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Abstract

We present exact expressions for certain integrated correlators of four superconfor-
mal primary operators in the stress tensor multiplet of A’ = 4 supersymmetric Yang-
Mills (SYM) theory with classical gauge group, Gy = SO(2N), SO(2N + 1), USp(2N).
These integrated correlators are expressed as two-dimensional lattice sums by consider-
ing derivatives of the localised partition functions, generalising the expression obtained
for SU(N) gauge group in our previous works. These expressions are manifestly covari-
ant under Goddard-Nuyts-Olive duality. The integrated correlators can also be formally
written as infinite sums of non-holomorphic Eisenstein series with integer indices and
rational coefficients. Furthermore, the action of the hyperbolic Laplace operator with
respect to the complex coupling v = 0/(27) + 4ni /gsz on any integrated correlator
for gauge group Gy relates it to a linear combination of correlators with gauge groups
Gpyi1, Gy and Gy_;. These “Laplace-difference equations” determine the expressions of
integrated correlators for all classical gauge groups for any value of N in terms of the cor-
relator for the gauge group SU(2). The perturbation expansions of these integrated cor-
relators for any finite value of N agree with properties obtained from perturbative Yang-
Mills quantum field theory, together with various multi-instanton calculations which are
also shown to agree with those determined by supersymmetric localisation. The coeffi-
cients of terms in the large-N expansion are sums of non-holomorphic Eisenstein series
with half-integer indices, which extend recent results and make contact with low order
terms in the low energy expansion of type IIB superstring theory in an AdSs x S°/Z,
background.
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1 Introduction and outline

In [1,2] an integrated correlator of four superconformal primary operators in the stress tensor
multiplet of V' = 4 supersymmetric SU(N) Yang-Mills (SYM) theory was expressed as a two-
dimensional lattice sum that is manifestly invariant under SL(2,Z) Montonen-Olive duality
and is valid for all values of N and the coupling constant T = 7, + i1, = 6/(27) + 471/ ng
in the upper-half plane 7, > 0. ! This correlator was originally defined in [3] in terms of
derivatives acting on the localised partition function of the N’ = 2* SYM theory on S* [4],
which can be expressed as a mass deformation of the A/ = 4 theory. The N/ = 4 integrated
correlator results from the m — 0 limit (where m is the hypermultiplet mass). In this paper,
we will consider an integrated correlator for N' = 4 SYM with any classical gauge group Gy
= SU(N), SO(2N), SO(2N + 1), USp(2N), which is given by

_ 1 _
Cg,(7,7T) = ZAT?JH% logZg (m,T,T) R (D

m=0

!The action of SL(2,7Z) is: T . (—2> ) (at+b)/(ct+d), where a,b,c,d € Z and ad — bc = 1.
L(2,Z
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where Zg (m,7,7) is the partition function of A" = 2* SYM on $* with a gauge group Gy,
Cg, (7,7) denotes the integrated four-point correlator and A, = T%(@Tzl + BTZZ) is the laplacian
on the hyperbolic plane. The expression (1) was shown in [3] to define a four-point correlator
integrated over the positions of the operators with a specific measure that has the following
schematic form

4
fl_[dxi pxy, -5 x4) (Oa(x1) ... Oz(x4)), (2)
i=1

where O,(x) denotes the superconformal primary operator in the stress tensor supermultiplet,
which is in the 20" of the SU(4) R-symmetry group and u(x,...,x,) is a measure factor. The
precise expression for (2) is discussed in [3] and later references. Some properties of the
large-N expansion of Csy(y)(T,T) were considered in [5-7].>

A second integrated correlator of the form (2) but with a different integration measure
was introduced in [7], and is proportional to 8rfl' log Zsy(ny(m, T, %)’mzo. Some properties of
its large-N expansion were elucidated in [8] and more recently in [9]. We will not consider
this integrated correlator in this paper.

1.1 The main results

In this paper we will consider the extension of the SU(N) results of [1,2] to the other classical
Lie groups, SO(2N), SO(2N +1), and USp(2N). Some aspects of the perturbative expansions
of the integrated correlators for these groups, and their large-N expansions in the ’t Hooft
limit were considered in [10] starting from the localised partition function of N" = 2* SYM de-
scribed in [4]. Our analysis will include the non-perturbative instanton contributions, leading
to expressions for the integrated correlators for N' = 4 SYM with any classical gauge group
that take the form of two-dimensional lattice sums®

o
|m-¢-m’\2 _ |m+2m’\2
Ce,(7,7) = Z f dt(Bé.N(t)e_m_fz +B§N(t)e e, ) 3)
0

(m,n)ez?

The rational functions BéN(t) and BéN(t) will be defined in detail later. Here we note that in
the simply-laced cases, i.e. SU(N) and SO(2N), we have BéN(t) = 0 so that we may drop the
superscript and denote BéN(t) = Bg, (t). In these cases the expression is manifestly invariant
under SL(2,7Z), which is generated by the transformations S and T where T : T — 7+ 1 and
S : 7 — —1/7. This was originally suggested by Montonen and Olive [11-13] following the
observations by Goddard, Nuyts and Olive (GNO) concerning the relation between electric
charge and magnetic monopole weight lattices in gauge field theories [14].

In the non simply-laced cases, i.e. SO(2N+1) and USp(2N), the expression (3) is invariant
under I,(2) € SL(2,Z).* This is the group generated by T and $ T §, where § : 7 — —1/(27),
T : T — T+ 1. The action of § does not leave (3) invariant but rather interchanges the two
terms. However, we will see that

B;O(2N+1)(t) = B?]Sp(2N)(t) > B%ISp(ZN)(t) = Bgo(2N+1)(t) > 4
so that § acts as a GNO (or Langlands) duality transformation [15-17], which relates Cso(2n+1)
with Cygp(on). Since we are only concerned with correlation functions of local operators,

2In these references the correlator was denoted Gy (7, 7).

*As we will clarify later, the SO(3) case is an exception, and in that case the integrated correlator is Cgo3) (%, %)
(rather than Csq3)(7, 7)), which agrees with the result of supersymmetric localisation.

“An element y=(‘§ S)ESL(Z, Z) belongs to the congruence subgroup I;,(2) if c = 0mod 2.

3


https://scipost.org
https://scipost.org/SciPostPhys.13.4.092

Scil SciPost Phys. 13, 092 (2022)

effectively GNO duality acts at the level of Lie algebras rather than Lie groups. The global
versions of GNO duality are briefly reviewed in appendix A.

Detailed discussion of these results will be given in later sections but here we note the
following general points:

e As in the SU(N) case considered in [1,2] the functions BiGN(t) (i =1, 2) satisfy inversion
conditions

BiGN(t) =¢! BéN(t‘l), (5)
and integration conditions
*° N(N—1)
f dt Bsyny(t) = — 3
0
oo oo (e ]
N(N—1)
f dt Bsorany(t) = f dtB;O(ZNH)(t) = f dth]Sp(zN)(t) ==
. s e
2 _ 1 _
J; dtBso(2N+1)(t) - Jo dtBUSp(ZN)(t) - Z ’ (6)
as well as
oo
dt _;
JO ﬁBGN(t)—O' 7
e The integrated correlator (3) can be expressed as a formal expansion of the form
N — 1 . — 2 . _
Coy (7,7) =—bg, (0)+ Y [ b (5)E(s; 7, )+ b2, (s)E(s;27,2%)] ®)
s=2

where E(s; 7,7) is a non-holomorphic (or real analytic) Eisenstein series with s € N (in our
convention E(0; 7,7) = —1). The coefficients béN (s) and béN (s) are rational numbers that are

determined by the expansion of BiGN(t) in the form

RN NON
1 —_ S— M
B, (0=, 15 ¢ i=1,2, )
s=2
and bg, (0) = béN (0)+ béN (0) (since béN (s) =0 for Gy =SU(N) and SO(2N), in these cases
we will drop the superscript and write béN (s) = bg, (s))-
o It was pointed out in [9], in the SU(N) case that the formal expression (8) can be written
in a manifestly convergent manner using the conventional spectral representation for a mod-

ular invariant function. Similarly, (8) (which is a [;;(2) invariant expression in the SO(2N + 1)
and USp(2N) cases) has the form,

L 1 3+i00 n(—l)s 1 . _ 5 . ~
Co,(7,7) = ~2bg, (0) + 5~ f o ds—— [ bE ($)E(s; 7, %) + b2 (5)Eq(s;27,28) ] .
2 (10)
In [9] it was shown that the constant —2bg_ (0) is equal to the ensemble average (Cg, ), i.e. the
integral of C, (7,7) over the N = 4 conformal manifold, with respect to the Zamolodchikov
metric.
e The expressions (3) and (8) transform covariantly under GNO duality. In the simply-
laced cases, SU(N) and SO(2N), the coefficients béN (s) vanish. Since E(s;7,T) is a modular

function, the integrated correlators in these cases are invariant under SL(2,7Z).
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e In the non simply-laced cases, SO(2N +1) and USp(2N), it follows from (4) and (9) that
Cg, (7,7) given by (3) is invariant under the I(2) subgroup of SL(2,Z) that is generated by
the transformations T and $TS. The action of § on Cg, (7, 7) effectively interchanges béN (s)

and béN (s) since

1 1
E(s;T,7T Els;——,—— | =E(s;27,27). 11
(5557 2 E(s =5 =52 ) = EC ) (11
This interchanges the integrated correlators for the SO(2N + 1) and USp(2N) cases, and is
interpreted as a GNO duality transformation.
e The integrated correlators also satisfy Laplace-difference equations that generalise the
equation satisfied in the SU(N) case in [1,2]. These take the schematic form

ATCGN — 2CGN I:CGN+1 -2 CGN + CGN—l ]
+dg,.,Csucn-1) T dg, Csuan) + dgy_,Csuan+1) =0, (12)

for Gy = SO(2N), SO(2N + 1), USp(2N), and where cg, is the central charge. The precise
values for the coefficients dg, .,dg,,dg, , Will be given later for each gauge group. These
equations also display the anticipated covariance under GNO duality.

e The Laplace-difference equation for SO(2N) is mapped into the Laplace-difference equa-
tion for USp(2N) under the transformation N — —N, together with T — —27. We will fur-
thermore see that the perturbative expansions of the integrated correlators confirm the iden-
tification of Cgp(_on)(—7,—7) and Cygpan)(27,27).

e The large-N expansion is naturally expressed as an expansion in inverse half-integer
powers of the Ramond-Ramond (RR) five-form flux,

1.2 Outline

In section 2 we will present some properties of the integrated correlator, C, , defined in (1) in
terms of derivatives of the partition function of A" = 2* SYM on §* in the m — 0 limit. These
results are based on methods outlined in appendix B, which includes a brief summary of the
perturbative structure of integrated correlators given in [10], and an overview of instanton
calculations based on the Nekrasov partition function [18] generalisied to arbitrary classical
gauge groups [19,20]. The perturbation expansions for Cg, (7,) with finite N are presented
in section 2.1. The expansions for Csp(an), Csoan+1) and Cyspany) generalise the expansion of
Csy(vy and display a number of interesting features, such as the equality of the SO(2N) and
USp(—2N) integrated correlators when ng — —2g3M. Furthermore, when expressed in terms
of appropriate expansion parameters all three of these integrated correlators have identical
planar contributions (where the definition of ’planar’ is dependent on the gauge group). Non-
planar contributions begin at O ((ng )4). The instanton contributions to Cg, are discussed
in section 2.2 based on the formalism described in appendix B.3. The explicit form of these
instanton contributions to Cg, is difficult to extract from the localised partition function for
general instanton number. However, we have determined the exact expressions for the one-
instanton sector, and to a certain extent the two- and three-instanton sectors.

In section 3 we will demonstrate that the perturbative parts of the integrated correlators
satisfy ‘Laplace-difference’ equations that have a form illustrated in (12), which imply powerful
constraints on their structure. By studying various examples of these equations we are led in
section 4 to conjecture that the fully non-perturbative expression for an integrated correlator
Cg, (7, T) can be expressed as the two-dimensional lattice sum in (3), which is formally equiv-
alent to the infinite sum of non-holomorphic Eisenstein series of integer index in (8). These
expressions transform in a manifestly covariant fashion under GNO duality. They also contain
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an infinite number of Yang—Mills instanton contributions with precisely specified properties,
which we will demonstrate agree with the instanton contributions to the localised correlators
obtained in section 2.2. The arguments that motivate the Laplace-difference equations are
presented in appendix C.

In section 5 we will consider the large-N expansion of Cg, (7,7) in various limits of the
Yang-Mills coupling. In both the weakly-coupled and strongly-coupled 't Hooft limits consid-
ered in section 5.1 the instanton contributions are suppressed exponentially in N and only the
perturbative terms contribute. As we will show, if we introduce suitable expansion parameters
the perturbative expansions for different gauge groups are closely related. The definitions of
these parameters, which are generalisations of the parameters N and gzMN for the SU(N)
case, that are suited to the large-N weak-coupling expansion are not generally the same as
the parameters suited to the large-N strong-coupling expansion. In section 5.2, we consider
the large-N limit with fixed ng, where the instanton contribution is crucial for exhibiting
manifest invariance under GNO duality. The expressions for the integrated correlators, which
are obtained by solving Laplace-difference equations, take their most compact form when ex-
panded in inverse (half-integral) powers of Ramond-Ramond five-form flux NGN. The powers
of 1 /NGN correspond to powers of &’ in the low energy expansion of the holographic dual
string theory and beautifully match the expected string theory structure.

We will end in section 6 with a discussion of these results and of possible future directions.

2 Integrated correlators for general classical Lie groups

In this section we will determine properties of the perturbative and instantonic contributions
to the integrated correlators based on supersymmetric localisation. The perturbative terms
are contained in the zero Fourier mode with respect to 7; whereas the non-perturbative terms
correspond to the sum over instantons with instanton number k # 0. In other words, we can
express the correlator as a Fourier series,

oo
Coy(7,7) = CE 1)+ D (2757 01, + 727K ¢S (7)) (13)
k=1

where the k = 0 term is the perturbative contribution,
0
CET(73) 1= CY(T2), (14)

and the k # 0 terms are the instanton and anti-instanton contributions,

M8

Cg}jt(’r, T) = (ezka Cg;)(fz) + 72Tk Cgvk)(Tz)) ' (1)

>\-
Il
—_

Since the integrated correlator is real it follows that Cg;])(fz) = C(G;k)(rz) so that Cg, (7, 7)
contains equal contributions from instantons and anti-instantons.

2.1 Perturbative contribution

The perturbative sectors of the integrated correlators, CZ;” derived from the localised partition
function, were discussed in [10], where they were expressed in terms of generalised Laguerre
polynomials as reviewed in appendix B.2. One of the primary interests in [10] was to use this
perturbative data to determine terms in the large-N expansion order by order in 1/N or, more
precisely, order by order in the inverse central charges, 1/c¢, . However, here we will study

6
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the perturbation expressions at finite N in more detail, which will motivate the form of a set
of Laplace-difference equations that generalises the analysis in [1,2] of the SU(N) correlators,
as well as the modular covariant expressions (3) that are well-defined for all values of N and
7. Further strong evidence for these expressions will be obtained from the evaluation of the
instanton contributions in the next subsection.

Our starting point is the explicit result for the perturbative sector CZ;” obtained in [10],
and for convenience summarised in appendix B. The expansions of the expressions in (135)-

(138) in powers of ng can be organised in a striking manner by defining the expansion pa-
5

rameters, ag, , for each gauge group in the following manner

Ng? n—2)g? n+2)g?
Asy(n) = LYZM dso(n) = w Aysp(n) = ﬁ (16)
4m 4m 8m
where n = 2N or 2N + 1 for SO(n), and n = 2N for USp(n).® We note that asy(n) is the
't Hooft coupling of the SU(N) theory (up to a factor 47?), while agq(,) and Aysp(n) are the
generalisations for SO(n) and USp(n) theory (see also [21]). ’

The perturbative 't Hooft couplings defined in (16) can be rewritten in the compact form
ag = h\é ng /(47?), with hé the dual Coxeter number for the group G. The appearance of the
dual Coxeter number is quite natural in A' = 4 SYM when all the fields belong to the adjoint
representation.

In terms of these parameters we find that the perturbative expansion of all the integrated
correlators can be expressed in the following form,

30(3)ag, 75¢(5)ag, . 735¢(7)ag,  6615{(9) (1+Pg1)a,

CP (1) = —4c
o (72) Gy 2 8 16 32
6
N 1143457(11) (1 + Pg,, ») ag ~ 3864861¢(13)(1+Pg, 3) ag
128 1024
32207175¢(15) (1 + Pg, 4) a’
+ ~+0@ )|,
2048 N
17)
where cg, is the conformal anomaly or central charge associated with Gy and is given by
N2—-1 n(n—1) nn+1)
CsuN) = 4 Cson) = T 5 Cusp(n) = T . (18)

We see that the first three perturbative contributions are universal and their dependence on N
is contained entirely within ¢ and ag, . Explicit “non-planar” factors, Pg ;, where i = —3
and { is the loop number, first enter at four loops and the first few examples are listed below:

s SU(N)
_ 2 _ 1
Psyany,1 = N2’ Psyn),2 = i
19
25N? + 4 605N?2 + 332 (19)
Psymy,3 = T1IN% SUWN),4 = T 143N4

>Note that the definition of ag, differs from that in [10].

5The symbol n is introduced is to unify the formulae for SO(2N) and SO(2N + 1), and to show the connection
between USp(2N) and SO(2N) correlators.

’In the case of SO(3), one needs to rescale g~ — +2g  and define a5o4 = ng /(2n2) so that
Aso(3) = Asy) = Aysp(z)- See also discussion below (138). Furthermore, one can see that agy) = aseg) and
Aysp(a) = Aso(s), consistent with the isomorphic relations among these groups.

7
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* S0(n)
_ n*—14n+32 _ n*—14n+32
Psom = BEYCED Psom),2 = T 8n—2p
_12n*—221n® +1158n% — 2432n + 1856
Psoms = 22(n—2)5 ’
2(342n° — 7217n* — 48841n® — 153938n? + 239232n — 149920)
Fsoma=— 715(n — 2)6 '
(20)
* USp(n)
_n2+14n+32 _n2+14n+32
Pyspm,1 = W 5 Pyspmy2 = w >
_12n*+221n° 4+ 1158n? + 2432n + 1856
2(342n° + 7217n* + 48841n> + 153938n> + 239232n + 149920)
Puspa.a = 715(n + 2)5 '

Some interesting features of these expansions are as follows.

 Whereas the genus expansion of SU(N) gauge theory in powers of 1/N? and asyny [22]
is well known, there seems to be no systematic analysis in the literature of the analogous
expansions for SO(n) and USp(n) (although there are some limited results in [21]). We
see from (16), (17), (20) and (21) that these expansions are purely in powers of 1/(n—2)
and 1/(n + 2), respectively. Indeed, if we define the parameters
Nsy) = N?= (h\s/U(N))z’ Nsomy=n—2= h.\S/O(n)’ Nyspmy=n+2= 2h\[/]Sp(n)’

(22)
the expansion (20) can be re-expressed in a form that generalises the topological expan-
sion of the SU(N) case, in which it takes the general form

Coy (7,7) ~ CETE(T3) ~ ey ) (N6, )8 CE ) ag, ), (23)
g=0

where the coefficients® C(Gi)(aGN) are power series, with rational coefficients, in the ex-
pansion parameter ag defined in (16). Following the terminology in the SU(N) case,
we will refer to terms with g > 1 as “non-planar” terms.

* A striking property of (17) is that the expression for the planar contribution Cg:v)(aGN) is
the same for all the groups, and the non-planar contributions only enter at £ > 4 loops,
ie. CgN)(aGN) = O(agN). Such a property can be seen directly from the construction
of perturbative loop integrands using the methods in [23, 24], and will have important
consequences when we consider the large-N expansions. This property is only manifest
with definition of the expansion parameters given in (16).

Furthermore, the precise coefficients at each order of the perturbative expansion given
in (17) can be verified using standard quantum field theory results. This calculation
was described for the first two loops in [2] and for the planar terms up to order O(aéN)

8The seemingly strange choice for Ng;yy = N? is such that for the case of SU(N) we obtain exactly the standard
genus expansion of the form cgy(y) g0 N’ZgCéi)(N)(aSU(N)).

8
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in [25] by explicitly performing the relevant higher-loop integrals. These results make
use of the perturbative loop integrands constructed in [23, 24, 26, 27] and the precise
expression for the integrated correlator (2) (see e.g. (2.3) of [2]).

* We should stress that the definition of the expansion parameters, ag, = héN ng /(41?)
defined in (22), differ from the parameters that enter in the large-N expansion in the
holographic limit, which will be considered in section 5.1. In that case the parameters,
which are denoted NGN, are defined in (97) in terms of the Ramond-Ramond five-form
flux of an orientifold background. This is reviewed in appendix D. It is only if we use the
expansion parameters defined in (22) that the weak-coupling perturbative expansion
(17) has a finite number of non-planar terms, i.e. terms that are suppressed by powers
of 1/Ng,, at fixed loop order O(aéN).

* The symmetry under the interchange (N, glz,M) «— (—N, —ng) is evident from the form
of (17). For SU(N), we have

CSU(N) = CSU(—N) > asy(n) = Asu(—N) > Psyny,i = Psu(=n,i» (24)
hence
pert 2 N __ ppert 2

which reflect a relation between SU(N) and SU(—N). There are also relations between
SO(2N) and USp(—2N) under (N, giz,M) «— (—N, —2g3M)

Cs0(2N) = CUSp(—2N) » dso(2n) = 2aysp(—2N) » Pson),i = Pusp(—any,i>  (26)

which lead to
pert 2 _ pert 2
CSO(ZN)(gYM) - CUSp(—ZN)(_ZgYM) . (27)

These relations have been further checked at higher orders. We will return to this point
later in the discussion of the Laplace-difference equations.

2.2 Yang-Mills instanton sectors

In order to discuss the instanton contributions to Cg, we will make use of the expressions
shown in appendix B.3 for the contribution of instantons to the A/ = 2* SYM partition function,
21t (m, a;) that were obtained in [19, 20]. In particular, the full non-perturbative sector,
presented in (15), can be computed from

Cast(v,7) = 130:8:922¢° (M, 7, %)| > (28)

with ZgI‘V“(m, T, 7) the non-perturbative contribution to the localised N/ = 2* partition func-
tion. As briefly reviewed in appendix B, ngf can be obtained by a suitable matrix model in-
tegral over the variables a; of the Nekrasov partition function Z gst(m, 7,4a;). The k-instanton
contribution to the Nekrasov partition function follows from the Fourier sum (139)

o

A e A (k

Zé’st(m, T,a;) = E ezkaZéN)(m, a;)+c.c., (29)
k=1

where the complex conjugate, indicated by c.c., contains the anti-instanton contribution.


https://scipost.org
https://scipost.org/SciPostPhys.13.4.092

Scil SciPost Phys. 13, 092 (2022)

The small-m expansion of the k-instanton contribution for SU(N) was well studied in [7]
and led to the following compact expression,

dz T —aj+ikyp)? 2 2
922%) (m,a;) §—| [TTT] x[(—+—) (30)
SU(N) |m =0 et na:“):l) (z—a +lkab)2+1 p2 @2
pq=k
= i(q+p)(q—p)?
+E ,

Spalz—a+ilp+q—Dlz—a;+ilg—Dlz—a;+i(p—1)]

where the integration contour z is a counter-clockwise contour surrounding the poles at
z=a;+1 (with j=1,...,N)and k,, =a+b—2.

In appendix B.3 we briefly summarise the results of [19,20] regarding the computation of
the instantonic sectors via equivariant supersymmetric localisation for ' = 4 SYM with gauge
groups SO(2N), SO(2N + 1) and USp(2N). Here we only present the results in the special
case of relevance to us, in which the omega deformation parameters are set to €; = €5 = 1,
which amounts to localisation on S*. We will only consider the complete expression in the
single-instanton case (k = 1), and determine multiple-instanton contributions only for certain
particular values of N. The general procedure is presented in appendix B.3, based on [19,20].
Here we will determine the explicit small-m expansion of these results, which are relevant for
the computation of the integrated correlators.

* SO(2N):

The one-instanton contribution for SO(2N) is obtained by performing a one-
dimensional contour integral using (140) and (141). The relevant poles are at
¢$1 = aj +€,/2,—a; + €,/2,€3/2,€4/2 [19]. Collecting all these residues, setting
€, = €5 = 1, and taking small-m expansion, we find,

N
25(1)
3 Z O(2N)(m a; ){m 0 Z(Ra}-+e+/2+R—a}-+e+/2)+Re3/2+Re4/Za (31)
j=1

where Ry is the result of taking residue at the pole at ¢, = X, and they are given by

2(%ia; + 1)(*a; +2) M- [(£ia; +1)* +a] ]

Reqjve 2= (£2ia;+3)2 ¢ laf—afll(*ia; +2)2 +a]]’
32
. n m(m 3) 4a +(3m—1)? (32
/2 T Rey2 =~ [ l_[ 4a +(m—3)2 (m—>—m)]‘m=0-

In the final expression we have used the continuation a; — i a;, which will also be used

for the SO(2N + 1) and USp(2N) cases considered below.

J’

Although we have not considered the general k-instanton expression for general N, we
have evaluated special examples using the prescription for contour integrals that is dis-
cussed in appendix B.3. For example, the k = 2 contribution to the integrated correlator
in the SO(4) case has the form

51 6 6 12 12
327@ (mya)| . =—— — + +
NI CA TRl CAEFTIEM FRIE
(33)
where ¢;; = a; —a; and @, = q; +a;.
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¢ SO(2N +1):

The computation for SO(2N + 1) is similar. In this case the one-instanton contribution
for general N is given by

N

25(1) —
OmZsoan-+1) M ai)|m:0 = Z (Raj+6+/2 + R—aj+6+/2) tRe,2+Re,2- (34)
=1

Again Ry is the result of taking residue at the pole at ¢p; = X, and each takes the follow-
ing form,
. 2(+ia; +1)° [Cig; +1)*+a2]
+a;+e, /2 = . . >
ites tia;(£2ia;+3)* | ; (a?—a?) [(ia; +2)% +a?]
m(3m—1) P 4a +(Bm—1)?
32 4a]2. + (m—3)2

(35)

Re./2 +RE4/2=—8n21[ +(m—>—m)]'

i=1 m=0 ’
As a special example we have evaluated the k = 2 contribution for the SO(5) theory,
which has the form

245(2) , = 47__2 4
amZSO(S)(rn’ al)|m=0 (32 a% +4 + (a% +4) (ag +4)
_6[2(a§—(a§—21)a§+7a§+151)a§+387])+(a )
1 2/
[a?—Z(a§—9)a%+(a§+9)2]Z
(36)

* USp(2N):

For the USp(2N) group, the number of contour integrals is equal to [%J, with k the in-
stanton number. Therefore, no contour integral is involved in the one-instanton case.
For this reason, the one-instanton contribution is given by the following compact expres-

sion,

2

j
a? +2

a

N
25(1) _1
amZUSp(ZN)(m’ ai)|m:0 -5 l_[ 37)
j=1

When k = 2 and k = 3, the contour integrals are only one-dimensional, and are relatively
easy to perform. For instance, the two- and three-instanton contributions for USp(4) are
found to be:

2a(2) (19 6 12 96
amZUSp(4)(m’ ai)|m=0 = (

- + -
16 2a7+9  [2a2+9]" (2a2+9)[2a2+9]

8[4 (a2 +3)a} +(32a2 +57)a?—30]
- 2 2 2 + (al — aZ) >
(2a2+9)(2a2+9) (a2, +8)[(a},)? + 8]
(38)
and
4 2 4 2 2
. a;+20a5+80)a’+100(as+8)as+ 1024
arizl(]?P(4)(m’ai)|m=0 = ( : : ) 1 2 ( : 2 ) 1 +(a; < ap).
3[a?+8] [a2+38]
(39)
We have also computed arflfl(]’;)p(zm(m, ai)\m:O for USp(2N)fork =2,3,with2 < N < 5.
However, some of the expressions are somewhat lengthy and we will not show them
explicitly here.
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Once 8&2 g;)(m, ai)|m:0 has been determined, it is straightforward to compute the matrix
integrals using the expressions for expectation values given in (130), (132) and (134). We find
the resulting instanton contributions to Cgll;t(’r, 7) agree precisely with the expected results
based on the duality-covariant ansatz (3). We will return to this comparison in section 4
where we will discuss the ansatz and its motivation in more detail.

3 Laplace-difference equations

A striking property of the formulation of the SU(N) integrated correlator in [1, 2] is that it
satisfies a Laplace equation that relates it to the SU(N — 1) and SU(N + 1) correlators,

ACsy(T,7) — 4CSU(N)[CSU(N+1)(T, ) —2Csy)(7, T) + Csyn—1)(7, ’_F)]
— (N +1)Csyn-1)(7,7) + (N = 1) Csyy+1)(7,7) = 0. (40)

This equation, which is reviewed in appendix C, has powerful consequences. Given the initial
condition Cgyy(1) = 0, this equation easily determines the correlator for gauge group SU(N) in
terms of the correlator for gauge group SU(2). Furthermore it gives a very simple iterative
procedure for determining terms in the large-N expansion of the correlator for gauge group
SU(N). We will now see how these statements generalise to any of the classical Lie groups.

Our procedure is to determine the Laplace-difference equations for general classical gauge
groups by requiring consistency with the expressions determined in the previous section sup-
plemented with the requirement of consistency with GNO duality. Using the perturbative re-
sults given in the section 2, we find that the integrated correlators obey equations of the form
(12), in which the coefficients dg, ,, dg, and dg, , are determined. Explicitly, we find the
Laplace-difference equation for SO(n) (with n = 2N or n = 2N + 1) is given by (more discus-
sion of these equations is given in appendix C)

A Csomy)(T,7T)— 2Cso(n)[CSO(n+2)(T, T)—2Cs0n)(7,T) + Cso(n—2)(7, ’f)]
—nCsyn-1)(7,T) + (n—1)Csy(n)(7,7) =0. (41)
The Laplace-difference equation for USp(n) (with n = 2N) takes a very similar form,
A17CUSp(n)(T: ’f) - 2CUSp(n)|:CUSp(n+2)(T) %) —2 CUSp(n)(T: f) + CUSp(n—Z)(TJ %)]
+ nCSU(,H_l)(ZT, 2%) — (n + 1)CSU(H)(2T) 2%) =0. (42)

Note that there is an important rescaling (7,7) — (27,27) in the SU(N) correlators in the
second line of (42).

Lemma. Equations (40) - (42) can be solved iteratively to determine CGN for any classical Lie
group Gy, once Cgyy9)(7, T) is given.

Proof. The proof follows from identities satisfied by Cg (7, 7) for small values of N.

* As discussed in [1,2], the fact that the integrated correlator Cgy(1) = O implies that the
equation for Cgyyy (40) can be solved for any N in terms of Cgy(g) -

* The solutions for other groups follow by use of the identities: Cygsp) = Cso0) =
Cso1) = Csozy = 0. Equation (41) with n = 2 and the fact that C5o(2) = O deter-
mine Cgp(4). Using n = 2 in (42) and Cygp2)(7,7) = Csy(2)(7, T) determines Cygp(s)-
Similarly, (41) with n = 3 and the fact that Cg3)(7, 7) = Csyy(2)(27,27) (remembering

12


https://scipost.org
https://scipost.org/SciPostPhys.13.4.092

Scil SciPost Phys. 13, 092 (2022)

that the localised SO(3) correlator is actually Cso(s)(%, %) as discussed earlier) determine
Cso(s)

* Given the above initial conditions for small values of N, the solutions for arbitrary N
follow iteratively from the equations.

We can now consider a few examples of the solutions to the Laplace-difference equations
using the procedure outlined above. This will help us to better understand the structures of the
correlators and motivates a general ansatz for the integrated correlators, which we will discuss
more detail in the next section. The general expression of Cgy(yy, which may be obtained from
(40), was given in [1,2]. Here we will consider the correlators in other gauge groups and use
the general result of Cgy(y)-

Let us begin with the correlators for SO(2N). Using (41), it is straightforward to show that

Csoa)(7,7) =2Csy)(7,7),  Cso(6)(7,7) = Csy)(7,7),

_ . 8 _ _
Cso(8)(T,T) = —2Csy(2)(7,7) + §CSU(3)(T: T) —2Csya)(7,7) (43)

4 _ 2 _
+ gcsu(s)(’r, )+ gcsu(a)(f, ),

where we have used Cs(2)(7,7) = 0. The expressions for Cso4)(7,7) and Csoe)( T, 7) reflect
the relations SO(4) = SU(2) x SU(2) and SO(6) = SU(4), respectively. It is easy to see from
the structure of the Laplace-difference equation that Cgo(on)(7, 7) can be expressed in terms of
linear combination of Csy(mm)(7,7) with m =2,3,...,2N — 2, as in the example of Cgq(s)(7, T)
given above. As shown in [1,2], Csy(m)(T,7) may be expressed as an infinite sum of the non-
holomorphic Eisenstein series E(s; 7, 7), or equivalently a two-dimensional lattice sum, hence
the same is also true for Cgo(2n)(7, T), which we will discuss in more detail in the next section.

We now consider the integrated correlators in the SO(2N + 1) and USp(2N) cases. We
will see that the expressions for these correlators are related by GNO duality. To begin we will
consider the first non-trivial correlators, Cso(s) and Cygp(4). The Laplace-difference equations
allow us to express the correlators in terms of the SU(N) correlators,

Csoes)(7,T) = [—2 Csy()(7,T) + gCSU(S)(T: ’_F)] + [—2 Csy(2)(27,27) + gcsu(s)(zf, 2”3)} ,
(44)
with an identical result for Cyg,(4)(7, T), reflecting the fact that USp(4) = SO(5). Using the
results for Cgyyy(T, 7), we find Cgo(5)(7, T) (or equivalently Cygp4)(7, 7)) can be also be ex-
pressed in terms of infinite sums of non-holomorphic Eisenstein series, but importantly involv-
ing both E(s;7,7) and E(s; 27,27T).
We will now consider Cso(7y and Cygps), which will suggest the general structure of the
integrated correlators and the GNO duality that relates Cso(an+1) and Cygpon)- From (41) we
find that Cg(7) is given as a sum of Cgy(y) correlators of the form

_ 8 _ 12 _ 3 _ 4 _
Cso)(7,7) = [ECSU(Z)(Ts T)— ?CSU(B)(T, )+ gcsu(4)(T, T)+ ngu(s)(T, T)]
3 12 8 (45)
+ [ECSU(Z)(zT, 27T)— ?CSU(?,)(ZT, 27) + ECSU(4)(2T3 2’%)] B

°It should be emphasised that the initial conditions Csu(2)(T,7) = Cs0(3)(27,27) = Cygp(a)(7, T) are non-trivial
properties. Using (135), (137), and (138), it is easy to check that their perturbative components are identical, and
we have also confirmed that their non-perturbative terms agree.
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and from (42) Cygp(6) we have

_ 8 _ 12 _ 3 _ 4 _
Cusp(e)(7,7) = I:ECSU(Z)(zT) 27) — ?CSU(S)(ZT: 27) + ECSU(4)(2T, 27) + ECSU(S)(ZTa ZT)}

+ [%CSU@)(T’ T)— %CSU(B)(T: )+ gcsu(z;)(f, ’f)] .
(46)
Since Csyny(7,T) = CSU(N)(—%,—%) and Csyn)(27,27) = CSU(N)(—%,—%), it follows from
(45) and (46) that under the transformation § : 7 — —1/(271), Cso)(7,7) transforms into
Cusp(e)(T, 7). More generally, by induction, using the Laplace-difference equations (41) and
(42), one can prove
N 1 1
Csoen+1)(T,7) = CUSp(ZN)( 50 _E)’ (47)
which is the statement of GNO duality (recalling our previous comment that for N = 1 the lo-
calised correlator equals Csq3)(3, %), which also coincides with the modular invariant
Csu2)(7,7) = Cysp2y(7,7)). This property will be made manifest in the duality covariant
ansatz of these correlators that will be proposed in the next section. It is also of note that these
Laplace-difference equations are consistent with the dualities Cgyny(7,T) = Csy(—n)(—7,—7T)
and Cgo(an)(7,T) = CUSP(_ZN)(—%,—%), which explicitly hold in perturbation theory, as we
discussed earlier.

4 The duality covariant ansatz

In this section we will motivate the conjectured expression for CGN as the lattice sum (3).
The argument for this expression will be based on the examples of solutions to the Laplace-
difference equations presented in the previous section, which make it clear that the integrated
correlators Cso(any, Cso(an+1) and Cygp(an) can be written as linear combinations of Cgy ) for
certain values of m. The fact that Cgy(y) can be expressed (at least formally) as an infinite
sum of non-holomorphic Eisenstein series [1, 2] suggests that Cg, can also be expressed in
terms of sums of Eisenstein series for any Gy. More precisely, we will find that Cgg(2y) is given
by an infinite sum of E(s; 7, 7), whereas Cso(an+1) and Cygp(an) involve both E(s; 7,7) and
E(s;27,27).

4.1 Review of Cgyy)

In[1,2] it was argued that the integrated correlator of SU(N) theory can formally be expressed
as an infinite sum of non-holomorphic Eisenstein series,

N(N—1)

o0
Csuan)(T,T) = — 1 Z bsyy(s)E(s; T, 7), (48)
s=2

where the coefficients bgy(yy(s) are defined in terms of Bgy(y)(t) by (9) and we have used

bsy)(0) =—N(N —1)/8.
In our normalisation, a non-holomorphic Eisenstein series is defined by

Bsnf)= > ——2 (49)

_s 2s
(mZ(0.0) 78 |m+nt|
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which has the Fourier series expansion

2&:(28) s 21/_1—‘(5_2){(25_1) 1—s

E(s;7,7) = T+
( ) w2 ST'(s) T2

(50)

o

4,/7T, -1

n Z ank’cl F() |k|s Ul—Zs(lkl)K—%(2ﬂ|k|T2)’
o0

with K, a modified Bessel function of second kind and o,(k) = Zdlk d® a divisor function.
The expression (48) is formal since it is not a convergent series, but it can be defined in a
convergent manner by using the integral representation for the Eisenstein series

oo \m-*—n’rl2 ts 1
E(s;7,7) = Z J e T T (51)
(m,n)£(0,0) 0 (5)

Substituting in (48) and using (6), gives a well-defined two-dimensional lattice sum expression
[1,2],

|m+nT\2
CSU(N)(T: %) = Z f 2 BSU(N)(t)dt (52)

(m,n)ez2

where Bgy(y)(t) is a rational function,

= s Qgyan(t)
Bsym)(t) = Z bsuny(s) d svw) (53)
s=2

T(s)  (t+1)2N+1°

and Qgy(y)(t) is a polynomial of degree (2N — 1) that takes the form

Qsuon(0) = —ZN OV = 1)(1 = 0" 11+ ¥+

(1,-2) 1+ ¢ 1 2 1,-1) 1+ t2
3 N+3t—6)t)P _— —3t—Nt—P
{( T8N+ 6) )Py (1—t2 +1+t( 8 ) 1—¢2
(54)

with PIE]a’ﬁ )(z) being a Jacobi polynomial. It is notable that Bgy_y)(t) = Bgyy)(—t) which is
directly connected to the relation Csyn)(7,7) = Csy(n)(—7,—7).

A key feature of the function Bgy(y)(t) in the representation of Cgy(yy in (52) is the in-
version symmetry Bgy(y)(t) = t! BSU(N)(t_l). This property leads to particular relationships
between the coefficients bgy(y)(s) in (9) that have important consequences. In particular, con-
sider the zero Fourier mode of (48) (the perturbative sector), Cgu(iv)(fz), which is the sum of
infinitely many zero modes of Eisenstein series. From (50), we see that this results in the sum
of two infinite series:

pert (i1)
Csuan(T2) = SU(N)(TZ) + CSU(N)(TZ) (55)

where CSU(N)(TZ) denotes the sum of T%‘S terms, which is asymptotic and gives a well-defined

perturbative series for small ng =4n/71,, and Céll])(N)(Tz), which is the sum of 73, terms, is

divergent term by term as ng — 0. However, as presented in more detail in [2], the latter
series can be Borel resummed and the result is

(ii) 0] _ pert
Csun(72) = CslU(N)(Tz)— Copon(T2)s (56)
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we stress that the lattice sum representation (52) is a well-defined function for all values of
7 in the upper-half plane and for all values of N > 0, while the need for Borel resummation
only arises when it is expanded in perturbation theory.

The coefficients bgy(yy(s) in the ansatz (48) or, equivalently, the rational function
Bgyny(t), are uniquely determined by matching Cgf]r(;v)(rz) with the perturbative terms de-
termined by localisation. In other words, Bgy(y)(t) can be determined by matching with the
perturbative contributions given in (135), in a manner that we will now describe.

Let us begin by considering the perturbative contribution arising from the lattice-sum rep-
resentation. Assume that Bgy(y)(t) is given by a convergent expansion

o0
Bsygny(t) = Y als) . (57)
s=1
Substituting this expression in (52) and computing the perturbative terms (in terms of the
representation (48) we are using the fact that the 73 terms sum to give the same contribution
as the Té_s terms, as discussed above), one finds that the perturbative contribution is given by
the asymptotic formal power series

o X ar(s+3)¢2s+1)
Cé’U(ﬁv)(y)’VZa(s) ( Zjﬁ ¥, (58)

s=1

with y = n1, = 472/ ng. We will now compare this result with the perturbative terms ob-
tained from (135). For convenience we will denote the perturbative contribution to
CSU(N)(T, /f) in (135) as

oo
dw
pert _ 242 2
CSU(N)(J’)—L sinhzwwy 3yK(a> /y), (59)
and the integrand has the following convergent power series expansion
o
wy?02K(w?/y) = Y B(s) 0¥y, (60)
s=1
Using the integral identity
e wmtl
J do———=2""T(m+2){(m+1), (61)
0 sinh” w

valid for m > 1, we obtain the perturbative contribution from (59), which is given by the
asymptotic power series

er <, T(2s+2)¢(2s+1)
i)~ 2P6) Chi LA N 62)

By equating (58) and (62), we find the following relation between a(s) and S(s)

B = o)

S 2s+DI(s+1)° (63)

Therefore knowing yZayZK (w?/y) allows us to determine Bgyvy(t). Explicitly, from (63), we
find the following simple relationship*°

1 oo
Bsuan)(t) = ZJ dre™ 3, wy?02K(w?/y)] (64)

0

y=1,0=+1t

ONote that this procedure is closely related to the SL(2,Z) Borel transform introduced in [9].
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Using the expression for K(w?/y) given in (135), and after a suitable change of variables and
integration by parts, the above expression can be recast into the following simpler form,

oo

Bsyn(t) = —fJ dx e Bgy(a)(x), (65)
0

where the integrand BSU(N)(X) is directly related to the perturbative result given in (135),

3

N
Bouon(x) = 5o {x3a [ Z(l1(x)Lj_1(x)—(—1)l—JLf;(x)L @)} 68

Although proving that (65) is equivalent to (53) for arbitrary N is rather non-trivial, it is
straightforward to check explicitly the equivalence of these two expressions for any given
N. We also note that the above derivation is general and not restricted to the SU(N) case,
therefore we will apply the same arguments for other gauge groups in the next subsection.

4.2 Exact expressions for Csoon), Csoan+1) and Cyspn)

This discussion generalises to the other classical groups. As described in the previous section,
the study of Laplace-difference equations makes it clear that the integrated correlators Csoan),
Csoan+1) and Cygpany can all be expressed as sums of Eisenstein series, as in the case of
SU(N). More precisely, the analysis of Laplace-difference equations suggests the following
ansatz for the integrated correlator for each gauge group

_ N —
Csotan(7) = ) +Zb50(m(s)E(s 5 %), (67)
and!!
2 oo
Csoan+1)(T,T) = —+Z( Lo sy OE( T, 7) + D20 1y (E(s; 27,27) )
s=2
o (68)
Cuspn)(T,T) = —+Z( Uspan)BVEG; T, 8) + bligony (S)E(s; 27 27:))
=2
and (47) implies
b;O(ZN-J—l)(S) = bIZJSp(ZN)(S)’ bgo(2N+1)(s) = b%]Sp(ZN)(S)’ (69)

since § exchanges E(s; T, T) with E(s; 27,27). Similarly to SU(N), for the constant term we
have used the results bgo(an)(0) = —N(N —1)/4 and bgo(2n+1)(0) = byspan)(0) = —N2/4.

As in the case of Csyy)(7,7), these formal expressions are well-defined upon using the
lattice sum representation of E(s; 7,7) in (51), which, using (6), leads to

oo
_ Ierm'\2
Cso@n)(7,7) = Z J e " 72 Bgopm(t)dt, (70)

(m,n)ez2

where
51

Bsoan)(t) = Z bsoan(s )

(71)
= I(s)

In the case of Cso(s), Dgos)(s) = 0 and b3, 5 (s) = bsy(z)(s), and to retrieve the localised correlator we should
rescale (7,7) — (3, 3), 0 that Cs(3)(5, 5) = Coy(ay (T, T)-
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Similarly, for SO(2N + 1) and USp(2N ), again using (6), we have

o0
- —pp e _ppplmi2ne®
Csoen+1)(T,T) = Z f dt(B;O(2N+1)(t)e = +BSO(2N+1)(t)e T ), (72)
(m,n)ez?
and
_ T\ tr[\m-;Zn’rl2
Cuspem(F-B) = D dt USP(ZN)(t)e T 4B (e T T |, (73)
(m,n)ez2

with BSO(2N+1)(t) Sp(2N)(t) and BSO(2N+1)(t) USp(ZN)(t) reflecting GNO duality.

The coefficients bl N(s), or equivalently the rational functions B! N(t), can again be deter-
mined by directly comparing the ansatz with the perturbative results. They can also be fixed
using the Laplace-difference equations together with the expression for Cgyyy(7, 7). Either
way, we find in the SO(2N) case,

Q (t)
Bsoen(t) = % , (74)

where Qgoon)(t) is a palindromic polynomial of degree-(4N — 5). The following are specific
examples,

Qs004)(t) =2Qg(2)(t) =3t(3t2 =10t +3),
Qs0(6)(t) = Qsp(a)(t) =15¢(3t° — 236 +50t* — 721 + 506> — 23t + 3)
Osoe)(t) =126 ¢ (£1° — 1267 + 478 —122¢7 + 167t° — 182¢°

+167t* —122¢3 + 47t — 12t + 1) .

(75)

Just as in the SU(N) case, since the coefficients bgooy)(s) are uniquely determined by the
perturbation theory results, Bso(an)(t) is related to the perturbative expression in terms of
Laguerre polynomials (136). This allows us to obtain Bgo(on)(t) for arbitrary N (65) by an
analysis analogous to that used for Cgyy), we find,

oo

Bsoen(t) = —tf dx e™" Bsoiany(x), (76)
0

with

3

N
x> 2(j—i 2(i—j
Bsown () = -2 {x28[ e D (Lo (¥) Lo () = L3 ) L5 () ]}
ij=1

(77)
One can easily verify that (76) reproduces the examples given in (75).
Similarly, for SO(2N + 1) (or equivalently USp(2N)), we find
o} (t)
1 _p2 _ <S0(2N+1)
Bsogan+1) (1) = Byspian (1) = (t+ 1)1 (78)
t)
2 _pl SO(2N+1)(
BSO(2N+1)(t) = BUSp(ZN)(t) W ’ (79

where Q;O(ZNH)(t) and Q§0(2N+1)(t) are degree-(4N — 3) and degree-(2N + 1) palin-
dromic polynomials, respectively. ~For N = 1, as previously mentioned, we have
Cso(3)(7,T) = Csy(2)(27,27) hence, using (53), we deduce

3t(3t2—10t +3)

2(t+1)° ’ (80)

B;O(S)(t) =0, Bﬁo(g)(t) = Bsy(o)(t) =
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consistent with generic expectations (6).
It turns out that it is relatively simple to determine Q
examples we find a simple expression

SO(2N+1)(t)‘ After examining many

Q§0(2N+1)(t) = %(2N +1)e(t—1)*N2(3t2 — (8N +2)t +3), (81)

consistent with Qé 0(3)(t) = Qgy(2)(t). Although a general formula for Qé O(2N +1)(t) is harder
to obtain, nevertheless one may compute it in principle for any N either by use of the Laplace-
difference equation or from the perturbative results. The following are two examples of

SO(2N+1)(t)

Qo05) (1) = Qo) (1) = Qg () = Qbrgpa)(8) = 15(6 = 1)*¢ (? —6¢ +1)

(82)
Qg () = 21t (3¢® —37¢7 +123¢° —207¢° +220t* — 207¢° + 123> — 37t +3) .

As in the SU(N) and SO(2N) cases, the functions B; O(2N +1)(t) can be obtained from the per-
turbative expression in terms of sums of Laguerre polynomials given in (137). The term linear

in Laguerre polynomials in (137) gives the simpler function, Bs 0N +1)(t)
oo
2 —xt B2
B O(2N+1)(t) fo dxe XtBso(2N+1)(x)’ (83)
with!? ,
~ xE
B?O(ZN-H)(X) =5 % [xz 9 ( Z Ly; 1 (2x) )] (84)

and the term quadratic in Laguerre polynomials leads to Bs O(2N +1)(t)

o0
1 —xt {1
B O(2N+1)(t) Jo dxe XtBSO(2N+1)(X), (85)

with

3

N
X2 3 — 2(j—1) 2(i—j)
Blo(2N+1)(t) ?SX{XZSX[e xi%; (LZi—l (x) Laj (x)—inj_l (X)sz_1] (X))]}- (86)

Again, one can verify that (83) and (85) are in agreement with the expressions given in (81)
and (82), respectively. In particular for N = 1 we can easily see that B;O(g)(t) = 0 from (85)
and Bgo(g)(t) = Bgy(2)(t) from (83). |

As described in the introduction, the functions BIGN(t) obey the inversion and integration
conditions,

Ve o

as well as the other integral conditions presented in (6), which we have checked for many
different values of N. As explained in [9], both of these conditions are closely related to
modularity of the corresponding lattice sum integrals.'®

B, ()=t""Bg (¢71), f At i (t)=0, (87)

12The reason L,;_, (2x) (rather than L,;_, (x)) arises in the definition of Bso(zzv H)(x) is because B
associated with E(s; 27, 27).
3We would like to thank Scott Collier and Eric Perlmutter for clarifications on this issue.

sonan(t) is
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Finally, it would be interesting to obtain expressions for BE.N (t) as explicit functions of N for
general gauge group Gy, analogous to that of SU(N) given in (54). Such expressions would al-
low us to perform non-perturbative checks of the relation Csoon)(7, T) = Cysp(—an)(— 7> —%),
which we have shown is a property of the perturbative expansion. Although it is difficult to
perform the continuation N — —N using the expressions given in (77) and (86), we saw earlier
that the Laplace-difference equations are perfectly consistent with this relation.

4.3 Non-perturbative checks

The coefficients ng (s), or equivalently BéN(t), were designed to reproduce the perturbative
expressions of the integrated correlators that are determined by localisation. It is important
to verify that the exact expressions given by (3) also give rise to correct non-perturbative
instanton contributions. We have already shown, using Laplace-difference equations, that
Cso(4)(T,7) = 2Csy(2)(7,7) and Csp6)(7, T) = Csy(ay(7, T) for any 7, as expected. So here we
will consider more general examples. For the one instanton contributions to SO(n) correlators,
we find:

O, (7. 1) =CH) (7. 7) = 277 20[ y*(8y +5) 9
‘/— e* y3/2(64y2 + 48y + 3)erfc (21/_)]
_ 21
Clon (7, 7) = €2™° - [12(512y° + 2496y + 2824y +707) (89)
‘/_ e y3/2(4096y* + 20480y° + 24960y 2 + 7936y +317) erfc(zf)]
Cloe) (T, T) = 2" 1024[y (45056y* + 358400y + 805632y + 630336y + 136173)
— % + y3/2(360448y° + 2912256y + 6792192y + 5765760y > (90)

+ 1567800y +60435)erfc (2//7) |,

where y = n1, = 472/ ng. We have verified that all these results, as well as those with higher
N, match precisely the one-instanton computation from localisation given in section 2.2.

Turning to USp(2N) we first recall from (88) that Cygp4)(7,T) = Cs0(5)(T, 7). For higher
values of N we have, for example,

CSS) (6)(T’ )= 27T 7[}/2(8}/ n 3)(8y +11)

— ‘/TEe‘Wﬁ/2 (512y% +960y? + 360y + 15)erfc(24/) ] ,

Clrgye)(T: ) =772 [y (512y° +1728y? + 1480y +279)

USp(8
- ge“yﬁ/2 (4096y* + 14336y° + 13440y% + 3360y + 105) erfc(2/y) ] )

91
We have verified that the above results, as well as the one-instanton contributions to
Céls)p (ZN)(T, 7) for other values of N deduced from the Laplace-difference equation, again agree
with the localisation computation in section 2.2.
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Furthermore, from examples such as those in (91) we see that the one-instanton contri-
butions to Cygp(an)(7,T) for general values of N in the weak coupling expansion behave as

Chigpiam (5> D)~ € (N +0(y™)) . (92)
This property is also evident from the localisation result, (37), which implies
N 2
€Y 1 omic [ 1 4;
Cuspian (™) = 3 <2 l_! ?+2 > ] (93)
j=1"77J

~ AT[EZniT (y—N +O(y_N_1))] ~ eZnir (yl—N +O(y—N)) )

The behaviour (92) implies that the one-instanton contribution to Cygp2n)(7, T) is exponen-
tially suppressed in the large-N expansion. In fact, as we will see in the next section, for
USp(2N) all the contributions of odd instanton number are suppressed in the large-N limit.
This is in agreement with semi-classical instanton calculations based on the ADHM construc-
tion in [28].

The localisation computations of the k-instanton contributions with k > 1 to Cgq(,) and
Cusp(any are not as explicitly understood as in the case of Cgy(y), due to complications in
obtaining explicit expressions for the k-instanton Nekrasov partition functions. In section 2.2
we computed the two-instanton contributions to the Nekrasov partition function for the SO(4)
and SO(5) theories, and the two- and three-instanton contributions to the USp(2N) theories
for N < 5, using the formulation given in [19,20]. We have verified that all these multiple-
instanton results, which originate from the localisation for the integrated correlators, agree
with the exact formulae described in this section, and they provide further strong evidence to
the validity of our conjecture (3).

5 The large-N expansion

As in [1,2] we will consider two distinct large-N limits: one of these is a generalisation of the
standard ’t Hooft limit of the SU(N) theory, in which ngN is fixed so that ng ~ 1/N, and the
contributions of Yang-Mills instantons are exponentially suppressed. The other large-N limit
is one with finite ng, in which instantons contribute and S-duality is manifest.

5.1 The ’t Hooft limit

This is the limit in which the correlators have topological expansions reminiscent of 't Hooft’s
analysis of SU(N) Yang-Mills theory in the large-N limit [22]. However, the details of our
analysis depend rather sensitively on whether ngN < 1lor ngN > 1. We will consider each
in turn.

The weakly coupled ’t Hooft limit

In this large-N limit, the correlator Cg, (7, 7) is dominated by the perturbative contribution

CZ;”(TZ) (14), which has an expansion in powers of ag, (defined in (16)), that is given by

oo
Coy (7, 7) ~ CB(72) ~ 6, D (NG, )¢ Cag, ), (94)
g=0

where cg, is the central charge given in (18) and the parameters Ng were defined in (22).
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As emphasised in section 2.1, an interesting property of the integrated correlator is that
its planar limit is identical for all the gauge groups. Therefore, one may simply use the known

all-order planar result of Cé'(l?(N) [2] and obtain

©, (—4)™1g(2m + 1T (m+ 3)°
(0) — :
S Y G CT)

m=1

(aGN )m . (95)

This sum converges for |ag, | < %, and one can perform the convergent sum and obtain

5. 2
00 11:2(5,2,4‘—414/ aGN)

cDaz)=a dww?
Gy (64) = da JO sinh?(w)

, (96)

in agreement with [2,3]) and, the results given in [10] (after they are simplified). Sub-leading
coefficients for each gauge group, Céfv) with g > 1, can be determined by using the Laplace-
difference equations to any desired order (and agree with the sub-leading terms listed in [10]
for each gauge group).

The strongly coupled ’t Hooft limit

We now turn to the large-N expansion of Cg (7, 7) in the regime in which 't Hooft coupling
is large. Once again this is a topological series analogous to (94). Whereas in the SU(N)
case the 't Hooft coupling is defined by Agy(y) = ngN the holographic connection with
superstring amplitudes suggests that the strong-coupling ’t Hooft parameter takes a somewhat
different form in terms of N in the case of Cso(an), Csoan+1) @and Cyspan)- The holographic
interpretation for general classical Lie groups [29] will be briefly reviewed in appendix D where
it will be seen that the natural definition of the expansion coefficients for the various groups
take the form

= g? g2 (n_1 g2 (n 1
Asuwy =8, N, Asom) =8, (2 4) s Auspm) =8, (2 + 4) , (97)
which are in accord with [10] and are of the form A, := g7 Ng,, where Ng, is the RR
five-form flux in the appropriate orientifold background given by
. . n 1 . n 1
N, =N, N, ===, N, ==+, 98
SUN) som =57 uspn) = 5+ 7 (98)

as discussed in appendix D. We see that, with the exception of the SU(N) case, the A5, are
different from ag, , which were the expansion parameters relevant in the weak coupling region
and defined in (16).

With these definitions of the parameters we find that in the strong 't Hooft coupling region
the large-NGN asymptotic expansion of the integrated correlators takes the following form

oo
Coy (M) ~ D (Ng, P2 £ (Mg, ). (99)

g=0
For each value of g the asymptotic expansion of fc(;f, )(AGN) in the large-A¢, limit has the form

of
(&) (8),—t/2
[ )~ D b02G . (100)
¢

The g =0 term, fG(ﬁ)(AGN), can be obtained from (96) by expressing ag, in terms of A and

expanding for large Aq, . For SU(N), we simply have A5,y = Amlagyyy = ngN . For the
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other classical gauge groups the the relations between ag, and Ag, are also simple in the
large-Ng,, limit, where to leading order we have

A’SO(H) = znzaso(n) + O(Tl_l) 3 )LUSp(n) = 47T2aUSp(n) + O(Tl_l) . (101)

Using these relations and given that the planar contributions are identical for all gauge groups,
the large-A, expansions are determined by the SU(N) results [2,3]. We find

m_’ (102)

FO )= O oay= Ly i 2172 (m— )T (m+ 3 T@m+ Dm+1)

USp(n) 50(n) 8 — nT(m)?2

g)( )(21) originates with (101). The sub-leading

terms (the first few of which were determined in [10]) can also be determined in a systematic
manner from the Laplace-difference equations. They have a structure that corresponds to
terms that would arise in the low energy expansion of type IIB superstring amplitudes in an
AdSs x S° /7, orientifold background.

In [2] it was shown that the large-A expansion of f (

where the factor of 2 in the argument of f, (

g)
SU(N)
is not Borel summable. The analysis was carried out for g = 0 and g = 1 but in all likelihood

it extends to all values of g. Applying ideas from resurgence similar to [2,30-32], the large-
A expansion of the correlator Cgy(y)(7, 7) therefore receives non-perturbative contributions,

(A) is an asymptotic series, which

which behave as e=*¥? for some constant a. The same considerations appear in Cgq(,) and

Cusp(n)- In particular, the g = 0 terms in (102) take the same form as in f(g)(N)(A), and
therefore have the same non-perturbative contributions. Similarly, the sub-leading powers of
NGN (terms with with g > 0 in (99)), have large-A expansions with very similar structures for
all classical gauge groups. Once again, they are not Borel summable and are expected to have
similar non-perturbative completions. It would be interesting to understand the path-integral
semi-classical origin of these non-perturbative corrections, which have a behaviour suggestive

of world-sheet instantons [2].

5.2 The ﬁxed-gsz limit

In this limit the large-N expansion of the integrated correlator is manifestly invariant under
Montonen-Olive (or GNO) duality [2,7,8,10]. In order to determine an unlimited number of
terms in this expansion we will combine the Laplace-difference equations with the results of
the large-N expansion of Cgy(n)(7, 7) determined in [2,7], which are summarised up to order

N -5 as follows

N2 3N: . 45N73 _
CSU(N)(T T)N——?E( ,T)+ E(%;T,T) (103)
_3r4725 -5 99225 _ 1125 _
+N72[ o EGim, )—ﬁE( )N S OB s= E(3:7,%)]
_77 245581875 _ 2811375 4599
Z[TE E—IQT,T)—TE(%; T, )]
_91 29499294825 _. 39590775 _ 1548855 _
+N Z[TE(%T;T)—TE@;%T)JFTE@;T,T)]
_1140266537436125 _, 397105891875 _ 2029052025 _
2 [ 538 E(¥;7,7)— TE(%;T,T)-%— TE(%;T,T)
3611751
~ = EGT )] +oW%).

As shown in [1,2], this result can be obtained directly from the large-N expansion of (52). In
these references, it was also shown that the Laplace-difference equation, (40) imposes strong

23


https://scipost.org
https://scipost.org/SciPostPhys.13.4.092

Scil SciPost Phys. 13, 092 (2022)

constraints on the form of (103). Thus, once the coefficients of the Eisenstein series with the
highest values of s at every power of 1/N (the ‘highest-s’ coefficients) are known, the Laplace-
difference equation determines all the remaining expansion coefficients. But the highest-s
coefficients are completely determined by the planar-limit result obtained from (96), as shown
in [2]. Therefore the large-N expansion of the correlator is fully determined from (96) and
the Laplace-difference equation.

Let us now consider the large-N expansion of the integrated correlators of the SO(n) the-
ory using the Laplace-difference equation (41). We will solve the equation order by order in
1 /NSO(n): using the input of the large-N expansion of Cgy(y), that was reviewed in the pre-
vious paragraph. We begin by making an ansatz for the the large-Ngq(,) expansion of the

Csom)(T,7),

Cso(m) (T, %) ~ (2Nsom)? fo( 7, 7) + 2Nso(m)fi (T, T) + fo(T, %) + Z (ZNSO(n))%_e fo(z, 7).

(=0
(104)
Here we choose to expand Csq(n)(7, 7) in powers of ZNSO(n) in order to make the comparison
with the expansion of Cgyyy in (103) clearer. Substituting the ansatz (104) into the Laplace-
difference equation (96) and expanding order by order in 1/n determines the equations satis-
fied by the coefficients of the powers of Nso,). At order n?, n' and n°, the Laplace-difference
equation leads to the conditions

folr, %) = % A fi(r, )= A fo(r,7)=0. (105)

Invariance under SL(2,Z) implies fo(’r, 7) and fl(r, 7) must be independent of 7, and are
therefore constant. Comparison with the perturbative expansion shows that these constants
must each vanish. Indeed N s0(n) folr, %) = SO( ) /8 precisely matches the supergravity ex-
pression.

The equations associated with half-integer powers in n are more interesting. The Laplace-
difference equation (96) implies that each coefficient function f,(7, T) must satisfy an inhomo-

. ' . . 1 .
geneous Laplace equation. The first such equation arises at order n2 and takes the following
form,

( )fo(r T)= ——2E( ,T). (106)

The above equation has the SL(2,Z) invariant solution
fo(T,T)= ——E(Z,T T)+aE(2,T T) (107)

The last term proportional to E(}; 7, T) is an arbitrary multiple of the modular invariant solu-
tion of the homogeneous equation

(AT + %)fo(r, 7)=0. (108)

However, the coefficient @ must vanish since the zero mode of E (% T, f) is proportional to

1 1
75 log(7,), which is inconsistent with the known perturbative result. Likewise, at order n™2
we find the equation is given by

(A - —)fl(’t T)= (109)

st (377
which implies

fi(T,T)= (Z;T,’E)+/5E(§;T,’E), (110)

512
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where E (g 0T, %) is the modular invariant solution of the homogeneous equation. However,
either by comparing with the perturbative results [ 10] or with the one-instanton contributions
presented in appendix B.4, we find 3 = 0., so the coefficient of the inhomogeneous equation
again vanishes. At order, n~3 we find

(A —_)fz(T 7)= @E(;, T, )+¥E( 7). (111)

The SL(2,Z)-invariant solution to this equation is given by

fule, ) = 28 (350

nT )— E(Z,T T)+}fE(2,T T) (112)
where y E (%; T, 'E) is the modular invariant homogeneous solution, which again has to vanish
in order to be consistent with the perturbative result or the one-instanton contribution.

One may proceed in a similar way to obtain the expressions for f,(7,7) for general £.
For each value of ¢, the function f,(7,7) gets a contribution proportional to E (E + % 3T, f)
from the modular invariant solution of a homogeneous Laplace equation. Such a contribution
must have vanishing coefficient since it is inconsistent with the structure (99). To see this we
may substitute the relation 7, = 27(n — %) /Aso(n) into the zero mode of E (E + % T, 1‘:) (the
+

¢ —l+3 . & .
sum of the 7, * and 7, * terms) to convert to the variables Ngq(,) and Agg(,y. It is easy

to see that such a contribution behaves as stgi (instead of sto_(zn%), which is inconsistent
with the general structure given in (99). In particular, these solutions to the homogeneous
equations would lead to perturbative terms proportional to NSO(n)’ which are not present in
the perturbative computation [10].

We therefore conclude that all of the solutions to the homogeneous equations must have
vanishing coefficients. This is similar to the systematics of the solution of the Laplace-
difference equation of the SU(N) correlator, as analysed in [2] where, at order N 2~ the
coefficient multiplying E (E + % T, %) was not determined by the Laplace-difference equation.

Once the solutions to the homogeneous equations have been set to zero, the Laplace-
difference equations determine the coefficients in the large-NSO(n) expansion uniquely. In this
manner we find

~ ~ 1 ~ _1
(2Nsom)*  3(2Nso(m)? 45(2N50()) "2

2Cs0(m)(T,T) ~ 2 24 E(3;7,7)+ 28 E(3;7,7)
+ o) [ 2B 7, 1) — iy B, D)]
+ (o) [T B 7, 1) = o B3 7, 7)]
+ liso) [ 2 552271875 " )_107;1;375E(%;T,f)+4(;239E( "
+(2Nso(n)) g[294992§194825E(E;T,%)_1646222275E(%;T’1__) 183;32055 it _)]
N (ZNso(n))__ [ 402665;32436125E(§; %)
_ 1758612i506875E ur 7+ 288552233025E(§;T,f)
w?’(;ﬂls( )]+ 0W,z). (113)

This expression applies to Cgo(,) for both n = 2N and n = 2N + 1. As described earlier, we
have presented the expansion as a series in (21\750(,1))_1 in order to emphasise similarities in
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the coefficients with those of the expansion in the SU(N) case, (103). Indeed, the highest-s
terms in the large-flux number expansion are identical for Csq(,)(7, 7) and Csy(ny(7, 7), apart
from an overall factor of two. As we saw earlier, the coefficients of the Eisenstein series with
highest index s are determined by the planar limit. We also know that the planar contributions
to the integrated correlators are identical to all gauge groups. These statements imply that the
highest-s terms are the same for all gauge groups.'* If one re-expands (113) in powers of ¢

50( )

instead of Nso( ) the expansion agrees with the expressions in [10], which were computed

up to O(CSO(n))' However, using the Laplace-difference equation makes it easy to obtain the
expansion to any desired order.

We have also solved the Laplace-difference equation (42) for the coefficients in the large-
NUSP(H) expansion of Cygp (7, 7). At each order in 1/NU5p(n) the equation for Cygp () is iden-
tical to that of Cgg(,), except that the terms involving the SU(N) correlators depend on the
rescaled coupling, (7,7) — (27,27). Therefore, we find the result is identical to that of the
S0(n) theory, but with (7,7) — (27,27), and with NSO(n) — NUSp(n), so that, in the large-NGN
expansion,

Cuspm)(T,T) ~ Csom)(27,27) (114)

Nso(n)—’NUSP(n)

The rescaling (t,7) — (27,27) in this expression also implies that odd instanton number
terms do not contribute to the integrated correlator of USp(2N) in the large-N expansion.
In particular, the one-instanton contribution is suppressed, as we showed in (93) from the
explicit one-instanton computation based on localisation. One can also see the suppression of
the odd-number instantons from the general expression of the integrated correlator given in
(72),

_ |mnz|? mtane? 2nt|?
CUSP(ZN)(T, T) = Z f dt USp(ZN)(t)e tr T2 +Bgsp(2N)(t)e oy T2 ) , (115)
(m,n)ez?
and recall using (79) that
t(3t2— (8N +2)t+3) r¢—1\
1 _p2 _
BUSp(ZN)(t)_BSO(2N+1)(t)_N(2N+1) 2= 1RC 1) (t+1) . (116)

Following a similar analysis to that given in [2], one can see that in the large-N limit, the
contribution to (116) from BUS (2N)(t) is a coupling-independent constant, with corrections

that are exponentially suppressed This can be seen as follows. The k-instanton contribution
arising from BLIJSP(ZN)(t) can be expressed via a Poisson summation in the form

* dt

eZTEikfl m Z \/—Blljsp(ZN)(t)e_rﬁznrz/t—nznfzt , (117)
m#0,n#0+ 0
with mn = k. This is suppressed because the last factor in (116) satisfies (ﬁ & N < 1 in the

integration region 0 < t < oo, apart from the boundaries at t = 0 and t = oo (which are
: —2nT, [t —n?nT,t

however are also suppressed due to the exponential terms e 2/t and e 2t in (117), re-
spectively). Similarly, one can show that the perturbative (i.e. zero-instanton) contribution is
also exponentially suppressed in the large-N limit apart from a coupling independent constant.

Therefore, only the second term in (115) survives in the large-N expansion (apart from
the coupling-independent constant mentioned above). This means that Cyg,(on)(7,7) only
gets contributions from terms with an even number of instantons, which is in accord with the

!“The overall factor of 2 is due to the fact that cgyqy) ~ § Nsyv), while cso() ~ § Nyo(n) in the large-Ng, limit.
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calculation in [28] of the leading k-instanton contribution to the large-N limit based on the
ADHM construction. Here we see this is true to all orders in large-N expansion. Using (72)
and (73), and the analysis discussed above, we find that

Cuspen)(T,T) ~ Cson+1)(27,27). (118)

This is in agreement with our earlier findings (114) since NSO(2N+1) = NUSp(ZN)'

The structure of (103), (113) and (114) extend the SU(N) results in [7] and the SO(n)
and USp(n) results in [10]. A notable feature of the structure of these large-N expressions is
the fact that the Eisenstein series that arise at each order in 1 /NGN have half-integer index,
whereas those that arise at finite N in (8) have integer index. The low order terms in the
large-N expressions have a close connection to corresponding BPS terms in the low energy
expansion of the holographically dual type IIB superstring amplitudes, as described in the
earlier references.

6 Discussion

In this paper we have proposed a lattice sum representation of the integrated correlator,
Cg,(7,7), of four superconformal primary operators in the stress tensor multiplet in N’ = 4
SYM that are defined by (1) with any classical gauge group. This generalises the expression
proposed for SU(N) gauge groups in [1,2]. Such integrated correlators, which are determined
by supersymmetric localisation, are highly constrained by maximal supersymmetry and satisfy
a fascinating interplay of properties that reflects the constraints imposed by GNO duality.

There are several obvious directions in which these ideas could be extended. A challeng-
ing objective would be to extend the discussion in this paper to N' = 4 SYM with exceptional
gauge groups. These are theories that are self-dual under the action of GNO S-duality. With
gauge groups Eg, E; and Eg, which are simply-laced, the duality group is SL(2,Z). How-
ever, the duality groups in the non simply-laced cases, G, and F,, are Hecke groups, which
have novel features that will not be reproduced in terms of non-holomorphic Eisenstein series.
Since supersymmetric localisation is ill-understood for exceptional groups an alternative pro-
cedure is needed, perhaps making use of the modular anomaly equation, as suggested in [33].
Another challenge is to construct expressions for integrated n-point correlators with n > 4.
Although the general problem is daunting, following the methods of this paper and the previ-
ous results of [34,35], it should be possible to obtain exact expressions for integrated maximal
U(1)y-violating n-point correlators with n > 4 for all classical gauge groups, which transform
covariantly under GNO S-duality (where U(1)y is the bonus symmetry [36]).

Another interesting direction is to formulate lattice representations for other integrated
correlators. In particular, the correlator given by 3n‘i log Z(m, 7, 7)|,—o Was analysed in the
large-N limit for SU(N) gauge groups, in [6,8]. In that case the coefficients of integer powers
of 1/N are generalised Eisenstein series that satisfy inhomogeneous Laplace eigenvalue equa-
tions with sources terms that are quadratic in non-holomorphic Eisenstein series. It would be
of interest to discover the structure of such correlators at finite values of N, perhaps using the
recent results of [37,38], and for more general gauge groups.

More generally, it should be of interest to consider integrated correlators in a wider con-
text. While integration over the operator insertion points obviously averages over the detailed
form of any correlator, it remains uncertain as to how much information may be retrieved by
considering the set of all possible integrated correlators. Clearly, supersymmetry has played
a crucial réle in constraining the integrated correlators we have considered, so it would be
interesting to understand how deformations that break supersymmetry affect their structure.
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Finally, it would be of interest to understand the extent to which properties of the integrated
correlators can be used as probes of the fundamental structure of string theory.
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A Goddard-Nuyts-Olive duality

The 1977 paper by Goddard, Nuyts and Olive [ 14] showed that while electric charges in gauge
theories take their values in the weight lattice of the gauge group G, the magnetic charges take
their values in the lattice of a dual group L G. Table 1 lists the dual groups corresponding to each
of the classical Lie groups. Montonen and Olive [11], conjectured that there is a duality that
identifies a gauge theory with gauge group G and coupling g with a theory with gauge group
LG and coupling LgYM =4n/g,, - The roles of electric and magnetic charges are interchanged
by this duality. It was later understood [12] that such a duality requires supersymmetry, and
in 1979 it was argued [13] that this duality could be realised in N’ = 4 SYM in which the
Z,, inversion of the coupling is naturally extended to SL(2,7Z) acting on the complex coupling

T= % + i;;—" and the spectrum contains infinite towers of dyonic states carrying both electric
YM
and magnetic charge.

Table 1: Langlands/GNO relation between classiical Lie groups and their dual

groups.
Gy LGy
U(N) U(N)
SU(N) PSU(N) =SU(N)/Zy
Spin(2N) SO(2N)/Z,
Sp(N) = USp(2N) SO(2N +1)
Spin(2N +1) | Sp(N)/Z, = USp(2N)/Z,
Gy Gy
F, Fy
Ei—67s E./Zg_,

This story has close connections to the Langlands programme [17] and the GNO dual group
is identified with the Langlands dual group (hence the superscript on G). The extensive
connections between the geometric Langlands programme and the dualities of N" =4 SYM is
explored in [17] and subsequent papers.

The integrated correlators that are the subject of this paper are not sensitive to the discrete
stability groups of LG listed in the right-hand column of table 1. They also do not distinguish
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between Spin(N) and SO(N). This means that the discussions in this paper are at the level of
the Lie algebra, gy, as shown by the labels in table 2 .

The S-duality transformation maps a theory with gauge group G into one with gauge group
LG. The Montonen-Olive inversion of the coupling constant, 7, — 7:;1 generalises to the §
and T transformations, which are defined by

T: (GN:T)_>(GN:T+1)7

N 1
S: (GN,T)A(LGN,—;), (119)

where r is the square of the ratio of the long and short roots of the Lie algebra of Gy. In the
simply laced cases, i.e. SU(N) and SO(2N), r =1 and § =S : 7 — —1/7 reduces to the
Montonen-Olive transformation when 7; = 0. In these cases S and T are the generators of
the discrete self-duality group SL(2,7Z), under which

at+b
T - ,
sL2,z) ¢t +d

(120)

where a, b,c,d € Z with ad — bc = 1.

Table 2: Duality relations of relevance to this paper.

IN LGN

su(N) su(N)
so(2N) so(2N)
usp(2N) | so(2N +1)

so(2N +1) | usp(2N)

In the non simply-laced cases of interest to us r = 2 and the § transformation 7 — —1/(27)
maps theories with gauge groups SO(2N +1) and USp(2N) into each other.® In these cases $
generates an SL(2, R) transformation that is not in SL(2, Z). It is easy to see that the operators
STS and T generate a I,(r) subgroup of SL(2,7) (which is a subgroup in which ¢ = 0mod r).
In other words T;(2) is a self-duality group that maps Cg,, into Cg, and Cig, into Cig, .

There are a number of distinctive features involved in S-duality for gauge theories with
exceptional groups [17,39]. In the simply-laced cases (Eg, E; and Eg). S-duality is a symmetry
associated with the action of SL(2,Z). In the non simply-laced cases (F, and G,, which have
r =2 and r = 3, respectively) S-duality is again a symmetry, but the presence of both long and
short roots implies that the duality group is a Hecke group rather than a subgroup of SL(2,7Z),
which is generated by $ and T.

B Integrated correlators from localisation
In this appendix, we will review the computation of the integrated correlators (1) using su-

persymmetric localisation. We begin with a brief review of the application of localisation to
the calculation of integrated correlators.

I5This ratio is r = 1 for the exceptional groups Eg, E, and Eg, while r = 2 for F,, and r = 3 for G,. All the
exceptional groups are self-dual (possibly modulo some discrete quotient), i.e. *G = G. when G = G,, F,, Eq, E;, Es.
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B.1 Review of integrated correlators

The starting point is the partition function of A" = 2* SYM on S*, which was determined by

Pestun using supersymmetric localisation in [4], where it was shown to have the form'®
2
= 1 r _82n (@.a) spert Sinst 2
Zo,(mw ) = 1 J davg,(a)e 5w 227 (m,a) 25 (m, 7, 0)]
N
t 5i 2
= (zg'(m,a) |2 (m,7,0))g, » (121)

where the integration variable a runs over the r-dimensional Cartan subalgebra of Gy, vg, (a)
is the Vandermonde determinant associated with the group Gy, and the Killing form (a, a) is
equal to try(aa) /(2T,), where T; is the Dynkin index and s denotes the representation. The
normalisation factor N, is given by

~% (a,0)
Ng, = | d"avg (a)e srm . (122)
We see from (121) that the expectation value of a general function F(a;) is defined by
1 ~% (a0)
(F(a))g, = | d"avg,(a)e *vm F(a;), (123)
N NGN N

so that with the given definition for Nz above, we have (1) = 1.
The perturbative contribution to the partition function is one-loop exact and is given by
the classical factor proportional to exp(—8m2{a,a)/ ng) multiplying the one-loop term,

1 H(a-a)

ppert m,a) =
O iy

Gy

- (124)
acA [H(a-a+m)H(a-a—m)]?
Here r denotes the rank of Gy, while the product runs over the set of roots. The function H(z) is
given by H(z) = e~ (147)e? G(1+iz) G(1—iz), where G(z) is Barnes G-function (and v is the Euler
constant). The factor of |2311v5t |2 = Zg}\ft fg;“ in (121) is the contribution from the Nekrasov
partition function and describes the contributions from instantons and anti-instantons localised
at the north and south poles of S*.

The integrated correlation functions of interest for the present paper were defined in [3]
(for Gy = SU(N)) where they were obtained by acting on log Zs with various derivatives
with respect to the hypermultiplet mass, m, and the complex coupling, 7, followed by the limit
m — 0, as displayed in (1). In the same reference [3], it was shown that this quantity is equal
to the correlator of four superconformal primary operators of the stress tensor supermultiplet
integrated over their positions with a specific measure that maintains supersymmetry.

The result may be separated into perturbative and instanton contributions since

02108 Zg, | .o = 02 1og ZE| o+ 82log Zl*t| ., (125)

m= N

where each contribution can be expressed as an expectation value in a gaussian matrix model,

2 pert _ 2 Apert
8mlogZGN |m=0 = (07

2 inst _ 2 5Sinst
m~ Gy |m:0>GN’ am longGr;\ls |m=0 - <aleG’11VS |m=O>GN‘ (126)

The gaussian model expectation value, (...)g, , is defined by (123) and its explicit form for
each gauge group is given in appendix B.2, where the expressions for the perturbative parts

of Cg, determined in [10] are reviewed. A review of the general structure of the instanton
contributions that were discussed in [19,20], is given in appendix B.3.

16The subscript on Zg, indicates that the gauge group is Gy .
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B.2 Perturbative contributions

The discussion in [10] focussed on the perturbative sector, where Z inst — 1, and where the
partition function has no dependence on 7, = 6/(2m). In this subsectlon we will review
the explicit form of this measure, as well as the expressions for ZgN , given in [10] for each
classical gauge group.

* SU(N)
1 H?(a;;)
Zpert m,a;) = ) ,
SU(N)( l) H(m)N_l !:][ H(ai]' + m)H(aU — m) (127)
where a;; = a; —a;. The expectation value of any function F(q;) in the SU(N) case is

obtained from (123) and has the form

(F(ai))SU(N):N (N)JdNa5(Z )l_[a e gYM F(al) (128)

i<j
+ SO(2N)

pert Hz(al])Hz(a )
Zsoen) (M a;i) = H(m)N l_[ H(a;; + m)H(a;; — m)H(aij + m)H(a:;- —m)’

(129)

where ai; = a; + a;. The expectation value of F(q;) in the SO(2N) case is given by the
integral

_8n 2
(F(a ))SO(ZN) f dN a (a+)2 e g%’M o F(ai) . (130)
i<j

NSO(ZN)

¢ SO(2N +1)

ert Hz(a')
2o+ (M @:) = H(m)N l_[ H(a; + m)H(a; —m)

H2(a;)H(5;) (131)

i< H(a;; + m)H(a;; — m)H(al.+j + m)H(ai*j —m)’

The expectation value of F(a;) in the SO(2N + 1) case is given by the integral

—Bn 2iaf
(F(a )>SO(2N+1) = NSO(ZN ; J dN l_[ l_[ a: (a+)2 e (6N 1+1)gyM F(ai) . (]_32)
+

i<j
* USp(2N)
" H?(2a;)
pe
ZUSp(ZN)(m @)= H(m)N l_[H(Za +m)H(2a; —m)
H*(a;))H?(afy)
l__[ H(a;; +m)H(a;; — m)H(al.]. + m)H(ai“; —-m)’

i<j

(133)

The expectation value of F(a;) in the USp(2N) case is given by the integral

1 27'5 lal
(F(a))uspian) = deN ]_[ [ Tei(a)?e ou = Fa). @34

i<j
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The perturbative contributions to Cg, (7, 7) form an essential ingredient in our discussion.

They are given by substituting the above expressions into (1), which leads to the following

expressions that are given in equation (3.8) of [10],!”

cPert « w 242 S o @’ w?
= dwo————y“0 e V| Liog| — |Lja| —
Csuan() = JO osinh? e’ yigl [ l 1( 3’) J 1( y) (135)

i 0\ i [ 2
- ]Lf—l(ﬂ%—?(?)]’

port 0o © N, w2 w2
(y)= dw ) e_7|:L . (—)L . (—)
CooemY . sinhZ o)y y Z 2(i-1) 20-0\ 7,

y
i,j=1 (136)
2 2
_ 207D L2097 ]
2(i—1) y 20-D\ y
pert « w 2172 —w—z S wz wz
Cso(2N+1)(y):_f0 o e’ ay{e ' igl[LZi_l(T)LZH(T)
, 13
— L LY — +e o Ly 1| — P
2-1 |\ Ty JRe | Ty ; 2y
(%) N 2 2
pert w 2 -~ i d
CUSp(ZN)(y) L dwsinhz 0 { 2y Zl[in—l(zy)LZJ 1(2)/)
1,]=
(138)

2
2G-0) [ @)} 26-5) <
2 (5)0 (5) e 2 ()

where y = n1, = 412/ g> g, , and L7(x) are generalized Laguerre polynomials.'® When a = 0

one recovers the standard Laguerre polynomials, L,(x) := Lg(x). For any fixed value of N the
above expressions can be expanded in powers of ng to generate the perturbation expansions
shown in (17).

We note the following:

* The SO(2N+1) result only holds for N > 1 and the SO(3) case is special since the Dynkin
index of SO(n) is discontinuous as n = 3 is changed to n > 3. For SO(3) we must rescale
the coupling constant inside the square brackets in (137) by g, — ﬁgYM. With this
rescaling the correlator Cgq(3) is identical to Cgy ().

* These formulae satisfy the isomorphisms SU(2) = SO(3) = USp(2), SU(4) = SO(6),
SO(4) = SU(2) x SU(2), and SO(5) = USp(4).

B.3 Instanton contributions

Much of this section is a review of [19,20]. The Nekrasov partition functions that describe the
instanton contributions are expressed as infinite Fourier sums,

oo
2t (m,7,0) = e 28 (m,ay), (139)
k=0

7The SU(N') case was determined in [5]. Furthermore, the expressions in [10] have been multiplied by a factor
of 4 to accord with our conventions.

8Laguerre polynomials have previously appeared in the perturbative sector of Wilson loop calculations in these
theories [40].
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5 (k)inst
ZGN

where k is the number of instantons, and
contour integral,

(m, a;) can be conveniently expressed as a

d ~
Zg,)(m,a;) = f ]_[ L0 0, ¢ )7 (m, a1, ), (140)

where £ = k for SU(N),SO(2N) and SO(2N + 1), while for USp(2N), { =K = [%J The ex-

(k)gauge and Z(k)matter

pressions for Z, for each group will be summarised below. In the SU(N)

case the contour 1ntegral was performed explicitly and a general expression for 322 é?(N)lm:O
was obtained in [7] as given in (30). Therefore this section will focus on other gauge groups.

A general expression for 3n212 g;)|m:o is still lacking for gauge groups other than SU(N). So
we will be limited to considering particular examples for these cases. Below we will present
the expressions for Zg;)gauge and Zgjv) MAtter in (140) for SO(2N), SO(2N + 1) and USp(2N),
and the prescription of the choice of integration contours, following [19,20]. From these ex-
pressions, explicit results for 822 (k)|m=0 are derived and given in section 2.2, which include
the one-instanton results for all classical Lie groups as well as some multiple-instanton exam-
ples.'?

Below we list the expressions of Zg;) §9UEC an

d Zé?mmer in (140) for the various gauge

groups.
* SO(2N)
FWsausecy ooy D ( € )k AO)A(e,) T 4 (4¢;—€2)
son) 4 P1 2kk! \eres) Aler)A(er) 1_1 P(¢r +e€,/2)P(¢;—€y/2)’
(141)
glamacery oo (et esdenten)) Aler+ e)Aler ¥ e)
SO(2N) v €3€4 Aez)A(es)
. ﬁ P(§1 +(e3—€4)/DP($1 — (€3 —€4)/2)
I=1 (4¢I - 6%)(44)[ - 6421) ’
where €, = €; + €5 and €3 = m—e€,/2,e, = —m — €, /2. The parameters €; and €,

serve as omega deformations to regulate the instanton partition function. The functions
P and A are defined as

N k
P)=[]x*-a®), A =]]e2-e*-(4)). (142
j=1

I1<J
and ¢} = ¢ + ;.

The integral is computed by closing the contours in the upper-half complex plan of ¢y,
after giving €; an imaginary part with the following hierarchy [19]

Im(€e4) > Im(e3) > Im(ey) > Im(e,). (143)

For the case in which the base manifold is S* that is relevant for our computation of
integrated correlators in A" = 4 SYM, we set €; = €, = 1, but only after the contour
integrals are performed using the prescription described above. This prescription for
the choice of contours also applies to the SO(2N + 1) and USp(2N) cases that we will
discuss next.

We would like to thank Francesco Fucito and Francisco Morales for very helpful discussions and for providing
their Mathematica code.
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¢ SO(2N +1)

(—1) ( €, )k A(0)A(e,) 15 4¢;(4¢; —€2)

(k) gauge _
Z )(m;ai;%)— K]

SO(2N+1

e1€2) Aler)A(er) ;1 P(¢;+€,/2)P(¢p;—€,/2)’
(144)
S(k)matter [ (e1+€3)(eq1 +€4) ‘ Aeg +e3)A(eq +6€4)
ZSO(2N+1) (m, a;, ¢;) = ( €3€4 ) A(ez)A(ey)
§ ﬁ P +(e3—€4)/2)P($) — (€3 —€4)/2)
_ 2 — 2 g
I=1 (4¢I 63)(4¢I 64)

with
N k
P)=x] [a*-a®), A =]]2-¢2)*-()D, (145
j=1 I<J
and ¢;, = ¢; + ;.
* USp(2N)
(k) gauge _ (_1)k (6+)k_v A(O)A(€+) 1
Fusptan) (T #1) = 0 (£ F Alen)Ale;) Ple, /2 (140
y ﬁ 4¢,(4¢;—€2)
P(¢;+e./2)P(¢;—€,/2)

=1
k+
(k) matter ((61 + 63)(61 + 64)) ’ A(61 + ES)A(EI + 64)
ZUS (2N) (m) a;, ¢I) = k
p (6364) A(ES)A(€4)

(147)
i

P((e3—€4)/2)"x

K
x [ [PCer +(e3—ea)/2)P(d; — (e3—€4)/2)(4; — (€1 + €3)°)(Aeb; — (€1 + €4)),
I=1

where k = 2K + v and v = 1 if k is odd, v = 0 if k is even. Furthermore, the functions
P, A are defined as

N K K
Po)=x[ [(x*=a?/2),  A@=]]2=o22— (0] Jx2— 02"

j=1 1<J =1
(148)

B.4 One instanton contribution to Csp

. . . _ _ 2 2 .
Here we consider the large-y expansion, with y = nt, = 4n“/gy,,, of the one-instanton
contribution to Cgo(n)(7,7) for any n, i.e. the perturbation expansion in the one-instanton
sector. In the large-y expansion, the one-instanton term can be expressed as

24(1)
<amZSO(n)(m’ ai)

. 1 1
> :eZﬂ'lT [YO(N)+Y1(N)—+Y2(N)_2 +] ) (149)
m=0/S0(n) Yy Y

where n = 2N or n = 2N + 1, and the one-instanton contribution to the integrated correlator
is given by

1 - 5(1
ey (v, 1) = 730.; <an§z§0)(n)(m, a)

m=0 >SO(n) ' (150)

The task is to determine the coefficient functions Y;(N) in (149).
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This is done by expanding 8512 ég(n)(m, a;) . as given in (31) for SO(2N) and (34) for
m=

SO(2N + 1), in the small-a; expansion for any N (here we have expanded them to order a?).
We then take the expectation value according to the matrix model integrals given in (130)
and (132) for SO(2N) and SO(2N + 1), respectively. We find the coefficients Y;(IN) obey the
following recursion relations:

(2n +3)(2n + 5)(4n + 9)Yo(N) — (160n° + 696n> + 728n + 87) Yo(N + 1)
+36(n+1)(n+2)(4n+1)Yy(N +2)=0, (151)

(n+1D(n+2)2n+1)(2n+3)(4n+9)Y;(N)
—5(32n* +56n° — 176n* —401n — 183) Y3 (N + 1)
+36(n—3)n(n+1)(n+2)(4n+1)Y;(N +2) =0, (152)

(n+1)(n+2)(2n—1)(2n + 1) (8n° — 6n* — 182n> — 153n% + 333n + 270) Y5(N)
— (n—1)n(320n7 — 1872n° — 5984n° + 25526n*
+17178n> — 70475n% + 1587n + 46962)Y,(N + 1)
+36(n—1)n(n+1)(n+ 2)(8n5 —86n* +186n°
+155n% —407n + 96)Y,(N +2) = 0. (153)

These equations apply to both SO(2N) (i.e. using n = 2N) and SO(2N + 1) (i.e. using
n = 2N + 1). Furthermore, the recursion relations can also be solved order by order in 1/n
expansion, once the initial condition is given. We have used these relations to verify the large-
NSO(n) results given in (113).

C Laplace-difference equations

In this appendix we will review the evidence for the Laplace-difference equations that hold
for any classical gauge group and are summarised in section 3. These equations determine
the integrated correlators for any classical gauge group in terms of Cgy(2)(7, T), the integrated
correlator for the gauge group SU(2).

We begin by reviewing the SU(N) Laplace-difference equations, (40), satisfied by
Csuv)(7,7), which are are described in more detail in [1,2]. The integrated correlator with
gauge group SU(N) has the form (52)

oo

- 1 |m + ntl|?

Coup(T D) =7 D f exp(— tn 0 By (D) dt, (154)

2 To
(m,n)ez2 Y0

which is the same as (3) with BéN(t) = 0 and Bgyy(t) = B;U(N)(t). The function Bgy(yy(t)
has the form given by (53)

Qsum)(t)

(t+1)2N+1° (155)

Bsyan(t) =

where Qgy(y)(t) is a polynomial of degree 2N — 1 given by (54). In applying the Laplace
operator to Csy(y)(T,T) we note the important relation

Ape ™D = VD (1Y (1, 7)) —2ntY (7, 7) | = t 32 (te ™V (D), (156)
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where

4 ntl?
Y(r,7) = mEnel” (157)
Ty

It therefore follows that applying A, to (154) and after integration by parts, we obtain

_ 1
A Csyny(T,T) =7 J
(m n)ez2J0

To proceed, we note that Jacobi polynomials satisfy the following three-term recursion
relation

|m+n’:\2 2

P — [ tBsyan(®)]dt. (158)

2(n+a— 1)(n+/3—1)(2n+a+ﬁ)P(aﬁ)(z)+2n(n+a+/3’)(2n+a+ﬂ—2)P,§a’ﬂ)(z)
=@n+a+p-D[@n+a+p)2n+a+p—2z+a?—p2P*P), (159

as well as
d
(z — 1)5}),5“:/5)(2) = nPP)(5) —(a+n) PP(y). (160)

From the definition of Bgyy)(t) we find

2

t ﬁ[f BSU(N)(t)] —4csyny [Bsuav+1)(8) — 2Bsyv) () + Bsyv—1y (1) ]

— (N + DBgy+1)(t) = (N = 1)Bgyn+1)(t) =0

(161)

Substituting this relation into (158) gives the Laplace-difference equation (40),

We now turn to the Laplace-difference equations for the integrated correlators of theories
with the other general classical gauge groups (41) and (42). Once again the equations are
equivalent to differential-difference equations for the rational functions Bi (t) given in sub-

section 4.2, namely (76) for Bso(zN)(t) as well as (79), (83) and (85) for BSO(2N+1)(t) and,
equivalently, USp(ZN)(t)'
In the case of SO(n) gauge groups the differential recurrence relation is
d? i i i i
Y [ tBso(n)(t)] - ZCSO(H)[Bso(n+2)(t) —2Bgq(, () + Bso(n—z)(t)]
nB;U(n O+ (n— 1)BSU(n)(t) =0, (162)
while for USp(n) (with n = 2N) it takes a very similar form,
& ——[tBl s ()] = 2cusp0m| B! (t)—2Bi . (t)+B! ()]
dtZ USp(n) USp(m)| Pusp(n+2) USp(n) USp(n—2)
+ 1By (D — (n+ 1) BL (6)=0. (163)

Note that the rescaling T — 27,7 — 27 in the second line of (42) implies that, in the above
equation (163), B;/U(n)(t) = Bgy(n)(t) when i = 2 (as given in (53)), and BgU(n)(t) = 0 when
i = 1. Using explicit expressions for BiGN(t) given in subsection 4.2, it is straightforward to
verify (162) and (163) for any given N. Furthermore, the Laplace-difference equations (41)
and (42) on the integrated correlators follow from the above equations.
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D Matching with string theory in AdS: x S°/Z, orientifold

In this appendix we will briefly review the type IIB string theory description that is the holo-
graphic dual of the AV =4 SYM theories with classical gauge groups Gy.

The holographic equivalence between A/ = 4 SYM theory and type IIB superstring theory
was initially formulated in the context of the SU(N) gauge theory [41-43]. It was argued that
in the large-N limit the gauge theory is dual to the string theory in AdSs x S°, which is the
near horizon geometry of a stack of N D3-branes. According to this correspondence the string
coupling is related to the Yang-Mills coupling by g; = gsM /4m and the AdSs x S” length scale,
L, is related to the RR five-form flux N by (L/{,)* = ngN (where £ is the string length scale).
This was soon extended to more general gauge groups and corresponding geometries.

Of particular relevance is the generalisation to theories with general classical gauge groups
that still preserve maximal supersymmetry [44,45]. These are type IIB string theories in an
orientifold with background AdSs x (S°/7Z,) ~ AdSs x RP°. Such backgrounds emerge from the
near horizon geometry of N coincident parallel D3-branes that are coincident with a parallel
orientifold 3-plane (O3-plane). This is the fixed plane of the orientifold projection £, which
acts on the string world-sheet and the Chan-Paton factors. The fact that the action of Z, on S°
is free means that there are no open strings in the type IIB theory in this background and there
are also no winding closed strings. The orientifold projection leads to non-orientable string
world-sheet contributions in the large-N string perturbation theory obtained from SO(2N),
SO(2N +1) and USp(2N) N = 4 SYM. There are four varieties of O3-planes that are distin-
guished by their discrete torsion [45]. This means that they are distinguished by their couplings
to Bygns and Bgg (the Neveu-Schwarz/ Neveu-Schwarz and Ramond-Ramond two-form po-
tentials), which are flat connections, i.e. H =dB = 0, in order to preserve supersymmetry.

The functional integral over a world-sheet % includes the phase factors e [ Busxs =
e?misns | and 2™ [5Bw = 270w where the torsions Onsns, Orr take the values O, %, and
transform as a doublet under SL(2,Z). The various combinations of O3-planes that arise are
interpreted as follows:

* The orientifold plane with (Oysns, Orr) = (0,0) is commonly called the O3~ -plane. It is
SL(2,7Z)-invariant and corresponds to the SO(2N) theory. This plane carries —‘1‘ units
of five-form RR flux. Together with the N D3-branes and their mirror images the total
flux of this background is Nson) = (N — %).

* The other three possible combinations are transformed into each other by SL(2,Z) [45].
The (0O, %) case is the O3~ plane. This is invariant under the self-duality group I;;(2) and
corresponds to the SO(2N + 1) theory. The O3~ plane carries —‘1‘ units of flux. However
one D3-brane is necessarily stuck to it since it coincides with its mirror image. Such a
stuck D3-brane carries —|—% units of RR flux. Together with the flux of the remaining N D3-
branes and their mirror images, the total flux in this background is NSO(2N+1) =(N+ ‘l‘).

e The (%, 0) and (%, %) cases are known as 03" and 03", respectively. These correspond
to the USp(2N) theory in two different duality frames. They are transformed into each
other by I;,(2), which interchanges the monopole states and dyonic states [46]. Since
the O3*-plane is a source of +zl1 units of RR flux, the total flux in the presence of N

D3-branes is NUSP(ZN) =(N+ %)-

The relation between the parameters of N' = 4 SYM with a general classical gauge group
and the length scale in the holographic dual AdSs x S°/Z, is dependent on the RR flux,
NGN, of the background. This relation was motivated in [29] by matching the expressions
for the trace anomaly in the gauge theory and its holographic supergravity dual, resulting in
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(L/L)* = 2g3M Ng, . This generalises the SU(N) gauge theory result and accounts for the
values of the strong coupling parameters given in (97).

In the absence of an orientifold projection (i.e. in the large-N SU(N) gauge theory) the
world-sheets of string perturbation theory are orientable. The lowest order contribution arises
from a spherical world-sheet of order 1/ gs2 and the next from a toroidal world-sheet of order
gso. However, as emphasised in [40, 45] the orientifold projection results in non-orientable
string world-sheets that requires the presence of the cross-cap (an RP? world-sheet), which
is of order 1/g, together with non-orientable world-sheets of higher genus. At large N a
world-sheet of genus g and s factors of RP? is of order N2~26=5. Consequently, the large N
expansion is an expansion in powers of 1/N, rather than 1/N2. Furthermore, the replacement
N — —N gives a factor of (—1)°, which clarifies the stringy description of the connection
between SO(2N) and USp(2N) theories noted in [47,48].
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