a dimensionless thickness t , a diameter, i.e., radius R, and a perforation pattern
and a hole coverage percentage, that together define a cell size ϵ. For the homogenisation process one has to account
for the boundary conditions as well. The goal is to derive an effective material parameter, in this case Young’s
modulus, via an averaging scaling coefficient.

For vibration problems the homogenisation process should be applied on subspaces rather than simple modes.
For symmetric structures, the modes have typically higher multiplicities (including the lowest modes), and any
perturbations in the parameters may lead to mixing of the modes, where the modes belonging to the subspace
change their relative positions within the spectrum.

For shells of revolution, the eigenmodes are periodic in the angular direction. This gives rise to simple
characterisation of the modes in Fourier basis where every eigenpair is identified by an eigenvalue λ, and two wave
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numbers H and K , denoting axial and angular wave numbers, respectively. This is referred to as fingerprinting of
the modes.

Assuming that the reference and perforated problems differ only in the perforation pattern and the hole coverage
percentage, the overall process has the following stages, where the stages 1–3 can be computed offline:

Stage 1: Reference Database A set of reference eigenproblems is solved and a database of mode fingerprints is
created.

Stage 2: Perforated Problems A set of eigenproblems with the given parametrisation is solved and another
database of mode fingerprints is created.

Stage 3: Synthesis For every mode in the database of perforated cases, the corresponding mode in the reference
set is located and the averaged scaling factor based on the observed eigenvalues is computed.

Stage 4: Homogenised Solution The eigenproblem is solved on non-perforated domain with the scaled material
parameter.

In the sequel different stages are discussed in detail. In particular, the constraints of this approach are
demonstrated via carefully designed experiments.

3. Shell eigenproblem

Assuming a time harmonic displacement field, the free vibration problem for a general shell leads to the following
abstract eigenvalue problem: Find u ∈ R3 and ω2

∈ R such that{
S u = ω2M u
+ boundary conditions.

(1)

Above, u = {u, v, w} represents the shell displacement field, while ω2 represents the square of the eigenfrequency.
In the abstract setting S and M are differential operators representing deformation energy and inertia, respectively.
In the discrete setting they refer to corresponding stiffness and mass matrices.

In this paper two different dimensionally reduced shell models are considered: the mathematical shell model
(shallow shell model) by Pitkäranta [20], and the classical Naghdi model [21]. For shells of revolution both
models have natural one-dimensional variants after application of the same ansatz. The free vibration problem
for a dimensionally reduced shell in the case of a shell of revolution with constant dimensionless thickness t leads
to the following eigenvalue problem: Find u(t) and ω2(t) ∈ R such that{

t AM u(t) + t ASu(t) + t3 ABu(t) = ω2(t) M(t) u(t)
+ boundary conditions.

(2)

Again, u(t) represents the shell displacement field, while ω2(t) represents the square of the eigenfrequency. The
differential operators AM , AS and AB defined above, account for membrane, shear, and bending potential energies,
respectively, and are independent of t . Finally, M(t) is the inertia operator.

3.1. Parabolic shell of revolution

A cylinder is a parabolic shell with a constant radius, and is the simplest such structure. We start by introducing
the connection between the exact shell geometry and the curvature tensor central to the mathematical shell model.

Thin shells of revolution can formally be characterised as domains in R3 of type

Ω = {x + zn(x) | x ∈ ω,−d/2 < z < d/2} , (3)

where d is the (constant) thickness of the shell, ω is a (mid)surface of revolution, and n(x) is the unit normal to
ω. For realistic geometries we assume principal curvature coordinates, where only four parameters, the radii of
principal curvature R1, R2, and the so-called Lamé parameters, A1, A2, which relate coordinate changes to arc
lengths, are needed to specify the curvature and the metric on ω.

The fundamental idea behind the dimension reduction is to transfer the problem onto a lower-dimensional
computational domain with the constant thickness represented by a suitable parameter. We denote the computational
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Fig. 2. Parabolic shell of revolution and the corresponding computational domain with a 20 × 20 regular perforation pattern with 12% hole
coverage. For free vibration the boundaries at x1 = ±π are clamped, holes are free, and x2 = 0 and x2 = 2π are periodic.

domain with D (Fig. 2) and define it by unfolding ω as a rectangular domain expressed in the coordinates x1 and
x2. This is the basis for the concepts of axial and angular directions below.

Furthermore, we assume that the curvature tensor {bi j } of the midsurface is constant, and as already mentioned
in the introduction, in the sequel we replace the thickness d with the dimensionless thickness t = d/L , where
L ∼ diam(D).

Let us consider a cylindrical shell generated by a function f1(x1) = 1, x1 ∈ [−x0, x0], x0 > 0. In this case the
product of the Lamé parameters (metric), A1(x1)A2(x1) = 1, and the reciprocal curvature radii are 1/R1(x1) = 0
and 1/R2(x1) = 1, since

A1(x1) =

√
1 + [ f ′

1(x1)]2, A2(x1) = f1(x1), (4)

and

R1(x1) = −
A1(x1)3

f ′′(x1)
, R2(x1) = A1(x1)A2(x1). (5)

Thus, in the simplified model we can choose b11 = 0, b22 = 1, and b12 = b21 = 0, and arrive at a very good
approximation of the exact geometry.

3.2. Mathematical shell model

Despite its simple form the mathematical shell model is one of the Reissner–Naghdi type shell models, where the
transverse deflections are approximated with low-order polynomials. The Naghdi model is described in Appendix A.
The resulting vector field has five components u = (u, v, w, θ, ψ), where the first three are the displacements and
the latter two are the rotations in the axial and angular directions, respectively. Here we adopt the convention that
the computational domain D is given by the surface parametrisation and the axial/angular coordinates are denoted
by x and y.

Deformation energy F(u) is divided into bending, membrane, and shear energies, denoted by b, m, and s,
respectively.

F(u) = t2b(u,u) + m(u,u) + s(u,u). (6)

Bending, membrane, and shear energies are given as

t2 b(u,u) = t2
∫

D

[
ν(κ11(u) + κ22(u))2

+ (1 − ν)
2∑

i, j=1

κi j (u)2
]
dx dy, (7)

m(u,u) = 12
∫

D

[
ν(β11(u) + β22(u))2

+ (1 − ν)
2∑

i, j=1

βi j (u)2
]
dx dy, (8)
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s(u,u) = 6(1 − ν)
∫

D

[
(ρ1(u)2

+ ρ2(u))2
]
dx dy, (9)

where ν is the Poisson ratio (constant). We have omitted the scaling E/(12(1 − ν2)), where E is the Young’s
modulus. The strains are (with the curvature tensor values already inserted) as follows:

κ11 =
∂θ

∂x
, κ22 =

∂ψ

∂y
, κ12 =

1
2

(
∂θ

∂y
+
∂ψ

∂x

)
,

β11 =
∂u
∂x
, β22 =

∂v

∂y
+ w, β12 =

1
2

(
∂u
∂y

+
∂v

∂x

)
,

ρ1 =
∂w

∂x
− θ, ρ2 =

∂w

∂y
− ψ.

(10)

Remarkably, these strains differ from those of the standard Naghdi model only in κ12 and ρ1, when the radius
is = 1. Naturally, for non-parabolic geometries the differences are much more extensive. Notice, that the resulting
system has constant coefficients which simplifies the implementation of the model significantly.

3.3. Eigenmode ansatz

Due to the periodic structure every mode u(x, y) has either one of the forms

u1(x, y) =

⎛⎜⎜⎜⎜⎝
u(x) cos(K y)
v(x) sin(K y)
w(x) cos(K y)
θ (x) cos(K y)
ψ(x) sin(K y)

⎞⎟⎟⎟⎟⎠ or u2(x, y) =

⎛⎜⎜⎜⎜⎝
u(x) sin(K y)
v(x) cos(K y)
w(x) sin(K y)
θ (x) sin(K y)
ψ(x) cos(K y)

⎞⎟⎟⎟⎟⎠ . (11)

Remark 1. The two ansatz simply represent the trigonometric basis in the angular direction. Every eigenmode
computed using a 1D model has a corresponding double eigenvalue in 2D with the exception of torsion modes.

For instance, using the first ansatz u1(x, y), the strains have a form

κ11 =
∂θ

∂x
, κ22 = Kψ, κ12 =

1
2

(
−K θ +

∂ψ

∂x

)
,

β11 =
∂u
∂x
, β22 = Kv + w, β12 =

1
2

(
−K u +

∂v

∂x

)
,

ρ1 =
∂w

∂x
− θ, ρ2 = −Kw − ψ.

(12)

Notice that the corresponding 1D energy definitions have the scaling π (2π , when K = 0). This 1D formulation
allows us to compute extremely accurate reference solutions in the homogenisation process.

3.4. Variational formulation

Let us next consider the variational formulation of problem (2). The inertia operator in this case can be split
into the sum M(t) = t M l

+ t3 Mr , with M l (displacements) and Mr (rotations) independent of t . Accordingly, we
introduce the space V of admissible displacements, and consider the problem: Find (u(t), ω2(t)) ∈ V ×R such that

t m(u(t), v(t)) + t s(u(t), v(t)) + t3 b(u(t), v(t)) =

ω2(t) M(t; u(t), v(t)) ∀v ∈ V,
(13)

where m(·, ·), s(·, ·), b(·, ·) are the bilinear forms associated defined above.

Remark 2. The space V and the three bilinear forms depend on the chosen shell model (see for instance [21]).

In all cases the boundary conditions are the same: at the ends x = ±π the shell is clamped, that is, fully
kinematically constrained, but all perforations are free.
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4. Numerical method: hp-FEM

All numerical simulations reported here have been computed with two different high-order continuous Galerkin
codes in 2D solving the variational formulation on conforming meshes of triangular elements. The first one is
implemented with Mathematica, providing exact geometry handling of the holes via blending functions [22]. This
code has been used to compute the examples with the Naghdi model and indirectly in calibration of the second
solver.

The second one is a parallel code implemented in FORTRAN90 and MPI. The results reported on the
mathematical shell model have been computed with this code. The code allows for a many different types of
boundary conditions. Probably the most interesting one from the implementation point of view is the periodic
boundary condition. This boundary condition is implemented identifying one-by-one the dof on opposite boundaries
of the domain. It is assumed that identified boundaries are split in the same number of edges and that identified
edges have same sizes. In general, Periodic boundary conditions reduce the global number of dof in the problem.
This code allows for arbitrary order of polynomials to be used in the elements. The construction of the H 1-
conforming triangular elements is based on [23], where the shape functions are defined hierarchically using Lobatto
shapefunctions. Different order of polynomials can be used in different elements in the same mesh. To maximise
flexibility, the code allows also for different order of polynomials on different components on the same element.
Along the faces shared by adjacent elements with different order of polynomials, the higher order polynomial space
on the face is projected onto the polynomial space on the face of the element of lower order. In this way, the number
of dof along the face of the higher order element is reduced to match the number of dof on the same face of the
element of lower order. Crucially, in order to minimise integration errors on complicated domains, the shape of the
elements are represented using the transfinite interpolation method [23] which allows for the edges of the elements
to be bent exactly to match the shape of the holes. Together with high order quadrature rules, the integration errors
in the discrete problem are controlled. One such sample configuration is shown in Fig. 3.

The solution of the eigenvalue problems are computed using ARPACK [24] and MUMPS [25–27] as the linear
solver called from inside ARPACK. To reduce the computational time and exploit parallelism of modern HPC
machines, MPI is used in the assembly of the linear system and in MUMPS to approximate the eigenpairs. When
MPI is used, the stiffness and mass matrices are split in consecutive chunks of rows. Each chunk is assigned to a
processor. The matrices are assemble in parallel with the processors integrating over all elements with at least a dof
assigned to them. This means that some elements are shared on more than one processor and so they are integrated
independently on multiple processors avoiding any communication between processors during the matrix assembly.
The eigenvalue problems are solved using the shift and invert method in ARPACK that allows to approximate the
eigenpairs with eigenvalues close to a given value. To compute the bottom of the spectrum a value of zero is used.

Given this two-pronged simulation strategy, we have high confidence in the accuracy of the computed results
and the conclusions drawn from them.

5. Perforated shells

Perforated domains are characterised by the penetration patterns which in turn depend on the underlying
manufacturing processes and the related hole coverage, typically given as a percentage. Here we consider standard
structured patterns only.

5.1. Regular penetration patterns

The quantity used to characterise perforated sheets of metal is the ligament efficiency η. Let us assume that the
holes are ellipses with a, b as the horizontal and perpendicular semiaxis, and the separation of the centres is Px
and Py , respectively. Following [5,8,28], we define horizontal and perpendicular ligament efficiency, denoting them
ηx , ηy , respectively. For regular arrays of holes

ηx = (Px − 2 a)/Px , ηy = (Py − 2 b)/Py, (14)

and for triangular arrays, allowing for alternating layers,

ηx = (Px − 4 a)/Px , ηy = (Py − 4 b)/Py . (15)

For circular holes the radius r = a = b, of course, and further if the pattern is regular η = ηx = ηy .
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Fig. 3. Typical configuration: Hole coverage 25% (Radius of holes r = 1/4). In the detail, the hole is programmatically mapped to be
circular in the assembly of the system and therefore much coarser meshes can be used. Here Px = 2π/5 and Py = 2π/6 and thus the
ligament efficiencies are ηx = 1 − 5/(2π ) ≈ 0.2 and ηy = 1 − 3/π ≈ 0.05. In the simulations the boundaries at x1 = ±π are clamped, holes
are free, and x2 = 0 and x2 = 2π are periodic.

Fig. 4. Examples of eigenmodes. Transverse deflection profiles of eigenmodes on 12 × 12 regular grid with hole coverage percentage of
12%. Illustration of the global and local feature ranges: (a), t = 1/100 ≫ tc , (b) and (c), t = 0.007 ≈ tc , and (d), t = 0.0025 ≪ tc . Notice
the alignment with respect to the perforation pattern of the Modes 1 and 4 at t ≈ tc .

5.2. Internal layers and penetration patterns

The solution of a static shell problem can be viewed as a linear combination of features with characteristic length
scales with the smooth component having the diameter of the whole shell. These features can be boundary layers
but also internal layers.

For the eigenmodes in the parabolic reference case, the boundary layers do not carry significant amount of energy
in the lower end of the spectrum. However, the angular wave numbers of the smallest eigenpairs are determined by
the internal layers and their characteristic length scale, which is L(t) ∼

4√t .
Let us consider a regular penetration pattern with some given ligament efficiency η and hence perpendicular

separation Py . Then there exists an integer valued angular wave number Kc for which the associated wave length
is ∼ Py/2. For every mode with K > Kc the effective loading by the mode becomes unevenly distributed over the
holes and the solid parts. For these modes the angular oscillations cannot be characterised by a single wave number
since the angular displacement profiles are periodic linear combinations of trigonometric functions.

In Figs. 4(b) and 4(c) examples of perfectly aligned modes are illustrated. In fact, the pair forms a natural cluster
of eigenmodes. This will be elaborated in more detail in the next section.
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Table 1
Known asymptotic eigenbehaviour of the smallest eigenpair of parabolic shells as
t → 0. Reference configuration f (x1) = 1, i.e., R = 1.

Quantity of interest Asymptotics

Eigenvalue λ(t) ∼ t
Angular wave number K (t) ∼ t−1/4

Bending energy% B(t) → 1/2

Angular wave number with R K (t, R) ∼ R3/4t−1/4

Fig. 5. Reference asymptotic analysis: R = 1, t ∈ [10−4, 10−2], uniform logarithmic scale with 100 samples. Expected rates: λ(t) ∼ t ;
K (t) ∼ t−1/4.

6. Clusters and asymptotics: Constraints for homogenisation

One of the defining features of all shells of revolution is that the eigenmodes are clustered due to symmetries and
the effect of the dimensionless thickness. For instance, all eigenvalues excluding the torsion ones have multiplicity
of at least two. In contrast to second order problems, here also the smallest mode can have a higher algebraic order.
In (11) the two ansatz were given, and in fact they can be thought of as the basis functions of the eigenspace in
the angular direction.

In Table 1 the known asymptotics of the smallest eigenmode of cylindrical (parabolic) shells are listed. Since
the angular wave numbers increase as t → 0, it follows that for some thicknesses the multiplicity of the smallest
eigenvalue is four.

For perforated shells of revolution the asymptotics of the smallest mode follow those of the reference case until a
critical thickness tc has been reached. At this point the cluster of size two is split and a gap between the eigenvalues
emerges. There is a simple geometric explanation for this phenomenon: At the critical thickness tc the wavelength
of the smallest eigenmode is of the same order as the separation of the holes in the perforation pattern. It can even
happen that some clusters with lower wave numbers (and therefore longer wavelengths) slide in between the modes
of the original cluster. This is illustrated in Fig. 4. We refer to this phenomenon of the cluster breaking apart and
thus the difference between the associated eigenvalues becoming nonzero as cluster separation.

The asymptotic reference eigenbehaviour for the cylinder with R = 1 is shown in Fig. 5. The non-standard
convergence in bending energy as well as the dynamics of the modes are added in Fig. 6. For perforated cylinders
the expected behaviour is the same for thicknesses greater than the critical tc. In particular the energy ratios diverge
from the reference as tc ≫ t → 0, since the boundary layers around the holes start dominating locally and hence
increase bending.

The dynamics of the modes (see Fig. 6(b)) mean that if the wavenumber of one of the higher modes is observed
over a range of thicknesses, the resulting sequence is not necessarily monotone as in the case of the smallest mode.
This is due to modes with higher wavenumbers entering the lower end of the spectrum and consequently ones with
lower wavenumbers exiting that part of the spectrum.

9
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Fig. 6. Derived asymptotics: R = 1, t ∈ [10−4, 10−2], uniform logarithmic scale with 100 samples. Expected rate: B(t) → 1/2. (b) Different
colours refer to different eigenmodes and their relative positions in the spectrum. The bottom line in each plot indicates the smallest mode
the value of which can be inferred from the ranges of K (t) in Fig. 5. The upper sections of the figure appear sparser, since only those
modes that ever become the smallest ones are shown.

6.1. Identification of modes

For the proposed homogenisation scheme to work, it is necessary to be able to match eigenmodes, and as the
discussion above indicates, this has to be based on the properties of the modes and not on the ordering of the
spectrum.

In the case of free vibration we rely on the observation that at the lowest end of the spectrum the boundary
layers are not the dominant features of the modes and hence, Fourier analysis is sufficient. For every mode both
angular and axial wave numbers are computed, and together they form a mode key or fingerprint, for short.

For shells of revolution, the angular wave number is unambiguous, however, the axial one should include
information on even/odd resolution — sine/cosine separation can be indicated with integer/rational indicators. For
the two modes in Fig. 1 their respective fingerprints are (3, 1/2) and (4, 1/2). In the reference case there is always
a unique eigenvalue in the eigenpair and of course, in the view of the two ansatz above, one fingerprint covers two
modes with the same angular wave number. It is precisely at this point where cluster separation induces errors,
symmetry will be broken.

7. Effective material parameters

Although the basic idea behind the derivation of the effective material parameters in the eigenproblem is the
same as in the static case, there is one fundamental difference that adds another computational layer to the process.
For the algorithm described in the following to be valid, one must be able to match the eigenpairs based on key
characteristics of the modes rather than simple enumeration of the modes in the given case. Already in Fig. 1 an
example of two smallest modes with non-matching key characteristic (angular wave number) was given.

7.1. Minimisation of single mode over representative cell

Let us next focus on how to find the multiplicative effective material parameter once the critical thickness has
been established. Let (λ̂, û) be an eigenpair of the reference, that is, non-perforated, domain. The first goal is to find
an eigenpair (λ0, u0) ∼ (αλ̂, û) to the non-perforated problem with a multiplicative constant α. Instead of operator
formalism we use matrix notation and omit the dependence on the domain in matrices for now. Thus, in matrix
notation the problem is

α Su0 = λ0 Mu0,

where S and M are the stiffness and mass matrices, respectively. We proceed by choosing an admissible sequence
of grids with ϵk , k = 1, 2, . . . , N , and finding the eigenpairs to the perforated problems (λϵk , uϵk ), k = 1, 2, . . . , N .

10
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Formally, we seek the minimiser for the sum of the squares of errors in the L2-norm,

min
(λ0,u0) s.t. α Su0=λ0 Mu0

∑
k

∥λ0u0 − λϵk uϵk ∥
2
L2 .

If we assume that all modes are normalised in the L2-norm, the minimisation reduces to simple averaging of the
eigenvalues. Scalar scaling does not change the eigenmodes, so immediately u0 = û. First with∑

k

∥(αλ̂)u0 − λϵk uϵk ∥
2
L2 =

∑
k

((αλ̂)u0 − λϵk uϵk )T M((αλ̂)u0 − λϵk uϵk ),

we get

=

∑
k

(αλ̂)2uT
0 M u0 − 2

∑
k

(αλ̂)λϵk uT
0 M uϵk + const.

Finally, under the normalisation assumption we compute the minimum for αλ̂. This is meaningful only if the modes
match, since otherwise uT

0 M uϵk ̸= 1.
Putting everything together we have shown the following (formal) theorem

Theorem 3 (Single Mode (Formal)). Let the thickness t ≥ tc be given. Let us denote the stiffness and standard
mass matrices by S and M, respectively. Let (λϵk , uϵk ), k = 1, 2, . . . , N, be a sequence of eigenpairs of perforated
problems with every ϵk sufficiently small. Then the homogenised eigenpair (λ0, u0) is the minimiser of

min
(λ0,u0) s.t. α K u0=λ0 Mu0

∑
k

∥λ0u0 − λϵk uϵk ∥
2
L2 .

and α is the effective multiplicative constant

α =

∑
k λϵk

Nλ0
.

We have carefully labelled the theorem as formal since in practice the computational domain Ω depends on ϵ
and thus the derived matrices as well as already noted above. Theoretically it is clear that for the mass matrices
Mϵ → M as ϵ → 0, but for the stiffness ones similar convergence cannot hold.

7.2. Minimisation of subspace over representative cell

Extension of the minimisation procedure over a subspace is straightforward.

Corollary 1 (Subspace (Formal)). Let E0 be the subspace spanned by the eigenmodes {u1
0, . . . , uK

0 }, on the reference
(non-perforated) configuration, and Λ0 = {λ1

0, . . . , λ
K
0 } the set of associated eigenvalues. Similarly, for every ϵk ,

k = 1, 2, . . . , N, let Eϵk and Λϵk be the corresponding subspaces and sets. If α j is the effective multiplicative
constant for the eigenpair (λ j

0, u j
0), then their weighted average α is the effective multiplicative constant for the

whole subspace:

α =

∑
j w jα j∑

j w j
,

where w j are the weights.

8. Numerical experiments

The numerical experiments cover not only examples of the application of the homogenisation process but also
the construction of the reference database which in the special case of shells of revolution can be done with further
dimension reduction in 1D. For an overview of the experiments and details of discretisations, see Tables 2 and 3.
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Table 2
Overview of the experiments.

Category Options

Geometry Parabolic
Penetration pattern Regular
Grid size 20, 30, 40
Hole coverage 7%, 12%, 25%
Thickness Logarithmic division, 100 samples, t ∈ [10−4, 10−2]
Subspace 12 modes

Table 3
Data on discretisations. Meshes used in simulations and the number of degrees of
freedom at uniform p = 5. Since both shell models considered here use the same
domain parametrisation, the same mesh has been used for both. Furthermore, the 2D
discretisation does not depend on the radius of the shell of revolution.

% g Nodes Edges Triangles DOF

7 20 11104 30509 19006 1235880
30 16701 46600 29000 1885505
40 29165 81892 51128 3317505

12 20 13357 35868 22112 1447505
30 23700 65997 41398 2680380
40 41800 41800 116797 4746880

25 20 8681 22040 12960 873005
30 11080 28337 16358 1112880
40 19440 49917 28878 1961880

8.1. Database construction

The process for setting up a database for reference solutions is the same for both shell models considered here.
For every t considered, the 1D reference subspace (the first four modes) was computed for all angular integer wave
numbers K y ∈ [0, Kmax]. Here a priori knowledge existed for setting Kmax = 20. Further, for every reference
solution an axial wave number Hx was derived using simple Fourier analysis. Finally, the process was repeated for
every R used in Naghdi experiments.

Formally, the database construction leads to a map from the mode fingerprint in the non-perforated case to the
corresponding eigenvalue. In the special case of shells of revolution, a sufficient identifier for every mode is a tuple:
thickness, radius, and the two wave numbers, that is, for every unique mode m a map

{t, R, K y, Hx }m → {λ}m

exists.
Although the specific construction described here depends on the special structure of the reference case, in the

general case such a reference should nevertheless always be identifiable and hence fingerprinting with a suitable
mode key be possible. For instance, in our current setting there is no need to include boundary layer information
in the mode key.

Remark 4. Notice that Hx should also include information on symmetry/antisymmetry of the mode. In the angular
direction this is not necessary due to symmetry.

8.2. Perforated cases

The goal is to understand the performance of the minimisation process discussed in Section 7 over a sequence
of dimensionless thicknesses. The dimension of the subspace (= 12) is arbitrary, however, it is even and sufficiently
large to allow for perforation-dependent behaviour within the parameter range t ∈ [10−4, 10−2]. Typically in
engineering literature the “practical” range is taken to be t ∈ [10−3, 10−2]. It is known that the grid size (or
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Fig. 7. Homogenised eigenvalues. Ratios of homogenised eigenvalues over the observed ones. Perfect homogenisation would result in constant
line = 1. Solid line: 7%, dotted: 12%, dashed: 25%.

Fig. 8. Homogenised eigenvalues. Ratios of homogenised eigenvalues over the observed ones for the first and 12th modes. Perfect
homogenisation would result in constant line = 1. Solid line: 7%, dotted: 12%, dashed: 25%.

equivalently, cell size) and the hole coverage are key parameters as well. The discussion here relies on averaged
quantities of interest, which is appropriate in homogenisation context. More specifically, the accuracy of the
homogenised eigenvalues is measured with their ratio over the observed ones, where value one would indicate
perfect homogenisation.

In Fig. 7 the effect of the hole coverage is illustrated. As one would expect, the homogenised eigenvalues converge
as the hole coverage decreases. The convergence is not uniform, with the higher modes showing slightly higher
relative errors. In Fig. 7(b) the spread of relative values per mode with a fixed hole coverage percentage of 25% is
shown. Overall, the interval is covered reasonably uniformly for every mode.

The dependence on the dimensionless thickness is the focus in Fig. 8. At 25% the relative performance deviates
from that of both 12% and 7%. By close inspection of both Figs. 9 and 10 one can see that this occurs exactly in
the range where the critical mode K = 10 enters subspace at grid g = 20. The loss of one-to-one correspondence
between the perforated and reference modes pollutes the minimisation.

The coupling between the modes and the perforation pattern is independent of the hole coverage. In Fig. 9(b)
the bar indicating the mode K = 10 is dramatically wider than those for g = 30 or g = 40. The mode dynamics
are evident in Fig. 10. The wavenumber for the higher modes do not grow monotonically as explained above. This
underlines the need for effective fingerprinting on the modes, since one cannot rely on any repeated patterns or
rules beyond the smallest mode.

8.3. Effect of radius

Since the mathematical shell model does not have an explicit concept of the radius of the shell, it is necessary
for us to use Naghdi model for the analysis of the effects of the radius and the diameter, of course, on the critical
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Fig. 9. Homogenised eigenvalues. The lowest mode. The effect of hole coverage percentage on the wavenumber. Grid size g =, black: 20,
light grey: 30, dark grey: 40. All values are integers, the black and light grey ones have been shifted by 2/3 and 1/3, respectively.

Fig. 10. Homogenised eigenvalues. The mode 12. (a) The wavenumber asymptotics at 25%. Grid size g =, black: 20, light grey: 30, dark
grey: 40. All values are integers, the black and light grey ones have been shifted by 2/3 and 1/3, respectively. (b) Comparison of the
wavenumber asymptotics of the modes 1 and 12. Black: mode 12, dark grey: mode 1.

thickness. As above, the parameters remain the same: the dimensionless thickness t , the grid size g, and the angular
wave number K .

Based on the results already presented above, it is no surprise that the same effects occur earlier in the thickness
range (measured from above) as the radius increases, since the theory predicts that the critical thickness depends on
the coupling between the modes and the perforation pattern, and indeed, the wave number increases as a function
of the radius.

Both Figs. 11 and 12 indicate the strong coupling between K = 10 and g = 20. Especially the comparison of
the bending energies in Fig. 12 reveals an almost dramatic difference in performance. Yet, the detail in Fig. 12(b)
suggests that the same effect occurs also for g = 30 as t → 0 or as K → 15.

8.4. Asymptotics and cluster separation

Our final section within the experiments concerns the cluster separation. Using our a priori knowledge of the
critical thickness, we can select the grid size and the associated wave number optimally. In Figs. 13 and 14 the
selection is g = 20 and naturally K = 10. It is clear that every cluster (in the reference case) with K = 10 will
have some separation in the perforated case with g = 20. Both the relative difference and the width or distance
within the spectrum (mode number) is shown.

In all cases the separation width is an odd number. If the width is greater than one, then the natural interpretation
is that a cluster (or clusters) of size two has moved within the original one. Indeed in Fig. 14 the width 11 shows
that five clusters are within the original one.

14
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Fig. 11. Homogenised eigenvalues for R = 4. Ratios of homogenised eigenvalues over the observed ones. Perfect homogenisation would
result in constant line = 1. (a) ans (b) Solid line: 7%, dotted: 12%, dashed: 25%. (c) Grid size g =, black: 20, light grey: 30. All values
are integers, the black and light grey ones have been shifted by 2/3 and 1/3, respectively.

Fig. 12. Homogenised eigenvalues for R = 4. The lowest mode. Effect of the grid size on the bending energy. As the critical thickness is
reached, the asymptotic energy convergence is no longer observed. Compare with the wave number data in Fig. 11(c).

The relative errors do not increase monotonically as t → 0. In this example the mode has been carefully selected

as the first with cluster separation. Therefore the relative errors shown here only show the existence of the actual

errors.
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Fig. 13. Cluster separation at K = 10 when g = 20 for R = 1. (a) Solid line indicates 25% coverage. (b) Maximal separation within the
cluster, all coverages included. Notice that separation width happens to be odd in every case indicating a shift by a cluster of size two.

Fig. 14. Cluster separation at K = 10 when g = 20 for R = 4. Only 25% coverage. For smaller thicknesses the cluster width exceeds the
width of the observed subspace. The separation width happens to be odd in every case indicating a shift by a cluster of size two.

Table 4
Data on trommel discretisations. Meshes used in simulations and the
number of degrees of freedom at uniform p = 5.

Case Nodes Edges Triangles DOF

T2 14246 36260 21340 1436630
T3 11502 29423 17402 1168030

9. Case study: Trommel screen

We conclude our numerical experiments with a case study: A trommel screen, also known as a rotary screen.
It is a mechanical screening machine used to separate materials, mainly in the mineral and solid-waste processing
industries. The screen is elevated at one end (the feed end) and rotated. As the feed material spirals down the
rotating drum, the material smaller in diameter than the holes pass through the screen, while the larger objects
travel further and ultimately exit at the other end of the drum. The material separation characteristics of the screens
can be varied and fine-tuned by having sections of different perforation patterns and hole coverage percentages.

Since we want to maintain the axial profiles of the eigenmodes and concentrate on the effects in the angular
direction only, the hole coverages cannot vary from panel to panel as much as in many realistic examples. Also,
often the screens are assembled of panels with local perforation patterns without angular symmetry. In Fig. 15 our
two sample designs T2 and T3 are shown and the discretisation details are given in Table 4.

The convergence plots for the homogenised eigenvalues are shown in Figs. 16 and 17. A very interesting feature
is present in the two-panel results. In contrast with the reference case, now it is the first mode that appears to
be problematic. The observed effect is the result of the fingerprinting failing, since the angular wave number is
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Fig. 15. Trommel screens used in numerical experiments; f (x) = 4. In both cases the axial hole density is kept constant at approximately
30 holes per row. The angular hole density varies from panel to panel. In (a) both panels, 15 × 15 and 15 × 30 have a 25% hole coverage,
in (b) the panels are 10 × 7, 10 × 15 and 10 × 30, where the leftmost has a 12% hole coverage and the other two 25%.

Fig. 16. Two panels (T2): Homogenised eigenvalues for R = 4. Perfect homogenisation would result in constant line = 1. (a) Spread of
eigenvalues over the modes. (b) Ratios of homogenised eigenvalues over the observed ones for the first and 12th modes. Solid line: Mode
1, dashed: Mode 12.

Fig. 17. Three panels (T3): Homogenised eigenvalues for R = 4. Perfect homogenisation would result in constant line = 1. (a) Spread of
eigenvalues over the modes. (b) Ratios of homogenised eigenvalues over the observed ones for the first and 12th modes. Solid line: Mode
1, dashed: Mode 12.
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Fig. 18. Two panels (T2): Profiles in the angular direction of the lowest eigenmode. Axial coordinate is chosen randomly from within the
rightmost panel.

Fig. 19. Three panels (T3): Profiles in the angular direction of the lowest eigenmode. Axial coordinate is chosen randomly from within the
rightmost panel.

not unique over the whole domain, in fact the competing wave numbers are 7 and 8 corresponding to the 15 × 15
panel on the left. This phenomenon could be alleviated somewhat by using the weighted version of the minimisation
process where the weights would be relative contributions in a Fourier expansion, for instance.

9.1. Angular profiles

Any parameter-dependent system where different configurations lead to changes in spectrum can be inter-
preted as a filter. In the non-perforated shell of revolution the lowest mode simply changes its angular wave
number. In perforated configurations and moreover in non-regular cones, this effect is non-trivial, and in fact not
well-understood.

Two sets of angular profiles of the lowest modes are shown in Figs. 18 and 19. Interestingly, the scaling results
of Figs. 16(b) and 17(b) indicate that perhaps with the exception of the T2 at t = 1/100 the homogenisation process
produces reasonable results.

By chance, in Fig. 18(c) we observe a mode with perfect alignment with the perforation patterns.

10. Conclusions

Parameter-dependent eigenproblems on perforated domains are intricate. Through computational means one can
gain insight into the complex interplay of the parameter-dependent features of the modes and the perforation patterns.
Our model problem, free vibration of thin perforated parabolic shells of revolution, is rich in interesting features
which can be analysed and in some cases predicted based on the existing a priori knowledge of such problems.

For every perforation pattern there exists a critical value of the parameter which divides the parameter range
into two parts where either the global or local features of the smallest eigenmodes dominate. For a regular g × g-
perforation pattern, the critical thickness is reached when the lowest mode has an angular wave number K ∼ g/2.
For instance, for parabolic shells considered here, the asymptotic connection between the wavenumber and the
dimensionless thickness is K (t) ∼ t1/4. This is of importance when effective material parameters are searched for
via homogenisation in practical engineering applications.

Here a simple variant of the minimisation process for eigenvalue homogenisation is proposed. Its efficiency is
demonstrated using an extensive set of numerical experiments over a range of admissible dimensionless thicknesses.
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The scheme is dependent on accurate matching of observed and reference modes. In the two-panel Trommel example
the loss of accuracy when the matching fails is demonstrated.

Homogenisation via uniform effective material parameters cannot affect the modes, only eigenvalues. In the
general case the algorithm should be extended to include variation over the computational domain. This, of course,
would increase the computational complexity significantly.
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Appendix A. Naghdi model

Here we outline the Naghdi model, which is used in our examples where the effect of the radius has been
included directly. The presentation here is full in the sense that the shared concepts with the mathematical shell
model are included here also. For the sake of completeness both the 1D and 2D strains are given for the cylindrical
shell with a constant radius: With f1(x) = R, we have A1(x) = 1, A2(x) = R, R1(x) = 0, and R2(x) = R. Notice
also the necessary scaling of the differential A1(x, y)A2(x, y) dx dy → R dx dy.

A.1. Two-dimensional naghdi model

In our two-dimensional shell model the resulting vector field has five components u = (u, v, w, θ, ψ), where the
first three are the displacements and the latter two are the rotations in the axial and angular directions, respectively.
Here we adopt the convention that the computational domain D is given by the surface parametrisation and the
axial/angular coordinates are denoted by x and y.

Deformation energy F(u) is divided into bending, membrane, and shear energies, denoted by b, m, and s,
respectively.

F(u) = t2b(u,u) + m(u,u) + s(u,u). (A.1)

Bending, membrane, and shear energies are given as

t2b(u,u) = t2
∫
ω

[
ν(κ11(u) + κ22(u))2

+ (1 − ν)
2∑

i, j=1

κi j (u)2] A1(x, y)A2(x, y) dx dy, (A.2)

m(u,u) = 12
∫
ω

[
ν(β11(u) + β22(u))2

+ (1 − ν)
2∑

i, j=1

βi j (u)2] A1(x, y)A2(x, y) dx dy, (A.3)

s(u,u) = 6(1 − ν)
∫
ω

[
(ρ1(u)2

+ ρ2(u))2]
×

A1(x, y)A2(x, y) dx dy, (A.4)

where ν is the Poisson ratio (constant).
Using the identities above, the bending, membrane, and shear strains [29], κi j , βi j , and ρi , respectively, can be

written as

κ11 =
1
A1

∂θ

∂x
+

ψ

A1 A2

∂A2

∂y
,
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κ22 =
1
A2

∂ψ

∂y
+

θ

A1 A2

∂A2

∂x
,

κ12 = κ21 =
1
2

[
1
A1

∂ψ

∂x
+

1
A2

∂θ

∂y
−

θ

A1 A2

∂A2

∂y
−

ψ

A1 A2

∂A2

∂x

−
1
R1

(
1
A2

∂u
∂y

−
v

A1 A2

∂A2

∂x

)
−

1
R2

(
1
A1

∂v

∂x
−

u
A1 A2

∂A1

∂y

)]
,

β11 =
1
A1

∂u
∂x

+
v

A1 A2

∂A1

∂y
+
w

R1
,

β22 =
1
A2

∂v

∂y
+

u
A1 A2

∂A2

∂x
+
w

R2
,

β12 = β21 =
1
2

(
1
A1

∂v

∂x
+

1
A2

∂u
∂y

−
u

A1 A2

∂A1

∂y
−

v

A1 A2

∂A2

∂x

)
,

ρ1 =
1
A1

∂w

∂x
−

u
R1

− θ,

ρ2 =
1
A2

∂w

∂y
−

v

R2
− ψ.

Remark 5. When the shell parametrisations defined above in Section 3 are used, all terms of the form ∂Ai/∂y are
identically zero.

In the special case of constant radius (not equal to one), we get

κ11 =
∂θ

∂x
, κ22 =

1
R
∂ψ

∂y
, κ12 =

1
2

(
∂ψ

∂x
+

1
R
∂θ

∂y
−

1
R
∂v

∂x

)
,

β11 =
∂u
∂x
, β22 =

1
R
∂v

∂x
+
w

R
, β12 =

1
2

(
1
R
∂u
∂y

+
∂v

∂x

)
,

ρ1 =
∂w

∂x
− θ, ρ2 =

1
R
∂w

∂y
−
v

R
− ψ.

(A.5)

A.2. One-dimensional model

The shell model above can be further reduced to a one-dimensional one. For shells of revolution the eigenmodes
u(x, y) have either one the forms

u1(x, y) =

⎛⎜⎜⎜⎜⎝
u(x) cos(K y)
v(x) sin(K y)
w(x) cos(K y)
θ (x) cos(K y)
ψ(x) sin(K y)

⎞⎟⎟⎟⎟⎠ , u2(x, y) =

⎛⎜⎜⎜⎜⎝
u(x) sin(K y)
v(x) cos(K y)
w(x) sin(K y)
θ (x) sin(K y)
ψ(x) cos(K y)

⎞⎟⎟⎟⎟⎠ .

Using the ansatz above the energies can be written in terms of the wave number K :

d2b1D(u,u) = d2
∫ 1

0

[
ν(κ11(u) + κ22(u))2

+ (1 − ν)
2∑

i, j=1

κi j (u)2] A1 A2 dx, (A.6)

m1D(u,u) = 12
∫ 1

0

[
ν(β11(u) + β22(u))2
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+ (1 − ν)
2∑

i, j=1

βi j (u)2] A1 A2 dx, (A.7)

s1D(u,u) = 6(1 − ν)
∫ 1

0

[
(ρ1(u)2

+ ρ2(u))2] A1 A2 dx, (A.8)

as well as the strains:

κ11 =
1
A1

∂θ

∂x
,

κ22 =
K ψ

A2
+

θ

A1 A2

∂A2

∂x
,

κ12 =
1
2

[
1
A1

∂ψ

∂x
−

K θ

A2
−

ψ

A1 A2

∂A2

∂x

+
1
R1

(
K u
A2

+
v

A1 A2

∂A2

∂x

)
−

1
R2

1
A1

∂v

∂x

]
= κ21,

β11 =
1
A1

∂u
∂x

+
w

R1
,

β22 =
K v

A2
+

u
A1 A2

∂A2

∂x
+
w

R2
,

β12 =
1
2

(
1
A1

∂v

∂x
−

K u
A2

−
v

A1 A2

∂A2

∂x

)
= β21,

ρ1 =
1
A1

∂w

∂x
−

u
R1

− θ,

ρ2 = −
K w

A2
−

v

R2
− ψ.

Finally, in the special case of constant radius (not equal to one), we get

κ11 =
∂θ

∂x
, κ22 =

K ψ

R
, κ12 =

1
2

(
∂ψ

∂x
−

K θ

R
−

1
R
∂v

∂x

)
,

β11 =
∂u
∂x
, β22 =

Kv
R

+
w

R
, β12 =

1
2

(
−K u +

∂v

∂x

)
,

ρ1 =
∂w

∂x
− θ, ρ2 = −

K w

R
−
v

R
− ψ.

(A.9)
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